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For a sequence (cn) of complex numbers we consider the
quadratic polynomials fcn

(z) := z2 + cn and the sequence
(Fn) of iterates Fn := fcn

◦ · · · ◦ fc1 . The Fatou set F(cn) is by
definition the set of all z ∈ Ĉ such that (Fn) is normal in some
neighbourhood of z, while the complement of F(cn) is called
the Julia set J(cn). The aim of this article is to study geometric
properties, Lebesgue measure and Hausdorff dimension of the
Julia set J(cn) provided that the sequence (cn) is bounded.

1. Introduction.

For a sequence (cn) of complex numbers we consider the quadratic polyno-
mials fcn(z) := z2 + cn and the sequence (Fn) of iterates Fn := fcn ◦ · · · ◦fc1 .
(Note that Fn depends on c1, . . . , cn which we do not indicate explicitly in
the notation.) If cn = c for all n, we write fn

c instead of Fn. The Fatou
set F(cn) is by definition the set of all z ∈ Ĉ := C ∪ {∞} such that (Fn)
is normal (in the sense of Montel) in some neighbourhood of z, while the
complement of F(cn) (in Ĉ) is called the Julia set J(cn). A component of the
Fatou set is called a stable domain. For iteration theory of a fixed function
we refer the reader to the books of Beardon [Be], Carleson and Gamelin
[CG], Milnor [M] or Steinmetz [St]. We also mention the survey articles of
Blanchard [Bl], Lyubich [L2] or Eremenko and Lyubich [EL].

We always assume that |cn| ≤ δ for some δ > 0. Then from [Bü2] it is
known that to some extent the sequence (Fn) behaves similar to the sequence
(fn

c ). There exists a stable domain A(cn)(∞) which contains the point ∞
and wherein Fn →∞ as n →∞ locally uniformly. This domain need not be
invariant (i.e., fck

(A(cn)(∞)) ⊂ A(cn)(∞) for all k) or backward invariant
(i.e., f−1

ck
(A(cn)(∞)) ⊂ A(cn)(∞) for all k), but there exists an invariant

domain M = Mδ ⊂ A(cn)(∞) which contains the point∞ and which satisfies
A(cn)(∞) = { z ∈ Ĉ : Fk(z) ∈ M for some k ∈ N }. Therefore, the filled
Julia set K(cn) := Ĉ\A(cn)(∞) and the Julia set J(cn) are compact in C, and
K(cn) is the set of all z ∈ C such that (Fk(z))∞k=1 is bounded. Furthermore,
we have J(cn) = ∂A(cn)(∞) = ∂K(cn). Also J(cn) and K(cn) are perfect sets.
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Finally, J(cn) and F(cn) are invariant in the sense that F−1
k (Fk(J(cn))) = J(cn)

and F−1
k (Fk(F(cn))) = F(cn) for all k ∈ N. For further results we also refer

to [Brü], [BBR], [Bü1] and [FS].
The Mandelbrot set M is defined as the set of all c ∈ C such that

(fn
c (0))∞n=1 is bounded, and M is compact in C. It plays an important role

in iteration of a fixed quadratic polynomial fc. We recall that the largest
disk with center 0 which is contained in M has radius 1

4 .
The plan of this article is as follows. After introducing some notations

and known auxiliary results (Section 2) we show that the Julia set J(cn) is
always uniformly perfect (Section 3).

Our main result (Section 4) states that the Julia set J(cn) is a quasicircle
provided that |cn| ≤ δ for some δ < 1

4 . This is done by proving that F(cn)

consists of two simply connected John domains A(cn)(0) and A(cn)(∞) which
have J(cn) as their common boundaries.

Concerning the two-dimensional Lebesgue measure m2(J(cn)) of Julia sets
(Section 5) we show that it is almost surely zero provided that the cn are
randomly chosen in { z ∈ C : |z| ≤ δ } for some δ > 1

4 . For δ < 1
4 we always

have m2(J(cn)) = 0.
Section 6 deals with Hausdorff dimension dimH J(cn) of Julia sets. We

give a lower estimate for dimH J(cn) depending only on δ which implies that
dimH J(cn) is always positive. For that purpose we prove that the Green
function of A(cn)(∞) (which is known to exist) is Hölder continuous. Fur-
thermore, for δ < 1

4 it follows that dimH J(cn) < 2.
A point ζ ∈ C is called a repelling fixpoint of the sequence of iterates

(Fn) if Fk(ζ) = ζ for some k ∈ N and |F ′
k(ζ)| > 1. The set of all those

points is denoted by R(cn). In this general setting it is not necessarily true
that R(cn) ⊂ J(cn). But we prove (Section 7) that if |cn| ≤ δ < 1

4 , then the
derived set of R(cn) coincides with J(cn). In the last section we investigate
the asymptotic distribution of certain predecessors.

2. Notations and auxiliary results.

We introduce a few further notations and collect some known auxiliary re-
sults that are frequently used in the sequel. If E ⊂ C, then E′ denotes
the derived set (that is the set of points z ∈ C such that every neigh-
bourhood of z contains a point w ∈ E \ {z}), E the closure and E◦ the
set of interior points of E. Furthermore, the diameter of E is defined by
diam E := sup { |z − w| : z, w ∈ E }, and the distance of a point z ∈ C from
E by dist (z,E) := inf { |z − w| : w ∈ E }. For a ∈ C and r > 0 we set
Dr(a) := { z ∈ C : |z − a| < r }, Dr := Dr(0), D := D1 and Kr := Dr.
Finally, for R > 0 let ∆R := { z ∈ Ĉ : |z| > R }.
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If (cn) ∈ KN
δ , then the invariant domain M ⊂ A(cn)(∞) may be chosen

as M = ∆R for any

R ≥ Rδ := 1
2

(
1 +

√
1 + 4δ

)
.

More precisely, if R > Rδ, then fc(∆Rδ
) ⊂ ∆Rδ

and fc(∆R) ⊂ ∆R for all
c ∈ Kδ. This implies that K(cn) ⊂ KRδ

. If δ ≤ 1
4 , we set

rδ := 1
2

(
1 +

√
1− 4δ

)
∈
[

1
2 , 1
]

, sδ := 1
2

(
1−

√
1− 4δ

)
∈
[
0, 1

2

]
.

Then we have fc(Dsδ
) ⊂ Dsδ

, fc(Drδ
) ⊂ Drδ

and fc(Dr) ⊂ Dr for all
c ∈ Kδ and all r ∈ (sδ, rδ). This implies that there exists a stable domain
A(cn)(0) ⊃ Drδ

, and there holds J(cn) ⊂ KRδ
∩∆rδ

.
From [FS, Theorem 2.1] it follows that A(cn)(∞) is regular for logarithmic

potential theory which means that the Green function of A(cn)(∞) with pole
at infinity exists. More precisely, the function g(cn) defined by

g(cn)(z) := lim
k→∞

1
2k

log+ |Fk(z)|(2.1)

is continuous in C, g(cn)(z) = 0 for z ∈ K(cn), and it is the Green function
of A(cn)(∞) with pole at infinity.

Furthermore, we introduce the critical set (or set of critical points)

C(cn) := { z ∈ C : Fj(z) = 0 for some j ∈ N0 }
of (Fn), where F0(z) := z. This is motivated by the fact that

F ′
k(z) = 2k

k−1∏
j=0

Fj(z)

so that F ′
k(z) = 0 if and only if Fj(z) = 0 for some j ∈ {0, 1, . . . , k− 1}. We

call a point w ∈ C a critical value of (Fn), if w = Fk(z) and F ′
k(z) = 0 for

some k ∈ N and some z ∈ C. If w ∈ C is not a critical value of Fk, then
in some sufficiently small disk Dε(w) there exist 2k analytic branches of the
inverse function of Fk.

Finally, we recall a result of Büger [Bü1] that the Julia set J(cn) is self-
similar. This means that for any open set D meeting J(cn) there exists k0 ∈ N
such that Fk(J(cn) ∩D) = Fk(J(cn)) for all k ≥ k0.

