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Given a bounded, non-negative operator W and a projec-
tion P on a Hilbert space, we find necessary and sufficient
conditions for the existence of a non-trivial, non-negative op-
erator V such that P is bounded from L2(W ) to L2(V ). This
leads to a vector-valued version of a theorem of Koosis and
Treil’ concerning the boundedness of the Riesz projection in
spaces with weights.

1. Introduction.

Let ∂D be the unit circle in the complex plane, define the function χ on ∂D
by χ(eiθ) = eiθ, and set P = {p : p =

∑N
k=−N ckχ

k}. Let σ be normalized
Lebesgue measure on ∂D. The Riesz projection P+ is defined on P by the
formula P+(

∑N
k=−N ckχ

k) =
∑N

k=0 ckχ
k.

In [4], Paul Koosis proved:

Theorem 1 (Koosis). Given a non-negative function w ∈ L1, there exists
a non-negative, non-trivial function v ∈ L1 such that∫

∂D
|P+f |2v dσ ≤

∫
∂D

|f |2w dσ ∀f ∈ P

if and only if 1
w ∈ L1.

The w−1 ∈ L1 requirement may look familiar to readers acquainted with
the theorems of prediction theory, and indeed, in his proof of Theorem 1,
Koosis observes that the necessity of the w−1 ∈ L1 condition is a consequence
of:

Theorem 2 (Kolmogorov’s infimum). Given w ≥ 0 in L1,

inf
{∫

∂D
|1− p|2ωdσ : p ∈ P,

∫
∂D

pdσ = 0
}

=
[∫

∂D

1
ω

dσ

]−1

,

where the infimum is understood to be zero if w−1 /∈ L1.

Koosis’ proof that w−1 ∈ L1 is sufficient in Theorem 1 is short and ele-
gant, but it uses techniques from analytic function theory that tie it to the
scalar-valued setting. A version of Theorem 1 for vector-valued functions
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and operator-valued weights was proved in a very different way by S.R. Treil’
in [6]. Treil’ takes an interesting geometric approach, and it is this view-
point that prompted us to study more deeply the nature of the relationship
between the weights w, v, and the projection P+.

Starting with an extremely general formulation of the Koosis result in
Section 2, we prove a version of Theorem 1 for a projection P and a non-
negative, bounded operator W on an arbitrary Hilbert space L. The re-
sulting theorem (Theorem 4) has some interesting implications when we
specialize to L2 of the unit circle. We cannot, however, use it to recover the
Koosis result (for bounded weight functions) since the positive operator V
that appears in the theorem need not be a multiplication operator. This
issue is addressed in Section 3, where we introduce a bilateral shift U on L
and require that our weights W and V commute with U . The main result
of this section (Theorem 7) is a strengthening of Treil’s vector-valued result
referenced above.

This research owes a great debt to Treil’ in that the proof of Theorem 7
uses the same line of attack discovered by him, albeit with two notable dif-
ferences. One substantial simplification comes from the use of Theorem 4
below which is essentially a corollary to the main result in [1]. A second,
more significant, improvement is achieved by replacing Treil’s geometric con-
struction with an algebraic argument that enables us to drop the hypothesis
of invertibility assumed in Treil’s work. (See Corollary 8.) The result is a
stronger theorem with, what is in our opinion, a more elegant proof.

2. Koosis’ Theorem for an Arbitrary Projection.

Let L be a Hilbert space with inner product 〈·, ·〉, and let B(L) be the
algebra of bounded linear operators on L. Given a projection P ∈ B(L)
onto a subspace C ⊆ L and a non-negative operator W ∈ B(L), we ask
when there exists a non-trivial, non-negative operator V ∈ B(C) satisfying

〈V Pf, Pf〉 ≤ 〈Wf, f〉 ∀f ∈ L.

It may seem surprising that one could say anything interesting at all without
the addition of some more hypotheses, but we get hope from the fact that
Kolmogorov’s infimum has a useful analogue in this very general setting.
The result appears in [1], and is stated here as:

Theorem 3. Let W ∈ B(L) be non-negative, and let P ∈ B(L) be the
projection onto a subspace C ⊆ L. If k ∈ C, then

inf {〈W (k + f), k + f〉 : Pf = 0} = lim
ε→0+

〈[PW−1
ε |C ]−1k, k〉,(1)

where Wε = W + εI, and I is the identity operator on L.

