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Continuing the study of generalized inductive limits of finite-
dimensional C∗-algebras, we define a refined notion of quasidi-
agonality for C∗-algebras, called inner quasidiagonality, and
show that a separable C∗-algebra is a strong NF algebra if and
only if it is nuclear and inner quasidiagonal. Many natural
classes of NF algebras are strong NF, including all simple NF
algebras, all residually finite-dimensional nuclear C∗-algebras,
and all approximately subhomogeneous C∗-algebras. Exam-
ples are given of NF algebras which are not strong NF.

1. Introduction.

This paper is a sequel to Blackadar & Kirchberg [BKb], to which we will
frequently refer. In Blackadar & Kirchberg, we studied a generalized induc-
tive limit construction for C∗-algebras and gave various characterizations of
C∗-algebras which can be written as generalized inductive limits of finite-
dimensional C∗-algebras. We recall the definitions for the convenience of
the reader:

Definition 1.1. A separable C∗-algebra A is an MF algebra if it can be
written as lim−→(An, φm,n) for a generalized inductive system with the An
finite-dimensional. If the connecting maps φm,n can be chosen to be com-
pletely positive contractions, then A is an NF algebra, and A is a strong
NF algebra if the φm,n can be chosen to be complete order embeddings.

There is a close relation between these notions and quasidiagonality and
nuclearity: a (separable) C∗-algebra A is an MF algebra if and only if it has
an essential quasidiagonal extension by the compact operators K [BKb,
3.2.2], and A is an NF algebra if and only if it is nuclear and quasidiagonal
[BKb, 5.2.2]. A number of other characterizations of MF, NF, and strong
NF algebras are given in [BKb].

One major problem left unresolved in [BKb] is whether every NF algebra
is a strong NF algebra. The purpose of this paper is to answer this question.
We will characterize strong NF algebras in terms of a sharpened version of
quasidiagonality we call inner quasidiagonality. The exact definition of inner
quasidiagonality will be given in Section 2; roughly (and possibly not quite
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correctly), a C∗-algebra is inner quasidiagonal if it has a separating family
of quasidiagonal irreducible representations.

As a consequence, we show that “most”, but not all, NF algebras are
strong NF. In particular, we show that the following C∗-algebras are strong
NF:

All (separable) strongly quasidiagonal nuclear C∗-algebras.
All (separable) residually finite-dimensional nuclear C∗-algebras.
All (separable) approximately subhomogeneous C∗-algebras.
All prime antiminimal NF algebras.
All simple NF algebras.

We actually show that a prime strong NF algebra has a strong NF system
(An, φm,n) in which each An is a single matrix algebra.

On the other hand, there are NF algebras which are not strong NF: if
A is a (separable) prime nuclear C∗-algebra containing an ideal isomorphic
to K, then A is strong NF if and only if its (unique) faithful irreducible
representation is quasidiagonal. Thus the examples of [Bn] and [BnD] are
not strong NF. We also show that if A is a separable nuclear C∗-algebra
which is not strong NF, then CA and SA (which are NF by [BKb, 5.3.3])
are not strong NF, answering [BKb, 6.2.3(c)].

2. Inner quasidiagonality.

We begin by noting the following characterization of quasidiagonality from
[Vo2, Theorem 1]:

Proposition 2.1. A C∗-algebra A is quasidiagonal if and only if, for every
x1, . . . , xm ∈ A and ε > 0, there is a representation π of A on a Hilbert
space H and a finite-rank projection p ∈ B(H) with ‖pπ(xj)p‖ > ‖xj‖ − ε
and ‖[p, π(xj)]‖ < ε for all j.

Definition 2.2. A C∗-algebra A is inner quasidiagonal if, for every x1, . . . ,
xm ∈ A and ε > 0, there is a representation π of A on a Hilbert space H
and a finite-rank projection p ∈ π(A)′′ ⊆ B(H) with ‖pπ(xj)p‖ > ‖xj‖ − ε
and ‖[p, π(xj)]‖ < ε for all j.

It obviously suffices in this definition to assume that the xj have norm 1.
The term “inner quasidiagonal” should really be “weakly inner quasidi-

agonal,” but we have rejected this terminology on pedantic grounds.
An inner quasidiagonal C∗-algebra is obviously quasidiagonal. The con-

verse is false (2.7).

Proposition 2.3. In the definition of inner quasidiagonality (2.2), the rep-
resentation π may be taken to be a direct sum of a finite number of mutually
inequivalent irreducible representations.
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Proof. Suppose A is inner quasidiagonal, and let x1, . . . , xm ∈ A and ε > 0.
Choose π and p as in 2.2. Let z be the central support projection for
p in π(A)′′; then π(A)′′z and hence also π(A)′z are type I von Neumann
algebras with finite-dimensional centers. If q is an abelian projection in
π(A)′ with central support z, then π|qH and pq are the desired representation
and projection. �

This will be generalized later (3.7).
The following is an immediate consequence of the definition.

Proposition 2.4. If A has a separating family of quasidiagonal irreducible
representations, then A is inner quasidiagonal. In particular, every residu-
ally finite-dimensional C∗-algebra is inner quasidiagonal.

We do not know whether the converse of 2.4 is true. (See note added
in proof.) But an important special case of the converse is true, even in
stronger form:

Proposition 2.5. If A is separable and prime, then A is inner quasidiag-
onal if and only if some (hence every) faithful irreducible representation of
A is quasidiagonal.

Proof. A C∗-algebra with a quasidiagonal faithful irreducible representa-
tion is obviously inner quasidiagonal. For the converse, consider the cases
A antiliminal (NGCR) and A not antiliminal separately. If A is antilim-
inal, separable, prime, and inner quasidiagonal, then A is quasidiagonal,
so by Voiculescu’s Weyl-von Neumann Theorem [Vo1] every faithful repre-
sentation not hitting the compacts (in particular, every faithful irreducible
representation) of A is quasidiagonal.

Now suppose A is separable, prime, inner quasidiagonal, and not antil-
iminal. Then A has an essential ideal isomorphic to K, and has a unique
faithful irreducible representation π0 on a Hilbert space H0. Let {xi} be a
dense sequence in A, and let {eij} be a set of matrix units in K ⊆ A. For
each n let πn and pn be as in 2.3 for the set {x1, . . . , xn, e11, . . . , enn} and for
ε = 1/n. Then π0 must be one of the irreducible subrepresentations of πn for
each n since ‖πn(e11)‖ > ‖e11‖− 1/n ≥ 0. Let qn be the component of pn in
π0. Then, for any j, limn→∞ ‖qnπ0(ejj)qn‖ = 1 and limn→∞[qn, π0(xj)] = 0,
so qn → 1H0 strongly and π0 is quasidiagonal. �

2.5 will be generalized in 3.18.

Corollary 2.6. Every separable antiliminal quasidiagonal prime C∗-algebra
is inner quasidiagonal. Every separable simple quasidiagonal C∗-algebra is
inner quasidiagonal.

Example 2.7. (a) The examples of [Bn] and [BnD] are quasidiagonal, but
not inner quasidiagonal by 2.5.
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We recall for the reader that the example of [Bn] is an essential exten-
sion of the continuous functions on the real projective plane RP 2 by the
compacts:

0 → K → A→ C(RP 2) → 0.
The examples of [BnD] are slight variations of this, and have the additional
feature that the extension has real rank zero.

(b) A similar example is the C∗-algebra generated by the direct sum of
the unilateral shift s and its adjoint. The C∗-algebra is not prime; we have
the extension

0 → K⊕K → C∗(s⊕ s∗) → C(T) → 0.

C∗(s ⊕ s) is quasidiagonal, but has only two irreducible representations
nonzero on the K ⊕K, neither of which is quasidiagonal; hence it is easily
seen not to be inner quasidiagonal.

Proposition 2.8. Let A be a separable C∗-algebra. The following are equiv-
alent:

(i) Every quotient of A is inner quasidiagonal.
(ii) Every primitive quotient of A is inner quasidiagonal.
(iii) Every irreducible representation of A is quasidiagonal.
(iv) A is strongly quasidiagonal, i.e., every representation of A is quasidi-

agonal.

