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In this article, restrictions on the constituents of Kronecker
products of spin characters of the double covers of the sym-
metric groups are derived. This is then used to classify homo-
geneous and irreducible products of spin characters; as an ap-
plication of this, certain homogeneous 2-modular tensor prod-
ucts for the symmetric groups are described.

1. Introduction.

In recent years, a number of results on Kronecker products of complex Sn-
characters have been obtained. In particular, the rectangular hull for the
constituents in such products was found, and this was used for the clas-
sification of products with few homogeneous components; see [1] for this
classification result and references to related work.

Here, we provide similar results for products of spin characters for the
double covers S̃n of the symmetric groups. The rectangular hull for spin
products is determined in Theorem 3.2; this result serves as a crucial tool
for the classification of homogeneous spin products in Theorem 4.2. (A
module is called homogeneous if all of its composition factors are isomorphic
to each other.) Finally, Theorem 4.2 is applied to prove a recent conjecture
of Gow and Kleshchev describing certain homogeneous 2-modular tensor
products for the symmetric groups (see Theorem 5.1).

2. Preliminaries.

We denote by P (n) the set of partitions of n. For a partition λ ∈ P (n),
l(λ) denotes its length, i.e., the number of (non-zero) parts of λ. The set
of partitions of n into odd parts only is denoted by O(n), and the set of
partitions of n into distinct parts is denoted by D(n). We write D+(n)
(resp. D−(n)) for the sets of partitions λ in D(n) with n− l(λ) even (resp.
odd); the partition λ is then also called even (resp. odd).

We write Sn for the symmetric group on n letters, and S̃n for one of its
double covers; so S̃n is a non-split extension of Sn by a central subgroup
〈z〉 of order 2. It is well-known that the representation theory of these
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296 C. BESSENRODT AND A.S. KLESHCHEV

double covers is ‘the same’ for all representation theoretical purposes. The
spin characters of S̃n are those that do not have z in their kernel. For an
introduction to the properties of spin characters (resp. for some results we
will need in the sequel) we refer to [6], [10], [11], [13]. Below we collect
some of the necessary notation and some results from [13] that are crucial
in later sections.

For λ ∈ P (n), we write [λ] for the corresponding irreducible character of
Sn; this is identified with the corresponding character of S̃n. The associate
classes of spin characters of S̃n are labelled canonically by the partitions in
D(n). For each λ ∈ D+(n) there is a self-associate spin character 〈λ〉 =
sgn 〈λ〉, and to each λ ∈ D−(n) there is a pair of associate spin characters
〈λ〉, 〈λ〉′ = sgn 〈λ〉. We write

〈̂λ〉 =
{
〈λ〉 if λ ∈ D+(n)
〈λ〉+ 〈λ〉′ if λ ∈ D−(n)

ελ =
{

1 if λ ∈ D+(n)√
2 if λ ∈ D−(n)

.

In [13], Stembridge introduces a projective analogue of the outer tensor
product, called the reduced Clifford product, and proves a shifted analogue
of the LR rule which we will need in the sequel. To state this, we first have
to define some further combinatorial notions.

Let A′ be the ordered alphabet {1′ < 1 < 2′ < 2 < ...}. The letters
1′, 2′, . . . are said to be marked, the others are unmarked. The notation |a|
refers to the unmarked version of a letter a in A′. To a partition λ ∈ D(n)
we associate a shifted diagram

Y ′(λ) = {(i, j) ∈ N2 | 1 ≤ i ≤ l(λ), i ≤ j ≤ λi + i− 1}.
A shifted tableau T of shape λ is a map T : Y ′(λ) → A′ such that T (i, j) ≤
T (i + 1, j), T (i, j) ≤ T (i, j + 1) for all i, j and the following additional
property holds. Every k ∈ {1, 2, . . . } appears at most once in each column
of T , and every k′ ∈ {1′, 2′, . . . } appears at most once in each row of T .
For k ∈ {1, 2, . . . }, let ck be the number of boxes (i, j) in Y ′(λ) such that
|T (i, j)| = k. Then we say that the tableau T has content (c1, c2, . . . ).
Analogously, we define skew shifted diagrams and skew shifted tableaux of
skew shape λ/µ if µ is a partition with Y ′(µ) ⊆ Y ′(λ). For a (possibly skew)
shifted tableau S we define its associated word w(S) = w1w2 · · · by reading
the rows of S from left to right and from bottom to top. By erasing the
marks of w, we obtain the word |w|.

