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It is shown that for two dynamical approximation entropies
(one C∗ and one W ∗) the implementing inner automorphism
in a crossed product Aoα Z has the same entropy value as the
automorphism α.

Using the techniques in the proof, an example of a highly
ergodic non-asymptotically abelian automorphism with topo-
logical entropy zero is also given. More specifically, it is shown
that the free shifts on the Cuntz algebra O∞ and the reduced
free group C∗-algebra C∗

r (F∞) have topological entropy zero.

1. Introduction.

In this paper we show that for two definitions of dynamical entropy (both
based on Voiculescu’s approximation approach; [Vo2]) getting calculations
for general automorphisms is equivalent to getting calculations for inner
automorphisms. More precisely, we show that if α ∈ Aut(A), η ∈ S(A) is
an α-invariant state and η ◦ E denotes the Adu-invariant state on A oα Z
induced by η (u ∈ A oα Z is the implementing unitary) then the entropies
of α and Adu agree with respect to η and η ◦E, respectively, for the entropy
quantities defined in [Ch3] and [Vo2, Section 3]. (See [St2, Problem 4.2].)

One may regard Aoα Z as the closure of the “fibers” Ak = {auk : a ∈ A}.
Then each Ak is globally invariant under Adu and, moreover, the action
of Adu on Ak is precisely that of α. Thus it seems natural to expect the
same entropy value for α and Adu, which we show by constructing explicit
completely positive maps on Aoα Z using the techniques of [SS] as in [Br].

The maps constructed on A oα Z can also be used to estimate entropy
for some outer automorphisms of A oα Z. Since many operator algebras
can be realized as crossed products we get a large class of examples where
these techniques are relevant. Indeed, similar ideas were used in [Ch2, Ch3]
to obtain various entropy values for Cuntz’s canonical endomorphism of the
Cuntz algebra On, 2 ≤ n <∞ [Cu], and Longo’s canonical endomorphism of
type III factors. In this paper we exploit the isomorphism O∞⊗K ∼= FoΦZ,
where K denotes the algebra of compact operators and F is an AF algebra,
to obtain the following result.
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Theorem. The free shift on the Cuntz algebra O∞ has topological entropy
zero in the sense of [Vo2, Br].

The free shift is the automorphism of O∞ = C∗({Si : i ∈ Z}) such that
Si 7→ Si+1. This is a highly ergodic non-asymptotically abelian automor-
phism.

There is a natural embedding C∗
r (F∞) ↪→ O∞ of the reduced group C∗-

algebra of the free group in infinitely many generators and hence the above
theorem also holds for the free shift on C∗

r (F∞) since topological entropy
decreases in subalgebras (cf. [Br, Prop. 2.1]). In fact, we will obtain the
same results for automorphisms arising from any bijective function Z → Z.
(See also [St1, St3], [Dy] for related results.)

In Section 2 we observe several consequences of the construction of Sinclair
and Smith [SS]. The reader is encouraged to first go through [SS] as we
will be rather sketchy. In Section 3 we prove that the entropy of α and Adu
agree for the entropies defined in [Ch3] and [Vo2, Section 3]. In Section 4
the topological entropy (in the sense of [Br]) of the free shift is shown to be
zero.

2. Maps on Crossed Products.

We first observe that the techniques of [SS] allow one to construct maps on
AoαG out of maps on A in such a way that the map constructed on AoαG
inherits many nice properties that the map on A may have (e.g., normality,
positivity, invariance with respect to an α-invariant state, approximation
properties). For future reference it will be convenient to separate each of
these observations into individual propositions. However, all of the results
in this section are easy consequences of [SS] and we refer the reader to that
paper for all of the details and notation which appears below.

In this section A will denote a C∗-algebra which is faithfully nondegen-
erately represented in B(H), where H is a separable Hilbert space. We
assume that an action α : G→ Aut(A) is given with G a countable discrete
amenable group. As in [SS], we further assume (without loss of generality)
that α is spatially implemented; i.e., that there exists a unitary represen-
tation G → B(H), g 7→ Ug such that αg(a) = UgaU

∗
g for all a ∈ A and

g ∈ G. We will regard A oα G, the reduced (or full, since G is amenable)
crossed product, as faithfully represented (via the regular representation) in
B(l2(G) ⊗H) and let π : A ↪→ A oα G denote the natural inclusion. Since
α is spatially implemented, the map π makes perfectly good sense on all of
B(H). An easy calculation shows that π : B(H) → B(l2(G) ⊗ H) is both
ultraweak-ultraweak and ultrastrong-ultrastrong continuous. Recall that
there is a natural unitary representation g 7→ λg of G into B(l2(G) ⊗ H)
such that λgπ(x)λ∗g = π(αg(x)) for all x ∈ A and such that the span of
{π(x)λg : g ∈ G, x ∈ A} is norm dense in Aoα G.
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If F ⊂ G is a finite set, we will let pF denote the orthogonal projection
onto the span of {ξg : g ∈ F} (where {ξg}g∈G is the natural orthonormal
basis of l2(G)) and PF : B(l2(G) ⊗ H) → (pF ⊗ I)B(l2(G) ⊗ H)(pF ⊗ I)
be the compression map. If f ∈ l∞(G) has finite support then we let Tf :
B(l2(G)⊗H) → B(l2(G)⊗H) be the map constructed in [SS, Lem. 3.3].

Definition 2.1. If Λ : A → B(H) is a linear map, f ∈ l∞(G) has finite
support, and F ⊂ G is a finite set we define ΦΛ,f,F : AoαG→ B(l2(G)⊗H)
by

ΦΛ,f,F = Tf ◦ (idF ⊗ Λ) ◦ PF ,

where idF : pF (B(l2(G)))pF → pF (B(l2(G)))pF is the identity map.