Proof. (iv) ⇒ (iii) ⇒ (i) ⇒ (ii) is trivial, and (ii) ⇒ (iii) is 2.5. To show (iii)
⇒ (iv), let π be a representation, which we may assume is nondegenerate, of
A on a Hilbert space H, which we may assume is separable. Let J = π−1(K).
Then π = π1 ⊕ π2, where π1|J is nondegenerate and π2(J) = 0. Then π1 is
a direct sum of irreducible representations, hence quasidiagonal, and π2 is
quasidiagonal by Voiculescu’s Weyl-von Neumann Theorem since π2(A) is a
quasidiagonal C∗-algebra by (i). �

Proposition 2.9. Let A be a C∗-algebra, and J1, J2 ideals of A. Set J =
J1 ∩ J2. If A/J1 and A/J2 are inner quasidiagonal, then A/J is inner qua-
sidiagonal.

Proof. We may clearly assume J = 0. Let x1, . . . , xm ∈ A and ε > 0. Let
ρk (k = 1, 2) be the quotient map from A to A/Jk. Then, for each j, ‖xj‖ =
max(‖ρ1(xj)‖, ‖ρ2(xj)‖). By reordering we may assume ‖ρ1(xj)‖ = ‖xj‖ for
1 ≤ j ≤ r and ‖ρ2(xj)‖ = ‖xj‖ > ‖ρ1(xj)‖ for r + 1 ≤ j ≤ m. We may also
assume ε is small enough that ‖ρ1(xj)‖ < ‖xj‖ − ε for r + 1 ≤ j ≤ m.

Let σk (k = 1, 2) be representations of A/Jk as in 2.3 for {ρk(x1), . . . ,
ρk(xm)} and the given ε, with projections pk. Let σ0 be the subrepresen-
tation of σ2 consisting of those irreducible subrepresentations σ such that
‖pσ(ρ2(xj))p‖ > ‖xj‖− ε for at least one j, r+1 ≤ j ≤ m (where p denotes
the σ-component of p2), and p0 the component of p2 in σ0. Then all of the
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irreducible subrepresentations of σ0, regarded as representations of A, are
disjoint from σ1 ◦ ρ1 since each such σ satisfies ‖σ(ρ2(xj))‖ > ‖ρ1(xj)‖ for
at least one j. Thus π = σ1 ◦ ρ1 ⊕ σ0 ◦ ρ2 and p = p1 ⊕ p0 have the desired
properties from 2.2. �

Corollary 2.10. A C∗-algebra A is inner quasidiagonal if A contains a
collection {Ji} of ideals with A/Ji inner quasidiagonal for all i and ∩Ji = 0.

Proof. A direct proof can be given along the lines of the proof of 2.9. Al-
ternatively, note that the result is immediate from the definition of in-
ner quasidiagonality if the Ji are directed by inclusion. In general, let
Ji1,... ,in = Ji1 ∩ . . . ∩ Jin , and use 2.9 to conclude that A/Ji1,... ,in is inner
quasidiagonal. �

Remark 2.11. It is obvious from the definition that if {Ai, φij} is an (ordi-
nary) inductive system (indexed by any directed set) of inner quasidiagonal
C∗-algebras with injective connecting maps φij , then the inductive limit is
inner quasidiagonal. It is not true that the inductive limit of an inductive
system with noninjective connecting maps is necessarily inner quasidiago-
nal, as the the following example shows. (It is an inductive system with
surjective connecting maps.) The same question can be asked about qua-
sidiagonality, where it appears to have a positive answer; the closely related
classes of MF and NF algebras are closed under (ordinary) inductive limits
with noninjective connecting maps, as well as certain generalized inductive
limits [BKb, 3.4.4 and 5.3.5].

Example 2.12. Let B be a (separable) quasidiagonal C∗-algebra which
is not inner quasidiagonal, e.g., the example of [Bn] (2.7). Let π be a
faithful representation of B of infinite multiplicity on a separable Hilbert
space H0; then π is quasidiagonal. Let 〈Hn〉n≥1 be a sequence of separable
infinite-dimensional Hilbert spaces, with distinguished unit vectors ξn, and
set H(n) = ⊗k≥n(Hk, ξk). If H = H0 ⊗ H(1), define C∗-subalgebras of
B(H) by Cn = K(H0) ⊗ 1H1 ⊗ · · · ⊗ 1Hn−1 ⊗K(H(n)) [C1 = K(H)], Jn =
C1 + · · · + Cn, An = Jn + ρ(B), J = [∪Jn]−, A = J + ρ(B) = [∪An]−,
where ρ = π ⊗ 1H(1) . Then 〈Jn〉 is an increasing sequence of ideals of A.
Each An is inner quasidiagonal by repeated applications of 2.5; thus A is
inner quasidiagonal by 2.11. A/Jn is isomorphic to A for any n, hence inner
quasidiagonal; but A/J ∼= B is not inner quasidiagonal.

3. Variations and technicalities.

A somewhat cleaner alternative definition of inner quasidiagonality can be
given using the socle of the bidual. See [BoD] for the general theory of
socles of Banach algebras.

Definition 3.1. If B is a C∗-algebra, then a projection p ∈ B is in the socle
of B if pBp is finite-dimensional.
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Proposition 3.2. A C∗-algebra A is inner quasidiagonal if and only if, for
any x1, . . . , xm ∈ A and ε > 0, there is a projection p in the socle of A∗∗

with ‖pxjp‖ > ‖xj‖ − ε and ‖[p, xj ]‖ < ε for all j.

Proposition 3.3. Let B be a C∗-algebra, x ∈ B, and p a projection in B.
Then

‖[x, p]‖ = max(‖(1− p)xp‖, ‖px(1− p)‖)

= max(‖px∗xp− px∗pxp‖1/2, ‖pxx∗p− pxpx∗p‖1/2).

Proof. Set a = (1 − p)xp, b = px(1 − p). Then calculation shows that
[x, p]∗[x, p] = a∗a + b∗b, so ‖[x, p]‖2 = ‖a∗a + b∗b‖ = max(‖a∗a‖, ‖b∗b‖)
since a∗a and b∗b are orthogonal. Also, ‖[x, p]‖2 = max(‖a∗a‖, ‖bb∗‖), and
a∗a = px∗xp− px∗pxp and bb∗ = pxx∗p− pxpx∗p. �

The following fact, which is a slight sharpening of the Kadison Transitivity
Theorem, follows immediately from [Pd, 2.7.5 and 3.11.9].

Proposition 3.4. Let A be a C∗-algebra, and p a projection in the socle of
A∗∗. Set Np = {x ∈ A : [p, x] = 0} = {p}′ ∩A. Then

(a) pNp = pNpp = pA∗∗p (= pAp).
(b) The weak closure of Np in A∗∗ is pA∗∗p+ (1− p)A∗∗(1− p).

Corollary 3.5. Let A, p,Np be as in 3.4, and let x ∈ A. Then d(x,Np) =
‖[x, p]‖.

Proof. d(x,Np) = d(x,N∗∗
p ) by the Hahn-Banach Theorem. We have y =

pxp+ (1− p)x(1− p) ∈ N∗∗
p by 3.4, and

‖x− y‖ = ‖(1− p)xp+ px(1− p)‖
= max(‖(1− p)xp‖, ‖px(1− p)‖) = ‖[x, p]‖.

So d(x,Np) ≤ ‖[x, p]‖. Conversely, if y ∈ Np, then

‖[x, p]‖ = ‖[x− y, p]‖
= max(‖(1− p)(x− y)p‖, ‖p(x− y)(1− p)‖) ≤ ‖x− y‖.

�

We now show that in many instances, the study of inner quasidiagonality
can be reduced to the separable case.

Proposition 3.6. Let A be an inner quasidiagonal C∗-algebra, and B a
separable C∗-subalgebra of A. Then there is a separable inner quasidiagonal
C∗-subalgebra E of A containing B.