The two inverses in Equation (1) refer to different spaces. For each ε > 0,
the operator Wε is invertible in B(L). Letting Aε = PW−1

ε |C ∈ B(C), we
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have that Aε is bounded below and thus is invertible in B(C). The limit in
Equation (1) is monotone decreasing with decreasing ε, and a polarization
argument ensures that limε→0+〈[PW−1

ε |C ]−1f, g〉 exists for all f, g ∈ C. Thus
it makes sense to define V ∈ B(C) to be the weak limit of [PW−1

ε |C ]−1 as ε
tends to zero from the right.

Combining these observations with Treil’s geometric insight into Koosis’
theorem gives us:

Theorem 4. Let W ∈ B(L) be non-negative, and let P ∈ B(L) be a projec-
tion onto C ⊆ L. Then V = wk- lim

ε→0+
[PW−1

ε |C ]−1 satisfies

〈V Pf, Pf〉 ≤ 〈Wf, f〉 ∀f ∈ L,(2)

and is maximal in the sense that V ≥ B for any B that also satisfies (2).

Proof. For f ∈ L, write f = k + g where k ∈ C and g ∈ C⊥. By Theorem 3,

〈V Pf, Pf〉 = 〈V k, k〉 = inf
Pg′=0

〈W (k + g′), k + g′〉 ≤ 〈Wf, f〉.

If B satisfies (2), then for any g′ ∈ C⊥ it must be that 〈Bk, k〉 ≤ 〈W (k +
g′), k + g′〉. Thus

〈Bk, k〉 ≤ inf
Pg′=0

〈W (k + g′), k + g′〉 = 〈V k, k〉.

�

Corollary 5. Given W and P in B(L) as in Theorem 4, there exists
a non-negative, non-trivial V ∈ B(C) satisfying (2) if and only if
lim

ε→0+
〈[PW−1

ε |C ]−1k, k〉 > 0 for some k ∈ C.

Corollary 5 is just a slightly weaker reformulation of Theorem 4 that
more accurately parallels the statement of Koosis’ result (Theorem 1). The
next proposition gives a condition sufficient for proving the existence of a
non-trivial weight V . Although it is no longer necessary, this condition is
somewhat easier to verify than the one given in Corollary 5.

Corollary 6. Given W and P in B(L) as in Theorem 4, there exists
a non-trivial, non-negative operator V ∈ B(C) satisfying (2) provided
lim

ε→0+
〈W−1

ε k, k〉 < ∞ for some non-trivial k ∈ C.

Proof. Let Pk be the projection onto the one dimensional subspace spanned
by the vector k. A straightforward calculation shows that the operator
PkW

−1
ε |PkL is just multiplication by the constant 〈W−1

ε
k
‖k‖ ,

k
‖k‖〉. Since k ∈

ranP ,
inf

Pf=0
〈W (k + f), k + f〉 ≥ inf

Pkf=0
〈W (k + f), k + f〉.
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Now using Theorem 3 we can write

lim
ε→0+

〈[PW−1
ε |C ]−1k, k〉 ≥ lim

ε→0+
〈[PkW

−1
ε |PkL]−1k, k〉 = lim

ε→0+

‖k‖4

〈W−1
ε k, k〉

,

and the result follows from Corollary 5. �

3. Laurent Operators.

The generality of Theorem 4 has a strong appeal; however, the original
Koosis result deals with multiplication operators, and this quality is ignored
in Theorem 4. Consider this example on L2 of the unit circle.