Given a word w = w1w2 . . . , we define

mi(j) = multiplicity of i among wn−j+1, . . . , wn (for 0 ≤ j ≤ n),

mi(n+ j) = mi(n) + multiplicity of i′ among w1, . . . , wj (for 0 < j ≤ n).
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This function mi corresponds to reading the rows of the tableau first from
right to left and from top to bottom, counting the letter i on the way, and
then reading from bottom to top and left to right, counting the letter i′ on
this way.
The word w satisfies the lattice property if, whenever mi(j) = mi−1(j), then

wn−j 6= i, i′, if 0 ≤ j < n,
wj−n+1 6= i− 1, i′, if n ≤ j < 2n.

For two partitions µ and ν we denote by µ∪ ν the partition which has as
its parts all the parts of µ and ν together.

Theorem 2.1 ([13, 8.1 and 8.3]). Let µ ∈ D(k), ν ∈ D(n− k), λ ∈ D(n),
and form the reduced Clifford product 〈µ〉 ×c 〈ν〉. Then we have

((〈µ〉 ×c 〈ν〉) ↑
eSn , 〈λ〉) =

1
ελεµ∪ν

2(l(µ)+l(ν)−l(λ))/2fλ
µν ,

unless λ is odd and λ = µ ∪ ν. In that latter case, the multiplicity of 〈λ〉 is
0 or 1, according to the choice of associates.

The coefficient fλ
µν is the number of shifted tableaux S of shape λ/µ and

content ν such that the tableau word w = w(S) satisfies the lattice property
and the leftmost i of |w| is unmarked in w for 1 ≤ i ≤ l(ν).

We will also use the following result from [13] on inner tensor products
with the basic spin character 〈n〉:

Theorem 2.2 ([13, 9.3]). Let λ ∈ D(n), µ a partition of n. We have

(〈n〉[µ], 〈λ〉) =
1

ελε(n)
2(l(λ)−1)/2gλµ,

unless λ = (n), n is even, and µ is a hook partition. In that case, the
multiplicity of 〈λ〉 is 0 or 1 according to choice of associates.

The coefficient gλµ is the number of “shifted tableaux” S of unshifted shape
µ and content λ such that the tableau word w = w(S) satisfies the lattice
property and the leftmost i of |w| is unmarked in w for 1 ≤ i ≤ l(λ).

3. On bounds for the constituents of spin products.

First we prove a spin version of a result of Dvir [4] (resp. Clausen and Meier
[3]), describing the rectangular hull of the constituents in the Kronecker
product of two spin characters.

Definition 3.1. Let µ, ν ∈ D(n). Define the coefficients dλ
µν , λ ∈ P (n), by

〈µ〉 · 〈ν〉 =
∑
λ`n

dλ
µν [λ] .
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Then define the width w and the height h of the product by

w(〈µ〉 · 〈ν〉) = max{λ1 | ∃λ = (λ1, . . . ) : dλ
µν 6= 0}

h(〈µ〉 · 〈ν〉) = max{l | ∃λ = (λ1, . . . , λl > 0) : dλ
µν 6= 0}.

The rectangular partition (wh) is then called the rectangular hull R(〈µ〉·〈ν〉)
of the product 〈µ〉 · 〈ν〉.
Remark. Since 〈µ〉′ = sgn · 〈µ〉, we can easily obtain all products of spin
characters if we know the coefficients dλ

µν above.