Proof. We show that if x1, . . . , xm ∈ B and ε > 0, then there is a separable
C∗-subalgebra D of A containing B, and a projection q in the socle of D∗∗

with ‖[q, xj ]‖ < ε and ‖qxjq‖ > ‖xj‖−ε for 1 ≤ j ≤ m. Choose a projection
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p in the socle of A∗∗ with ‖[p, xj ]‖ < ε/2 and ‖pxjp‖ > ‖xj‖ − ε/2 for all
j. Let C be a separable C∗-subalgebra of Np with d(xj , C) = d(xj , Np)
for all j and pC = pNp = pAp, and let D be the C∗-subalgebra of A
generated by B and C. Then D is separable. Regard the homomorphism
π : C → pC = pAp as a representation of C on a finite-dimensional Hilbert
space H, and extend π to a representation p of D on a larger Hilbert space H̃
such that ρ is a direct sum of finitely many mutually inequivalent irreducible
representations (by extending each irreducible subrepresentation of π to an
irreducible representation of D and identifying together equivalent ones if
necessary). If Q is the projection from H̃ onto H, then Q may be regarded
as a projection q in the socle of D∗∗, and C ⊆ Nq. We have by 3.5, for each
j,

‖[q, xj ]‖ = d(xj , Nq) ≤ d(xj , C) = ‖[p, xj ]‖ < ε.

Also, there is an isometry ψ from qDq to pAp induced by ρ, and ψ(qaq) =
pap for a ∈ C. Since d(xj , C) < ε/2, we have, for each j,

‖qxjq‖ > ‖pxjp‖ − ε/2 > ‖xj‖ − ε.

As a consequence, if B = B1 is a separable C∗-subalgebra of A, then there
is a larger separable C∗-subalgebra B2 of A such that, if x1, . . . , xm ∈ B1

and ε > 0, there is a projection q in the socle of B∗∗2 with ‖[q, xj ]‖ < ε and
‖qxjq‖ > ‖xj‖ − ε for 1 ≤ j ≤ m. Iterating this construction, obtain an
increasing sequence 〈Bn〉, and set E = [∪Bn]−. Then E is separable and
inner quasidiagonal. �

Separability is nice because of the following characterizations of inner
quasidiagonality. By a slight extension of usual terminology, we will say an
irreducible representation π of a C∗-algebra A is a GCR representation if
π(A) contains the compact operators.

Proposition 3.7. Let A be a separable C∗-algebra. The following are equiv-
alent:

(i) A is inner quasidiagonal.
(ii) Given x1, . . . , xm ∈ A and ε > 0, there is an irreducible representation

π of A on a Hilbert space H and a finite-rank projection p ∈ B(H) such
that ‖[p, π(xj)]‖ < ε for 1 ≤ j ≤ m and ‖pπ(x1)p‖ > ‖x1‖ − ε.

(iii) There is a sequence of irreducible representations 〈πn〉 of A on Hilbert
spaces Hn, and finite-rank projections pn ∈ B(Hn), such that
‖[pn, πn(x)]‖ → 0 and lim sup ‖pnπn(x)pn‖ = ‖x‖ for all x ∈ A.

(iv) There is a sequence of irreducible representations 〈πn〉 of A on Hilbert
spaces Hn, and finite-rank projections pn ∈ B(Hn), such that
‖[pn, πn(x)]‖ → 0 and lim sup ‖pnπn(x)pn‖ = ‖x‖ for all x ∈ A, such
that any representation occuring more than once (up to equivalence)
in the sequence is quasidiagonal and GCR.
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Proof. (i) ⇒ (ii) ⇔ (iii) are obvious. To prove (iv) ⇒ (i), let x1, . . . , xm ∈ A
and ε > 0, and let 〈(πn, pn)〉 be as in (iv). Choose (πn1 , pn1), . . . , (πnm , pnm)
with ‖pnk

πnk
(xk)pnk

‖ > ‖xk‖ − ε and ‖[πnk
(xj), pnk

]‖ < ε for all j and k.
If there is a subset F of {1, . . . ,m} with |F | > 1 such that πnk

= π0 for
n ∈ F , then π0 is quasidiagonal, so there is a finite-rank projection q in
π0(A)′′ with ‖qπ0(xk)q‖ > ‖xk‖ − ε for all k ∈ F . Replace ⊕mk=1(πnk

, pnk
)

by (π0, q) ⊕ ⊕k∈F (πnk
, pnk

). Repeating the process finitely many times if
necessary, we obtain a representation as in 2.3.

So we need only prove (ii) ⇒ (iv). Let 〈xk〉 be a dense sequence in A,
and choose a doubly indexed sequence 〈ρij〉 (1 ≤ k ≤ j) of irreducible
representations of A on Hjk, and finite-rank projections qjk ∈ B(Hjk), such
that ‖[qjk, ρjk(xi)]‖ < j−1 for 1 ≤ i ≤ j and ‖qjkρjk(xi)qjk‖ > ‖xk‖ − j−1.
(Note that this sequence satisfies the conditions of (iii).) The rest of the
proof will consist of two parts.

(1) We first show that if infinitely many ρjk are equivalent to a single ρ,
then either ρ is quasidiagonal and GCR or the sequence can be modified
to a new sequence in which no ρjk is equivalent to ρ. If ρ(A) ∩K = {0},
then there are infinitely (in fact, uncountably) many mutually inequivalent
irreducible representations of A with the same kernel as ρ (see Appendix),
and if π is any such representation, on a Hilbert space H̃, and ε > 0, then
for any j, k with ρjk ≈ ρ, by [Vo1, Lemma 1] there is a unitary u from Hjk

to H̃ and a finite-rank projection p ∈ B(H̃) such that

‖uqjkρjk(xi)qjku∗ − pπ(xi)p‖ < ε

for 1 ≤ i ≤ j. For sufficiently small ε, (ρjk, qjk) can be replaced by (π, p),
and a different π can be used for each ρjk equivalent to ρ.

Now suppose that ρ is GCR. If J = ker ρ, then there is an ideal K of
A with K/J essential in A/J and isomorphic to K. By identifying Hjk

with H (the Hilbert space on which ρ acts) for each ρjk equivalent to ρ, the
projections qjk become a sequence 〈rn〉 of finite-rank projections in B(H)
which asymptotically commute in norm with ρ(A), and in particular with
K; thus the only possible weak operator limit points of the sequence are
0 and 1 [any limit point must be a scalar by irreducibility, and if λ1 is a
limit point and p a finite-rank projection, then 〈prnp〉 has a subsequence
converging in norm to λp; but prnp is approximately a projection for large
n, so any norm limit point must be a projection]. If 1 is a limit point, then
there is a subsequence of 〈rn〉 converging weakly, hence strongly, to 1, so ρ
is quasidiagonal.

If 1 is not a limit point, then rn → 0 weakly, hence strongly, and so
rnarn → 0 in norm for all a ∈ K, i.e., ‖rnρ(x)rn‖ → 0 for all x ∈ K.
Fix x0 ∈ K of norm 1. We can then find a subsequence 〈ρn〉 of {ρjk}, with
associated Hilbert spaces Hn and projections qn, such that ‖[qn, ρn(x)]‖ → 0
for all x ∈ A, ‖qnρn(x0)qn‖ → 1, and such that ρn is not equivalent to ρ
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for any n. Define φ : A →
∏
qnB(Hn)qn by φ(x) =

∏
qnρn(x)qn. φ then

drops to a *-homomorphism σ from A to (
∏
qnB(Hn)qn)/(⊕qnB(Hn)qn).

Set I = kerσ. Then I ∩ K ⊆ J since x0 /∈ I, so (I + J)/J is an ideal of
A/J orthogonal to K/J . But K/J is essential in A/J , so (I + J)/J = 0,
I ⊆ J , and so ‖σ(x)‖ ≥ ‖ρ(x)‖ for all x ∈ A. Thus the subsequence of {ρjk}
consisting of those which are not equivalent to ρ still satisfies the conditions
of (iii), and a smaller subsequence will have the same specific properties as
the full double sequence {ρjk} if suitably reindexed.