It follows from [SS, Lem. 2.1] that PF (A oα G) ⊂ pF (B(l2(G)))pF ⊗ A
and hence ΦΛ,f,F is well defined. Since PF is weakly continuous, this also
shows that when A is a von Neumann algebra, the weak closure of Aoα G
(i.e., the W ∗-crossed product) also gets mapped into pF (B(l2(G)))pF ⊗ A
and hence ΦΛ,f,F is well defined for W ∗-algebras and W ∗-crossed products
as well.

In the following proposition, I will denote the identity operator on both
l2(G) and H and hence I ⊗ I denotes the unit of B(l2(G) ⊗H). For each
finite set F ⊂ G we also let {ep,q}p,q∈F denote the canonical matrix units of
pFB(l2(G))pF .

Proposition 2.2. The following assertions hold.
1) Tf is a completely positive map (cf. [Pa]) with Tf (I ⊗ I) = ‖f‖2

2I ⊗ I.
Hence ‖Tf‖cb = ‖Tf‖ = ‖f‖2

2. Also, if F contains the support of f
then Tf (pF ⊗ I) = Tf (I ⊗ I).

2) Tf (ep,q⊗a) = f(p)f(q)π(αp(a))λpq−1 for ep,q⊗a ∈ pFB(l2(G))pF ⊗A.
3) If x ∈ pFB(l2(G))pF ⊗A and {xi} ⊂ pFB(l2(G))pF ⊗A is a net con-

verging to x in the ultraweak (resp. ultrastrong) topology then Tf (xi) →
Tf (x) in the ultraweak (resp. ultrastrong) topology.

4) If Λ is completely bounded (cf. [Pa]) then ΦΛ,f,F is also completely
bounded with ‖ΦΛ,f,F ‖cb ≤ ‖f‖2

2‖Λ‖cb. If Λ is completely positive then
ΦΛ,f,F is completely positive.

5) If A is a von Neumann algebra, Λ(A) ⊂ A and Λ is ultraweakly (resp.
ultrastrongly) continuous then ΦΛ,f,F is ultraweakly (resp. ultrastrongly)
continuous as a map (Aoα G)′′ → B(l2(G)⊗H).

6) If A is unital, Λ is unital, F ⊃ supp (f) and ‖f‖2
2 = 1 then ΦΛ,f,F is

unital.

Proof. The first assertion is essentially [SS, Lem. 3.3] and it’s proof. (The
last statement follows easily from the definition of Tf .)

The second assertion follows from Lemmas 2.2 and 3.1 in [SS], together
with the definition of Tf .
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The third assertion follows from the second since we noted that π is
continuous in both the ultraweak and ultrastrong topologies.

The fourth is immediate from the first since PF is a completely positive
contraction and ‖idF ⊗ Λ‖cb ≤ ‖Λ‖cb.

The fifth follows from the third since ΦΛ,f,F = Tf ◦ (idF ⊗ Λ) ◦ PF .
The final assertion follows from the first since

ΦΛ,f,F (I ⊗ I) = Tf (idF ⊗ Λ(pF ⊗ I)) = Tf (pF ⊗ I) = Tf (I ⊗ I) = I ⊗ I.

�

Proposition 2.3. If Λ(A) ⊂ A then

ΦΛ,f,F (π(a)λg) =
∑

t∈F∩(gF )

f(t)f(g−1t)π(αt(Λ(αt−1(a))))λg

for all a ∈ A and g ∈ G. In particular, if Λ(A) ⊂ A then ΦΛ,f,F (Aoα G) ⊂
Aoα G.

Proof. See Lemma 3.2 in [SS]. �

Let 1 denote the unit of G. Then P{1}(A oα G) = p{1} ⊗ A. Identifying
p{1}⊗A with I⊗A ∼= A we let E : AoαG→ A denote the resulting faithful
normal projection such that E(π(a)λg) = 0 for all g 6= 1 and E(π(a)) = a
for all a ∈ A (cf. [Pe, Lem. 7.11.3]). When A is a von Neumann algebra
then we regard E as a map (Aoα G)′′ → A.

Proposition 2.4. If ‖f‖2
2 = 1, F ⊃ supp (f), η ∈ S(A) is an α-invariant

state (i.e., η ◦ αg = η for all g ∈ G) and Λ : A→ A is a completely positive
map such that η ◦ Λ = η then η ◦E ◦ ΦΛ,f,F = η ◦E (as states on Aoα G).

If A is a von Neumann algebra, η is normal and Λ is ultraweakly contin-
uous then η ◦ E ◦ ΦΛ,f,F = η ◦ E (as states on (Aoα G)′′).

Proof. Evidently Proposition 2.3 implies η ◦ E ◦ ΦΛ,f,F (π(a)λg) =
η ◦ E(π(a)λg) for all a ∈ A, g ∈ G. Thus the proposition follows from
parts 4 and 5 of Proposition 2.2. �

The next proposition is immediate from the definitions and part 1 of
Proposition 2.2.

Proposition 2.5. Assume Λ = ψ ◦ϕ where ϕ : A→ B, ψ : B → B(H) are
linear maps. Letting Φ = (idF ⊗ ϕ) ◦ PF and Ψ = Tf ◦ (idF ⊗ ψ) we have:

1) The diagram

Aoα G
Φψ◦ϕ,f,F//

Φ ((QQQQQQQQQQQQQ B(l2(G)⊗H)

M|F | ⊗B,

Ψ

OO



APPROXIMATION ENTROPIES 335

is commutative, where M|F | = pFB(l2(G))pF is isomorphic to the ma-
trix algebra of dimension |F |2 = cardinality (F )2.