Theorem 3.2. Let µ, ν ∈ D(n).
Then the rectangular hull of the product 〈µ〉 · 〈ν〉 is given by

R(〈µ〉 · 〈ν〉) = (|µ ∩ ν||µ∩ν|),

except in the case when µ = ν ∈ D−(n).
In the case µ = ν ∈ D−(n), but µ not a staircase partition (k, k −

1, . . . , 2, 1), we have

R(〈µ〉 · 〈µ〉) =
{

((n− 1)n) if n− l(µ) ≡ 1 mod 4
(nn−1) if n− l(µ) ≡ 3 mod 4 .

More precisely,

|{j | µj > µj+1 + 1}| =
{

(〈µ〉 · 〈µ〉, [n− 1, 1]) if n− l(µ) ≡ 1 mod 4
(〈µ〉 · 〈µ〉, [2, 1n−2]) if n− l(µ) ≡ 3 mod 4 .

Finally, if n =
(
k+1
2

)
is a triangular number with k ≡ 2 or 3 mod 4, and

µ = ν = (k, k − 1, . . . , 2, 1) ∈ D−(n), then we have

R(〈µ〉 · 〈µ〉) =
{

((n− 2)n) if k ≡ 2 or 7 mod 8
(nn−2) if k ≡ 3 or 6 mod 8 .

More precisely,

1 =
{

(〈µ〉 · 〈µ〉, [n− 2, 12]) if k ≡ 2 or 7 mod 8
(〈µ〉 · 〈µ〉, [3, 1n−3]) if k ≡ 3 or 6 mod 8 .

Remark. The number |{j | µj > µj+1 + 1}| is almost the number of boxes
A that can be removed such that the resulting partition µ\A is in D(n−1);
the only exception is that a final part 1 is not counted. This is the reason
for the further exception in the case of staircase partitions.

Proof. Let λ = (λ1, λ2, . . . ) be a partition of n with (〈µ〉 · 〈ν〉, [λ]) 6= 0. Put
k = λ1. Then ([k], [λ] ↓eSk

) 6= 0, and hence

0 6= (〈µ〉 ↓eSk
·〈ν〉 ↓eSk

, [k]) =
(
〈ν〉 ↓eSk

, 〈µ〉 ↓eSk

)
=

{
(〈ν〉 ↓eSk

, 〈µ〉′ ↓eSk
), if n− l(µ) ≡ 1 mod 4

(〈ν〉 ↓eSk
, 〈µ〉 ↓eSk

), else.
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Indeed, the last equation follows since clearly 〈ρ〉 = 〈ρ〉 for each ρ ∈ D+(n),
and for ρ ∈ D−(n) the only possibly non-real values can occur at classes of

cycle type ρ, where 〈ρ〉 takes value i(n−l(ρ)+1)/2

√Q
j ρj

2 (see [6], [10]). Hence
〈ρ〉 = 〈ρ〉 if n− l(ρ) ≡ 3 mod 4, and 〈ρ〉 = 〈ρ〉′ if n− l(ρ) ≡ 1 mod 4. In any
case, there exists α ∈ D(k) such that α ⊆ µ ∩ ν, so k ≤ |µ ∩ ν|.

Multiplying with the sign character, the same argument also gives the
inequality l(λ) ≤ |µ ∩ ν|.

Put m := |µ ∩ ν|. The character 〈µ ∩ ν〉 or its associate is a common
constituent of 〈µ〉 ↓eSm

and 〈ν〉 ↓eSm
(and their associates), unless µ = ν ∈

D−(n), when (〈µ〉, 〈µ〉′) = 0. Hence, if we are not in the exceptional case,
then by the argument above

0 6= (〈µ〉 ↓eSm
·〈ν〉 ↓eSm

, [m]).

Hence there must be a constituent [λ] in the product with first part λ1 ≥ m,
and by what we have already proved, we have in fact equality λ1 = m.
This argument is independent of the choice of associates so we also obtain
h(〈µ〉 · 〈ν〉) = m unless we are in the exceptional case.