(2) We now construct a doubly indexed sequence 〈(πjk, pjk)〉 satisfying
the conditions of (iv). Suppose {(πjk, pjk)} have been chosen from among
the (ρnr, qnr) for 1 ≤ k ≤ j < m, satisfying the following properties:

(a) ‖[pjk, πjk(xi)]‖ < j−1 for 1 ≤ i ≤ j.
(b) ‖pjkπjk(xi)pjk‖ > ‖xk‖ − j−1.
(c) No irreducible representation occurs more than once among the πjk

chosen so far unless it is quasidiagonal and GCR.

If m = 1, choose (π11, p11) to satisfy (a) and (b). If m > 1, the πjk already
chosen come from the ρnr for n ≤ n0 for some n0. The tail {ρnr : n > n0} can
be modified as in (1), and further truncated by increasing n0 if necessary,
so that none of the {πjk : 1 ≤ k ≤ j < m} occurs in the tail unless it
is quasidiagonal and GCR. Then a suitable element of the modified tail
satisfies (a) and (b) and can be chosen as πm1. After again modifying and
truncating the tail to eliminate subsequent appearances of πm1 if necessary,
πm2 can be chosen. The process can be continued inductively to get the
desired representations and projections.

This completes the proof. �

Lemma 3.8. Let A be a C∗-algebra. Then, for any k, A is inner quasidiag-
onal if and only if Mk(A) = A⊗Mk is inner quasidiagonal. The projections
for A⊗Mk may be chosen of the form p⊗1k, where p is in the socle of A∗∗.

Proof. Suppose A is inner quasidiagonal. It follows from 3.6 that we may
assume A is separable (or the following argument may be easily modified to
apply to the nonseparable case). Let 〈(πn, pn)〉 be a sequence as in 3.7(iii).
The map φ : A→

∏
pnB(Hn)pn given by φ(x) =

∏
pnπn(x)pn drops to an

injective *-homomorphism σ from A to (
∏
pnB(Hn)pn)/⊕pnB(Hn)pn, and

hence σ ⊗ 1k is an injective *-homomorphism from A⊗Mk to[(∏
pnB(Hn)pn

)
/⊕ pnB(Hn)pn

]
⊗Mk

∼=
(∏

(pn ⊗ 1k)[B(Hn)⊗Mk](pn ⊗ 1k)
)
/⊕ (pn ⊗ 1k)

· [B(Hn)⊗Mk](pn ⊗ 1k).

The converse is trivial. �
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Proposition 3.9. Let A and B be C∗-algebras, with A inner quasidiagonal
and B residually finite-dimensional (e.g., commutative). Then A ⊗ B =
A⊗min B is inner quasidiagonal.

Proof. Let {J} be a collection of ideals of B with intersection 0, with B/Ji
finite-dimensional for all i. Then {A⊗ Ji} is a collection of ideals of A⊗B,
with intersection 0, and (A ⊗ B)/(A ⊗ Ji) = A ⊗ (B/Ji) is a finite direct
sum of matrix algebras over A, hence inner quasidiagonal. �

We will prove a partial converse to 3.9 in 3.10 below. We believe that
a tensor product of any two inner quasidiagonal C∗-algebras is inner qua-
sidiagonal, at least if one of the factors is nuclear. This would follow if
the converse to 2.4 is true. (See note added in proof.) Note that a tensor
product of strong NF algebras is strong NF (5.17).

Proposition 3.10. Let A and C be C∗-algebras, with C commutative. If
A⊗ C is inner quasidiagonal, then A is also inner quasidiagonal.

Proof. We reduce to the case where A is separable. If A ⊗ C is inner qua-
sidiagonal, and S is a countable subset of A, then by 3.6 and an obvious
additional construction we may construct an increasing sequence 〈Bn〉 of
separable C∗-subalgebras of A ⊗ C such that Bn is inner quasidiagonal for
n odd and Bn = Dn ⊗En for n even, for separable C∗-subalgebras Dn of A
containing S and En of C. Then B = [∪Bn]− is separable, inner quasidi-
agonal, and equal to D ⊗ E for D = [∪Dn]− ⊆ A, which contains S, and
E = [∪En]− ⊆ C.

Now suppose A is separable. Write C = C0(X) for a locally compact
Hausdorff space X; then A⊗C = C0(X,A). Suppose A⊗C is inner quasidi-
agonal; let x1, . . . , xm ∈ A, all of norm 1, and 0 < ε < 1. Choose δ > 0 such
that δ

1−δ < ε. Let U be an open set in X with compact closure, g ∈ C0(X)
of norm 1 supported in U , and f ∈ C0(X) of norm 1 and identically 1 on
U , with f and g taking values in [0, 1]. Let V = {x : g(x) > 1 − δ} ⊆ U .
Let π be an irreducible representation of A⊗ C = C0(X,A) and p a finite-
rank projection such that ‖pπ(x1 ⊗ g)p‖ > 1 − δ and [p, π(xj ⊗ g)] < δ
for all j. Then π is supported on a point x0 of V , so π may be regarded
as a representation ρ of A by ρ(x) = π(x ⊗ f). For each j, π(xj ⊗ f)
is a scalar multiple of π(xj ⊗ g), with a scalar λ = g(x0)−1 satisfying
1 ≤ λ ≤ (1 − δ)−1; thus ‖[q, π(xj ⊗ f)]‖ ≤ (1 − δ)−1‖[q, π(xj ⊗ g)]‖ < ε,
and ‖pπ(x1 ⊗ f)p‖ ≥ ‖pπ(xj ⊗ g)p‖ > 1 − δ > 1 − ε. Thus ρ and p satisfy
condition (ii) of 3.7, so A is inner quasidiagonal. �

Corollary 3.11. SA is inner quasidiagonal if and only if A is inner qua-
sidiagonal, and similarly for CA.

Proof. Combine 3.10 with 3.9. �
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Remark 3.12. 3.11 shows that unlike quasidiagonality [Vo2], inner qua-
sidiagonality is not a homotopy invariant for C∗-algebras.

We have the following refinement of the notion of inner quasidiagonality:

Definition 3.13. Let A be a C∗-algebra, and z a central projection in A∗∗.
Then A is z-inner quasidiagonal if, for any x1, . . . , xm ∈ A and ε > 0, there
is a projection p in the socle of zA∗∗ with ‖pxjp‖ > ‖xj‖−ε and ‖[p, xj ]‖ < ε

for all j. If Π is a subset of Â, A is Π-inner quasidiagonal if A is z-inner
quasidiagonal, where z is the support projection of Π in the center of A∗∗.

A is inner quasidiagonal if and only if A is 1A∗∗-inner quasidiagonal. A is
z-inner quasidiagonal if and only if A is Πz-inner quasidiagonal, where Πz

is the set of irreducible representations of A with central support ≤ z.

Example 3.14. Let A be a C∗-algebra with a quasidiagonal faithful irre-
ducible representation π, and let z be the support projection of π in A∗∗.
Then A is z-inner quasidiagonal, and zA∗∗ is a type I factor. More generally,
if {πj} is a separating family of quasidiagonal irreducible representations of
A, and z is the support projection of ⊕πj , then A is z-inner quasidiagonal.

There are versions of 3.6-3.8 for z-inner or Π-inner quasidiagonality, al-
though 3.7(iv) must be weakened (but see 3.18). If A is a C∗-algebra, B a
C∗-algebra, and Π a subset of Â, let Π|B be the subset of B̂ consisting of all
irreducible representations (actually, not just weakly) contained in π|B for
some π ∈ Π.

Proposition 3.15. Let A be a C∗-algebra and Π a subset of Â. If A is
Π-inner quasidiagonal and B is separable C∗-subalgebra of A, then there is
a separable C∗-subalgebra E of A, containing B, which is Π|E-inner qua-
sidiagonal.

