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This paper uses restriction of Fourier transforms to con-
struct explicit realizations of certain irreducible unitary rep-
resentations of SU(n, n). The realizations begin with general-
izations of the classical Szegö map. Boundary values of these
Szegö maps naturally lead to certain restrictions of Fourier
transforms. The image of these restrictions provide concrete
constructions of unitary representations as L2 spaces on cer-
tain orbits. The SU(n, n) invariance of the L2 spaces and
inner products follows immediately from the restriction maps
and the natural pairing between certain degenerate principal
series.

1. Introduction.

Calculating explicit and natural constructions of unitary representations–
especially singular ones–has been a very fruitful field of study in represen-
tation theory. Consider, for instance, the Metaplectic representation and
its many applications. One of the reasons explicit realizations are so useful
is because detailed knowledge of a representation frequently comes through
use of a good realization. This paper studies and constructs a number of
explicit realizations for certain unitary representations of SU(n, n). The
central technique employs certain restrictions of Fourier transforms ([15])
that arise naturally in the study of the representation theory of SU(n, n).
Our approach is different than the one usually adopted in such studies of
this kind (e.g., [8], [12], [13], [14]) where “extensions” of Fourier transforms
are mainly used.

In our approach, the representations naturally arise from an examination
of various Szegö maps and their boundary values which immediately lead to
certain restrictions of Fourier transforms. There are several advantages to
this line of study. The first is that the invariance of our spaces and inner
products are very natural from this point of view. The second is that precise
knowledge of the K-types is not needed. The third is that the techniques
employed are independent of a multiplicity one assumption on K-types.
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To be more specific about the results of this study, write G = SU(n, n),
K = S(U(n) × U(n)), and G/P for the closed G-orbit in the boundary of
G/K. The unbounded realization of G/K may be identified with D+ =
H + iH+ where H and H+ are the set of n × n Hermitian matrices and
n × n positive definite Hermitian matrices, respectively. More generally,
the semi-definite G-orbits of GC/PC may be described on an open dense set
as H + iOp where

Op = {X ∈ H | signature of X is (p, 0)}.

Op is an orbit under the action of the Levi part of P and comes equipped with
a uniquely defined equivariant measure, dµp. Then the main application of
our study of the restriction of the Fourier transform shows that

L2(Op, dµp)

is an irreducible unitary representation of SU(n, n) (Theorem 10.4). Though
this statement is already known ([12]), we believe the techniques in our
new approach yield a more complete understanding of this representation.
We also expect the same techniques to be applicable to a wider family of
representations–at least including the representations associated to certain
orbits in real semisimple Jordan algebras ([13]).

In more detail, we begin with certain pairs of degenerate principal se-
ries on G/P . For certain parameters, depending on each choice of Op,
the appropriate principal series may be realized in the noncompact pic-
ture as L2(H, det(I + X2)±(n−p) dX) and is denoted by L2(H)±, respec-
tively. Using techniques similar to [11] and [1], we write down a Szegö
map, S : L2(H)+ → C∞(D+). It turns out that S acts on a function
f ∈ L2(H)+ by the particularly easy formula

Sf(η) =
∫

H
det(X − η)−pf(X) dX(1.1)

for each η ∈ D+ (Theorem 5.3). Writing B for the boundary value map
taking D+ to H, it is possible to form a commutative diagram defining an
intertwining map, A : L2(H)+ → L2(H)−, of the form

A
L2(H)+ −→ L2(H)−.

S ↓ ↗
B

C∞(D+)

(1.2)

For functions φ ∈ S(H), the Schwartz functions on H, it is possible to see
that the action of A may be rewritten as

Aφ(X) = inp

∫
Op

ei tr(Xξ) φ̌(ξ) dµp(ξ)(1.3)
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where φ̌ is the inverse Fourier transform of φ on H (Theorem 7.2). Equa-
tion (1.3) suggests a second splitting of the singular integral defining A.
Namely, consider the two maps FR : L2(H)+ → L2(Op, dµp) and FE :
L2(Op, dµp)→ L2(H)− given by

FRφ = φ̌|Op

when φ ∈ S(H), where φ̌|Op denotes restriction of φ̌ to Op, and

FEψ(X) = inp

∫
Op

ei tr(ξX) ψ(ξ) dµp(ξ)

for ψ ∈ Im(FR). The first is a restriction of the Fourier transform and
the second is the more usual “extension” of the Fourier transform. These
maps are proved to be continuous (Theorem 9.1) and yield the commutative
diagram

A
L2(H)+ −→ L2(H)−

↘
FR

↑ FE .

L2(Op, dµp)

(1.4)

This diagram is used to make L2(Op, dµp) into a representation of G by
requiring all maps to be G-maps (Theorem 10.2).

The point of working with L2(Op, dµp) is that it comes equipped with its
own inner product denoted by

〈f1, f2〉Op =
∫
Op

f1(ξ)f2(ξ) dµp(ξ)

for f, g ∈ L2(Op, dµp). In fact, it is proved that this structure makes
L2(Op, dµp) into a irreducible unitary representation (Theorem 10.4) of G.
The key to seeing the invariance of the inner product is to relate it to an
invariant form on L2(H)+. Indeed, consider the natural G-invariant pairing
of L2(H)+ and L2(H)− given by

〈f, g〉A =
∫

H
f(X)Ag(X) dX

for f, g ∈ L2(H)+. The central identity fitting everything together is

〈f, g〉A = 〈FRf, FRg〉Op

(Theorem 10.3). Thus the G-invariance of the L2 inner product follows
directly and immediately.

Finally, denoting the kernel of RF as K (which is the same as the kernel
of 〈·, ·〉A), RF therefore induces a bijective intertwining isometry between
the completion of L2(H)+/K and L2(Op, dµp).
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2. Preliminaries.

Let G = SU(n, n). Breaking up the 2n×2n matrices into four n×n blocks,
write:

J =
(

0 −iIn
iIn 0

)
.

Unless noted otherwise, we will use the following realization throughout the
paper:

G = {g ∈ SL(2n,C) | g∗Jg = J}.

It is useful to gather a few simple facts about G for later use.

Lemma 2.1. Write the 2n×2n matrix g =
(
A B
C D

)
as four n×n blocks.

1) G consists of the matrices g ∈ SL(2n,C) satisfying

A∗C = C∗A, D∗B = B∗D, A∗D − C∗B = I.(2.1)

2) G consists of the matrices g ∈ SL(2n,C) satisfying

AB∗ = BA∗, CD∗ = DC∗, AD∗ −BC∗ = I.(2.2)

3) For g ∈ G,

g−1 =
(

D∗ −B∗

−C∗ A∗

)
.(2.3)

4) K = {g ∈ G | A = D, B = −C} is a maximally compact subgroup of
G. K may also be described as

K =
{(

A B
−B A

) ∣∣∣ (A+ iB,A− iB) ∈ S(U(n)× U(n))
}
.