3. Uniform perfectness of Julia sets.

An open set A ⊂ Ĉ is called a conformal annulus, if it can be mapped
conformally onto an annulus { z ∈ C : 1 < |z| < % } for some % > 1. Then the
number % is uniquely determined and modA := 1

2π log % is called the modulus
of A. Now, let E ⊂ Ĉ be a compact set. A conformal annulus A seperates E,
if both components of Ĉ \A meet E. The set E is called uniformly perfect,
if it is not a single point and if there is a constant α > 0 such that for any
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conformal annulus A which seperates E there holds modA ≤ α. Obviously,
a uniformly perfect set is also perfect (that is E′ = E), and every connected
compact set with at least two points is uniformly perfect. Uniformly perfect
sets were introduced by Beardon and Pommerenke [BeP] (see also [P1]). It
is known that the Julia set of a fixed rational function is always uniformly
perfect [MR] (see also [CG, p. 64]). We show that this result extends to
our situation.

Theorem 3.1. Let δ > 0 and (cn) ∈ KN
δ . Then the Julia set J(cn) is

uniformly perfect.

Proof. We assume that J(cn) is not uniformly perfect. Then there exists a
sequence of conformal annuli Ak ⊂ F(cn) which seperate J(cn) and mod Ak →
∞ as k →∞. Let Ek be the component of Ĉ \Ak with the smaller chordal
diameter (which we denote by diamχ Ek). Then we have diamχ Ek → 0 as
k → ∞. If λk : D → Ak ∪ Ek is a conformal map of D onto Ak ∪ Ek with
λk(0) ∈ Ek, and if Mk := λ−1

k (Ek) ⊂ D, then Mk is compact and connected,
0 ∈ Mk and diamχ Mk → 0 as k →∞.

It is elementary to see that (fcn) satisfies a uniform Lipschitz condition
with respect to the chordal metric χ, that means that there exists a constant
L > 0 (which depends only on δ but not on n) such that χ(fcn(z), fcn(w)) ≤
Lχ(z, w) for all z, w ∈ Ĉ and all n ∈ N. From Lemma 4.1 in [BBR] we
know that diam Fk(J(cn)) ≥ 1 for all k ∈ N0 so that diamχ Fk(J(cn)) ≥ C :=
2(1 + R2

δ)
−1.

We choose ε > 0 with ε < C and
C
3 > Lε.(3.1)

Let k0 ∈ N such that diamχ Ek < ε for all k ≥ k0. Since (Ak∪Ek)∩J(cn) 6= ∅
and since J(cn) is self-similar (cf. [Bü1]), for every k ≥ k0 there exists a
smallest index m(k) ∈ N such that diamχ Fm(k)(Ek) > ε. Setting Gk :=
Fm(k) ◦ λk we obtain

diamχ Gk(Mk) > ε(3.2)

for all k ≥ k0. By the choice of m(k) we have diamχ Fm(k)−1(Ek) ≤ ε and
thus diam Fm(k)(Ek) = diamχ fcm(k)

(Fm(k)−1(Ek)) ≤ Lε for all k ≥ k0.
Because of (3.1) there exist at least three different points a1,k, a2,k, a3,k ∈

Fm(k)(J(cn)) whose chordal distance is greater than Lε. We have Gk(D \
Mk) = Fm(k)(λk(D\Mk)) = Fm(k)(Ak) ⊂ Fm(k)(F(cn)) and diamχ Gk(Mk) =
diamχ Fm(k)(Ek) ≤ Lε for all k ≥ k0. This implies that Gk omits at least
two of the values a1,k, a2,k, a3,k in D and hence (Gk) is normal in D by a
generalized version of Montel’s theorem (cf. [Be, p. 57]). Since diamχ Mk →
0 as k → ∞ and 0 ∈ Mk we get diamχ Gk(Mk) → 0 as k → ∞ which
contradicts (3.2). �
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4. Julia sets and quasicircles.

From iteration theory of a fixed function it is known that J(fc) is a quasicircle
if c is in the interior of the main cardioid of the Mandelbrot set (cf. Yakobson
[Y], see also [CG, p. 103]). The goal of this section is to show that this
result remains valid in our general situation provided that δ < 1

4 . We do
this in several steps, and we first recall some facts on quasicircles and John
domains.

A quasicircle Γ ⊂ C is the image of the unit circle ∂D under a quasicon-
formal homeomorphism of C onto itself. An equivalent geometric definition
is the three-point property, i.e., there exists a constant a > 0 such that if z1,
z2, z3 ∈ Γ and z2 is on the arc between z1 and z3 with the smaller diameter,
then |z1−z2|+ |z2−z3| ≤ a|z1−z3|. A quasicircle may be non-rectifiable but
it has no cusps. For details we refer, for example, to the books of Ahlfors
[A] or Lehto and Virtanen [LV].

A domain G ⊂ Ĉ with ∂G ⊂ C is called a John domain, if there exists a
constant b > 0 and a point w0 ∈ G such that for any z0 ∈ G, there is an arc
γ = γ(z0) ⊂ G joining z0 and w0 and satisfying dist (z, ∂G) ≥ b|z−z0| for all
z ∈ γ. A simply connected John domain G has locally connected boundary
∂G so that by Carathéodory’s theorem (cf. [P2, p. 20]) the Riemann map
from D onto G extends continuously to D. The image of a John domain
under a quasiconformal homeomorphism of Ĉ onto itself is again a John
domain. Thus, the two complementary domains of a quasicircle are John
domains. Conversely, if the two complementary components of a Jordan
curve (a homeomorphic image of the unit circle) Γ are John domains, then
Γ is a quasicircle. For this and further background material we refer to
[NV].

For δ ≤ 1
4 we know that J(cn) is connected [BBR], and since J(cn) =

∂A(cn)(∞), the stable domain A(cn)(∞) is simply connected. Furthermore,
there exists a stable domain A(cn)(0) containing Drδ

. We now show:

Theorem 4.1. Let δ ≤ 1
4 , (cn) ∈ KN

δ and sδ ≤ r ≤ rδ. Then there holds
A(cn)(0) =

⋃∞
k=0 F−1

k (Dr) and ∂A(cn)(0) = J(cn). In particular, A(cn)(0) is
simply connected and F(cn) = A(cn)(0) ∪A(cn)(∞).

Proof. We set A :=
⋃∞

k=0 Uk with Uk := F−1
k (Dr). It is elementary to

see that each Uk is a domain containing Dr, and since Dr is invariant, we
get Uk ⊂ F(cn). Thus, A is a domain with Dr ⊂ A ⊂ F(cn) which gives
A ⊂ A(cn)(0).

We show that J(cn) ⊂ ∂A. For that purpose, let z0 ∈ J(cn) and D :=
Dε(z0) for ε > 0. By Montel’s theorem the set Ĉ \

⋃∞
k=0 Fk(D) contains

at most two points so that there exists w ∈ Dr such that w ∈ Fm(D) for
some m ∈ N0. Therefore, Dr ∩ Fm(D) is a non-empty open set, and this
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implies that there exists ζ ∈ D \ J(cn) with Fm(ζ) ∈ Dr. That means ζ ∈ A,
and since ε > 0 was arbitrary we arrive at z0 ∈ ∂A. Summarizing, we have
A ⊂ A(cn)(0) and ∂A(cn)(0) ⊂ J(cn) ⊂ ∂A which gives the assertion. �

For δ < 1
4 and 1

2 < r < rδ we set V := ∆r ⊃ J(cn). Then V is backward
invariant, and V does not contain any critical value of (Fn) so that in every
disk D ⊂ V there exist 2n analytic branches F−1

n of the inverse function of
Fn. We prove:

Lemma 4.2. Let δ < 1
4 , (cn) ∈ KN

δ and 1
2 < r < rδ. Furthermore, let

γ : [0, 1] → V be a rectifiable curve in V := ∆r, z := γ(0), w := γ(1) and let
F−1

n be an analytic branch of the inverse function of Fn in some disk D ⊂ V
with center z. Finally, we denote the analytic continuation of F−1

n along γ
also by F−1

n . Then there holds∣∣∣∣ (F−1
n )′(z)

(F−1
n )′(w)

∣∣∣∣ ≤ 1 + α`(γ)eα`(γ),

where α := 4r(2r− 1)−1 and `(γ) denotes the length of γ. In particular, for
any disk D ⊂ V and any analytic branch F−1

n in D there holds∣∣∣∣ (F−1
n )′(z)

(F−1
n )′(w)

∣∣∣∣ ≤ 1 + αeαd|z − w|

for all z, w ∈ D and n ∈ N, where d := diam D.