Proposition 3.16. Let A be a separable C∗-algebra, and Π a subset of Â.
The following are equivalent:

(i) A is Π-inner quasidiagonal.
(ii) Given x1, . . . , xm ∈ A and ε > 0, there is an irreducible representation

π ∈ Π on a Hilbert space H and a finite-rank projection p ∈ B(H) such
that ‖[p, π(xj)]‖ < ε for 1 ≤ j ≤ m and ‖[pπ(xj)p]‖ > ‖x1‖ − ε.

(iii) There is a sequence of irreducible representations 〈πn〉 in Π on Hilbert
spaces Hn, and finite-rank projections pn ∈ B(Hn), such that
‖[pn, πn(x)]‖ → 0 and lim sup ‖pnπn(x)pn‖ = ‖x‖ for all x ∈ A.

(iv) There is a sequence of irreducible representations 〈πn〉 in Π on Hilbert
spaces Hn, and finite-rank projections pn ∈ B(Hn), such that
‖[pn, πn(x)]‖ → 0 and lim sup ‖pnπn(x)pn‖ = ‖x‖ for all x ∈ A, such
that any GCR representation occuring more than once (up to equiva-
lence) in the sequence is quasidiagonal.
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Proposition 3.17. Let A be a C∗-algebra, z a central projection in A∗∗.
Then, for any k, A is z-inner quasidiagonal if and only if Mk(A) = A⊗Mk

is (z ⊗ 1)-inner quasidiagonal. The projections for A ⊗Mk may be chosen
of the form p⊗ 1k, where p is in the socle of zA∗∗.

Actually, z-inner or Π-inner quasidiagonality is not really a stronger con-
dition than inner quasidiagonality for separable C∗-algebras, as the next
result shows. This is a generalization of 2.5, and is closely related to 3.7.

Theorem 3.18. Let A be a separable inner quasidiagonal C∗-algebra, and
Π a separating set of mutually inequivalent irreducible representations of A.
Then A is Π-inner quasidiagonal.

Lemma 3.19. Let A be a C∗-algebra, Π a faithful family of irreducible rep-
resentations of A, π1, . . . , πn ∈ Π, pk a finite-rank projection in πk(A)′′ for
1 ≤ k ≤ n, X a finite subset of A, and η > 0. If ρ is an representation of
A not equivalent to any π ∈ Π, and q a finite-rank projection on Hρ, then
there is a π ∈ Π and finite-rank projection p on Hπ, with p ⊥ pk if π ∼ πk,
and an isometry z from qHρ onto pHπ, such that ‖qρ(x)q− z∗pπ(x)pz‖ < η
for all x ∈ X.

Proof. First suppose π0 ∈ Π is GCR, with kernel J , and let K = π−1
0 (K). If

I = ∩{kerπ : π ∈ Π, π 6∼ π0}, we have I ∩J = 0, so if L ∈ Prim (A), L 6= J ,
then either I ⊆ L or K ⊆ L. Thus if p is any finite-rank projection on Hπ0 ,
and ρ is an irreducible representation of A not equivalent to π0, then for any
x ∈ A we have

‖ρ(x)‖ ≤ max{‖(1− p)π0(x)(1− p)‖, max{‖π(x)‖ : π ∈ Π, π 6∼ π0}}.
This formula also holds if π0 is not GCR, for any ρ and p, since then the
right-hand side is equal to ‖x‖.

Now let ρ and q be as in the statement of the lemma, with r = rank q. By
replacing A by Mr(A) and using the standard identifications of [Pa, §5] (cf.
[BKb, 4.3]), we may assume r = 1. If p1, . . . , pn are given, let S be the set
of vector states coming from representations in Π, where only vector states
from πk coming from vectors orthogonal to pk are included. Then by the
first part of the proof, for any x = x∗ in A we have ‖ρ(x)‖ ≤ supf∈S |f(x)|.
So by the bipolar theorem, the weak-* closure of S contains all pure states
of ρ(A), proving the lemma. �

Proof of Theorem 3.18. Let x1, . . . , xm ∈ A, of norm 1, and 0 < ε < 1.
Choose mutually inequivalent irreducible representations ρ1, . . . , ρn of A and
finite-rank projections q1, . . . , qn such that ‖[qk, ρk(xj)]‖ < ε/2m for all j
and k and such that, for each j, there is at least one k with ‖qkρk(xj)qk‖ >
‖xj‖ − ε/2 (2.3). Define new pairs (πk, pk) for 1 ≤ k ≤ n inductively as
follows, with each πk in Π. Suppose (π1, p1), . . . , (πk−1, pk−1) have been
defined. If ρk is in Π, set (πk, pk) = (ρk, qk). Otherwise, choose π, p, z as
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in 3.19 for η = (ε/2m)2, X = {xj , x∗jxj , xjx∗l : 1 ≤ j ≤ m}, and ρ = ρk,

q = qk, such that p ⊥ pi for all i < k for which π = πi. Then ‖pπ(xj)p‖ >
‖qkρk(xj)qk‖ − ε/2m for all j. Also, for each j,

‖pπ(xj)∗π(xj)p− pπ(xj)∗pπ(xj)p‖
≤ ‖z∗pπ(x∗jxj)pz − qρ(x∗jxj)q‖

+ ‖qρ(x∗jxj)q − qρ(xj)∗qρ(xj)q‖
+ ‖qρ(xj)∗qρ(xj)q − z∗pπ(xj)∗pzqρ(xj)q‖
+ ‖z∗pπ(xj)∗pzqρ(xj)q − z∗pπ(xj)∗pπ(xj)pz‖

<
( ε

2m

)2
+

( ε

2m

)2
+

( ε

2m

)2
+

( ε

2m

)2
=

( ε

m

)2

(see 3.3 for the second term). Similarly, ‖pπ(xjx∗j )p − pπ(xj)pπ(xj)∗p‖ <
(ε/m)2, so ‖[p, π(xj)]‖ < ε/m by 3.3. Set (πk, pk) = (π, p).

We have now obtained a set {(πk, pk) : 1 ≤ k ≤ n} of representations in
Π and finite-rank projections such that ‖[pk, πk(xj)]‖ < ε/m for all j and k
and such that, for each j, there is at least one k for which ‖[pk, πk(xj)pk]‖ >
‖xj‖−ε. The πk are, however, not necessarily distinct. Suppose, for some set
F , each πk for k ∈ F is equal to a representation π0 in Π. Then {pk : k ∈ F}
are mutually orthogonal, and if p0 =

∑
k∈F pk, then

‖[p0, π0(xj)]‖ ≤
∑
k∈F

‖[pk, πk(xj)]‖ <
ε|F |
m

≤ ε

‖p0π0(xj)p0‖ ≥ max
k∈F

‖pkπk(xj)pk‖

for all j, so ⊕(πk, pk) may be replaced by (π0, p0) ⊕ ⊕k∈F (πk, pk). After
finitely many such procedures, a direct sum of mutually inequivalent irre-
ducible representations in Π is obtained, satisfying the definition of Π-inner
quasidiagonality for x1, . . . , xm, ε. �

4. The Main Theorem.

We first show that strong NF algebras are inner quasidiagonal. We begin by
recalling one of the characterizations of strong NF algebras from [BKb]; we
state a slightly refined form for later use. The proof is essentially identical
to the proof of [BKb, 6.1.1] (note that that proof works throughout if the
finite-dimensional algebras are restricted to be in a given class B).

Proposition 4.1. Let B be a set of finite-dimensional C∗-algebras, and A
a separable C∗-algebra. Then the following are equivalent:

(i) A can be written as lim−→(An, φm,n) for a generalized inductive system
(An, φm,n) with each An isomorphic to an algebra in B and each φm,n
a complete order embedding (completely positive complete isometry).
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(ii) For every x1, . . . , xm ∈ A and ε > 0, there is a B ∈ B, elements
b1, . . . , bm ∈ B, and a complete order embedding φ : B → A with
‖xj − φ(bj)‖ < ε for all j.