5) P = {g ∈ G | C = 0} and P = {g ∈ G | B = 0} are parabolic
subgroups of G. P can also be described as

(2.4) P =
{ (

A B
0 A∗−1

) ∣∣∣ A ∈ GL(n,C), det(A) ∈ R×,

B ∈ gl(n,C), A−1B = (A−1B)∗
}
.
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6) P admits a Langlands decomposition P = LN with L = MA where

M =
{(

A 0
0 A∗−1

) ∣∣∣ A ∈ GL(n,C), det(A) = ±1
}
,

A =
{(

aI 0
0 a−1I

) ∣∣∣ a ∈ R>0

}
,

N =
{(

I X
0 I

) ∣∣∣ X∗ = X

}
.

Likewise, P = LN where

N =
{(

I 0
X I

) ∣∣∣ X∗ = X

}
.

The the representations of G to be studied will be induced from the
following characters.

Definition 2.1. Let p ∈ Z, 0 ≤ p ≤ n.
1) The character χp : K → S1 acts by

χp

(
A B
−B A

)
= det(A+ iB)p.

2) The character δp : M → {±1} acts by

δp

(
A 0
0 A∗−1

)
= det(A)p.

3) Write a0 = Lie(A). Let ε : a0 → R by

ε

(
aI 0
0 −aI

)
= a

and νp : a0 → R by

νp = n(n− p)ε

(the differential of the character det(A)n−p).
4) Write the Cartan decomposition for Lie(G) as Lie(G) = Lie(K) + p,

write ap for the maximal Abelian subalgebra of p consisting of diagonal
matrices, and ρ : ap → R for the half sum of restricted weights. An
easy calculation shows ρ|a0 = n2ε.

Explicitly, we will study the degenerate principal series induced from the
characters δp ⊗±νp of the maximal parabolic P .

Definition 2.2. Let

I±p = IndG
P (δp ± νp)

(smooth, normalized induction).
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In other words,

I±p = {f : G→ C, smooth | f(xman) = δ−1
p (m) e−(±νp+ρ) log(a) f(x)}(2.5)

with a G action of

gf(x) = f(g−1x).

Beginning in Section 5, we will also make use of the noncompact picture
of these induced representations ([9], §7.1). To that purpose, decompose G
as KMAN and write the A part of g as eH(g). Then the associated Hilbert
space for I±p is

L2(N, e±2Re νpH(n) dn)(2.6)

where dn is Haar measure.

Definition 2.3. Let X,Y ∈ gl(n,C).
1) Given a fixed presentation Z = X + iY , define

Z = X − iY,
Z∗ = X∗ + iY ∗

so that Z∗ is the normal transpose complex conjugation.

2) Given g =
(
A B
C D

)
∈ gl(2n,C), let

ηg = (C + iD)(A+ iB)−1

which is well defined for almost all g and let

αg = A+ iB.

3) Write H = H(n) for the set of n× n Hermitian matrices,

H = {X ∈ gl(n,C) | X∗ = X},
and H± for the positive, respectively negative, definite ones,

H± = {X ∈ H | ±X > 0}.
4) Write

D = {X + iY | X,Y ∈ H},
D+ = {X + iY | X ∈ H, Y ∈ H+}
D− = {X + iY | X ∈ H, Y ∈ H−}.

It is easy to check the following.

Lemma 2.2. The mapping

g → ηg

implements an isomorphism between G/K and D+. In particular, η∗g = ηg

and αg is invertible.
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3. The Szegö Map to Sections on G/K.

Definition 3.1. Write C∞(G/K,χp) for the smooth sections on G/K of
the line bundle induced by χp. We will view this as

{f : G→ C, smooth | f(gk) = χ−1
p (k)f(g) ∀g ∈ G, k ∈ K}.

The central tool used to analyze the representations in this paper is the
following Szegö map.

Definition 3.2. Define the Szegö map,

S : I+
p → C∞(G/K,χp),

to be the G-intertwining operator mapping f → Sf given by

Sf(g) =
1

Vol(M
⋂
K)

∫
K
f(gk)χp(k) dk.

In the following, we show that the map S is a kernel operator. This
will permit us to switch to the noncompact picture for I+

p and identify
C∞(G/K,χp) as the set of smooth functions on the tube domain D+.

The first step is to rewrite S as an integral over N . As usual, given
g ∈ G, decompose g according to

G = K exp(m0 ∩ p)AN

where m0 = Lie(M). Therefore write g = K(g)M(g)A(g)N(g), A(g) =
eH(g), and L(g) = M(g)A(g). For future reference, observe δp|exp(m0) = 1
since δp is trivial on the connected component of M .

Theorem 3.1. For f ∈ I+
p ,

Sf(g) =
∫

N
e(νp−ρ)H(g−1n) χp(K(g−1n))f(n) dn.

Proof. This is a standard change of variables. For instance, see [11].

Lemma 3.2. Let g =
(
A B
C D

)
∈ G, n =

(
I 0
X I

)
∈ N , and l =(

A1 0
0 A∗1

−1

)
∈ L. Let η = ηg and α = αg.

1) Then

e2nεH(g−1nl) = det(A∗1A1) det(α∗α) det(X − η) det(X − η).

2) Both det(α∗α) and det(X − η) det(X − η) are in R≥0.
3) As a special case,

enεH(n) = det(I +X2)
1
2 .
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4) Finally,

χ1(K(g−1nl)) = i−n det(A1) det(α∗) det(X − η) e−nεH(g−1nl) .

Proof.

Set x = g−1nl and write x = K(x)M(x)A(x)N(x). Let g =
(
A B
C D

)
,

A(x) =
(
R1 0
0 R2

)
, and L(x) = M(x)A(x) =

(
L1 0
0 L2

)
. Then

e2nεH(x) = det(R1)2 = |det(L1)|2.

On the other hand, if we write x =
(
x1 x2

x3 x4

)
and calculate x∗x and

compare the K(x)L(x)N(x) expansion to straightforward multiplication,
the upper left hand corner yields the equality

L∗1L1 = x∗1x1 + x∗3x3.

But now Equation (2.3) allows us to calculate x = g−1nl and so compute
that x1 = (D∗ −B∗X)A1 and x3 = (−C∗ +A∗X)A1. A simple calculation
using Equation (2.1) and the fact that G/K is fixed by ∗ verifies that

x∗1x1 + x∗3x3 = A∗1(X − η)αα∗(X − η)A1.

Taking determinants finishes the first part.
The second claim follows by observing both terms are complex numbers

times their conjugates. The third is a special case of (1) since (2) allows
square roots. For the fourth claim, set x = g−1nl. Using Equation (2.3)
to calculate g−1 and then expressing the result in the form K(x)L(x)N(x),

it is easy to see that if we write K(x) =
(

a b
−b a

)
, then (a + ib)L1 =

x1 − ix3 by looking at the upper left and lower left entries in the equality
x = K(x)L(x)N(x). A simple calculation then shows that

(a+ ib)L1 = −iα∗(X − η)A1.