Let w ≥ 0 be a bounded function satisfying (i) log w ∈ L1 and (ii) 1
w /∈ L1,

and define W to be multiplication by w on L = L2. The Hardy space H2 =
{f ∈ L2 : f̂(n) = 0,∀n < 0} is a closed subspace of L2 and the orthogonal
projection PH onto H2 agrees with the Riesz projection P+ on polynomials.
Now condition (i) implies that there exists an h ∈ H2 such that |h|2 = w a.e.
on the unit circle, which means that lim

ε→0+
〈W−1

ε h, h〉 = 1. By Corollary 6,

then, there exists a non-trivial, non-negative operator V ∈ B(H2) satisfying

〈V PHf, PHf〉 ≤
∫

∂D
|f |2w dσ for all f ∈ L2. However, using Theorem 1, we

see that condition (ii) above implies that there is no way to extend V to be
multiplication by some non-negative function v on L2.

This example illustrates that to fully recover Koosis’ theorem from the
abstract setting, we must introduce a bilateral shift U ∈ B(L) and consider
operators that commute with U .

Definition. A unitary operator U ∈ B(L) is a bilateral shift if there exists
a projection P0 ∈ B(L) satisfying

(i) P0U
jP0 = δj,0P0, ∀j ∈ Z; and,

(ii) as n →∞,
n∑

j=−n

U jP0U
∗j converges strongly to the identity on L.

Letting P0 = P0L, we can write L =
∞∑

j=−∞
⊕U jP0. Theorem 7 will deal

specifically with the projection

PH =
∞∑

j=0

U jP0U
∗j

onto the half-space H =
∞∑

j=0

⊕U jP0.

Definition. An operator A ∈ B(L) is Laurent (with respect to U) if AU =
UA.
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In the case of the unit circle, if U ∈ B(L2) is given by Uf = χf , then
A ∈ B(L2) is Laurent if and only if Af = φf for some φ ∈ L∞. An analogous
fact holds in the vector-valued case ([5, p. 110]).

We are now ready to prove:

Theorem 7. Let W ∈ B(L) be non-negative and Laurent. Then there exists
a non-trivial, non-negative Laurent operator V ∈ B(L) satisfying

〈V PHf, PHf〉 ≤ 〈Wf, f〉 ∀f ∈ L(3)

if and only if V0 =wk-lim
ε→0

[P0W
−1
ε |P0 ]

−1 is non-trivial.
Moreover, if V0 is non-trivial, then V can be constructed to satisfy

〈V c, c〉 ≥ 1
4
〈V0c, c〉 ∀c ∈ P0.(4)

Proof. Assume V exists. Then for any f ∈ L,

〈V P0f, P0f〉
1
2 = ‖V

1
2 P0f‖ = ‖V

1
2 (PH − UPHU∗)f‖

≤ ‖V
1
2 PHf‖+ ‖V

1
2 UPHU∗f‖

≤ ‖V
1
2 PHf‖+ ‖V

1
2 PHU∗f‖

≤ 〈Wf, f〉
1
2 + 〈WU∗f, U∗f〉

1
2

= 2〈Wf, f〉
1
2 .

Thus, 1
4〈V P0f, P0f〉 ≤ 〈Wf, f〉 for all f ∈ L, and so by Theorem 4, 1

4P0V |P0

≤ V0. Since V is non-trivial and Laurent, its kernel cannot contain P0 and
it follows that V0 is non-trivial as well.

Conversely, assume V0 =wk- lim
ε→0+

[P0W
−1
ε |P0 ]

−1 is non-trivial. For n ≥ 1,

define Pn =
n∑

j=0

U jP0U
∗j to be the projection onto the subspace Pn = PnL,

and let Vn =wk- lim
ε→0+

[PnW−1
ε |Pn ]−1. By Theorem 4,

〈VnPnf, Pnf〉 ≤ 〈Wf, f〉 ∀f ∈ L,

and the sequence Vn is monotone in the sense that if 0 ≤ m < n and pm ∈ Pm

then

〈Vmpm, pm〉 = inf
Pmf=0

〈W (pm + f), pm + f〉

≤ inf
Pnf=0

〈W (pm + f), pm + f〉 = 〈Vnpm, pm〉.