We now have to deal with the case that µ = ν ∈ D−(n). If n − l(µ) ≡
1 mod 4, then 〈µ〉 = 〈µ〉′, as we have already noted above, so (〈µ〉·〈µ〉, [n]) =
0. Hence

(〈µ〉 · 〈µ〉, [n− 1, 1]) = (〈µ〉 · 〈µ〉, [n− 1] ↑eSn)
= (〈µ〉 ↓eSn−1

·〈µ〉 ↓eSn−1
, [n− 1])

= (〈µ〉 ↓eSn−1
, 〈µ〉′ ↓eSn−1

)
= |{j | µj > µj+1 + 1}|,

where the last equality follows from the spin branching rule. In particular,
if µ is not the staircase (k, k − 1, . . . , 1), then w(〈µ〉 · 〈µ〉) = n− 1. Since

(〈µ〉 · 〈µ〉, [1n]) = (〈µ〉, 〈µ〉) = 1,

the assertion on the height follows immediately.
If n − l(µ) ≡ 3 mod 4, then 〈µ〉 = 〈µ〉. By a similar reasoning as above

we obtain the assertion in this case except for the height statement in the
case of a staircase partition.

Finally, we have to deal with the case where µ = (k, k−1, . . . , 1) ∈ D−(n).
Here,

n− l(µ) ≡
{

1 mod 4 if k ≡ 2 or 7 mod 8
3 mod 4 if k ≡ 3 or 6 mod 8 .

We consider the case where k ≡ 2 or 7 mod 8; the other case is dual. As
n − l(µ) ≡ 1 mod 4, we already know from the previous arguments that
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w(〈µ〉 · 〈µ〉) ≤ n− 2. Hence

(〈µ〉 · 〈µ〉, [n− 2, 2])

= (〈µ〉 ↓eSn−2,2
, 〈µ〉′ ↓eSn−2,2

)

= (〈k, k − 1, . . . , 3, 1〉 ×c 〈2〉, 〈k, k − 1, . . . , 3, 1〉 ×c 〈2〉′)
= 0,

where the restriction to S̃n−2,2 follows from Theorem 2.1. Thus, using the
spin branching rule we obtain

(〈µ〉 · 〈µ〉, [n− 2, 12]) = (〈µ〉 ↓eSn−2,12
, 〈µ〉′ ↓eSn−2,12

)

= (〈k, k − 1, . . . , 3, 1〉, 〈k, k − 1, . . . , 3, 1〉)
= 1.

Hence R(〈µ〉 · 〈µ〉) = ((n− 2)n) in this case, as claimed. �

For making the previous result slightly more precise, we need spin versions
of some results in [1]:

Lemma 3.3. Let a1, a2, b1, b2 ∈ N0 with a1 > a2, b1 > b2, a1+a2 ≥ b1+b2.
Then

b1 + b2 = min(a1 + a2, b1 + b2) ≤ 2(min(a1, b1) + min(a2, b2))− 1,

and equality holds if and only if (a1, a2, b1, b2) is of the form (a1, 0, b1, b1−1)
or (a1, a2, 1, 0) or (a1, a1 − 1, 2a1 − 1, 0).

Proof. First we consider the case when b1 ≤ a1. Then the right hand side is

2(b1 + min(a2, b2))− 1 ≥ 2b1 − 1 ≥ b1 + b2,

and equality holds if and only if min(a2, b2) = 0 and b1 = b2 + 1. These are
the cases where (a1, a2, b1, b2) is of the form (a1, 0, b1, b1− 1) or (a1, a2, 1, 0).