Proof. For n ∈ N and k = 0, 1, . . . , n−1 we set Fn,k := fcn ◦· · ·◦fck+1
. Since

(F−1
n )′(z) =

1
F ′

n(F−1
n (z))

=
1

2n
n−1∏
j=0

Fj(F−1
n (z))

=
1

2n
n−1∏
j=0

F−1
n,j (z)

and V is backward invariant we have

|(F−1
n )′(z)| ≤ qn (z ∈ V ),

or

|(F−1
n,k)′(z)| ≤ qn−k (z ∈ V ),

where q := 1
2r < 1. This implies

|F−1
n,k(w)− F−1

n,k(z)| ≤
∣∣∣∣∫ w

z
|(F−1

n,k)′(ζ)||dζ|
∣∣∣∣ ≤ qn−k`(γ),(4.1)

where we integrate over the curve γ. Furthermore, we have

(F−1
n )′(z)

(F−1
n )′(w)

=
n−1∏
k=0

Fk(F−1
n (w))

Fk(F−1
n (z))

=
n−1∏
k=0

F−1
n,k(w)

F−1
n,k(z)

.
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Writing

F−1
n,k(w)

F−1
n,k(z)

= 1 +
F−1

n,k(w)− F−1
n,k(z)

F−1
n,k(z)

,

we obtain from (4.1) ∣∣∣∣∣F
−1
n,k(w)

F−1
n,k(z)

∣∣∣∣∣ ≤ 1 + 2qn−k+1`(γ).

This implies∣∣∣∣ (F−1
n )′(z)

(F−1
n )′(w)

∣∣∣∣ ≤ n−1∏
k=0

(1 + 2qn−k+1`(γ)) =
n+1∏
k=2

(1 + 2qk`(γ))

≤
∞∏

k=0

(1 + 2qk`(γ)) = exp

( ∞∑
k=0

log (1 + 2qk`(γ))

)

≤ exp

( ∞∑
k=0

2qk`(γ)

)
= eα`(γ),

where α := 2(1 − q)−1. Finally, this gives the assertion since ex ≤ 1 + xex

for x ≥ 0. �

Theorem 4.3. Let δ < 1
4 and (cn) ∈ KN

δ . Then A(cn)(∞) is a John do-
main.

Proof. We first introduce a few notations. For z1, z2 ∈ C let [z1, z2] denote
the line segment joining z1 and z2. If ζ ∈ C, ζ 6= 0, and if Γ is the ray from
0 to ∞ passing through ζ, then let Γζ denote that part of Γ from ζ to ∞.

Let R > Rδ such that R2+δ−R ≤ 1
2 , ε := R−Rδ ≤ 1 and Uk := F−1

k (∆R)
for k ∈ N. Then we have Uk ⊂ Uk+1 ⊂ A(cn)(∞) and A(cn)(∞) =

⋃∞
k=1 Uk.

Furthermore, Uk is a simply connected domain (in Ĉ) bounded by an analytic
Jordan curve. For z ∈ A(cn)(∞) let d(z) := dist (z, J(cn)). We prove a lower
estimate for d(z), if z ∈ Uk for some k ∈ N. We set w := Fk(z). If U denotes
the component of F−1

k (Dε(w)) containing z, there holds U ⊂ A(cn)(∞). Let
% > 0 such that D%(z) ⊂ U . If z′ ∈ D%(z) and w′ := Fk(z′), then

w′ − w = Fk(z′)− Fk(z) =
∫ z′

z
F ′

k(ζ) dζ = F ′
k(F

−1
k (w))

∫ z′

z

F ′
k(ζ)

F ′
k(F

−1
k (w))

dζ

= F ′
k(z)

∫ z′

z

(F−1
k )′(w)

(F−1
k )′(Fk(ζ))

dζ,
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where we integrate over the line segment [z, z′]. By Lemma 4.2 we obtain∣∣∣∣∣ (F−1
k )′(w)

(F−1
k )′(Fk(ζ))

∣∣∣∣∣ ≤ 1 + αeαε|w − Fk(ζ)| ≤ 1 + αeαεε ≤ 1 + αeα

and thus

|w′ − w| ≤ |F ′
k(z)||z′ − z|(1 + αeα) ≤ |F ′

k(z)|%(1 + αeα).

Setting

% :=
ε

|F ′
k(z)|(1 + αeα)

we obtain D%(z) ⊂ U and thus

d(z) ≥ ε

|F ′
k(z)|(1 + αeα)

=
α1

|F ′
k(z)|

(z ∈ Uk).(4.2)

In order to prove the John property, let w0 := ∞ and z0 ∈ A(cn)(∞). We
may assume that z0 ∈ Uk\Uk−1 for some k ∈ N. Then R < |Fk(z0)| ≤ R2+δ.
We construct an arc in Uk joining z0 and w0 as follows. First, we join z0

with ∂Uk−1 by an arc γk ⊂ Uk \ Uk−1 such that Fk(γk) ⊂ ΓFk(z0), and
we denote the endpoint of γk on ∂Uk−1 by ζk−1. Then we join ζk−1 with
∂Uk−2 by an arc γk−1 ⊂ Uk−1 \ Uk−2 such that Fk−1(γk−1) ⊂ ΓFk−1(ζk−1),
and we denote the endpoint of γk−1 on ∂Uk−2 by ζk−2. Proceeding in this
way we get an arc in Uk ∩ DR with endpoint ζ0 on ∂DR. Finally, we set
γ = γ(z0) := γk ∪ · · · ∪ γ1 ∪ Γζ0 . We note that the line segments Fj(γj)
(j = 1, . . . , k) all lie in ∆R ∩DR2+δ and thus have lengths at most 1

2 .
We now show that the arc γ has the John property. For that purpose, let

z ∈ γ. We may assume that z ∈ DR. First, let z ∈ Uk \ Uk−1. We deduce
an upper estimate for |z − z0|. There holds

z − z0 = F−1
k (Fk(z))− F−1

k (Fk(z0)) =
∫ Fk(z)

Fk(z0)
(F−1

k )′(ζ) dζ

= (F−1
k )′(Fk(z))

∫ Fk(z)

Fk(z0)

(F−1
k )′(ζ)

(F−1
k )′(Fk(z))

dζ,

where we integrate over the line segment [Fk(z0), Fk(z)]. By Lemma 4.2 we
obtain∣∣∣∣∣ (F−1

k )′(ζ)
(F−1

k )′(Fk(z))

∣∣∣∣∣ ≤ 1 + αeα|Fk(z)− ζ| ≤ 1 + αeα|Fk(z)− Fk(z0)| ≤ 1 + αeα

and thus

|z − z0| ≤ |(F−1
k )′(Fk(z))|(1 + αeα)|Fk(z)− Fk(z0)|(4.3)
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≤ 1 + αeα

|F ′
k(z)|

=
α2

|F ′
k(z)|

(z ∈ γ \ Uk−1).

Putting (4.2) and (4.3) together we arrive at

d(z) ≥ α1

α2
|z − z0| = α3|z − z0| (z ∈ γ \ Uk−1).

Now, let z ∈ Uk−m \ Uk−m−1 for some m ∈ {1, . . . , k − 1}. By (4.2) we
have

d(z) ≥ α1

|F ′
k−m(z)|

.