Roughly speaking, we intend to define V via the limit of the monotone
sequence Vn. The dilemma is that the argument will require each successive
operator to be a dilation of the previous one (i.e., PnVn+1|Pn = Vn) which is
not true of the sequence Vn. Thus, we first need to move to a new sequence
An satisfying 0 ≤ An ≤ Vn which does have this property.
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To this end set A0 = V0, and define An+1 inductively as follows. Write
Pn+1 = Pn ⊕ Un+1P0, and denote Vn+1 ∈ B(Pn+1) by the 2× 2 matrix

Vn+1 =
(

B D
D∗ C

)
where B, C, and D are acting on the appropriate spaces. Now Vn+1 ≥ 0 is
equivalent to B ≥ 0, C ≥ 0 and the existence of a contraction W : ranC →
ranB satisfying D = B

1
2 WC

1
2 [3, p. 547]. Letting X = WC

1
2 leads to the

LU-factorization

Vn+1 =
(

B D
D∗ C

)
=

(
B

1
2 0

X∗ Y
1
2

)(
B

1
2 X

0 Y
1
2

)
(5)

where Y = C−X∗X = C
1
2 (I−W ∗W )C

1
2 ≥ 0. By the induction hypothesis,

0 ≤ An ≤ B which implies that An = B
1
2 ZB

1
2 for a positive contraction Z

[2, p. 413]. Now it is straightforward to verify that

An+1 =

(
B

1
2 0

X∗ Y
1
2

)(
Z 0
0 I

)(
B

1
2 X

0 Y
1
2

)
satisfies 0 ≤ An+1 ≤ Vn+1, and PnAn+1|Pn = An.

By construction, 〈AnPnf, Pnf〉 ≤ 〈VnPnf, Pnf〉 ≤ 〈Wf, f〉 for all n ≥ 0
and f ∈ L, and the sesquilinear form a(p, q) = lim

n→∞
〈Anp, q〉 is well defined

for p, q ∈ P+ =
⋃∞

n=0 Pn. The operators An are uniformly bounded on
the diagonal by ‖W‖, so a is as well, and hence there exists an operator
A ∈ B(H) such that 〈Ap, q〉 = a(p, q) for all p, q ∈ P+. The operator A
satisfies 〈APnf, Pnf〉 ≤ 〈Wf, f〉 for all f ∈ L from which we can conclude
that 〈APHf, PHf〉 ≤ 〈Wf, f〉.

We now use A to construct a Laurent operator V ∈ B(L) with the re-
quired properties. For k ≥ 0, let Fk be the operator on L defined by

Fk = 1
k+1

k∑
n=0

U∗nAPHUn. For n ≥ 1 and f ∈ L,

〈AUnPHf, UnPHf〉
1
2 = ‖A

1
2 UnPHf‖ = ‖A

1
2 (PH − Pn−1)Unf‖

≤ ‖A
1
2 PHUnf‖+ ‖A

1
2
n−1Pn−1U

nf‖

≤ 2〈Wf, f〉
1
2 .

This implies 〈FkPHf, PHf〉 ≤ 〈4Wf, f〉 for all k ≥ 0. Letting V be a weak
limit point of the set {1

4Fk : k ≥ 0}, it follows that V satisfies (3) and is
Laurent as desired.

It remains to show that V satisfies (4), which will follow if we can demon-
strate that 〈AUnc, Unc〉 ≥ 〈V0c, c〉 for all n ≥ 0 and c ∈ P0. If n = 0,
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A0 = V0 and the result is clear. For a fixed n ≥ 0, the inductive construc-
tion of An+1 yields

〈AUn+1c, Un+1c〉 = 〈An+1U
n+1c, Un+1c〉

= 〈X∗ZXUn+1c, Un+1c〉+ 〈Y Un+1c, Un+1c〉
≥ 〈Y Un+1c, Un+1c〉.

Thus it is sufficient to prove 〈Y Un+1c, Un+1c〉 ≥ 〈V0c, c〉 for all c ∈ P0.
Let z ∈ Pn, so that z + Un+1c ∈ Pn ⊕ Un+1P0 = Pn+1. Using the

LU-factorization for Vn+1 given in (5), we have

〈Vn+1(z + Un+1c), z + Un+1c〉

= 〈Bz, z〉+ 2Re〈B
1
2 z,XUn+1c〉+ 〈CUn+1c, Un+1c〉.