2) Φ (resp. Ψ) is completely positive whenever ϕ (resp. ψ) is completely
positive.

Let {ep,q}p,q∈F be the canonical matrix units of M|F | = pFB(l2(G))pF .
When ψ(B) ⊂ A we can give an explicit formula for the map Ψ. (There is
always an explicit formula for Φ.)

Proposition 2.6. With the assumptions and notation of Proposition 2.5
we have:

1. Φ(π(a)λg) =
∑

t∈F∩(gF )

et,g−1t ⊗ ϕ(αt−1(a)),

1′. If ϕ is unital then Φ is unital,
2. Ψ(ep,q ⊗ b) = f(p)f(q)π(αp(ψ(b)))λpq−1,
2′. If F ⊃ supp (f), ‖f‖2 = 1 and ψ is unital then Ψ is unital.

Proof. The first assertion follows from [SS, Lem. 2.1] while 2 follows from
the definition of Tf , [SS, Lem. 3.1] and [SS, Lem. 2.2]. 1′ (resp. 2′) is an
easy calculation using 1 (resp. 2). �

We will need the following proposition to compute [Ch3] entropy.

Proposition 2.7. If ϕ and ψ in Proposition 2.5 are unital and completely
positive, ‖f‖2

2 = 1, F ⊃ supp (f) and η ∈ S(A) is an α-invariant state then

η ◦ E ◦Ψ

∑
q∈F

eq,q ⊗ b

 = η ◦ ψ(b),

for all b ∈ B (i.e., under the natural identifications of B and 1 ⊗ B ⊂
M|F | ⊗B, the states η ◦ ψ and η ◦ E ◦Ψ agree).

Proof. This is an easy calculation using the previous proposition. �

Finally we observe that ΦΛ,f,F has good approximation properties when-
ever Λ does. If K ⊂ G is a finite set and f ∈ l∞(G) has finite support F
then we let

FK,f = F ∪
( ⋃

g∈K

g−1F

)
.

Proposition 2.8. For each finite set K ⊂ G and δ > 0 there exists f ∈
l∞(G) of finite support with ‖f‖2 = 1 and the following property: Let ω ⊂ A
be a finite set with ‖x‖ ≤ 1 for all x ∈ ω. If ‖Λ(y) − y‖ ≤ δ/2 for all y ∈
∪g∈FK,fαg−1(ω) then ‖ΦΛ,f,FK,f (π(x)λk)−π(x)λk‖ ≤ δ for all x ∈ ω, k ∈ K.

Proof. If Λ(A) ⊂ A then this is essentially contained in the proof of [SS,
Thm. 3.4]. However, a slightly different series of estimates handles the gen-
eral case (see the proof of [Br, Lem. 3.4]). �
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Assume that η ∈ S(A) is an α-invariant state and consider the seminorm
‖x‖η = η(x∗x)1/2 for all x ∈ A. Then η ◦ E is a state on A oα G which is
Adλg-invariant for all g ∈ G. An easy calculation shows ‖π(a)λg‖η◦E = ‖a‖η

for all a ∈ A and g ∈ G. Similarly one shows ‖αt(a)‖η = ‖a‖η for all a ∈ A
and t ∈ G. From this it follows that if Λ(A) ⊂ A then

‖Λ(αt−1(a))− αt−1(a)‖η = ‖π(αt ◦ Λ ◦ αt−1(a))λg − π(a)λg‖η◦E ,

for all a ∈ A and g, t ∈ G. However, with this observation the estimates in
the proof of [SS, Thm. 3.4] go through essentially without change. Hence
we get the following analogue of the previous proposition.

Proposition 2.9. For each finite set K ⊂ G and δ > 0 there exists f ∈
l∞(G) of finite support with ‖f‖2 = 1 and the following property: Let
η ∈ S(A) be an α-invariant state and ω ⊂ A be a finite set with ‖x‖η ≤ 1
for all x ∈ ω. If ‖Λ(y) − y‖η ≤ δ/2 for all y ∈ ∪g∈FK,fαg−1(ω) then
‖ΦΛ,f,FK,f (π(x)λk)− π(x)λk‖η◦E ≤ δ for all x ∈ ω, k ∈ K.

3. Entropy and Inner Automorphisms.

We will now establish the analogue of [Br, Thm. 3.5] for the dynamical
entropies defined in [Ch3] and [Vo2, Section 3]. In this section, α will
always denote an action of a countable discrete abelian group G on a given
operator algebra. Crossed products (both C∗ and W ∗) will be regarded as
subalgebras of B(l2(G) ⊗H) (as in the previous section), π : A → A oα G
is the natural inclusion and E : Aoα G→ A is the natural faithful normal
conditional expectation.

We begin with the analogues of [Br, Lem. 3.4]. The next lemma is used
to compute [Ch3] entropy in crossed products. We refer the reader to [Ch3]
and [Vo2, Section 3] for the definitions and notation which appears below.

Lemma 3.1. Let A be a unital nuclear C∗-algebra (cf. [Wa]) and η ∈ S(A)
be an α-invariant state (i.e., η ◦ αg = η for all g ∈ G). For each finite set
K ⊂ G and δ > 0 there exists a finite set F = F (K, δ) ⊂ G such that if
ω ⊂ A is a finite set with ‖x‖ ≤ 1 for all x ∈ ω then

scpη◦E(ωK , δ) ≤ scpη

 ⋃
g∈F

α−g(ω), δ/2

 + log(|F |),

where ωK = {π(x)λk : x ∈ ω, k ∈ K} and |F | = cardinality (F ).

Proof. Apply Proposition 2.8 with K, δ to get a function f ∈ l2(G) with
finite support, ‖f‖2 = 1 and the property stated in that proposition. We
will show that F = FK,f is the desired finite set.