In the case when a1 < b1, we have b2 < a2 < a1 < b1. Hence the right
hand side is

2(a1 + b2)− 1 = (2a1 − 1) + 2b2 ≥ a1 + a2 + 2b2 ≥ b1 + 3b2 ≥ b1 + b2,

and equality holds if and only if a2 = a1−1, b1+b2 = a1+a2 and b2 = 0. This
is exactly the third situation described in the statement of the lemma. �

We denote by bij(µ) the (i, j)-bar length of µ; in particular, b11(µ) =
µ1 + µ2 for µ = (µ1, µ2, . . . ). The partition µ has an `-bar if bij(µ) = ` for
some (i, j). For details on the combinatorics of bars we refer to [12].

Lemma 3.4. Let µ, ν ∈ D(n). Then

min(b11(µ), b11(ν)) ≤ 2|µ ∩ ν| − 1,

and equality holds if and only if one of µ, ν is (n) and the other one has
first two parts k, k − 1.
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Proof. Let µ = (µ1, µ2, . . . ), ν = (ν1, ν2, . . . ). Then we have b11(µ) =
µ1 + µ2 and b11(ν) = ν1 + ν2. Furthermore, |µ ∩ ν| =

∑
j min(µj , νj) ≥

min(µ1, ν1)+min(µ2, ν2). By the previous Lemma, applied to (a1, a2, b1, b2)
= (µ1, µ2, ν1, ν2), we immediately obtain the assertion. �

We denote by hij(λ) the (i, j)-hook length of λ = (λ1, . . . , λl); in partic-
ular, h11(λ) = λ1 + l − 1.

Theorem 3.5. Let n ≥ 4, µ, ν ∈ D(n), and assume we are not in the case
that one of µ, ν is (n) and the other one has first two parts k, k − 1. Let λ
be a partition such that [λ] is a constituent of 〈µ〉 · 〈ν〉. Then

h11(λ) < 2|µ ∩ ν| − 1.

Proof. Set l = 2|µ ∩ ν| − 1. Take π̃ ∈ S̃n of type (l, 1n−l) ∈ O(n), π the
corresponding element in Sn. By Morris’ recursion formula [11] we have:

〈µ〉 · 〈ν〉(π̃) = 0,

since either µ or ν does not have an l-bar, by Lemma 3.4. By Theorem 3.2,
for any constituent [λ] of 〈µ〉 · 〈ν〉 we have λ1 ≤ |µ∩ ν| and l(λ) ≤ |µ∩ ν|, so
h11(λ) ≤ 2|µ∩ν|−1. Thus λ has an l-hook if and only if λ1 = |µ∩ν| = l(λ),
which is then the hook H11 = H11(λ) of leg length |µ ∩ ν| − 1. So assume
now that [λ] is a constituent which has an l-hook; then by the Murnaghan-
Nakayama formula [8]:

[λ](π̃) = [λ](π) = (−1)|µ∩ν|−1[λ \H11](1) 6= 0.

So all such constituents [λ] contribute a summand of the same sign to 〈µ〉 ·
〈ν〉(π̃). Since this latter value is zero, there can be no such constituent, and
hence h11(λ) < 2|µ ∩ ν| − 1 for all constituents of 〈µ〉 · 〈ν〉. �

Corollary 3.6. Let n ≥ 4, µ, ν ∈ D(n), and assume we are not in the
situation that one of µ, ν is (n) and the other one has first two parts k, k−1.
Then 〈µ〉 · 〈ν〉 has at least two different constituents.

Proof. Clearly, if µ ∈ D−(n), then 〈µ〉 · 〈µ〉 contains one of [n] or [1n] and at
least one further constituent different from these. So we may assume now
that we are not in the exceptional case of Theorem 3.2. Then the assertion
follows from the inequality in Theorem 3.5 as the (1, 1)-hook of the rectangle
(|µ ∩ ν||µ∩ν|) has length 2|µ ∩ ν| − 1. �

4. Homogeneous spin character products.

We start by proving the following combinatorial lemma.