Taking determinants, noting that det(L) = |det(L)|, and using Equation
(2.3) finishes the job. �

We are now in a position to rewrite Theorem 3.1.

Definition 3.3. Let f ∈ I+
p and X ∈ H. Define f a function on H by the

restriction to N :

f(X) = f

((
I 0
X I

))
.

Write dX for Haar measure on H.
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Theorem 3.3. Let f ∈ I+
p , g ∈ G, X ∈ H, η = ηg, and α = αg. Then

Sf ∈ C∞(G/K,χp) can be calculated by

Sf(g) = i−np det(α)−p

∫
H

det(X − η)−pf(X) dX.

Proof. From Theorem 3.1, Lemma 3.2 (with l = I), and Definitions 2.1
and 2.3, it is easy to check that

Sf(g) = i−np det(αα∗)−p det(α∗)p

∫
H

det(X − η)−pf(X) dX.

But Equation (2.2) can be used to check that αα∗ = (AA∗ + BB∗) = αα∗

which finishes the proof. �

4. The Szegö Map to Functions on D+.

Taking our cue from Lemma 2.2 and Theorem 3.3, it is reasonable to rewrite
the Szegö map, S, and C∞(G/K,χp) in terms of the tube domain D+.

Definition 4.1. Let g =
(
A B
C D

)
∈ GC. Identify H ∼= N and D ∼= NC

by the map

Z →
(

I 0
Z I

)
.

This implements an embedding D → GC/PC whose image is open and dense.
For almost all Z ∈ D, left multiplication by g in GC/PC may be pulled back
to D by the linear fractional transformation action defined as

gZ = (DZ + C)(BZ +A)−1.

Note that H and D± are G orbits under this action and that ηg from
Lemma 2.2 is simply g acting on iI.

If σ ∈ C∞(G/K,χp) does not vanish, there is an isomorphism

C∞(G/K,χp) ∼= C∞(G/K)(4.1)

established by mapping f ∈ C∞(G/K) to σf ∈ C∞(G/K,χp). If we let

σ(x, g) =
σ(g−1x)
σ(x)

(4.2)

for g ∈ G and x ∈ G/K and define a G action on C∞(G/K) by

gf(x) = σ(x, g) f(g−1x),(4.3)

then the map f → fσ is a G map as well. Below we choose a section σ and
use it to push the Szegö map down to functions on G/K. Finally, identify
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G/K ∼= D+ as in Lemma 2.2 by identifying x ∈ G/K with η = ηx ∈ D+.
Thus

C∞(G/K) ∼= C∞(D+).(4.4)

Definition 4.2. Write η = ηg. Let σ ∈ C∞(G/K,χp) be defined by

σ(g) = e(νp−ρ)H(g−1) χp(K(g−1)) det(−η)p.

To make sure the above definition is valid, we check that

σ(gk) = χp(k)−1σ(g)

for g ∈ G and k ∈ K. But this follows immediately by observing that
H(k−1g−1) = H(g−1), K(k−1g−1) = k−1K(g−1) and that ηgk = ηg.

Lemma 4.1. For g ∈ G, write α = αg. Then

σ(g) = i−np det(α)−p.

Proof. This calculation follows from Lemma 3.2 with n = l = I. �

Since C∞(G/K,χp) ∼= C∞(D+), we may view C∞(D+) as a G space and
view S as the G-map taking I+

p → C∞(D+). We continue to denote the
resulting map as S as the range will remove ambiguity. We now apply
Equations (4.1) and (4.4) and Lemma 4.1 to rewrite Theorem 3.3 in terms
of C∞(D+).

Theorem 4.2. The G intertwining map S : I+
p → C∞(D+) acts by

Sf(η) =
∫

H
det(X − η)−pf(X) dX.

It is useful to write the G action on C∞(D+) explicitly.

Lemma 4.3. Identifying G/K ∼= D+ and writing g =
(
A B
C D

)
∈ G,

σ(η, g) = det(D∗ −B∗η)−p.

Proof. It is enough to compute σ(·, g) on NL. Writing

x =
(

I 0
X I

) (
L 0
0 L∗−1

)
,

it is easy to compute

α(g−1x)α(x)−1 = D∗ −B∗ηx.

Applying Lemma 4.1 to Equation (4.2) finishes the proof. �

Thus using Lemma 3.2 and Equation (4.3), we can write the G action on
C∞(D+).
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Theorem 4.4. For f ∈ C∞(D+), η ∈ D+, and g =
(
A B
C D

)
∈ G,

gf(η) = det(D∗ −B∗η)−p f(g−1η).

5. I±p as Functions on H.

This section looks at an explicit form of the closure of I±p .

Lemma 5.1. Restriction to N ∼= H establishes an isomorphism of G spaces
between the closure of

I±p

and

L2(H, det(I +X2)±(n−p) dX)

where dX is Haar measure on H.

Proof. Apply Lemma 3.2 (with g = l = I) to Equation (2.6) and make the
identification of H with N as in Definition 4.1. �

In this section we explicitly compute the action of G on L2(H, det(I +
X2)±(n−p) dX) and extend the Szegö map accordingly.

Definition 5.1. Write

L2(H)± = L2(H, det(I +X2)±(n−p) dX)

and

L2(H) = L2(H, dX).

Lemma 5.2. L2(H)+ ⊆ L2(H) ⊆ L2(H)−.

Proof. Since 0 ≤ p ≤ n and det(I +X2) ≥ 1,

0 < det(I +X2)−(n−p) ≤ 1 ≤ det(I +X2)+(n−p).

Thus the Lemma follows immediately from the definition of L2(H)+ in Def-
inition 5.1. �

For functions f ∈ I±p , this Lemma can also be proved directly. Since
two formulas arising from this approach will be needed later, we sketch the
idea. For instance, by starting with f ∈ I+

p , applying Equation (2.5) to the
KMAN decomposition, and using Lemma 3.2 (with g = l = I) it is easy to
show

|f(X)|2 ≤ C det(I +X2)p−2n(5.1)
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where C is a constant bounding |f |2 on K. This is enough to finish the
first inclusion since it is known ([7], §2.1, p. 38) that∫

H
det(I +X2)m dX <∞(5.2)

whenever m < −n+ 1
2 . Though not needed immediately, we will also have

recourse to make use of a formula for the Jacobian of the change of variables
on H given by X → gX. It is

det(BX +A)−2n.(5.3)

It is now apparent that Theorem 4.2 may be completed to the following
(remember everything can be written as an integral over K).

Theorem 5.3. The G intertwining map S : L2(H)+ → C∞(D+) acts by

Sf(η) =
∫

H
det(X − η)−pf(X) dX.

We finish this section by writing the G action on L2(H)± explicitly.

Lemma 5.4. If g =
(
A B
C D

)
∈ G and X ∈ H, then det(A + BX),

det(D −XB) ∈ R.