To prove the inequality we let ε > 0 be arbitrary and choose unital com-
pletely positive maps ϕ : A → B, ψ : B → A such that B is finite di-
mensional, ‖ψ ◦ ϕ(y) − y‖ ≤ δ/2 for all y ∈ ∪g∈Fα−g(ω) and S(η ◦ ψ) ≤
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scpη(
⋃

g∈F α−g(ω), δ/2) + ε. Letting Λ = ψ ◦ ϕ we can factor ΦΛ,f,F (as
Ψ ◦ Φ) through M|F | ⊗ B by Proposition 2.5. Note also that Φ and Ψ
are unital completely positive maps by Propositions 2.5 and 2.6. Proposi-
tion 2.8 says that ‖ΦΛ,f,F (x)−x‖ ≤ δ for all x ∈ ωK and thus (by definition)
scpη◦E(ωK , δ) ≤ S(η ◦ E ◦Ψ). By [OP, Prop. 1.9] we have

S(η ◦ E ◦Ψ) ≤ S(η ◦ E ◦Ψ|1⊗B) + log(|F |).
Finally, from Proposition 2.7, we have S(η ◦ E ◦ Ψ|1⊗B) = S(η ◦ ψ) ≤
scpη(

⋃
g∈F α−g(ω), δ/2) + ε, by our choice of ψ, which proves the lemma

since ε was arbitrary. �

The next lemma allows one to compute the entropy of [Vo2, Section 3]
in crossed products. The proof is similar to the previous one and will be
omitted (see also [Br, Lem. 3.4]). Due to the definitions involved, one uses
Proposition 2.9 instead of Proposition 2.8. The replacement of the inequality

S(η ◦ E ◦Ψ) ≤ S(η ◦ E ◦Ψ|1⊗B) + log(|F |)
is the remark that if rank (C) denotes the dimension of a maximal abelian
subalgebra of C then rank (Mn(C) ⊗ B) ≤ n · rank(B). We also note that
one must appeal to Proposition 2.4 to ensure that the maps used in the
previous proof (i.e., ΦΛ,f,F ) remain η ◦ E-invariant. (Though not explicitly
stated in [Vo2, Section 3], it follows from the assumptions that the state is
faithful and the approximating maps in CPA(M,η) are η-invariant that the
maps in CPA(M,η) are ultraweakly continuous and hence the hypotheses
of Proposition 2.4 are indeed satisfied.)

Lemma 3.2. Let M be a hyperfinite von Neumann algebra with α-invariant
faithful normal state η. For each finite set K ⊂ G and δ > 0 there exists a
finite set F = F (K, δ) ⊂ G such that if ω ⊂M is a finite set with ‖x‖η ≤ 1
for all x ∈ ω then

rcpη◦E(ωK , δ) ≤ |F |rcpη

 ⋃
g∈F

α−g(ω), δ/2

 ,

where ωK = {π(x)λk : x ∈ ω, k ∈ K} and |F | = cardinality (F ).

As in the previous section, we let λg ∈ AoαG be the unitary implementing
αg ∈ Aut(A). We also remind the reader that G is now assumed to be a
discrete abelian group.

Theorem 3.3. If A is a unital nuclear C∗-algebra with α-invariant state η,
then for all g ∈ G we have htη(αg) = htη◦E(Adλg), where htη(·) is defined
in [Ch3].

Proof. We only sketch the argument as it is similar to the proof of [Br,
Thm. 3.5]. The inequality htη(αg) ≤ htη◦E(Adλg) for all g ∈ G follows from
[Ch3, Prop. 2.2].
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Let δ > 0, ω ⊂ A a finite set with ‖x‖ ≤ 1 for all x ∈ ω, and a finite set
K ⊂ G be given. Choose a finite set F = F (K, δ) according to Lemma 3.1
and define Ω = ∪g∈Fα−g(ω). Since G is abelian, from Lemma 3.1 one may
deduce the inequality

scpη◦E(ωK ∪ . . .∪Adλn−1
g (ωK), δ) ≤ scpη(Ω∪ . . .∪αn−1

g (Ω), δ/2)+ log(|F |),

as in the proof of [Br, Thm. 3.5]. Since this inequality holds for all n ∈ N,
the desired inequality follows from [Ch3, Prop. 2.3]. �

The proof of the following theorem is similar where one uses Lemma 3.2
instead of Lemma 3.1. The analogues of [Ch3, Prop. 2.2] and [Ch3, Prop.
2.3] are [Vo2, Prop. 3.5] and [Vo2, Prop. 3.4], respectively. Of course, Adλg

should now be regarded as an automorphism of the W ∗-crossed product.

Theorem 3.4. Let M be a hyperfinite von Neumann algebra and η be an
α-invariant faithful normal state. For all g ∈ G, we have hcpaη(αg) =
hcpaη◦E(Adλg), where hcpaη(·) is defined in [Vo2, Section 3].

In particular, this theorem generalizes the results of [Vo2, Appendix].

4. Entropy for Automorphisms of O∞.

In this section we will show that ht(α) = 0 (cf. [Br]) for the free shifts on
O∞ and C∗

r (F∞). This will follow from a more general result concerning
automorphisms of O∞ induced by bijective mappings α : Z → Z. These
results have also been obtained by K. Dykema (cf. [Dy, Thm. 1 and Example
7]) using directly the free product construction as opposed to the crossed
product construction used here. As mentioned in the introduction, we use
the isomorphism O∞ ⊗K ∼= F oΦ Z and the techniques of the previous two
sections to achieve our calculations.