Lemma 4.1. Let k ∈ N, n = k(k + 1)/2, and let λ = (k, k − 1, . . . , 2, 1)
be the staircase partition of height k. Let H(k) be the product of the hook
lengths in λ, and let B(k) be the product of the bar lengths in λ. Then

2n−kH(k) = B(k).
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Proof. We prove the claim by induction on k. For k = 1 the assertion is
clear. Now assume that k ≥ 2 and that the assertion holds for k − 1, i.e.,

2(n−k)−(k−1)H(k − 1) = B(k − 1) .

When the staircase diagram of (k−1, k−2, . . . , 2, 1) is extended by the first
row k, it is clear how the products of hook (resp. bar) lengths change:

H(k) = H(k − 1) ·
k∏

i=1

(2i− 1) , B(k) = B(k − 1) ·
k−1∏
j=0

(k + j) .

As
k−1∏
j=0

(k + j) =
(2k − 1)!
(k − 1)!

=
(1 · 3 · · · (2k − 1))(2 · 4 · · · 2(k − 1))

(k − 1)!

= 1 · 3 · · · (2k − 1) · 2k−1

the result now follows immediately. �

Theorem 4.2. Let n ≥ 4, µ, ν ∈ D(n). Then 〈µ〉 · 〈ν〉 is homogeneous if
and only if n is a triangular number, say n =

(
k+1
2

)
, one of µ, ν is (n) and

the other one is (k, k − 1, . . . , 2, 1). In this case, we have

〈n〉 · 〈k, k − 1, . . . , 2, 1〉 = 2a(k)[k, k − 1, . . . , 2, 1]

where

a(k) =


k−2
2 if k is even

k−1
2 if k ≡ 1 mod 4

k−3
2 if k ≡ 3 mod 4

.

In particular, 〈µ〉 · 〈ν〉 is irreducible if and only if n = 6 and the product
is 〈6〉 · 〈3, 2, 1〉 = [3, 2, 1].

Proof. By Corollary 3.6 we only have to deal with the case µ = (n) and
ν = (k, k − 1, . . . ) for some k, where we have to show that the product is
homogeneous if and only if ν is a staircase partition (k, k−1, k−2, . . . , 2, 1).

First, we assume that the product 〈n〉 · 〈ν〉, with ν = (k, k − 1, . . . ), is
homogeneous. In this case, we use the information given by Stembridge
on products with the basic spin representation 〈n〉, i.e., Theorem 2.2. By
this result, clearly [ν] is a constituent of 〈n〉 · 〈ν〉. On the other hand, by
Theorem 3.2 we know that there is a constituent [λ] in the product with
l(λ) = k = |(n) ∩ ν|. Since the product is assumed to be homogeneous, we
must have ν = λ, but as ν1 = k and ν ∈ D(n), we can only have l(ν) = k if
ν = (k, k − 1, . . . , 2, 1).

Finally, we have to prove the assertion on the products of the special form
〈n〉 · 〈k, k − 1, . . . , 2, 1〉. As we have remarked above, by Theorem 2.2 we
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know that [ν] appears in the product 〈n〉 · 〈ν〉, and for ν = (k, k−1, . . . , 2, 1)
the multiplicity is

1
ενε(n)

2(l(ν)−1)/2gνν =
1

ενε(n)
2(k−1)/2.

One easily checks that this equals 2a(k), with a(k) as given in the statement
of the theorem.

To show that no other constituent occurs, we just check dimensions on
both sides. Let B(k) be the product of the bar lengths in ν = (k, k −
1, . . . , 2, 1), and let H(k) be the product of the hook lengths in ν. Then by
the hook formula (resp. the bar formula) for the character degrees we have
to show that

2[n−1
2 ] · 2[n−k

2 ] n!
B(k)

= 2a(k) n!
H(k)

with a(k) as in the statement of the theorem. Considering the different cases
depending on k mod 4, this is easily seen to be equivalent to

2n−kH(k) = B(k).