Recall that the operator Vn+1 was generated via Theorem 4. This, together
with the assumption that W is Laurent allows us to write

〈Vn+1(z + Un+1c), z + Un+1c〉
= inf

{
〈W (z + Un+1c + f), z + Un+1c + f〉 : Pn+1f = 0

}
≥ inf

{
〈W (Un+1c + f), Un+1c + f〉 : Un+1P0U

∗(n+1)f = 0
}

= inf {〈W (c + f), c + f〉 : P0f = 0}
= 〈V0c, c, 〉.

Combining these observations we have

〈Bz, z〉+ 2Re〈B
1
2 z, XUn+1c〉+ 〈CUn+1c, Un+1c〉 − 〈V0c, c〉 ≥ 0(6)

for all z ∈ Pn and c ∈ P0. Let r be an arbitrary real number. Since

ranX ⊆ ranB = ranB
1
2 , there exists a sequence zm in Pn such that B

1
2 zm →

rXUn+1c. Substituting into (6) and taking limits we get

r2‖XUn+1c‖2 + 2r‖XUn+1c‖2 +
(
〈CUn+1c, Un+1c〉 − 〈V0c, c〉

)
≥ 0.

Evidently, this quadratic equation in r has at most one real root which means
that its discriminant is not positive. Translating this into a statement about
the coefficients yields ‖XUn+1c‖2 ≤ 〈CUn+1c, Un+1c〉 − 〈V0c, c〉, which is
equivalent to

〈V0c, c〉 ≤ 〈CUn+1c, Un+1c〉 − 〈X∗XUn+1c, Un+1c〉 = 〈Y Un+1c, Un+1c〉.
Altogether then, if c ∈ P0, we have

〈V0c, c〉 ≤ 〈Y Un+1c, Un+1c〉 ≤ 〈AUn+1c, Un+1c〉,
and the lower estimate in (4) follows. �

In the algebraic language of this paper, Treil’s result in [6] essentially
takes the form of:
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Corollary 8 (Treil’). Let W ∈ B(L) be non-negative and Laurent. Then
there exists a non-trivial, non-negative Laurent operator V ∈ B(L) with
P0V |P0 invertible in B(P0) and satisfying

〈V PHf, PHf〉 ≤ 〈Wf, f〉 ∀f ∈ L
if and only if V0 =wk-lim

ε→0
[P0W

−1
ε |P0 ]

−1 is invertible.

Proof. If V exists, then as before, we can show that V0 ≥ 1
4P0V |P0 . It

follows that V0 is bounded below and consequently invertible. Conversely,
the construction in Theorem 7 yields an operator V satisfying (4). Thus, if
V0 is invertible then P0V |P0 is invertible as well. �

References

[1] S. Abbott, A unified approach to some prediction problems, Proceedings of the Amer-
ican Mathematical Society, 123 (1995), 425-431.

[2] R.G. Douglas, On majorization, factorization and range inclusion of operators on
Hilbert Space, Proceedings of the American Mathematical Society, 17 (1966), 413-416.

[3] C. Foias and A. Frazho, The Commutant Lifting Approach to Interpolation Problems,
Operator Theory: Advances and Applications, 44, Birkhauser, Basel (1990).

[4] P. Koosis, Moyennes quadratiques pondérées de fonctions périodiques et de leurs con-
juguées harmoniques, C.R. Academie Science Paris, A 291 (1980), 255-257.

[5] M. Rosenblum and J. Rovnyak, Hardy Classes and Operator Theory, Oxford University
Press, New York (1985).

[6] S.R. Treil’, Geometric Methods in Spectral Theory of Vector-Valued Functions: Some
Recent Results, Operator Theory: Advances and Applications, 42, Birkhauser, Basel,
(1989), 209-280.

Received August 1, 1999.

Middlebury College
Middlebury, VT 05753
E-mail address: abbott@middlebury.edu

Dept. of Atmospheric and Oceanic Sciences
Princeton University
Princeton, NJ 08544
E-mail address: imarinov@princeton.edu

mailto:abbott@middlebury.edu
mailto:imarinov@princeton.edu