Recall that the Cuntz algebra O∞ is defined as the universal C∗-algebra
generated by isometries {Si}i∈Z which satisfy the relation

r∑
i=−r

SiS
∗
i ≤ 1

for all r ∈ N. If α : Z → Z is any bijective function, then from the uni-
versality of O∞ we get a well defined automorphism O∞ → O∞ defined by
Si 7→ Sα(i). We will also use α to denote the automorphism of O∞ induced
by α : Z → Z. If α is the mapping i 7→ i+ 1 then α is called the free shift.

We begin with a technical lemma which should have appeared in [Br] and
will be necessary for our calculations. If A ⊂ B(H) we will let ιA denote
the inclusion A ↪→ B(H). See [Br, Def. 1.1] for the notation which appears
below.
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Lemma 4.1. Let C, D ⊂ B(H) be exact C∗-algebras (cf. [Wa]) and π :
C → D be a *-monomorphism. For each finite set ω ⊂ C and δ > 0,
rcp(ιC , ω, δ) = rcp(ιD, π(ω), δ).

Proof. From the proofs of [Br, Prop. 1.3 and 2.14] we have rcp(ιC , ω, δ) =
rcp(π, ω, δ) and rcp(ιD, π(ω), δ) = rcp(ιπ(C), π(ω), δ). Hence it is sufficient
to show rcp(π, ω, δ) = rcp(ιπ(C), π(ω), δ).

We only show rcp(π, ω, δ) ≥ rcp(ιπ(C), π(ω), δ) as the other inequality is
similar. So choose (ϕ,ψ,B) ∈ CPA(π,C) such that ‖ψ ◦ ϕ(x) − π(x)‖ ≤
δ for all x ∈ ω and rank (B) = rcp(π, ω, δ). Then (ϕ ◦ π−1, ψ,B) ∈
CPA(ιπ(C), π(C)) and ‖ψ ◦ ϕ ◦ π−1(π(x)) − π(x)‖ ≤ δ for all x ∈ ω. But
this implies rcp(π, ω, δ) ≥ rcp(ιπ(C), π(ω), δ) as desired. �

Remark 4.2. In particular, this lemma improves [Br, Lem. 2.4] and hence
the proofs of Propositions 2.5, 2.6 and 2.8 in [Br] are slightly more technical
than they need to be.

Given n ∈ N and a subset I ⊂ Z we let W (n, I) = {µ = (µ1, . . . , µn) :
µj ∈ I for 1 ≤ j ≤ n} and W (0, I) = {∅}. If µ ∈ W (n, I) we define the
operator Sµ ∈ O∞ by Sµ = Sµ1 · · ·Sµn and Sµ = 1 if n = 0. For m ≤ n
we let [m,n] be the integer interval and F([m,n], I) be the C∗-subalgebra
of O∞ generated by

n⋃
j=m

{SµS
∗
ν : µ, ν ∈W (j, I)}.

It is known that if I is a finite subset of Z then F(n, I) = F([n, n], I) is
isomorphic to the matrix algebra M|I|n(C), where |I| denotes the cardinality
of I, and is isomorphic to the compact operators on an infinite dimensional
separable Hilbert space when I is infinite (cf. [Cu]). If I ⊂ Z is a finite set,
we define for each j ∈ N the projection

Pj =
∑

µ∈W (j,I)

SµS
∗
µ.

Note that Pj ≥ Pj+1.

Lemma 4.3. If I ⊂ Z is a finite set then

F([0, n], I) ∼= C⊕M|I|(C)⊕ . . .⊕M|I|n(C)

with a complete set of pairwise orthogonal minimal projections given by

{Sµ(1− P1)S∗µ, SνS
∗
ν : µ ∈ ∪j∈[0,n−1]W (j, I) and ν ∈W (n, I)}.

In particular, rank (F([0, n], I)) = 1 + |I|+ · · ·+ |I|n.



340 N.P. BROWN AND M. CHODA

Proof. For each j, the set {SµS
∗
ν : µ, ν ∈W (j, I)} is a complete set of matrix

units for F(j, I) and the unit of F(j, I) is Pj . For each 0 ≤ j ≤ n − 1 we
define

Ej(µ, ν) = Sµ(1− P1)S∗ν ,

where µ, ν ∈W (j, I). For j = n we let

En(µ, ν) = SµS
∗
ν ,

where µ, ν ∈ W (n, I). For each 0 ≤ j ≤ n let Aj = C∗({Ej(µ, ν) : µ, ν ∈
W (j, I)}). (Note that An = F(n, I).) Evidently we have Aj ⊂ F([0, n], I)
for 0 ≤ j ≤ n and hence C∗({Aj : 0 ≤ j ≤ n}) ⊂ F([0, n], I). Note
also that for µ, ν ∈ W (n − 1, I), SµS

∗
ν = En−1(µ, ν) + SµP1S

∗
ν and hence

SµS
∗
ν ∈ An−1 + An. Similarly one argues that SµS

∗
ν ∈ Aj + · · · + An for

µ, ν ∈W (j, I) and hence C∗({Aj : 0 ≤ j ≤ n}) = F([0, n], I).
For 0 ≤ j ≤ n − 1 a simple calculation shows Ej(µ, ν)Ej(µ′, ν ′) =

δν,µ′Ej(µ, ν ′) and
∑

µEj(µ, µ) = Pj − Pj+1. One also verifies that for 0 ≤
j ≤ n−1 and µ, ν ∈W (j, I), S∗µPj+1 = P1S

∗
µ. Hence Pj+1SµS

∗
ν = SµS

∗
νPj+1

and
(Pj − Pj+1)SµS

∗
ν(Pj − Pj+1) = Sµ(1− P1)S∗ν = Ej(µ, ν),

for 0 ≤ j ≤ n − 1 and µ, ν ∈ W (j, I). Thus {Ej(µ, ν) : µ, ν ∈ W (j, I)}
is a complete set of matrix units for Aj = (Pj − Pj+1)F(j, I)(Pj − Pj+1) ∼=
M|I|j (C). This also shows that the Aj are pairwise orthogonal and hence

F([0, n], I) = C∗({Aj : 0 ≤ j ≤ n}) = A0 ⊕ . . .⊕An.