Proof. Recall gX ∈ H by Definition 4.1. Thus

g′ =
(

I 0
−gX I

)
g

(
I 0
X I

)
∈ G.

In fact it is easy to calculate that g′ =
(
A+BX ∗

0 −(gX)B +D

)
and so

g′ ∈ P . Equation (2.4) finishes the theorem. As an additional point we see
that

(A+BX)−1 = D∗ −B∗(gX)

whenever it is invertible. To prove the second assertion, apply the first to
g−1 and then apply (·)∗. �

Theorem 5.5. Let g =
(
A B
C D

)
∈ G. If f± ∈ L2(H)±, then

gf+(X) = det(D −XB)−2n+p f+(g−1X)

and

gf−(X) = det(D −XB)−p f−(g−1X).
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Proof. If we write g−1

(
I 0
X I

)
in the form(

I 0
Y I

) (
L 0
0 L∗−1

) (
I Y ′

0 I

)
,

we can solve

Y = g−1X,

L = D∗ −B∗X,

and Y ′ = (−C∗ + A∗X)−1(I − L∗−1). For f ∈ I+
p , this says that gf(X) =

sgn(det(D∗−B∗X))−p|det(D∗−B∗X)|−2n+p f(g−1X). Equation (2.4) ap-
plied to g−1 shows that det(D∗ − B∗X) ∈ R. We can therefore change
the −p in the previous formula to −2n+ p since the parity does not change
modulo 2. Hence we get that gf(X) = det(D∗−B∗X)−2n+pf(g−1X) which
is equal to det(D −XB)−2n+pf(g−1X). The work for I−p is done similarly
by replacing the −2n+ p by −p. �

6. The Orbits Op.

Let

l =
(
A 0
0 A∗−1

)
∈ L.

When convenient, we make use of the identification

L ∼= {A ∈ Gl(n,C) | det(A) ∈ R×}(6.1)

implemented by l → A above. Definition 4.1 calculates the action of L on
N which pulls down to an action of L on H as

l ·X = A−1∗XA−1(6.2)

for X ∈ H. Hence the L-orbits on H are parameterized by signature. The
study of these orbits will be of fundamental importance.

Definition 6.1. Let Op be the L-orbit in H consisting of Hermitian matri-
ces of signature p, 0.

For general reasons, there exist L-equivariant measures on Op ([13]), but

they are also easy to write explicitly. We briefly outline their construction.
In this paragraph only, write Op(n) for the matrices in H(n) of signature

p, 0. Then there is a smooth emedding Cp(n−p)×Op(p)→Op(n) with dense

open image given by

(Z,X)→
(
Ip 0
Z∗ In−p

) (
X 0
0 0

) (
Ip Z
0 In−p

)
.
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Using this embedding, the desired L-equivariant measure on Op (up to a
scalar multiple) pulls back to

det(X)n−p dZpdXp(6.3)

where dZp is Haar measure on Cp(n−p) and dXp is Haar measure on H(p)
restricted to the open orbit Op(p). We omit the details.

Definition 6.2. Write τ for the character on L acting by τ(l) = det(A).
1) Let

dµp

be the unique (up to scalar multiplication) L-equivariant measure on
Op that transforms by the character τ2p (so the change of variables
l ·X → X multiplies the measure by det(A)2p). The measure dµp will
be normalized below.

2) Write

L2(Op) = L2(Op, dµp).

Normalize dµp so that
∫
Op

e− tr(Y ) dµp(Y ) = 1. This allows us to verify
the following well known identity.

Lemma 6.1. Let Z ∈ D+. Then

inp det(Z)−p =
∫
Op

ei tr(Zξ) dµp(ξ).

Proof. We first show

det(Y )−p =
∫
Op

etr(Y ξ) dµp,0(ξ)

for any Y ∈ H+. Using the L action from (6.2), write Y = A−1∗A−1 with
det(A) ∈ R×. Then, making use of the L-equivariance and normalization,
we calculate:∫

Op

e− tr(Y ξ) dµp(ξ) =
∫
Op

e− tr(A−1∗A−1ξ) dµp(ξ)

=
∫
Op

e− tr(A−1ξA−1∗) dµp(ξ)

= det(A∗)2p

∫
Op

e− tr(ξ) dµp(ξ)

= det(Y )−p.

To finish the Lemma, write Z = X + iY with X ∈ H and Y ∈ H+. We
see −iZ = Y − iX. The statement of the Lemma then follows by analytic
continuation. �
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To apply this Lemma in the setting of our Szegö map, we need the Fourier
transform.

Definition 6.3. Write S(H) for the set of all Schwartz functions on H. As
this space is not G invariant, write S(H)+ for the smallest G invariant space
containing S(H):

S(H)+ = span{gφ | g ∈ G, φ ∈ S(H) ⊆ L2(H)+}.

For φ ∈ S(H), define its Fourier transform, φ̂ ∈ S(H), by

φ̂(ξ) =
∫

H
ei tr(ξX) φ(X) dX

and, up to a scalar multiple, the inverse Fourier transform, φ̌ ∈ S(H), by

φ̌(ξ) =
∫

H
e−i tr(ξX) φ(X) dX.

Since we will eventually be looking at boundary values of the map S, the
following Lemma will be needed.

Lemma 6.2. Let φ ∈ S(H), Z ∈ D+, and Y ∈ H. Then

lim
Z→Y

∫
H

det(X + Z)−pφ(X) dX = i−np

∫
Op

ei tr(Y ξ) φ̂(ξ) dξ.

Proof. We begin by using Lemma 6.1 and compute∫
H

det(X + Z)−pφ(X) dX = i−np

∫
H

∫
Op

ei tr(X+Z)ξ φ(X) dµp(ξ)dX.

To apply Fubini’s theorem, we need to check the L1 condition. Write
Z = X ′ + iY with X ′ ∈ H and Y ∈ H+ and use Lemma 6.1:∫

H

∫
Op

| ei tr(X+Z)ξ φ(X)| dµp(ξ)dX =
∫

H

∫
Op

e− tr(Y ξ) |φ(X)| dµp(ξ)dX

= det(Y )−p

∫
Op

|φ(X)| dX <∞.

Hence∫
H

∫
Op

ei tr(X+Z)ξ φ(X) dµp(ξ)dX =
∫
Op

ei tr(Zξ)

∫
H

ei tr(Xξ) φ(X) dXdµp(ξ)

=
∫
Op

ei tr(Zξ) φ̂(ξ) dµp(ξ).

Since φ̂ is still Schwartz and the measure (see Equation (6.3)) is only of
polynomial growth, the above integrand is an L1 function. Hence, when we
take the limit as Z → Y , we may move the limit past the integral to finish
the Lemma. �
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7. Boundary Values of the Szegö Map.

Definition 7.1. For f ∈ C∞(D+) and X ∈ H, define

Bf (X) = lim
Z→X

f(Z)

where Z ∈ D+.