From the construction of γ and (4.3) we obtain

|z − z0| ≤ |z0 − ζk−1|+ |ζk−1 − ζk−2|+ · · ·+ |ζk−m+1 − ζk−m|+ |ζk−m − z|

≤ α2

(
1

|F ′
k(ζk−1)|

+
1

|F ′
k−1(ζk−2)|

+ · · ·

+
1

|F ′
k−m+1(ζk−m)|

+
1

|F ′
k−m(z)|

)
and thus

d(z)
|z − z0|

≥ α3

1 +
m∑

j=1

∣∣∣∣∣ F ′
k−m(z)

F ′
k−m+j(ζk−m+j−1)

∣∣∣∣∣
.(4.4)

In order to estimate the denominator of the right hand side we consider a
single term

F ′
k−m(z)

F ′
k−m+j(ζk−m+j−1)

=
1

2jFk−m+j−1(ζk−m+j−1) · · ·Fk−m(ζk−m+j−1)

×
F ′

k−m(z)
F ′

k−m(ζk−m+j−1)
.

Because of |Fk−m+j−1(ζk−m+j−1)| = R and the invariance of Dr we obtain∣∣∣∣∣ F ′
k−m(z)

F ′
k−m+j(ζk−m+j−1)

∣∣∣∣∣ ≤ qj

∣∣∣∣∣ F ′
k−m(z)

F ′
k−m(ζk−m+j−1)

∣∣∣∣∣ ,(4.5)

where q := 1
2r < 1.

Now, we deduce an estimate of the right hand side of (4.5). For abbrevi-
ation we set p := k −m and write

F ′
p(z)

F ′
p(ζp+j−1)

=
(F−1

p )′(Fp(ζp+j−1))

(F−1
p )′(Fp(z))

.
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From Lemma 4.2 we get∣∣∣∣ F ′
p(z)

F ′
p(ζp+j−1)

∣∣∣∣ ≤ 1 + α`(σ)eα`(σ),(4.6)

where σ = σp,j is the curve Fp(γ′p∪γp+1∪· · ·∪γp+j−1), and where γ′p is that
part of γp joining ζp with z. Hence, there holds `(σ) ≤ `(Fp(γp)) + · · · +
`(Fp(γp+j−1)). We have `(Fp(γp)) ≤ 1

2 and Fp(γp+ν) = F−1
p+ν,p(sp,ν), where

sp,ν := Fp+ν(γp+ν) is a line segment on ΓFp+ν(ζp+ν) of length at most 1
2 for

ν ≥ 1. Furthermore, we know that Fp(γp+ν) ⊂ ∆r. Therefore, we obtain

`(Fp(γp+1)) =
∫

sp,1

|dw|
2
√
|w − cp+1|

≤ `(sp,1)
2r

≤ 1
4r

.

By induction we get `(Fp(γp+ν)) ≤ 1
2(2r)ν = 1

2qν and thus

`(σ) ≤ 1
2
(1 + q + · · ·+ qj−1) ≤ 1

2(1− q)
= α4.

Setting α5 := 1 + αα4e
αα4 we obtain together with (4.4), (4.5) and (4.6)

d(z)
|z − z0|

≥ α3

1 + α5

m∑
j=1

qj

≥ α3(1− q)
α5

which finally shows that γ has the John property. �

Theorem 4.4. Let δ < 1
4 and (cn) ∈ KN

δ . Then A(cn)(0) is a John domain.

Proof. The proof is very similar to the proof of Theorem 4.3. The only
difficulty that arises is that A(cn)(0) contains critical values which all lie in
Dsδ

. Therefore, we only give a sketch and omit the details.
Let 1

2 < r < r′ < rδ, ε := r′ − r ≤ 1 and Uk := F−1
k (Dr′) for k ∈ N. Then

we have Uk ⊂ Uk+1 ⊂ A(cn)(0) and A(cn)(0) =
⋃∞

k=1 Uk. For z ∈ A(cn)(0)
let d(z) := dist (z, J(cn)). If z ∈ Uk \ Uk−1 for some k ∈ N, k ≥ 2 and
w := Fk−1(z), then |w| ≥ r′ and thus Dε(w)∩Dr = ∅. Therefore, we obtain

d(z) ≥ α1

|F ′
k−1(z)|

(z ∈ Uk \ Uk−1).(4.2a)

In order to prove the John property, let w0 := 0 and z0 ∈ A(cn)(0). We
may assume that z0 ∈ Uk\Uk−1 for some k ∈ N, k ≥ 2. Then |Fk−1(z0)| ≥ r′.
We construct an arc in Uk joining z0 and w0 as follows. First, we join z0

with ∂Uk−1 by an arc γk ⊂ Uk \ Uk−1 such that Fk−1(γk) ⊂ [0, Fk−1(z0)],
and we denote the endpoint of γk on ∂Uk−1 by ζk−1. Then we join ζk−1 with
∂Uk−2 by an arc γk−1 ⊂ Uk−1\Uk−2 such that Fk−2(γk−1) ⊂ [0, Fk−2(ζk−1)],
and we denote the endpoint of γk−1 on ∂Uk−2 by ζk−2. Proceeding in this
way we get an arc in Uk ∩ (C \U1) with endpoint ζ1 on ∂U1. Finally, we set
γ = γ(z0) := γk ∪ · · · ∪ γ2 ∪ [0, ζ1]. We mention that [0, ζ1] ⊂ U1, since U1



GEOMETRIC PROPERTIES OF JULIA SETS 357

is a starlike domain with respect to 0 bounded by an analytic Jordan curve.
Furthermore, we note that the line segments Fj−1(γj) (j = 2, . . . , k) all lie
in ∆r′ ∩DRδ

and thus have lengths at most one.
We now show that the arc γ has the John property. For that purpose,

let z ∈ γ. We may assume that z /∈ U1. First, let z ∈ Uk \ Uk−1. Then we
obtain the upper estimate for |z − z0|

|z − z0| ≤
α2

|F ′
k−1(z)|

(z ∈ γ \ Uk−1).(4.3a)

Putting (4.2a) and (4.3a) together we arrive at

d(z) ≥ α3|z − z0| (z ∈ γ \ Uk−1).

Finally, the case that z ∈ Uk−m \ Uk−m−1 for some m ∈ {1, . . . , k − 2} is
handled as in the proof of Theorem 4.3. �

Corollary 4.5. Let δ < 1
4 and (cn) ∈ KN

δ . Then J(cn) is a quasicircle.

Proof. From Theorem 4.1 we know that F(cn) = A(cn)(∞) ∪A(cn)(0). Then
the assertion follows from Theorems 4.3 and 4.4 and the known results men-
tioned at the beginning of this section. �

If (cn) ∈ KN
1/4, then J(cn) need not be a quasicircle. For example, if cn = 1

4

for all n, then it is known that J(f1/4) is still a Jordan curve (see for example
[CG, p. 97] or [St, p. 124]) but it has cusps. Furthermore, Corollary 4.5 does
not hold true in general when all cn are contained in the interior of the main
cardioid of the Mandelbrot set. This can be seen by the simple example
c1 = −1

2 − η and cn = 1
4 − ε for n ≥ 2 with 0 < η < 1

4 and 0 < ε < η2. In
this case we have Fn(0) →∞ as n →∞ so that by Theorem 1.1 in [BBR]
the Julia set J(cn) is even disconnected. It would be of interest whether J(cn)

is also a Jordan curve in our more general setting provided that (cn) ∈ KN
1/4

or what holds when (cn) ∈ DN
1/4.

Furthermore, we consider the dynamics of (Fn) in the stable domain
A(cn)(0) provided that (cn) ∈ KN

1/4. We will show that A(cn)(0) is a con-
tracting domain, that is a stable domain U such that all limit functions of
(Fn) in U are constant. This property is equivalent to diam Fn(K) → 0 as
n →∞ for every compact set K ⊂ U .

Theorem 4.6. Let (cn) ∈ KN
1/4. Then A(cn)(0) is a contracting domain.