However, this clearly implies the lemma. �

Since F([0, n], [−n, n]) ⊂ F([0, n+ 1], [−n− 1, n+ 1]) ⊂ O∞, the closure
F∞ of ∪nF([0, n], [−n, n]) is an AF subalgebra containing the unit of O∞.

For each i ∈ Z let Bi = F∞ and define *-monomorphisms βi,i−1 : Bi →
Bi−1 by x 7→ S0xS

∗
0 . Let B denote the inductive limit of the sequence

· · ·B1

S0·S∗0
↪→ B0

S0·S∗0
↪→ B−1

S0·S∗0
↪→ · · · ,

and ρi : Bi ↪→ B be the induced embeddings. As in [Cu], there is an
automorphism Φ of B which shifts the above sequence one space to the left
and satisfies the relation

Φj ◦ ρi = ρi+j ,

for all i, j ∈ Z (under the natural identifications Bi
∼= F∞ ∼= Bi+j). Another

important relation that follows immediately from the construction is

ρi(x) = ρi−j(S
j
0xS

∗j
0 ),

for all x ∈ Bi
∼= F∞ ∼= Bi−j , i ∈ Z and j ∈ N.
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Let u be the implementing unitary in the multiplier algebra M(B oΦ Z).
One readily verifies that the elements S̃i = ρ0(SiS

∗
0)u ∈ B oΦ Z are partial

isometries with support projection ρ0(1) and satisfying
r∑

i=−r

S̃iS̃
∗
i ≤ ρ0(1)

for all r ∈ N. Hence there is an induced *-monomorphism π : O∞ → BoΦ Z
such that π(Si) = S̃i for all i ∈ Z. In [Cu], it is shown that π(O∞) =
ρ0(1)(BoΦ Z)ρ0(1). However, for our calculations, it will only be necessary
to observe that for every x ∈ F∞ we have π(x) = ρ0(x).

We will use this map π (and Lemma 4.1) to estimate the completely
positive δ-rank of certain finite sets in O∞. To compute δ-ranks in crossed
products (i.e., B oΦ Z) we recall [Br, Lem. 3.4] (in a slightly different, but
equivalent, form than the original).

Lemma 4.4 ([Br, Lem. 3.4]). Let A ⊂ B(H) be an exact C∗-algebra (cf.
[Wa]) and α : G → Aut(A) be an action of a discrete abelian group. For
each finite set K ⊂ G and δ > 0 there exists a finite set F = F (K, δ) ⊂ G
such that if ω ⊂ A is a finite set with ‖x‖ ≤ 1 for all x ∈ ω then

rcp(idAoαG, ωK , δ) ≤ |F |rcp

idA,
⋃
g∈F

α−g(ω), δ/2

 ,

where ωK = {π(x)λk : x ∈ ω, k ∈ K} and |F | = cardinality (F ).

Considering the case G = Z, what this lemma roughly says is that to
approximate polynomials in AoαZ it suffices to approximate a finite number
of iterates of the coefficients.

For convenience, we assume both O∞ and B oΦ Z to be faithfully repre-
sented on the same Hilbert space H and use ιO∞ and ιBoΦZ to denote the
inclusions. It will also be convenient to define

ωk,l,I =
k⋃

i=0

( l⋃
j=0

{S∗i0 SµS
∗
ν , SµS

∗
νS

i
0 : µ, ν ∈W (j, I)}

)
.

Lemma 4.5. For each k, l ∈ N with k ≤ l and δ > 0 there is a constant
C = C(k, l, δ) such that rcp(ιO∞ , ωk,l,I , δ) ≤ C|I|C for all finite subsets
I ⊂ Z containing 0.

Proof. Note that π(Si
0) = ρ0(Si

0S
∗i
0 )ui. Hence for all i ≤ k and µ, ν ∈W (j, I)

we have

π(SµS
∗
νS

i
0) = ρ0(SµS

∗
νS

i
0S

∗i
0 )ui = ρ−k(Sk

0SµS
∗
νS

i
0S

∗i
0 S

∗k
0 )ui

and
π(S∗i0 SµS

∗
ν) = u∗iρ0(Si

0S
∗i
0 SµS

∗
ν).
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Since u∗ρ0(x) = ρ−1(x)u∗ we have

π(S∗i0 SµS
∗
ν) = ρ−i(Si

0S
∗i
0 SµS

∗
ν)u∗i = ρ−k(Sk−i

0 Si
0S

∗i
0 SµS

∗
νS

∗(k−i)
0 )u∗i.

Thus we see that the “coefficients” of π(ωk,l,I) (i.e., ρ−k(Sk
0SµS

∗
νS

i
0S

∗(k+i)
0 )

and ρ−k(Sk
0S

∗i
0 SµS

∗
νS

∗(k−i)
0 )) all come from the finite dimensional algebra

ρ−k(F([0, l + k], I)) by reducing the terms S∗νS
i
0 and S∗i0 Sµ.

By virtue of Lemmas 4.1 and 4.4, to estimate rcp(ιO∞ , ωk,l,I , δ) it suffices
to understand a finite number of the iterates (under Φ) of the coefficients
of π(ωk,l,I). But since there is always a conditional expectation onto finite
dimensional subalgebras, we only need to understand a finite number of
iterates of the finite dimensional subalgebra ρ−k(F([0, l + k], I)) (since this
contains the coefficients of π(ωk,l,I)).