In general, Bf may not be well defined. However, we see below that it
is at least well behaved on Im(S).

Theorem 7.1. Let φ ∈ S(H) and η ∈ D+. Then

Sφ(η) = inp

∫
Op

ei tr ηξ φ̌(ξ) dξ.

Moreover, B is well defined on S(S(H)) and BSφ is alternately written as
the smooth function

BSφ(Y ) = inp

∫
Op

ei tr(Y ξ) φ̌(ξ) dξ.

Proof. Lemma 6.2 computes that

lim
Z→Y

∫
H

det(X + Z)−pφ(X) dX

= i−np lim
Z→Y

∫
Op

ei tr ZW φ̂(W ) dµp(W )

= i−np

∫
Op

ei tr(Y W ) φ̂(W ) dµp(W ).

Multiplying both sides by (−1)np and making the change of variables X →
−X finishes the identity. Regarding smoothness, recall that φ̂ is still
Schwartz and the measure (see Equation (6.3)) is only of polynomial growth
so that the integrand is an L1 function. �

Definition 7.2. If f ∈ S(H)+, define Af by

Af = BSf.

So far this map is well defined on S(H) by Theorem 7.1.

Theorem 7.2. Let f ∈ S(H)+ and ψ = Sf . Then (1) Af and Bψ are
well defined almost everywhere; (2) Af = Bψ ∈ L2(H)−; and (3) A and B
are G-maps on S(H)+ and S(S(H)+), respectively. Finally, for φ ∈ S(H),
η ∈ D, and Y ∈ H,

Sφ(η) = inp

∫
Op

ei tr ηξ φ̌(ξ) dξ

and

Aφ(Y ) = inp

∫
Op

ei tr(Y ξ) φ̌(ξ) dξ.
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Proof. Begin with any function ψ ∈ C∞(D+) for which Bψ is well defined.
First we check B commutes with the group actions given in Theorems 5.5

and 4.4. Write g =
(
A B
C D

)
∈ G. Then using Theorems 5.5 and 4.4 for

the group action and making use of Lemma 5.4 in the second set of equations
below, we calculate:

gBψ(X) = det(D −XB)−pBψ(g−1X)(7.1)

= det(D −XB)−p lim
Z→g−1X

ψ(Z).

On the other hand, we have

Bgψ (X) = lim
ζ→X

gψ(ζ)(7.2)

=
p

lim
ζ→X

det (D∗ −B∗ζ)−p ψ(g−1ζ)

= det(D −XB)
−p

lim
ζ→X

ψ(g−1ζ)

= det(D −XB)−p lim
Z→g−1X

ψ(Z)

so that gBψ = Bgψ which proves part (3) since S is a G-map (Theorem 5.3).
Coupled with Theorem 7.1, Equations (7.2) show Bgψ is well defined almost
everywhere. Since S is a G-map, this finishes part (1). That the range of B
restricted to S(H)+ is contained in L2(H)− follows from the G action. The
argument is completely analogous to the one around Equation (5.1) (since
each f ∈ S(H)+ comes from the smooth principal series) except that the
final bound will be

|Bf(X)|2 ≤ C det(I +X2)−p.(7.3)

The final equations come from Theorem 7.1. �

Note that though Bf is well defined almost everywhere for ψ ∈ S(S(H)+),
it need not be given by the formula in Theorem 7.1 for ψ /∈ S(S(H)). A
similar cautionary remark applies to A on S(H) versus S(H)+.

Theorem 7.2 establishes the following commutative diagram of G maps:

A
S(H)+ −→ L2(H)−.

S ↓ ↗
B

S(S(H)+)

(7.4)
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8. Functions on Op and an Inner Product.

Definition 8.1. For φ ∈ S(H), define FRφ ∈ L2(Op, dµp) (F for Fourier
transform and R for restriction) by

FRφ(ξp) = φ̌(ξp).

For ψ ∈ Im(FR), define FEψ ∈ L2(H)− (E for extension) by

FEψ (X) = inp

∫
Op

ei tr(ξX) ψ(ξ) dµp(ξ).

First note that φ̂ is still Schwartz and the measure dµp (see Equation (6.3))
is only of polynomial growth so that FEψ is well defined. Second, note that
Theorem 7.2 immediately implies that on S(H),

FE ◦ FR = A|S(H) = B ◦ S|S(H)(8.1)

where A|S(H) denotes the map A restricted to S(H). In other words, there
is a commutative diagram of maps (compare to diagram 7.4)

A
S(H) −→ L2(H)−

↘
FR

↑ FE .

L2(Op)

(8.2)

Also note that L2(Op) comes equipped with its own inner product denoted
by

〈·, ·〉Op .

This pairing can be related to A as follows.

Definition 8.2. If φ1, φ2 ∈ S(H)+, let

〈φ1, φ2〉A = inp

∫
H
φ1(X)Aφ2(X) dX.

Equations (5.1), (7.3), and (5.2) can be used to show that 〈·, ·〉A is well de-
fined for functions coming from the principal series I+

p which includes S(H)+

(see the proof of Lemma 10.1 or a more general result under Definition 10.2
below).

Theorem 8.1. If φ1, φ2 ∈ S(H), then

〈φ1, φ2〉A = 〈FRφ1, FRφ2〉Op.

Moreover, the form 〈·, ·〉A is G-invariant on S(H)+.
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Proof. We make use of Theorem 7.2 to calculate:

〈φ1, φ2〉A = inp

∫
H
φ1(X)Aφ2(X) dX

=
∫

H

∫
Op

φ1(X) e−i tr(Xξ) φ̌(ξ) dξdX

=
∫
Op

∫
H
φ1(X) e−i tr(Xξ) φ̌(ξ) dξdX

=
∫
Op

φ̌1(ξ)φ̌2(ξ) dµp(ξ).

To check G-invariance, write g =
(
A B
C D

)
∈ G. In the following equa-

tions, make use of the actions given in Theorem 5.5, Equation (5.3) for the
change of variables, Lemma 5.4 for conjugation issues, and Equation (2.1)
and Definition 4.1 to check that (D∗ −B∗ gX) = (BX +A)−1:

〈gφ1, gφ2〉 = inp

∫
H
gφ1(X)Agφ2(X) dX

= inp

∫
H

det(D −XB)−2n+pφ1(g−1X)gAφ2(X) dX

= inp

∫
H

det(D −XB)−2nφ1(g−1X)Aφ2(g−1X) dX

= inp

∫
H

det(D∗ −B∗X)−2nφ1(g−1X)Aφ2(g−1X) dX

= inp

∫
H

det(D∗ −B∗ gX)−2n det(BX +A)−2nφ1(X)Aφ2(X) dX

= inp

∫
H
φ1(X)Aφ2(X) dX

= 〈φ1, φ2〉.
�

The equality of the two pairings in the above Theorem will be extended
to a larger domain as soon as the map FR is extended.