Proof. Let K ⊂ A(cn)(0) be a compact set. We first assume that (cn) ∈ KN
δ

for some δ < 1
4 , and we choose r ∈

(
sδ,

1
2

)
. Then by Theorem 4.1 there

exists N ∈ N such that FN (K) ⊂ Dr. If z1, z2 ∈ K, then w1 := FN (z1),
w2 := FN (z2) ∈ Dr and thus |fck

(w1) − fck
(w2)| = |w1 + w2||w1 − w2| ≤

2r|w1−w2| which implies |FN+k(z1)−FN+k(z2)| ≤ (2r)k|w1−w2|. Therefore,
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we obtain diam FN+k(K) ≤ (2r)k diam FN (K) → 0 as k → ∞, and the
assertion follows.

Now, let |cn| ≤ 1
4 for all n ∈ N. Again, by Theorem 4.1 there exists

N ∈ N such that FN (K) ⊂ K1/2, and we obtain as above diam FN+k(K) ≤
diam FN+k−1(K) so that the sequence (diam FN+k(K)) is monotonically
decreasing and thus convergent. In order to deduce diam FN+k(K) → 0 as
k →∞ we need a better estimate. If w1, w2 ∈ FN (K), we obtain

|fck
(w1)− fck

(w2)| ≤ 2
∣∣∣∣∫ w2

w1

|z| |dz|
∣∣∣∣ .

For the estimate of the right hand side we consider the worst case which
can happen, that is |w1| = |w2| = 1

2 . For simplicity, we may assume that
w2 = w1, and we set % := Re w1 = Re w2 ∈

[
0, 1

2

)
. Then with d := 1

2 |w1−w2|
we get %2 + d2 = 1

4 and thus

2
∣∣∣∣∫ w2

w1

|z| |dz|
∣∣∣∣ ≤ 4

∫ d

0
|% + it| dt = 4

∫ d

0

√
%2 + t2 dt

= d + 2%2 log
2d + 1

2%

=
1
2
|w1 − w2|+

1
4
(1− |w1 − w2|2) log

1 + |w1 − w2|
1− |w1 − w2|

.

This implies with dn := diam Fn(K)

dN+k ≤
1
2
dN+k−1 +

1
4
(1− d2

N+k−1) log
1 + dN+k−1

1− dN+k−1
.

Setting α := limk→∞ diam FN+k(K) we see that

α ≤ 1
2
α +

1
4
(1− α2) log

1 + α

1− α
,

and an elementary argument shows that this is possible only for α = 0 which
gives the assertion. �

If (cn) ∈ KN
δ for some δ ≤ 1

4 , we denote by L(cn) the set of (constant) limit
functions of (Fn) in A(cn)(0), that is the set of all ζ ∈ C such that for some
subsequence (Fnk

) of (Fn) there holds Fnk
→ ζ as k →∞ locally uniformly

in A(cn)(0). It is easy to see that L(cn) is a compact set, and from the proof
of Theorem 4.6 it follows that L(cn) ⊂ Ksδ

⊂ K1/2. From Theorem 1.6
in [BBR] we know that the case L(cn) = Ksδ

may occur. Moreover, this
phenomenon happens almost surely, that means that the product measure
(cf. Section 5) of the set of these sequences (cn) in KN

δ is one. In a similar
way it is possible to construct sequences (cn) ∈ KN

δ such that L(cn) = ∂Ksδ
.
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On the other hand, if L(cn) consists of a single point ζ, then Fn → ζ as
n →∞ locally uniformly in A(cn)(0), and since Fn+1(z) = (Fn(z))2 + cn we
obtain cn → c ∈ Kδ as n → ∞, where c = ζ − ζ2. Therefore, the set Cδ of
all these points ζ is the component of the preimage of Kδ under the map
z 7→ z − z2 which is contained in Ksδ

. Therefore, Cδ is a proper subset of
Ksδ

and Cδ ∩ ∂Ksδ
= {sδ}. It would be of interest to characterize those

compact sets K ⊂ Ksδ
such that K = L(cn) for some sequence (cn) ∈ KN

δ .
The stable domain A(cn)(∞) may be viewed as a Böttcher domain. If it

is simply connected, then there exists a conformal map φ of A(cn)(∞) onto
∆1 normalized at infinity by

φ(z) = z + a0 +
a1

z
+

a2

z2
+ · · · .(4.7)

Note that the capacity of K(cn) (cf. Section 8) is equal to one. Like in the
iteration of a fixed polynomial we show that φ may be described dynamically.

Theorem 4.7. Let δ > 0 and (cn) ∈ KN
δ such that A(cn)(∞) is simply

connected. Then the conformal map φ of A(cn)(∞) onto ∆1 with the nor-
malization (4.7) is given by

φ(z) = lim
k→∞

2k√
Fk(z) = z lim

k→∞

2k

√
Fk(z)
z2k

with locally uniform convergence in A(cn)(∞), and where the branch of the

root is determined by 2k√
1 = 1.

Proof. Let R > Rδ such that R2 ≥ 2δ and Um := F−1
m (∆R) for m ∈ N. Then

we have Um ⊂ Um+1 ⊂ A(cn)(∞) and A(cn)(∞) =
⋃∞

m=1 Um. For k ∈ N we
define

φk(z) := 2k√
Fk(z) = z

2k

√
Fk(z)
z2k .

Then φk maps Uk conformally onto ∆Rk
, where Rk := 2k√

R. For z ∈ Um

and k ≥ m we have ∣∣∣∣ ck

(Fk(z))2

∣∣∣∣ ≤ δ

R2
≤ 1

2
,

and the elementary inequality

| p√1 + u− 1| ≤ 1
p (u ∈ K1/2)

yields∣∣∣∣φk+1(z)
φk(z)

− 1
∣∣∣∣ =

∣∣∣∣∣ 2k+1

√
Fk+1(z)
(Fk(z))2

− 1

∣∣∣∣∣ =
∣∣∣∣ 2k+1

√
1 +

ck

(Fk(z))2
− 1
∣∣∣∣ ≤ 1

2k+1
.
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Therefore, the limit

φ(z) := lim
k→∞

φk(z) = z
∞∏

k=0

φk+1(z)
φk(z)

exists uniformly in Um, and φ is the desired conformal map. �

5. Lebesgue measure of Julia sets.

From a result of Lyubich [L2] (see also [CG, p. 90] or [St, p. 144]) it follows
that the Julia set of a hyperbolic rational function has two-dimensional
Lebesgue measure (which we denote by m2) zero. In particular, this is true
for J(fc) provided that c is contained in a hyperbolic component of the
interior of the Mandelbrot set M or c /∈ M. In this section we show that
this is true to a certain extent in our situation.

We begin with δ < 1
4 . Then by Section 4 we know that if (cn) ∈ KN

δ , then
J(cn) is a quasicircle, and from the differentiability properties of quasiconfor-
mal maps it follows that quasicircles always have two-dimensional Lebesgue
measure zero (see for example [LV, p. 165]).

Corollary 5.1. Let δ < 1
4 and (cn) ∈ KN

δ . Then m2(J(cn)) = 0.

Now, we will show that m2(J(cn)) is almost surely zero provided that
the cn are randomly chosen in Kδ for some δ > 1

4 . To be more precise,
let λδ denote the two-dimensional Lebesgue measure on Kδ normalized by
λδ(Kδ) = 1. Then the product space KN

δ carries the usual product measure
λ̃δ :=

⊗∞
k=1 λδ. We set

Nδ := { (cn) ∈ KN
δ : m2(J(cn)) = 0 }.(5.1)

Then the goal is to show that λ̃δ(Nδ) = 1. In order to do this we recall:

Theorem 5.2 ([BBR]). Let δ > 1
4 and R > 0. Then for every z ∈ Ĉ there

exists an open set Uz ⊂ KN
δ with the following properties:

(a) λ̃δ(Uz) = 1,
(b) for every (cn) ∈ Uz there holds |Fk(z)| > R for all sufficiently large k.

Theorem 5.3. Let δ > 1
4 , and let Nδ ⊂ KN

δ be defined by (5.1). Then
λ̃δ(Nδ) = 1.