So let m ∈ N be arbitrary and consider

Φm
(
ρ−k(F([0, l + k], I))

)
∪ . . . ∪ Φ−m

(
ρ−k(F([0, l + k], I))

)
.

By the relations Φj ◦ ρ−k = ρ−k+j , and ρt(x) = ρt−r(Sr
0xS

∗r
0 ) (r ≥ 0) we

have

Φm
(
ρ−k(F([0, l + k], I))

)
∪ . . . ∪ Φ−m

(
ρ−k(F([0, l + k], I))

)
= ρ−k+m

(
F([0, l + k], I)

)
∪ . . . ∪ ρ−k−m

(
F([0, l + k], I)

)

= ρ−k−m

(
S2m

0 F([0, l + k], I)S∗(2m)
0 ∪ . . . ∪ F([0, l + k], I)

)
⊂ ρ−k−m(F([0, l + k + 2m], I)).

Hence, by Lemmas 4.1, 4.4 and our observations above, there exists m =
m(k, δ) ∈ N such that

rcp(ιO∞ , ωk,l,I , δ) ≤ (2m+ 1)rank (ρ−k−m(F([0, l + k + 2m], I)))

= (2m+ 1)rank (F([0, l + k + 2m], I))

= (2m+ 1)(1 + |I|+ · · ·+ |I|(l+k+2m))

≤ C|I|C ,
where C = l + k + 2m+ 1. �

Since O∞ is nuclear, the following theorem holds for the entropy defined
in [Vo2, Section 4] although we will be using the definition in [Br] (cf. [Br,
Prop. 1.4]).

Theorem 4.6. If α ∈ Aut(O∞) is induced by a bijective function α : Z → Z
then ht(α) = 0.
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Proof. If I ⊂ Z contains 0, µ ∈W (j, I) and ν ∈W (j′, I), where j ≤ j′, then
SµS

∗
ν = S∗i0 SγS

∗
ν with γ ∈ W (j′, I) and i = j′ − j. From this observation

and a similar remark when j > j′, one deduces that the span of the finite
sets ωk,l,I with k ≤ l and 0 ∈ I are norm dense in O∞. Hence it suffices, by
[Br, Prop. 2.6], to show that ht(ιO∞ , α, ωk,l,I , δ) = 0 for all such sets.

If µ, ν ∈W (j, I) then an easy calculation shows α(SµS
∗
νS

i
0) = SγS

∗
λS

i
0 for

some γ, λ ∈ W (j, {0} ∪ α(I)) if j ≥ i or γ, λ ∈ W (i, {0} ∪ α(I)) if j < i. In
any case, one deduces that α(ωk,l,I) ⊂ ωk,l,{0}∪α(I) whenever k ≤ l. Similarly
one shows

ωk,l,I ∪ . . . ∪ αn−1(ωk,l,I) ⊂ ωk,l,I∪...∪αn−1(I),

for all n ∈ N, whenever k ≤ l and 0 ∈ I ⊂ Z.
Hence

rcp(ιO∞ , ωk,l,I ∪ . . . ∪ αn−1(ωk,l,I), δ) ≤ rcp(ιO∞ , ωk,l,I∪...∪αn−1(I), δ),

for all n and all δ > 0. However, the previous lemma shows that

rcp(ιO∞ , ωk,l,I∪...∪αn−1(I), δ) ≤ C(n|I|)C

for some constant C depending only on k, l and δ. This implies

ht(ιO∞ , α, ωk,l,I , δ) ≤ lim sup
n→∞

n−1(log(C(n|I|)C)) = 0.

�

Remark 4.7. Note that we have never used the fact that α : Z → Z is
surjective. Thus the previous theorem also holds for any endomorphism of
O∞ which is induced by an injective function α : Z → Z.

The following recovers a special case of [St3, Thm. 2] in the case of CNT
entropy.

Corollary 4.8. Let α ∈ Aut(O∞) be induced by a bijective function α :
Z → Z and ϕ be an α-invariant state. Then hϕ(α) = htϕ(α) = 0, where
hϕ(·) and htϕ(·) are defined in [CNT] and [Ch3], respectively.

Proof. Since O∞ is nuclear we appeal to [Ch3, Thm. 2.6.1] to get the in-
equalities ht(α) ≥ htϕ(α) ≥ hϕ(α). �

If F∞ is the free group on generators {gi}i∈Z then C∗
r (F∞) is the C∗-

algebra generated by the left regular representation λ : F∞ → B(l2(F∞)).
If α : Z → Z is any bijective function then there is a natural automorphism
of C∗

r (F∞), also denoted by α, such that λ(gi) 7→ λ(gα(i)). The free shift on
C∗

r (F∞) is induced by the mapping i 7→ i+ 1.
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Corollary 4.9. Let α ∈ Aut(C∗
r (F∞)) be induced by a bijective function

α : Z → Z. Then ht(α) = 0.

Proof. By monotonicity of ht(·) (i.e., the fact that topological entropy de-
creases in invariant subalgebras; cf. [Br, Prop. 2.1]) it suffices to provide an
embedding of C∗

r (F∞) into O∞ such that α lifts to an automorphism of O∞
of the type considered in Theorem 4.6. That such an embedding exists is
known to the experts so we only sketch the proof. (See also [BD].)