9. Continuity of A, FR, and FE.

As it stands, most operators are only defined on dense sets such as S(H) ⊆
L2(H)+. To complete the picture, we need to prove the operators are
continuous.

Theorem 9.1. The maps

A : S(H) ⊆ L2(H)+ → L2(H)−,



284 L. BARCHINI AND MARK R. SEPANSKI

FR : S(H) ⊆ L2(H)+ → L2(Op),

and

FE : Im(FR|S(H)) ⊆ L2(Op)→ L2(H)−

are continuous maps. The notation Im(FR|S(H)) denotes the image of FR

restricted to S(H).

This section is devoted to the proof of Theorem 9.1. The first step is the
following Lemma.

Lemma 9.2. If the operator

FE : Im(FR|S(H)) ⊂ L2(Op)→ L2(H)−

is continuous, then

A : S(H) ⊆ L2(H)+ → L2(H)−

and

FR : S(H) ⊆ L2(H)+ → L2(Op)

are bounded operators as well.

Proof. Suppose the hypothesis of this Lemma is in effect and let f ∈ S(H).
Consider the map A first. Then for some constant C,

||Af ||2L2(H)− = ||FEFRf ||2L2(H)− ≤ C||FRf ||2L2(Op).

On the other hand, ||FRf ||2L2(Op) = 〈FRf, FRf〉Op = 〈f, f〉A by Theorem 8.1.
But Definition 8.2 says

〈f, f〉A = |〈f, f〉A| =
∣∣∣∣∫

H
f(X)Af(X) dX

∣∣∣∣
≤

∫
H
|[f(X) det(I +X2)

n−p
2 ] [Af(X) det(I +X2)

−n+p
2 ]| dX

≤ ||f ||L2(H)+ ||Af ||L2(H)− .

Putting these equations together gives

||Af ||2L2(H)− ≤ C||f ||L2(H)+ ||Af ||L2(H)− .

Division finishes the proof for the continuity of A.
Now consider FR. Using the relations above, ||FRf ||2L2(Op) = 〈f, f〉A ≤

||f ||L2(H)+ ||Af ||L2(H)− ≤ C||f ||2L2(H)+ . Division again finishes the proof for
continuity of FR. �

Thus we devote the rest of the section to proving that FE : Im(FR|S(H)) ⊂
L2(Op)→ L2(H)− is a bounded map. This amounts to showing that∫

H
|Af(X)|2 det(I +X2)−n+p dX ≤ C

∥∥f̌∥∥
L2(Op)

(9.1)
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for some constant, C, and all f ∈ S(H). In the special case of p = n, this
statement is trivial to verify using the Plancherel theorem as On is open in
H, dµn = dX|On , and det(I +X2)±(n−p) = 1. In the case of p < n, much
more work is required.

Let Sp be the stabilizer of

Ep =
(
Ip

0n−p

)
in L so that Op

∼= L/Sp and let S̃n−p be the stabilizer of

Ẽn−p =
(

0p

In−p

)
so that On−p

∼= L/S̃n−p.

Lemma 9.3. Given a smooth function of compact support, f , on Op×On−p,
pull and push it to a function f∗ on On using the double fibration:

L
↙ ↘

Op× On−p On

by

f∗(l · En) =
∫

Sn/Sp∩eSn−p

f((ls) · Ep, (ls) · Ẽn−p) ds

for l ∈ L where ds is an Sn-invariant measure. The function f∗ satisfies∫
On

f∗(ξn) dµn(ξn) =
∫
Op×On−p

f(ξp, ξn−p) dµp(ξp)dµn−p(ξn−p).

In particular, if fp and fn−p are functions on Op and On−p, respectively,
then fp × fn−p is a function on Op ×On−p. Define

fp ∗ fn−p

to be the function on On given by (fp × fn−p)
∗.

Proof. Easy calculations show that Sn/Sp ∩ S̃n−p
∼= U(n)/U(p)× U(n− p)

so that ds exists since have a quotient of reductive groups. Then it is easy
to see that it suffices to prove the injection

L/Sp ∩ S̃n−p → Op ×On−p

induced by the diagonal action, l→ (l ·Ep, l ·Ẽn−p), has a dense open image.
Using the transitivity of the L-action on Op, it suffices to show that Sp can
be used to conjugate almost all elements in On−p to Ẽn−p. But for this,
it suffices to show that almost all A ∈ Gl(n,C), with det(A) ∈ R×, can be
written as the product of elements from Sp and S̃n−p. But this is an easy
calculation we omit. �
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By previous remarks, the following Lemma will finish the proof of Theo-
rem 9.1.

Theorem 9.4. For some constant, C, and all f ∈ S(H),∫
H
|Af(X)|2 det(I +X2)−n+p dX ≤ C

∥∥f̌∥∥
L2(Op)

.

Proof. By Theorem 7.2, we know
∫
H |Af(X)|2 det(I +X2)−n+p dX is equal

to ∫
H

∣∣∣∣∣
∫
Op

ei tr(Xξ) f̌(ξ) dµp(ξ)

∣∣∣∣∣
2

det(I +X2)−n+p dX.

On the other hand, Lemma 6.1 shows that

|det(iI +X)|−n+p =

∣∣∣∣∣
∫
On−p

ei tr[(iI+X)ξ] dµn−p(ξ)

∣∣∣∣∣ .
Since det(I + X2) = det(iI + X) det(−iI + X) and |det(iI +X)| =
|det(−iI +X)|, we therefore know

det(I +X2)−n+p =

∣∣∣∣∣
∫
On−p

ei tr[(iI+X)ξ] dµn−p(ξ)

∣∣∣∣∣
2

.

Thus
∫
H |Af(X)|2 det(I +X2)−n+p dX is equal to∫

H

∣∣∣∣∣
∫
Op

ei tr(Xξp,0) f̌(ξp) dµp(ξp)
∫
On−p

ei tr[(iI+X)ξn−p] dµn−p(ξn−p)

∣∣∣∣∣
2

dX.

But Lemma 9.3 allows this to be rewritten as∫
H

∣∣∣∣∫
On

(
ei tr(X·) f̌(·) ∗ ei tr[(iI+X)·]

)
(ξn) dµn(ξn)

∣∣∣∣2 dX.
However, it is easy to check that the definition of ∗ in Lemma 9.3 implies(

ei tr(X·) f̌(·) ∗ ei tr[(iI+X)·]
)

(ξn) = ei tr(Xξn)
(
f̌(·) ∗ e− tr ·) (ξn).