Proof. Let M = ∆R be an invariant domain and

Ẽ := { ((cn), z) ∈ KN
δ × Ĉ : Fk(z) ∈ M for some k ∈ N }.

By Theorem 5.2 we have λ̃δ(Ẽz) = 1 for z ∈ Ĉ, where

Ẽz := { (cn) ∈ KN
δ : ((cn), z) ∈ Ẽ }.
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If σ denotes the two-dimensional Lebesgue measure on Ĉ normalized by
σ(Ĉ) = 1, it follows

(λ̃δ ⊗ σ)(Ẽ) =
∫

bC λ̃δ(Ẽz) dσ(z) = 1.

Now, let

E := { (cn) ∈ KN
δ : σ(Ẽ(cn)) = 1 },

where

Ẽ(cn) := { z ∈ Ĉ : ((cn), z) ∈ Ẽ }.
Since

1 = (λ̃δ ⊗ σ)(Ẽ) =
∫

KN
δ

σ(Ẽ(cn)) dλ̃δ((cn))

we obtain λ̃δ(E) = 1. If (cn) ∈ E, then

σ(A(cn)(∞)) = σ({ z ∈ Ĉ : Fk(z) ∈ M for some k ∈ N }) = σ(Ẽ(cn)) = 1

which implies σ(J(cn)) = 0. �

It would be of interest whether Theorem 5.3 remains valid for δ = 1
4 .

Concerning the question whether there exists a sequence (cn) ∈ KN
δ for some

δ ≥ 1
4 such that m2(J(cn)) > 0, the referee mentioned that, recently, a group

of mathematicians around P.W. Jones at Yale University have constructed
such an example. More precisely, there exists a sequence (cn) with cn ∈{
0,±1

4 , 1
2

}
such that m2(J(cn)) > 0. This result was communicated to the

author by P.W. Jones. The author is grateful to both for bringing this
information to his attention.

Finally, we prove:

Theorem 5.4. Let δ > 2 (which is equivalent to δ > Rδ), and let ε > 0
such that Rδ + ε ≤ |cn| ≤ δ for all n ∈ N. Then m2(J(cn)) = 0.

Proof. We choose R such that Rδ < R < Rδ + ε and η := Rδ + ε − R > 0.
Then we have J(cn) ⊂ DRδ

⊂ D := DR, and D is backward invariant, that
is f−1

cn
(D) ⊂ D for all n ∈ N. Furthermore, there holds |fcn(0)| = |cn| ≥

Rδ +ε = R+η and thus |(fcm ◦ · · ·◦fck+1
)(0)| ≥ R+η for k = 0, 1, . . . ,m−1

and all m ∈ N. Therefore, D does not contain any critical value of (Fn)
so that in D there exist 2k analytic branches of the inverse function of
Fk which we denote by Gj,k for j = 1, . . . , 2k and k ∈ N. Furthermore,
we set Dj,k := Gj,k(D) ⊂ D and Dk :=

⋃2k

j=1 Dj,k. Then D1,k, . . . , D2k,k

are mutually disjoint simply connected domains, and J(cn) ⊂ Dk+1 ⊂ Dk.
Finally, we set Uk := Dk\Dk+1 and Uj,k := Dj,k\Dk+1 so that U1,k, . . . , U2k,k

are mutually disjoint multiply connected domains, and Uk =
⋃2k

j=1 Uj,k.
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Now, we prove that there exists a constant q > 0 such that

m2(Uk)
m2(Dk)

≥ q(5.2)

for all k ∈ N. For that purpose it is enough to show that

m2(Uj,k)
m2(Dj,k)

≥ q(5.3)

for j = 1, . . . , 2k and all k ∈ N.
Let V1,k and V2,k denote the two components of f−1

ck+1
(D), and let Wk :=

D \ (V 1,k ∪ V 2,k). Then Uj,k = Gj,k(Wk), and we obtain

m2(Uj,k)
m2(Dj,k)

=

∫
Wk

|G′
j,k(z)|2 dm2(z)∫

D |G
′
j,k(z)|2 dm2(z)

≥
|G′

j,k(zj,k)|2m2(Wk)
|G′

j,k(ζj,k)|2m2(D)
,

where zj,k ∈ Wk ⊂ D and ζj,k ∈ D such that |G′
j,k(zj,k)| = minz∈Wk

|G′
j,k(z)|

and |G′
j,k(ζj,k)| = maxz∈D |G′

j,k(z)|. By the Koebe distortion theorem (see
for example [P2, p. 9]) applied to the disk DR+η there holds∣∣∣∣∣G′

j,k(z)
G′

j,k(ζ)

∣∣∣∣∣ ≥
(

η

η + 2R

)4

for all z, ζ ∈ D. Therefore, it remains to show that there exists a constant
γ > 0 such that

m2(Wk)
m2(D)

≥ γ

for all k ∈ N.
For simplicity we write c = ck+1, and let V ∈ {V1,k, V2,k}. Then

m2(V ) =
1
4

∫
D

dm2(z)
|z − c|

=
1
4

∫ R

0

∫ 2π

0

%

|%eit − c|
dt d%.

By the Cauchy-Schwarz inequality we get∫ 2π

0

dt

|%eit − c|
≤
√

2π

(∫ 2π

0

dt

|%eit − c|2

)1/2

,

and the Poisson integral formula yields∫ 2π

0

dt

|%eit − c|2
=

2π

|c|2 − %2
.

Therefore, we arrive at

m2(V ) ≤ π

2

∫ R

0

%√
|c|2 − %2

d% =
π

2
(|c| −

√
|c|2 −R2) ≤ 1

2
πR.
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This implies m2(V1,k ∪ V2,k) ≤ πR and thus

m2(Wk)
m2(D)

≥ 1− 1
R
≥ 1

2

which proves (5.3).
Finally, (5.2) gives m2(J(cn)) ≤ m2(Dk+1) = m2(Dk) − m2(Uk) ≤ (1 −

q)m2(Dk) so that m2(J(cn)) ≤ (1−q)km2(D) → 0 as k →∞ which completes
the proof. �

6. Hausdorff dimension of Julia sets.

We first recall the notion of Hausdorff dimension. Let E ⊂ C be a non-
empty compact set, and denote by (Dj)ε any covering of E by finitely many
open sets Dj with diam Dj < ε. Then for t ∈ (0, 2]

mt(E) := sup
ε>0

inf
(Dj)ε

∑
j

(diam Dj)t

is called the t-dimensional Hausdorff measure of E. Obviously, mt(E) < ∞
implies ms(E) = 0 for s > t, and conversely, mt(E) > 0 implies ms(E) = ∞
for s < t. Hence, there exists a unique τ ∈ [0, 2] such that ms(E) = 0 and
mt(E) = ∞ for 0 < t < τ < s ≤ 2. This number τ is called the Hausdorff
dimension of E and is denoted by dimH E.

It is well-known (cf. [G], see also [Be, p. 251] or [St, p. 169]) that
the Hausdorff dimension of the Julia set of any fixed rational function f is
positive. More precisely, if ∞ /∈ J(f) and if d denotes the degree of f , then

dimH J(f) ≥ log d

log maxz∈J(f) |f ′(z)|
.

We show that this estimate holds true in a certain sense in our situation.

Theorem 6.1. Let δ > 0 and (cn) ∈ KN
δ . Then dimH J(cn) > 0. More

precisely, there holds

dimH J(cn) ≥
log 2

log (2Rδ)
=

log 2
log (1 +

√
1 + 4δ)

.

Proof. We show that the Green function g of A(cn)(∞) is Hölder continuous
with exponent

α =
log 2

log 2 + log (2R−Rδ)

for any R > Rδ. Then a result of Carleson [C] gives dimH J(cn) ≥ α. For
that purpose, it suffices to show that there exists a constant γ > 0 such
that g(z) ≤ γ(d(z))α for all z ∈ A(cn)(∞), where d(z) := dist (z, J(cn)). Of
course, we may assume that d(z) is small.
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Let R > Rδ and Uk := F−1
k (∆R) for k ∈ N. Then we have Uk ⊂ Uk+1 ⊂

A(cn)(∞) and A(cn)(∞) =
⋃∞

k=1 Uk. The Green function gk of Uk with pole
at infinity is given by

gk(z) =
1
2k

log
|Fk(z)|

R
(z ∈ Uk).