The strong NF algebras are exactly the A for which these conditions hold
for B the set of all finite-dimensional C∗-algebras. We may take condition
(ii) (with B the set of all finite-dimensional C∗-algebras) to be the definition
of a strong NF algebra even in the nonseparable case.

Proposition 4.2. Every strong NF algebra is inner quasidiagonal.

Proof. Let A be a strong NF algebra, x1, . . . , xm ∈ A, and ε > 0. Choose a
finite-dimensional C∗-algebra B, elements b1, . . . , bm ∈ B, and a complete
order embedding φ : B → A such that if yj = φ(bj), then ‖xj − yj‖ < ε/2
for all j. Let D be the C∗-subalgebra of A generated by φ(B). By [CE1,
4.1] (cf. [BKb, 4.2.2]), there is a *-homomorphism π from D onto B with
π(yj) = bj for all j. If B = B1 ⊕ · · · ⊕ Bn with each Bi a full matrix
algebra, and π = π1 ⊕ · · · ⊕ πn, then πi can be regarded as an irreducible
representation of D on a finite-dimensional Hilbert space Hi. Extend πi to
an irreducible representation π̃i of A on a larger Hilbert space H̃i, and let pi
be the projection of H̃i onto Hi. The π̃i are not in general inequivalent; we
may assume that π̃1, . . . , π̃r are a set of representatives for the equivalence
classes. Set H̃ = H̃1 ⊕ · · · ⊕ H̃r and π̃ = π̃1 ⊕ · · · ⊕ π̃r. For i > r, choose
k ≤ r with π̃i ≈ π̃k and identify H̃i with H̃k, and pi with the corresponding
projection on H̃k. Let p ∈ B(H̃) be the sum of the pi (note that for a fixed
k the pi on H̃k are orthogonal since the πi are disjoint). Then p ∈ π̃(A)′′;
and for each j, [p, π̃(yj)] = 0. so ‖[p, π̃(xj)]‖ ≤ 2‖xj − yj‖ < ε. For each j
we have ‖pπ̃(yj)p‖ = ‖yj‖ (since ‖π(yj)‖ = ‖yj‖); so

‖pπ̃(xj)p‖ ≥ ‖yj‖ − ‖xj − yj‖ > ‖yj‖ − ε/2 > ‖xj‖ − ε.

�

The next proposition gives an important technical characterization of in-
ner quasidiagonality.

Proposition 4.3. Let A be a C∗-algebra, and z a central projection in A∗∗.
Then A is z-inner quasidiagonal if and only if, for any x1, . . . , xm ∈ A,
completely positive contraction φ : A→ Mn, and ε > 0, there is a projection
p in the socle of zA∗∗ with ‖[p, xj ]‖ < ε for all j, and a completely positive
contraction ψ : pA∗∗p→ Mn with ‖φ(xj)− ψ(pxjp)‖ < ε for all j.

Proof. The “if” part is obvious (consider the case n = 1). Conversely, sup-
poseA is z-inner quasidiagonal; we may assumeA is unital. Fix x1, . . . , xm ∈
A and ε > 0. By 3.15 we may assume A is separable. Then we may assume
there is a set Π of irreducible representations as in 3.16(iv) such that z is the
support projection of Π. Because of 3.17 and the identifications described
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in [Pa, §5] (cf. [BKb, 4.3]), we may assume n = 1. For each δ > 0 let Sδ be
the weak-* closure of the set of all states ω of A of the form ω(x) = ψ(pxp),
where p is in the socle of zA∗∗, ‖[p, xj ]‖ < δ for all j, and ψ is a state on
pA∗∗p. We want to show that Sε is the entire state space of A. For any δ, Sδ
is norming for A, i.e., for x = x∗ ∈ A, sup{|φ(x)| : φ ∈ Sδ} = ‖x‖ by Π-inner
quasidiagonality. Therefore, if ‖x‖ ≤ 1 and φ(x) ≥ 0 for all φ ∈ Sδ, then
φ(1−x) ≤ 1 for all φ ∈ Sδ, so ‖1−x‖ ≤ 1, x ≥ 0. Thus Sδ contains all pure
states of A by [Dx, 3.4.1], so it suffices to show that a convex combination
of two elements of Sδ/2 is in Sδ. So let p1, p2 be projections in the socle of
zA∗∗, ‖[pi, xj ]‖ < δ/2 for i = 1, 2, 1 ≤ j ≤ n, and ωi states on A of the
form ωi(x) = ψi(pixpi) for states ψi on piA

∗∗pi. As in 2.3, there are repre-
sentations πi of A, each of which is a direct sum of mutually inequivalent
irreducible representations in Π, such that πi(pi)πi(A)πi(pi) = piApi, and ωi
is a linear combination of vector states from vectors in the range of π(pi). If
0 < λ < 1 is fixed, we must show that ω = λω1 +(1−λ)ω2 is approximately
of the same form.

The difficulty comes when one or more of the irreducible subrepresen-
tations of π1 is equivalent to a subrepresentation of π2. By the choice of
Π, any such representation ρ is either quasidiagonal or not GCR. We will
separately work within each such ρ, so fix ρ, on a Hilbert space H.

If ρ is quasidiagonal, identify the components of π(pi) (i = 1, 2) in ρ with
qi ∈ B(H). Then, for any η > 0, there is a finite-rank projection r such that
‖qi − rqi‖ < η (i = 1, 2) and ‖[r, ρ(xj)]‖ < ε for 1 ≤ j ≤ m; the component
of ω corresponding to ρ can thus be approximated within η in norm by a
convex combination of vector states in the range of r, and such states are in
Sε.

Now suppose ρ is not GCR, i.e., ρ(A) ∩ K = {0}. Identify the subrep-
resentation ρ1 of π1 equivalent to ρ with ρ, giving a projection q1; then
the component of ω1 corresponding to ρ is a convex combination of vec-
tor states in the range of q1. Let ρ2 on H2 be the subrepresentation of π2

equivalent to ρ, and r2 the corresponding projection. By [Vo1, Lemma 1],
for any y1, . . . , yr ∈ A and η > 0, there is a unitary u from H2 to H and
a finite-rank projection q2 ∈ B(H) orthogonal to q1 with q2 = ur2u

∗ and
‖q2ρ(xj)q2 − ur2ρ2(xj)r2u∗‖ < η, ‖q2ρ(yk)q2 − ur2ρ2(yk)r2u∗‖ < η for all
j, k. Thus every weak-* neighborhood of the component of ω2 in ρ2 contains
a state ω̃2 which is a convex combination of vector states in the range of
some such q2, and ω̃2 is in Sδ/2 for sufficiently small η. Then the component
of ω corresponding to ρ is approximated by a convex combination of vector
states in the range of q1 + q2, and ‖[q1 + q2, xj ]‖ ≤ ‖[q1, xj ]‖+ ‖[q2, xj ]‖ < δ
for all j, so ω ∈ Sδ. �

Theorem 4.4. Let A be a nuclear C∗-algebra, and z a central projection in
A∗∗. If A is z-inner quasidiagonal, then A satisfies condition (ii) of 4.1 with
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B = {pAp : p is in the socle of zA∗∗}. So if A is separable, then A can be
written as lim−→(An, φm,n) for a generalized inductive system (An, φm,n) where
each An is isomorphic to pnA∗∗pn for some pn in the socle of zA∗∗, and each
φm,n is a complete order embedding.

Putting together 4.4 with 4.2 we obtain:

Theorem 4.5. Let A be a separable C∗-algebra. Then A is a strong NF
algebra if and only if A is nuclear and inner quasidiagonal.