Thus
∫
H |Af(X)|2 det(I +X2)−n+p dX is equal to∫

H

∣∣∣∣∫
On

ei tr(Xξn)
(
f̌(·) ∗ e− tr ·) (ξn) dµn(ξn)

∣∣∣∣2 dX
=

∫
H

∣∣∣∣∫
H

ei tr(XY ) χOn(Y )
(
f̌(·) ∗ e− tr ·) (Y ) dY

∣∣∣∣2 dX
where χOn is the characteristic function for the open set On inside H. The
next step uses the Plancherel Theorem on the above integral to rewrite it as∫

H

∣∣χOn(X)
(
f̌(·) ∗ e− tr ·) (X)

∣∣2 dX =
∫
On

∣∣(f̌(·) ∗ e− tr ·) (X)
∣∣2 dX.
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To justify this step, we verify that f̌(·) ∗ e− tr · ∈ L1(On) ∩ L2(On). By the
definition of ∗, we have(

f̌(·) ∗ e− tr ·) (l · En) =
∫

Sn/Sp∩eSn−p

f̌((ls) · Ep) e− tr[(ls)· eEn−p] ds.

So ∫
On

∣∣(f̌(·) ∗ e− tr ·) (X)
∣∣ dX

=
∫

L/Sn

∣∣∣∣∣
∫

Sn/Sp∩eSn−p

f̌((ls) · Ep) e− tr[(ls)· eEn−p] ds

∣∣∣∣∣ dl
≤

∫
L/Sn

∫
Sn/Sp∩eSn−p

∣∣∣f̌((ls) · Ep) e− tr[(ls)· eEn−p]
∣∣∣ ds dl

=
∫
Op×On−p

∣∣∣f̌(ξp) e− tr ξn−p

∣∣∣ dµp(ξp)dµn−p(ξn−p) <∞

and so the L1 condition follows. For the L2 condition, the key observation
is that Sn/Sp ∩ S̃n−p is compact. In fact, recall Sn/Sp ∩ S̃n−p is isomorphic
to U(n)/U(p) × U(n − p). Thus Hölder’s inequality can be made use of
below to check∫

On

∣∣(f̌(·) ∗ e− tr ·) (X)
∣∣2 dX

=
∫

L/Sn

∣∣∣∣∣
∫

Sn/Sp∩eSn−p

f̌((ls) · Ep) e− tr[(ls)· eEn−p] ds

∣∣∣∣∣
2

dl

≤
∫

L/Sn

k

∫
Sn/Sp∩eSn−p

∣∣∣f̌((ls) · Ep) e− tr[(ls)· eEn−p]
∣∣∣2 ds

= k

∫
Op×On−p

∣∣∣f̌(ξp) e− tr ξn−p

∣∣∣2 dµp(ξp)dµn−p(ξn−p) <∞

where k = Vol(Sn/Sp ∩ S̃n−p). Thus the use of the Plancherel Theorem is
valid and we may write∫

H
|Af(X)|2 det(I +X2)−n+p dX =

∫
On

∣∣(f̌(·) ∗ e− tr ·) (X)
∣∣2 dX.

However, the above calculation that checks the L2 condition now implies∫
H
|Af(X)|2 det(I +X2)−n+p dX ≤ C

∫
Op

∣∣f̌(ξp)
∣∣2 dµp(ξp) = C

∥∥f̌∥∥
L2(Op)

as desired where C = k
∫
On−p

e−2 tr ξn−p dµn−p(ξn−p) <∞. �



288 L. BARCHINI AND MARK R. SEPANSKI

10. The Main Theorem.

Theorem 9.1 allows the completion of the maps A, FR, and FE .

Definition 10.1. Let

A : L2(H)+ → L2(H)−

be the continuous extension of A : S(H)→ L2(H)− where we view S(H) ⊆
L2(H)+,

FR : L2(H)+ → L2(Op)

be the continuous extension of FR : S(H)→ L2(Op), and

FE : Im(FR)→ L2(H)−

be the continuous extension of FE : Im(FR|S(H)) → L2(H)+ where Im(FR)
denotes the image of FR on L2(H)+.

Two notes are in order. The first is that Definition 7.2 already gives a def-
inition of A = BS on all of S(H)+ which Theorem 7.2 shows is well defined.
However, it is apriori possible (though not true) that Definition 10.1 defines
A differently on S(H)+\S(H). This ambiguity is removed in Lemma 10.1
below.

The second note is that the closure of Im(FR) is in fact all of L2(Op).
This is shown in Theorem 10.4 below.

Lemma 10.1. When restricted to A : S(H)+ → L2(H)+, both Defini-
tions 7.2 and 10.1 coincide.

Proof. We break the proof of this Lemma up into steps. In this proof only,
write A for the operator defined in Definition 10.1 by extending continu-
ously from S(H) to S(H)+ with respect to the L2(H)+ and L2(Op) norms,
respectively. Likewise for this proof only, write A for the operator defined
in Definition 7.2 as B ◦ S on S(H)+ (Theorem 7.2 shows it is well defined).

(1). The first step is found in [14], Lemma 1. Since the proof is
straightforward and identical to the one in [14], we simply state the result.
Namely, f ∈ C∞(H) has a (unique) smooth extension via the open dense
embedding H ∼= N ↪→ G/P to a function in the smooth principal series I±p
if and only if the function

X → (gf)(X),

initially defined for X ∈ H with det(D−XB) 6= 0 by Theorem 5.5, extends

to a smooth function on H for each g =
(
A B
C D

)
∈ G.

(2). Suppose X0 ∈ H and det(A + BX0) = 0. Choose Xt, t ∈ R, a
smooth path in H with det(D−X(t)B) not identically zero as a function of
t. Let ‖ · ‖ be a norm on H. Then limt→0 ‖ gXt ‖= ∞. This follows by
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the definition of the linear fractional action in Definition 4.1 combined with
expressing the inverse of a matrix in terms of cofactors and its determinant.

(3). Steps (1) and (2) may now be combined with Theorem 5.5 (see also
Definition 4.1 and Equation (2.3)) to show that each φ ∈ S(H) has a smooth
extension to I+

p . In particular, the smooth extension of X → (gφ)(X) is
the map sending X to

det(D∗ −B∗X)−2n+pφ((−C∗ +A∗X)/(D∗ −B∗X)−1)

if det(D∗ − B∗X) 6= 0 and sending X to 0 if det(D∗ − B∗X) = 0. By G
invariance of I+

p , we also conclude that each function in S(H)+ has a smooth
extension to I+

p . Moreover using (1), it is easy to check that if ψ ∈ I+
p is the

extension of an element in S(H)+, then ψ is identically zero on all points of
G/P in the compliment of P .

(4). Each ψ ∈ I+
p is bounded and when restricted to H satisfies the

growth condition |ψ(X)| ≤ C‖X‖−2n+p for some constant C. This follows
easily from Equation (5.1) and unitary diagonalization of X.

(5). Fix ψ ∈ S(H)+. Also denote by ψ its smooth extension to G/P .
For r > 0 choose cut-off functions φr ∈ C∞0 (H) with range in [0, 1] so that
φr is identically 1 on the ball of radius r about the origin and identically 0
outside the ball of radius r+ 1. Then the fact that ψ ∈ L2(H)+ and points
(3) and (4) show that as r → ∞ that φrψ → ψ in the L2-norm and that
φrψ → ψ uniformly as functions on either H or G/P .