Hence the assertion follows from Lemma 4.1. �

Remark 4.3. A completely different proof of Theorem 4.2 is based on the
observation that the product of two non-associate spin characters gives an
ordinary character of Sn which vanishes on all 2-elements, and is thus the
character of a projective module at characteristic 2. Hence, if the product
is homogeneous, this character is a multiple of an irreducible projective
character of Sn; these irreducible characters are exactly the ones labelled
by 2-cores, i.e., staircase partitions. So the right hand side in Theorem 4.2
comes as no surprise.

5. Application to 2-modular tensor products.

In this section we want to apply the result about spin products for a proof
of a recent conjecture by Gow and Kleshchev [5] describing certain homoge-
neous 2-modular tensor products for the symmetric groups. The argument
for this proof was developed jointly with R. Gow.

Let F be a field of characteristic 2. We denote the irreducible FSn-module
labelled by the partition λ ∈ D(n) by Dλ. We define the spin module S to
be the irreducible FSn-module labelled by (m+1,m− 1) if n = 2m, and by
(m,m− 1) if n = 2m− 1.

Theorem 5.1. Let n =
(
k+1
2

)
be a triangular number, and set µ = (k, k −

1, . . . , 2, 1) and λ = (2k − 1, 2k − 5, 2k − 9, . . . ) ∈ D(n). Then

S ⊗Dλ ' 2[(k−1)/4]Dµ.
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Proof. By Theorem 4.2 we have

〈n〉 · 〈k, k − 1, . . . , 2, 1〉 = 2a(k)[k, k − 1, . . . , 2, 1]

with a(k) described explicitly in Theorem 4.2. We know that the Brauer
character φ of the reduction modulo 2 of the basic spin character 〈n〉 is irre-
ducible, and it is the Brauer character for the spin module S. Furthermore,
µ = (k, k − 1, . . . , 2, 1) is a 2-core, so the corresponding Brauer character
χ of [µ] mod 2 is also irreducible. Let ψ be the Brauer character of the
reduction mod 2 of 〈µ〉.

By the formula above we have

φ · ψ = 2a(k)χ.

Suppose that ψ contains two different irreducible Brauer characters α and
β. Then φα = sχ and φβ = tχ for certain positive integers s and t. But
the basic spin character 〈n〉 and hence also φ is non-zero on every 2-regular
element and therefore α(g) = sχ(g)/φ(g) and β(g) = tχ(g)/φ(g) holds for all
2-regular elements g ∈ S̃n. This implies that α and β are linearly dependent,
contradicting the assumption that they are two different irreducible Brauer
characters.

Hence ψ is a multiple of an irreducible Brauer character. For obtaining
the precise decomposition of ψ we use some results on the 2-decomposition
matrix for S̃n in [2]. First we have to introduce some notation. For a
partition α ∈ D(n) let dbl2(α) be the 2-regular partition obtained as follows.
First “double” α by breaking each part into two halves, i.e., an odd part
2t − 1 is replaced by t, t − 1, and an even part 2t is replaced by t, t. Let β
be the resulting partition. Then we regularize β into the 2-regular partition
βR =: dbl2(α) by pushing up nodes along the diagonal ladders of the 2-
residue diagram (we refer the reader to [8], p. 282 for more details on this
process). Now by [2], Theorem (5.2) we know that the final 2-decomposition
number for each spin character 〈α〉 occurs in the column labelled by dbl2(α),
and this entry is precisely 2[m(α)/2], where m(α) is the number of even parts
of α.

We apply this to µ = (k, k−1, . . . , 2, 1). It is easy to check that dbl2(µ) =
λ. Keeping in mind that the Brauer character ψ corresponding to µ is a
multiple of an irreducible Brauer character, we thus obtain

ψ = 2[m(µ)/2]θ

where θ is the irreducible Brauer character labelled by λ.
As m(µ) = [k/2] we have thus shown that

2[[k/2]/2]φ · θ = 2a(k)χ.

Using the explicit description of a(k), we then obtain

φ · θ = 2[(k−1)/4]χ .
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This is equivalent to the assertion on the tensor product. �
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