Proof of Theorem 4.4. Suppose A is nuclear and z-inner quasidiagonal. Let
x1, . . . , xm ∈ A and ε > 0. Choose a matrix algebra Mn and completely
positive contractive maps α : A → Mn and β : Mn → A such that
‖β ◦ α(xj) − xj‖ < ε/7 for 1 ≤ j ≤ m. Then by 4.3 choose p in the so-
cle of zA∗∗ with ‖[p, xj ]‖ < ε/7 and σ : pAp → Mn a completely positive
contraction such that ‖σ(pxjp)−α(xj)‖ < ε/7 for 1 ≤ j ≤ m. Set B = pAp
and ω = β ◦ σ : B → A. Then ‖ω(pxjp)− xj‖ < ε/7 for all j.

We have d(xj , Np) = ‖[p, xj ]‖ for each j by 3.5; let yj ∈ Np with
‖xj−yj‖ < ε/7. Then ‖ω(pyj)−yj‖ < 4ε/7 for all j. The map x→ px = pxp
is a *-homomorphism from Np onto B; let J be the kernel, ψ : B → Np a
completely positive contractive cross section for the quotient map, and {ei} a
quasicentral approximate identity for J in Np. For each i, define φi : B → A
by

φi(b) = (1− ei)1/2ψ(b)(1− ei)1/2 + e
1/2
i ω(b)e1/2i .

For each i, φi is a complete order embedding since pφi(b)p = b for all b ∈ B.
For i sufficiently large, ‖yj − ((1 − ei)1/2yj(1 − ei)1/2 + e

1/2
i yje

1/2
i )‖ < ε/7

for all j since {ei} is quasicentral. We also have

‖(1− ei)1/2(yj − ψ(pyj))(1− ei)1/2‖ < ε/7

for each j, for i large, since yj − ψ(pyj) ∈ J . Thus, for i sufficiently large,
we have, for all 1 ≤ j ≤ m,

‖xj − φi(pyj)‖

≤ ‖xj − yj‖+
∥∥∥yj − (

(1− ei)1/2yj(1− ei)1/2 + e
1/2
i yje

1/2
i

)∥∥∥
+

∥∥∥(1− ei)1/2(yj − ψ(pyj))(1− ei)1/2
∥∥∥ +

∥∥∥e1/2i (yj − ω(pyj))e
1/2
i

∥∥∥
<
ε

7
+
ε

7
+
ε

7
+

4ε
7

= ε,

so A satisfies condition (ii) of 4.1. If A is separable, the last statement of
4.4 follows from 4.1.

The following diagram summarizes the maps used in the proof.
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ψ−−−−−−−−−−−−−−−−−→ Np �

5. Corollaries.

Corollary 5.1. A separable nuclear C∗-algebra with a separating family of
quasidiagonal irreducible representations is a strong NF algebra. In partic-
ular, every separable nuclear residually finite-dimensional C∗-algebra is a
strong NF algebra, and every separable nuclear strongly quasidiagonal C∗-
algebra is a strong NF algebra.

Corollary 5.2. Let A be a separable subhomogeneous C∗-algebra, and sup-
pose each irreducible representation of A is of dimension ≤ k. Then A is a
strong NF algebra, and has a strong NF system (An, φm,n) where each An
is a (finite) direct sum of matrix algebras of size not more than k × k.

Since the class of strong NF algebras is closed under inductive limits
[BKb, 6.1.3], we obtain:

Corollary 5.3. Every (separable) approximately subhomogeneous C∗-alge-
bra is a strong NF algebra.

Corollary 5.4. If A is separable, nuclear, and prime, then A is a strong NF
algebra if and only if some (hence every) faithful irreducible representation
of A is quasidiagonal.

Corollary 5.5. Every antiliminal prime NF algebra is a strong NF algebra.
Every simple NF algebra is a strong NF algebra.

Example 5.6. The examples of 2.7 are NF but not strong NF.

Corollary 5.7. Let A be a separable nuclear C∗-algebra. The following are
equivalent:

(i) Every quotient of A is a strong NF algebra.
(ii) Every primitive quotient of A is a strong NF algebra.
(iii) Every irreducible representation of A is quasidiagonal.
(iv) A is strongly quasidiagonal.

Corollary 5.8. Let A be any NF algebra, and let B be a split essential
extension of A by K. Then B is a strong NF algebra. So A can be embedded
as a C∗-subalgebra of a strong NF algebra B with a retraction (homomorphic
conditional expectation) from B onto A. In particular, A is a quotient of a
strong NF algebra. So every separable nuclear C∗-algebra is a quotient of a
strong NF algebra [BKb, 6.1.8].
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We can obtain a refinement of 5.4-5.5.

Definition 5.9. A strong NF algebra is of monomial type if it can be writ-
ten as lim−→(An, φm,n), with each An a single matrix algebra and each φm,n a
complete order embedding.

We have used the terminology “monomial type” instead of “UHF type”
or “matroid type” since the class of AF algebras which are strong NF of
monomial type is considerably larger than the class of UHF or matroid C∗-
algebras. (In fact, an AF algebra is strong NF of monomial type if and only
if it is prime.)

Proposition 5.10 (cf. [Dx, 1.9.13]). A C∗-algebra B is prime if and only
if, for every nonzero x, y ∈ B, there is an irreducible representation π of B
with π(x) and π(y) both nonzero.

Proof. If I and J are nonzero ideals of B with I ∩ J = 0, then every irre-
ducible representation of A must annihilate either I or J , so if x ∈ I and
y ∈ J are nonzero, then no irreducible representation of B can be nonzero
on both x and y. Conversely, if B is prime, and x, y are nonzero elements of
B, then there is a z ∈ B with xzy 6= 0 (otherwise the two-sided ideals gener-
ated by x and y annihilate each other); if π is an irreducible representation
of B with π(xzy) 6= 0, then π(x) and π(y) are both nonzero. �

Remark 5.11. The second half of the proof can be simplified if B is primi-
tive (e.g., if B is separable). It is still an open question whether every prime
C∗-algebra is primitive.

Proposition 5.12. A strong NF algebra of monomial type is prime.

Proof. If A is strong NF of monomial type and x1, x2 are nonzero elements
of A, then by 4.1 there is a complete order embedding φ of a full matrix
algebra B into A such that ‖xj − φ(bj)‖ < ‖xj‖/2 for j = 1, 2, for some
bj ∈ B. φ−1 extends to an irreducible representation π̃ of A as in proof of
4.2, and π̃(xj) 6= 0 for j = 1, 2. �

Theorem 5.13. Let A be a prime separable nuclear C∗-algebra. Then the
following are equivalent:

(i) A is a strong NF algebra.
(ii) A is a strong NF algebra of monomial type.
(iii) For some faithful irreducible representation π, π(A) is a quasidiagonal

C∗-algebra of operators.
(iv) For every faithful irreducible representation π, π(A) is a quasidiagonal

C∗-algebra of operators.
In particular, every antiliminal prime NF algebra and every simple NF al-
gebra is a strong NF algebra of monomial type.
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Proof. (ii) ⇒ (i) and (iv) ⇒ (iii) are trivial; (i) ⇒ (iv) by 2.5 and 4.2, and
(iii) ⇒ (ii) by 4.4, letting z be the support of π in A∗∗ (cf. 3.14). �

We have the following versions of 2.9-2.10:

Proposition 5.14. Let A be a (separable) C∗-algebra, and J1, J2 ideals of
A. Set J = J1 ∩ J2. If A/J1 and A/J2 are strong NF algebras, then A/J is
strong NF.

Proof. In light of 2.9 it suffices to note that if A/J1 and A/J2 are nuclear,
then A/J is nuclear. This can be seen in several ways. Perhaps the easiest
is to use the fact that a separable C∗-algebra B is nuclear if and only if
every factor representation of B generates an injective factor, and note that
every factor representation of A/J factors though either A/J1 or A/J2.
Alternatively, A/J is an extension of A/J1 by J1/J , and J1/J ∼= (J1+J2)/J2,
which is nuclear since it is an ideal in A/J2. �

Corollary 5.15. A separable nuclear C∗-algebra A is a strong NF algebra
if (and only if) A contains a sequence 〈Jn〉 of ideals with A/Jn strong NF
for all n and ∩Jn = 0.