Let {Si}i∈Z generateO∞ and ϕ ∈ S(O∞) be the vacuum state (cf. [VDN,
Ex. 1.5.8]). The restriction of ϕ to Ai = C∗(Si) is denoted by ϕi. Let
Bi ⊂ Ai be the subalgebra generated by the identity and bi = (S∗i + Si)/2.
Then the distribution of bi with respect to ϕi is the semicircular law, γ0,1

(cf. [VDN, Def. 2.6.1]). Thus each Bi is isomorphic to C([−1, 1]) and

ϕi(bni ) =
2
π

1∫
−1

tn
√

1− t2dt,

for all n ∈ N. The unitary v ∈ C([−1, 1]) defined by v(t) = exp(2i(arcsin t+√
1− t2)) satisfies

2
π

1∫
−1

vn(t)
√

1− t2dt = 0,

for all nonzero n ∈ Z. Hence each Bi contains a unitary ui with ϕi(un
i ) = 0

for all nonzero n ∈ Z. Then C∗({ui : i ∈ Z}) is isomorphic to C∗
r (F∞) and

α lifts to an automorphism of O∞ under this identification. �

Acknowledgements. This work grew out of a visit by the first named
author to Osaka Kyoiku University while supported at the University of
Tokyo by an NSF Dissertation Enhancement Award. He would like to thank
that institution for it’s support and hospitality. He would also like to thank
Y. Kawahigashi for some helpful comments.

Corollary 4.9 was obtained from discussions with K. Dykema while the
second named author participated in the January 1999 seminar “Complex
Function Theory and Functional Analysis” organized by J.B. Cooper at the
Erwin Schrodinger Institute. She would like to express her hearty thanks to
the ESI, the organizers and K. Dykema.

References

[Av] D. Avitzour, Free products of C∗-algebras, Trans. Amer. Math. Soc., 271 (1982),
423-435.

[BD] E. Blanchard and K. Dykema, Embeddings of reduced free products of operator
algebras, preprint.



APPROXIMATION ENTROPIES 345

[Br] N.P. Brown, Topological entropy in exact C∗-algebras, Math. Ann., 314 (1999),
347-367.

[Ch1] M. Choda, Reduced free products of completely positive maps and entropy for free
products of automorphisms, Publ. RIMS, Kyoto Univ., 32 (1996), 371-382.

[Ch2] , Entropy of Cuntz’s canonical endomorphism, Pac. J. Math., 190 (1999),
235-245.

[Ch3] , A C∗-dynamical entropy and applications to canonical endomorphisms, J.
Funct. Anal., 172 (2000), to appear.

[CNT] A. Connes, H. Narnhofer and W. Thirring, Dynamical entropy of C∗-algebras and
von Neumann algebras, Comm. Math. Phys., 112 (1987), 691-719.

[CS] A. Connes and E. Størmer, Entropy of II1 von Neumann algebras, Acta Math.,
134 (1975), 289-306.

[Cu] J. Cuntz, Simple C∗-algebras generated by isometries, Comm. Math. Phys., 57
(1977), 173-185.

[De] V. Deaconu, Entropy estimates for some C∗-endomorphisms, Proc. Amer. Math.
Soc., 127 (1999), 3653-3658.

[Dy] K. Dykema, Topological entropy for some automorphisms of reduced amalgamated
free product C∗-algebras, preprint.

[Hu] T. Hudetz, Topological entropy for appropriately approximated C∗-algebras, J.
Math. Phys., 35 (1994), 4303-4333.

[OP] M. Ohya and D. Petz, Quantum Entropy and its Use, Texts and Monographs in
Physics, Springer-Verlag, Berlin, 1993.

[Pa] V. Paulsen, Completely Bounded Maps and Dilations, Pitman Research Notes in
Mathematics, Vol. 146, Longman, 1986.

[Pe] G. Pedersen, C∗-algebras and Their Automorphism Groups, Academic Press, Lon-
don, 1979.

[SS] A.M. Sinclair and R.R. Smith, The completely bounded approximation property for
discrete crossed products, Indiana Univ. Math. J., 46 (1997), 1311-1322.

[St1] E. Størmer, Entropy of some automorphisms of the II1 factor of the free group in
infinite number of generators, Invent. Math., 110 (1992), 63-73.

[St2] E. Størmer, Entropy in operator algebras, Asterisque, 232 (1995), 211-230.

[St3] E. Størmer, States and shifts on infinite free products of C∗-algebras, Fields Inst.
Comm., 12 (1997), 281-291.

[Th] K. Thomsen, Topological entropy for endomorphisms of local C∗-algebras, Comm.
Math. Phys., 164 (1994), 181-193.

[Vo1] D. Voiculescu, Symmetries of Some Reduced Free Product C∗-algebras, Operator
Algebras and their connections with Topology and Ergodic Theory, Lecture Notes
in Math., Vol. 1132, Springer-Verlag, 1985, 556-588.

[Vo2] , Dynamical approximation entropies and topological entropy in operator
algebras, Comm. Math. Phys., 170 (1995), 249-281.

[VDN] D. Voiculescu, K. Dykema and A. Nica, Free Random Variables, CRM Monograph
Series, Amer. Math. Soc., 1992.

http://nyjm.albany.edu:8000/PacJ/1999/190_235.html


346 N.P. BROWN AND M. CHODA

[Wa] S. Wassermann, Exact C∗-algebras and Related Topics, Lecture Notes Series, 19,
GARC, Seoul National University, 1994.

Received July 15, 1999 and revised April 6, 2000. The first author is an NSF Postdoctoral
Fellow. The second author was partially supported by the Schrodinger Institute.

Department of Mathematics
University of California
Berkeley, CA 94720
E-mail address: nbrown@math.berkeley.edu

Department of Mathematics
Osaka Kyoiku University
Kashiwara 582-8582
Japan
E-mail address: marie@cc.osaka-kyoiku.ac.jp

mailto:nbrown@math.berkeley.edu
mailto:marie@cc.osaka-kyoiku.ac.jp