There holds gk(z) ≤ gk+1(z) ≤ g(z) for z ∈ Uk and gk → g as k →∞ locally
uniformly in A(cn)(∞).

We will show that there exists some constant C > 0 such that g(z) ≤
gk(z)+ C

2k for z ∈ Uk. There holds |Fk+1(z)| = |(Fk(z))2+ck+1| ≤ |Fk(z)|2+δ
and this gives

gk+1(z) ≤ 1
2k+1

log
|Fk(z)|2 + δ

R
.

If a, b > 0, then log+ (a + b) ≤ log+ a + log+ b + log 2, and thus

gk+1(z) ≤ 1
2k+1

(
log

|Fk(z)|2

R
+ log+ δ

R
+ log 2

)

=
1

2k+1

(
2 log

|Fk(z)|
R

+ log+ δ

R
+ log (2R)

)

= gk(z) +
C

2k+1
,

where C := log+ δ
R + log (2R). From this we obtain by induction

gk+m(z) ≤ gk(z) + C

(
1

2k+1
+ · · ·+ 1

2k+m

)
≤ gk(z) +

C

2k

for all m ∈ N. Letting m →∞ we get

g(z) ≤ gk(z) +
C

2k
(z ∈ Uk).

Now, let z ∈ Uk \Uk−1 for some k ∈ N. Then |Fk−1(z)| ≤ R which implies
|Fk(z)| ≤ R2 + δ. Hence, we have gk(z) ≤ 1

2k log
(
R + δ

R

)
and thus

g(z) ≤ Γ
2k

(z ∈ Uk \ Uk−1),(6.1)

where Γ := C + log
(
R + δ

R

)
.

Finally, we prove a lower estimate for d(z), if z ∈ Uk for some k ∈ N. We
set w := Fk(z) and η := |w|−Rδ. If U denotes the component of F−1

k (Dη(w))
containing z, there holds U ⊂ A(cn)(∞). Let % > 0 such that D%(z) ⊂ U .
Then Fk(D%(z)) ⊂ Dη(w) ⊂ D|w|+η which implies Fj(D%(z)) ⊂ D|w|+η for
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j = 0, 1, . . . , k and thus |F ′
k(t)| ≤ 2k(|w|+η)k for all t ∈ D%(z). If z′ ∈ D%(z)

and w′ := Fk(z′), then

w′ − w =
∫ z′

z
F ′

k(t) dt,

where we integrate over the line segment joining z and z′. This yields

|w′ − w| ≤ 2k(|w|+ η)k|z′ − z| < 2k(|w|+ η)k%.

Setting

% :=
η

2k(|w|+ η)

we obtain D%(z) ⊂ U and thus

d(z) ≥ η

2k(|w|+ η)
=

|w| −Rδ

2k(2|w| −Rδ)
≥ R−Rδ

2k(2R−Rδ)
(z ∈ Uk).

We choose q := R−Rδ and

α :=
log 2

log 2 + log (R + q)

and arrive at

(d(z))α ≥ qα

2k
(z ∈ Uk).(6.2)

Finally, putting (6.1) and (6.2) together we get

g(z) ≤ Γ
qα

(d(z))α (z ∈ Uk \ Uk−1)

which completes the proof. �

Gehring and Väisälä [GV] have shown that quasicircles always have Haus-
dorff dimension less than two and thus by Corollary 4.5 we obtain:

Corollary 6.2. Let δ < 1
4 and (cn) ∈ KN

δ . Then dimH J(cn) < 2.

If 0 < δ ≤ 1
4 and (cn) ∈ KN

δ , then the Julia set J(cn) is connected so that
its Hausdorff dimension is at least one. Moreover, Sullivan [Su] has shown,
that if c 6= 0 is in the interior of the main cardioid of the Mandelbrot set,
then dimH J(fc) > 1. Furthermore, it follows by a result of Shishikura [Sh]
that dimH J(f1/4) = 2. It would be of interest whether dimH J(cn) is almost
surely (in the sense of Section 5) greater than one if (cn) ∈ KN

δ for some
δ < 1

4 . In our general setting, it is clear that we can only expect such an
almost surely statement.
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7. Density of repelling fixpoints.

From iteration theory of a fixed rational function it is well-known that the
repelling periodic points are dense in the Julia set (cf. [Be, p. 148], [CG,
p. 63] or [St, p. 35]). In our setting we consider the set R(cn) of repelling
fixpoints of the sequence of iterates (Fn), i.e.,

R(cn) := { ζ ∈ C : Fk(ζ) = ζ for some k ∈ N and |F ′
k(ζ)| > 1 }.

It is not necessarily true that R(cn) ⊂ J(cn). But from a result of Fornæss
and Sibony [FS, Theorem 2.3] it follows that if δ > 0 is sufficiently small
and (cn) ∈ KN

δ , then (R(cn))′ = J(cn). More precisely, we show:

Theorem 7.1. Let δ < 1
4 and (cn) ∈ KN

δ . Then (R(cn))′ = J(cn).

Proof. Since δ < 1
4 we have fc(Dr) ⊂ Dr for all c ∈ Kδ and sδ < r <

rδ. This implies that Fk(z) 6= z for all k ∈ N and sδ < |z| < rδ. Since
F ′

k(z) = 2k
∏k−1

j=0 Fj(z) and fc(K1/2) ⊂ K1/2, we have R(cn) ∩ K1/2 = ∅.
Setting K := Kr for some r ∈

(
1
2 , rδ

)
, we also have R(cn) ∩K = ∅. We set

U := C\K. If z ∈ U and Fj(z) ∈ U for all j = 1, . . . , k−1, then |F ′
k(z)| ≥ qk

with q := 2r > 1.
We first show that (R(cn))′ ⊂ J(cn). For that purpose let Fk`

(z`) = z`,
|F ′

k`
(z`)| > 1 and z` → ζ as ` → ∞. If ζ ∈ C \ K(cn), then Fk`

→ ∞ as
` → ∞ uniformly in some neighbourhood of ζ. This gives Fk`

(z`) → ∞
as ` → ∞ which is a contradiction. Now, assume that ζ ∈ (K(cn))◦. If
Fj(ζ) ∈ U for all j ∈ N0, then |F ′

k(ζ)| ≥ qk → ∞ as k → ∞. But this
is impossible since (Fk) is normal and bounded in (K(cn))◦. Therefore, we
have Fk0(ζ) ∈ K for some k0 ∈ N0, and thus Fk(ζ) ∈ K for all k ≥ k0. By
passing to a subsequence we may assume that Fk`

→ φ as ` →∞ uniformly
in some neighbourhood Uζ of ζ, where φ is holomorphic in Uζ . This implies
z` = Fk`

(z`) → φ(ζ) as ` →∞ and thus z` ∈ K for all ` large enough which
is again a contradiction.

Now, we show that J(cn) ⊂ (R(cn))′. Suppose that there exists ζ ∈ J(cn)

and a neighbourhood V of ζ such that Fk(z) 6= z for all z ∈ V and k ≥ k0 =
k0(V ). We set

hk(z) :=
1
2k

log |Fk(z)− z|.

Then hk is harmonic and uniformly bounded above in V . By Eq. (2.1) we
have hk → g(cn) as k → ∞ in V \ K(cn), and thus hk → h as k → ∞ for
some harmonic function h in V . Furthermore, there holds hk → 0 as k →∞
in V ∩K(cn) so that h = 0 in V ∩K(cn). But this is a contradiction to the
minimum principle for harmonic functions.

Therefore, for every ζ ∈ J(cn) there exists a strictly increasing sequence
(k`) in N and z` ∈ U such that z` → ζ as ` →∞ and Fk`

(z`) = z`. Then we
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have Fj(z`) ∈ U for j = 1, . . . , k` − 1 which gives |F ′
k`

(z`)| ≥ qk` > 1 so that
z` ∈ R(cn). �

It would be of interest whether Theorem 7.1 holds for all δ > 0. However,
the proof shows that we always have (R(cn))′ ⊂ K(cn).