Note that neither of the assumptions that A be separable and nuclear
follow from the other hypotheses of 5.15 (e.g., A =

∏
nMn, Jn the sequences

vanishing in the n’th coordinate).
The situation with an increasing sequence of ideals, and hence with in-

ductive limits with noninjective connecting maps, is quite different. Recall
that an (ordinary) inductive limit, with injective connecting maps, of strong
NF algebras is strong NF ([BKb, 6.1.3]; this is an immediate corollary of
4.1, or of 2.1 and 4.5).

Proposition 5.16. An (ordinary) inductive limit of an inductive system
of strong NF algebras with noninjective connecting maps is not necessarily
strong NF.

Proof. Example 2.12 is a counterexample. �

For completeness, we note the following fact, which should have been
included in [BKb]:

Proposition 5.17. The class of strong NF algebras is closed under tensor
products.

Proof. By 4.1 it suffices to show that, if A1, A2, B1, B2 are C∗-algebras, with
B1, B2 finite-dimensional, and φi : Bi → Ai are complete order embeddings,
then the finite-dimensional subspace φ1(B1)⊗φ2(B2) of A1⊗A2 is completely
order isomorphic to a C∗-algebra. This follows immediately from [CE2,
3.1] (cf. [BKb, 4.2.1]), since if ωi is an idempotent completely positive
contraction from Ai onto φi(Bi), then ω1 ⊗ ω2 is an idempotent completely
positive contraction from A1 ⊗A2 onto φ1(B1)⊗ φ2(B2). �
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Finally, the next proposition is an immediate consequence of 3.11 and
[BKb, 5.3.3].

Proposition 5.18. Let A be a separable C∗-algebra. Then A is a strong
NF algebra if and only if SA is strong NF, and similarly for CA. Thus, if
A is a separable nuclear C∗-algebra which is not strong NF (e.g., if A is not
NF), then SA and CA are NF but not strong NF.

Using 5.18, we get examples of NF algebras which are not strong NF
which are very different from those of 5.6:

Example 5.19. SO2 is an antiliminal NF algebra which is not strong NF.

Appendix A.

This appendix contains a “folklore” result that we have been unable to find
in the literature. The arguments are slight variations of those of Glimm
[Gl], as presented in [Dx]. The word “ideal” will mean “closed two-sided
ideal”.

If J is a primitive ideal in a C∗-algebra A, we will call J a GCR ideal if J
is the kernel of a GCR irreducible representation (one whose image contains
the compact operators). The next proposition is well known and easy to
prove (cf. [Dx, 4.1.10]).

Proposition A.1. Let J be a primitive ideal in a separable C∗-algebra A.
Then the following are equivalent:

(i) J is a GCR ideal.
(ii) There is an ideal K of A, containing J , such that K/J is an essential

ideal of A/J isomorphic to K.
(iii) A/J is not antiliminal.

Theorem A.2. Let J be a primitive ideal in a separable C∗-algebra A.
Then the following are equivalent:

(i) J is not GCR ideal.
(ii) A/J is antiliminal.
(iii) J is the kernel of a non-type I factor representation of A.
(iv) There are two inequivalent irreducible representations of A with kernel

J .
(v) There are uncountably many mutually inequivalent irreducible repre-

sentations of A with kernel J .

Proof. (i) ⇔ (ii) is A.1, (v) ⇒ (iv) is trivial, and (iv) ⇒ (i) follows from
[Dx, 4.1.10].

By replacing A by A/J , we may and will assume that J = 0 in the rest
of the proof, to simplify notation.

(iii) ⇒ (v) by a slight modification of the argument in [Dx, 9.1]: if π
is a faithful non-type-I factor representation of A on a separable Hilbert
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space and C is a masa in π(A)′, the direct integral decomposition of π as∫ ⊕
πxdµ(x) with respect to C has almost all πx faithful and irreducible by

the argument of [Dx, 9.1]. If, for a set E of nonzero measure, each πx
for x ∈ E is equivalent to a fixed representation π0, then by [Dx, 8.1.7]∫ ⊕
E πxdµ(x) is a subrepresentation of π equivalent to a multiple of π0, a

contradiction. Thus, for each x, the set Ex = {y : πy ∼ πx} has measure 0,
so there must be uncountably many such sets.

It remains to prove (ii) ⇒ (iii). This follows from the results of Glimm if
A has a minimal nonzero ideal, but not directly otherwise. However, using
the next three lemmas, Glimm’s argument essentially works in our case.

Lemma A.3. Let A be a separable primitive C∗-algebra. Then A contains
a decreasing sequence 〈Jn〉 of nonzero (not necessarily proper) ideals, such
that every nonzero ideal of A contains Jn for some n.

Proof. This is an immediate consequence of the fact that Prim (A) is a sec-
ond countable T0 space and 0 is a dense point. �

Lemma A.4 (cf. [Dx, 9.3.5]). Let B be an antiliminal C∗-algebra and I an
essential ideal in B. If d ∈ B+ of norm 1 and 0 < τ ≤ 1, then there exist
w,w′, d′ in I satisfying the conclusions of [Dx, 9.3.5].

Proof. The proof is identical to the proof of [Dx, 9.3.5] except that π is
chosen to be an irreducible representation of B which is nonzero on I (this
is possible since I is essential and is itself an antiliminal C∗-algebra), so π|I
is irreducible, and c is chosen in I. Then d0 and hence ν are in I, so d′, w,
and w′ are also in I. �

Lemma A.5 (cf. [Dx, 9.3.7]). Let B be a unital antiliminal C∗-algebra,
〈Jn〉 a decreasing sequence of essential ideals of B, and let (s0, s1, . . . )
be a sequence of self-adjoint elements of B. Then there exist elements
ν(a1, . . . , ak) (k = 1, 2, . . . ) of B satisfying all the conditions of [Dx, 9.3.7],
and in addition ν(a1, . . . , ak) ∈ Jk for all k and all (a1, . . . , ak).

Proof. The proof is identical to the proof of [Dx, 9.3.7], with A.4 used (with
I = Jn+1) in place of [Dx, 9.3.5]. �

Proof of A.2 (ii) ⇒ (iii). Let 〈Jn〉 be a sequence of ideals of A as in A.3.
Choose elements ν(a1, . . . , ak) as in A.5 (if A is nonunital, work in Ã).
Choose the states f and g as in [Dx, 9.4]; then the representation πg is
a type II factor representation of A. If I = kerπg is nonzero, then πg is
zero on Jn for some n; but this is impossible since ν(a1, . . . , ak) ∈ Jn and
πg(ν(a1, . . . , ak)) 6= 0. Thus I = 0 and πg is faithful. �

The same technique can be used to give the following version of Maréchal’s
refinement [Ma, §2] of Glimm’s result:
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Lemma A.6. Let A be a separable unital primitive antiliminal C∗-algebra.
Then there is a unital sub-C∗-algebra B of A and ideal J of B, such that:

(a) B/J is isomorphic to the CAR algebra D (write φ : B → D for the
quotient map).

(b) For any cyclic representation π of D, there is a faithful cyclic represen-
tation ρ of A, and a projection F ∈ ρ(B)′′ ∩ ρ(B)′, of central support
1 in ρ(A)′′, such that the subrepresentation ρ1 of ρ|B defined by F is
equivalent to π ◦ φ and ρ1(B)′′ = Fρ(A)′′F .

Corollary A.7. Let A be a separable C∗-algebra and J a non-GCR primi-
tive ideal of A. If M is any properly infinite injective von Neumann algebra
(in particular, any infinite injective factor) with separable predual, then there
is a representation π of A with kernel J , such that π(A)′′ ∼= M .

Note added in proof. The authors have recently shown that the converse
of 2.4 is true: an inner quasidiagonal C∗-algebra has a separating family
of quasidiagonal irreducible representations. As a consequence, if A and B
are inner quasidiagonal and one of them is nuclear, then A ⊗ B is inner
quasidiagonal (see the comment after 3.9). Some of the other arguments in
this paper can be simplified using this result.
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