(6). S : I+
p → C∞(G/K) is continuous in the smooth topology of uniform

convergence on compact sets. This follows since S is an integral of smooth
functions over a compact set (Definition 3.2).

(7). Suppose that f, fi ∈ S(H)+ so that fi → f uniformly. Then
Afi → Af pointwise. To see this, use the definition of A in the first step
below, uniform convergence in the second, and point (6) in the third to
calculate

lim
i→∞

Afi(X) = lim
i→∞

lim
η∈D+, η→X

Sfi(X)

= lim
η∈D+, η→X

lim
i→∞

Sfi(X)

= lim
η∈D+, η→X

Sf(X)

= Af(X).

(8). We now prove the Lemma. Let ψ ∈ S(H)+ and pick φr as in point
(5). Note that φr ∈ S(H). Thus, by definition,

Aψ = lim
r→∞

Aφrψ

in the L2-sense. We may therefore choose a subsequence so that Aψ =
limr→∞Aφrψ pointwise almost everywhere. But points (5) and (7) imply
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that limr→∞Aφrψ = Aψ pointwise everywhere. In particular, we see Aψ =
Aψ almost everywhere so that A = A in the L2-sense on S(H)+. �

We now show that A remains a G map.

Theorem 10.2. The map

A : L2(H)+ → L2(H)−

is a G map and A = FR ◦ FE.

Proof. It follows from Lemma 10.1 and Theorem 7.2 that A is a G-map
on S(H)+. Theorem 7.2 also shows that A = FR ◦ FE on S(H). The
denseness of S(H) and a continuity argument suffice to finish the proof of
this Theorem. �

We are able to complete Definition 8.2 and Theorem 8.1 as follows.

Definition 10.2. If f1, f2 ∈ L2(H)+, let

〈f1, f2〉A = inp

∫
H
f1(X)Af2(X)dX.

By Hölder’s inequality (multiply by the det and its inverse), the form
〈f1, f2〉A is well defined and bounded by the product of the norm of f1 ∈
L2(H)+ and the norm of Af2 ∈ L2(H)−. Theorem 8.1 and continuity imply
the following.

Theorem 10.3. If f1, f2 ∈ L2(H)+, then

〈f1, f2〉A = 〈FRf1, FRf2〉Op.

Moreover, the form 〈·, ·〉A is G-invariant.

This suggests that we try to make L2(Op) into a G-space in such a way
that FR is a G-map. In turn, this Theorem 10.3 ought to induce a G-
invariant structure on a quotient of the principal series. First observe that
FE is injective (for instance, by the Stone-Weierstrass theorem and the fact
that the characters ei tr(ξ·) separate points). This implies that

ker(A) = ker(FR)(10.1)

and in particular that ker(FR) is G-invariant. Thus there is a G-action on

L2(H)+/ ker(FR)

for which 〈·, ·〉A descends to a G-invariant, positive (by Theorem 10.3), Her-
mitian two-form. Moreover, the following is well defined.

Definition 10.3. For g ∈ G, f ∈ L2(H)+, and h = FRf ∈ L2(Op), define

g (h) = FR(gf)

or equivalently

gh = F−1
E (gFEh).
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This equivalence is trivial to check using Theorem 10.2. This definition
makes Im(FR) ⊆ L2(Op) into a representation of G so that both FR and
FE are now G-maps. In general, we have to take closures to complete the
picture.

Definition 10.4. Let K = {f ∈ L2(H)+ | 〈f, f〉A = 0} = ker(FR) =
ker(A) = {f ∈ L2(H)+ | 〈f, g〉A = 0, ∀g ∈ L2(H)+}. Let

L2(H)+/K

be the completion of L2(H)+/K with respect to 〈·, ·〉A.

We use continuity to extend the G-action to all of L2(H)+/K, continuity
to extend the map

FR : L2(H)+/K → L2(Op),

and the fact that A = FE ◦ FR to extend the map

A : L2(H)+/K → L2(H)−.

Then we have the following.

Theorem 10.4. Im(FR) = L2(Op). Moreover, L2(Op) is an irreducible
unitary representation of G that, in fact, remains irreducible under restric-
tion to P .

Proof. Unitarity follows immediately from Theorem 10.3. The rest of the
argument is entirely classical. Let I = Im(FR). Recall that FR is an
isometry mapping the closure of L2(H)+/K into L2(Op). I is therefore a
closed, non-trivial subspace of L2(Op) since, in particular, φ̌|Op

∈ I for each
φ ∈ S(H). It is easy to check (Definitions 10.3 and 8.1, Theorem 5.5, and
Equation (5.3)) that(

I 0
X I

)
f(ξ) = e−i tr(Xξ)f(ξ),(

A 0
0 A∗−1

)
f(ξ) = det (A)−p f(A−1ξA∗−1)

for each f ∈ I. We can use the same formulas above to extend the action
of P on I to an action on all of L2(Op). It is a fact that this action
is irreducible. We sketch the idea (see [16] §1.2, Theorem 2.1 or [13]
§3.1). It suffices to show that any bounded intertwining operator, T , is
a constant. However, it can be shown that commuting with N implies
that T is multiplication by a bounded function. The transitivity of the L
action then implies that T is a constant. Thus L2(Op) is irreducible under
P . Since I is P -invariant, this implies that I = L2(Op) which finishes the
proof. �
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This Theorem induces a unitary structure on a quotient of the principal
series.

Corollary 10.5. 〈·, ·〉A induces a G-invariant unitary structure on the quo-
tient space L2(H)+/K that is unitarily isomorphic to L2(Op) by FR. In
particular,

〈f1, f2〉A = 〈FRf1, FRf2〉Op.

for all f1, f2 ∈ L2(H)+.

Proof. This is contained in Theorem 10.3, 10.4, and Equation (10.1). �

This completes diagram 8.2 to the following diagram of unitary G-maps
where FR is an isomorphism and A (viewed as a map on the quotient space)
and FE are injective:

A

L2(H)+/K −→ L2(H)−

↘
FR

↑ FE .

L2(Op)

(10.2)

This Diagram then fits into a larger diagram that incorporates Diagram 7.4.
Namely, define F eE : L2(Op)→ C∞(D+) by

F eEf(η) = inp

∫
Op

ei tr ηξ f(ξ) dξ

which is well defined by Hölder’s inequality. It is immediate that we obtain
a commuting diagram of G-maps,

A
L2(H)+/K −→ L2(H)−

S ↓ B FR

↗ ↘ ↑ FE .

Im(S) ←− L2(Op)
F eE

(10.3)

Also note that the injectivity of F eE is enough to strengthen Corollary 10.5
so that B is injective and

K = ker(A) = ker(S) = ker(FR) = ker(〈·, ·〉A).(10.4)



RESTRICTION OF FOURIER TRANSFORMS AND REPRESENTATIONS 293

References
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