8. Asymptotic distribution of predecessors.

If (cn) ∈ KN
δ and if a ∈ ∆Rδ

, then the predecessors F−1
k (a) of a are all

contained in A(cn)(∞), and they only accumulate on the Julia set J(cn). In
fact, this follows from the invariance of ∆R for R > Rδ and Fk → ∞ as
k → ∞ locally uniformly in A(cn)(∞). We want to study the asymptotic
distribution of F−1

k (a) as k → ∞. For iteration of a fixed polynomial this
was done by Brolin [Bro].

We first recall some facts from potential theory which are needed in the
sequel and which can be found, for example, in the book of Tsuji [T]. Let
E ⊂ C be an infinite compact set, and let D be its outer domain, that is
the component of Ĉ\E containing the point ∞. Furthermore, we denote by
cap E ≥ 0 the logarithmic capacity (or transfinite diameter) of E. (We do
not recall the definition of cap E because it will not be needed.) We suppose
that the Green function gD of D with pole at infinity exists. Then

gD(z) = log |z|+ V + o(1) as z →∞

and capE = e−V > 0. Note that by Eq. (2.1) this is true for E = J(cn) with
cap E = 1. Now, let µ be any probability measure on E. Then the energy
integral

I[µ] :=
∫∫

E×E
log

1
|ζ − ω|

dµ(ζ) dµ(ω)

is finite, and the logarithmic potential

pµ(z) :=
∫

E
log

1
|z − ζ|

dµ(ζ)

is harmonic in D. Furthermore, there exists a unique probability measure
µ∗ on E which minimizes the energy integral I[µ], and there holds

gD(z)− V = −pµ∗(z) (z ∈ D).

This measure µ∗ is called the equilibrium measure on E. In the following µ∗

always denotes the equilibrium measure on the Julia set J(cn), and suppµ∗

denotes its support, that is the set of points z ∈ J(cn) such that µ∗(Dε(z) ∩
J(cn)) > 0 for every ε > 0. Note that suppµ∗ is a closed set.

In order to study the asymptotic distribution of F−1
k (a) for a ∈ ∆Rδ

as
k → ∞ we consider the following sequence (µa

k) of probability measures.
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If δz denotes the Dirac measure concentrated at the point z ∈ C (that is
δz(E) = 1 if z ∈ E and δz(E) = 0 if z /∈ E), then let

µa
k :=

1
2k

∑
Fk(z)=a

δz.(8.1)

We will show that (µa
k) is weakly convergent to µ∗, that is µa

k(E) → µ∗(E)
as k →∞ for every Borel set E ⊂ C with µ∗(E◦) = µ∗(E). For that purpose
we first collect some auxiliary results.

Lemma 8.1 ([Bro, Lemma 15.4]). Let E ⊂ C be a compact set, and let
f be a function defined on E such that for some constant L there holds
|f(z1)−f(z2)| ≤ L|z1−z2| for all z1, z2 ∈ E. If cap E = 0, then cap f(E) =
0.

Lemma 8.2. Let δ > 0 and (cn) ∈ KN
δ . Then cap (J(cn) \ suppµ∗) = 0.

Proof. Since J(cn) = ∂A(cn)(∞) and cap J(cn) > 0, the assertion immediately
follows from Theorem III.31 in [T, p. 79]. �

Lemma 8.3. Let δ > 0 and (cn) ∈ KN
δ . Then suppµ∗ = J(cn).

Proof. We assume that J∗ := J(cn) \ suppµ∗ 6= ∅. By Lemma 8.2 we have
cap J∗ = 0. Since J∗ is an open set in J(cn) we may choose z0 ∈ J∗ and
ε > 0 such that Jε := J∗ ∩ Dε(z0) ⊂ J∗. We also have cap Jε = 0. But
by the self-similarity of J(cn) (cf. [Bü1]) there exists m ∈ N such that
Fm(Jε) = Fm(J(cn)). Since |fck

(z1)−fck
(z2)| = |z1+z2||z1−z2| ≤ 2Rδ|z1−z2|

for all k ∈ N and z1, z2 ∈ J(cn), we obtain capFm(Jε) = 0 by Lemma 8.1. On
the other hand there holds Fm(J(cn)) = J(cn+m) and thus capFm(J(cn)) = 1
which gives a contradiction. �

Lemma 8.4 ([Bro, Lemma 15.5]). Let E, H ⊂ C be compact sets with E ⊂
H and cap E = e−V > 0. Furthermore, let (µn) be a sequence of probability
measures on H which converges weakly to a probability measure µ on E. If
un denotes the logarithmic potential with respect to µn and µ∗ denotes the
equilibrium measure on E, then suppose lim infn→∞ un(z) ≥ V for z ∈ E
and suppµ∗ = E. Then there holds µ = µ∗.

Theorem 8.5. Let δ > 0 and (cn) ∈ KN
δ . Then for any a ∈ ∆Rδ

the
sequence (µa

k) of probability measures defined by (8.1) converges weakly to
the equilibrium measure µ∗ on J(cn).

Proof. For k ∈ N let z1,k, . . . , z2k,k be the solutions of the equation Fk(z) = a.
Then we have zj,k ∈ A(cn)(∞) and zj,k ∈ H := K|a| for j = 1, . . . , 2k so that
suppµa

k ⊂ H. Since |Fk(z)| ≤ Rδ for z ∈ J(cn) and

|Fk(z)− a| =
2k∏

j=1

|z − zj,k|,
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we obtain for z ∈ J(cn)

2k∑
j=1

log |z − zj,k| = log |Fk(z)− a| ≤ log (Rδ + |a|) = C

and thus

uk(z) :=
1
2k

2k∑
j=1

log
1

|z − zj,k|
≥ −C

2k
.

This can be written as

uk(z) =
∫

H
log

1
|z − ζ|

dµa
k(ζ) ≥ −C

2k

so that

lim inf
k→∞

uk(z) ≥ 0 = log cap J(cn) (z ∈ J(cn)).(8.2)

By the Selection Theorem (cf. [T, p. 34]) every sequence of probability
measures on H contains a weakly convergent subsequence. Therefore, we
only have to show that for every subsequence of (µa

k) which converges weakly
to some probability measure ν there holds ν = µ∗. In fact, since the prede-
cessors F−1

k (a) of a do not accumulate in A(cn)(∞) we obtain supp ν ⊂ J(cn),
and because of (8.2) the assertion follows from Lemma 8.3 and 8.4. �

Remark 8.6. If δ < 1
4 and (cn) ∈ KN

δ , then the assertion of Theorem 8.5
also holds for any a ∈ Drδ

. This requires only a few simple modifications in
the proof.

Like in the iteration of a fixed function there holds that for any a ∈ J(cn)

the set
⋃∞

k=1 F−1
k (Fk(a)) is dense in J(cn) (cf. [Bü1]). We also want to study

the asymptotic distribution of F−1
k (Fk(a)) as k →∞. For that purpose, we

consider the following sequence (νa
k ) of probability measures defined by

νa
k :=

1
2k

∑
Fk(z)=Fk(a)

δz.(8.3)

Then supp νa
k ⊂ J(cn), and from iteration theory of a fixed polynomial fc

it is known (cf. [Bro], see also [St, p. 148]) that (νa
k ) converges weakly to

the equilibrium measure µ∗ on J(fc). We show that this holds true in our
situation.
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Theorem 8.7. Let δ > 0 and (cn) ∈ KN
δ . Then for any a ∈ J(cn) the

sequence (νa
k ) of probability measures defined by (8.3) converges weakly to

the equilibrium measure µ∗ on J(cn).

Proof. For k ∈ N let z1,k, . . . , z2k,k be the solutions of the equation Fk(z) =
Fk(a). Then we have for z ∈ A(cn)(∞)

1
2k

log |Fk(z)− Fk(a)| = 1
2k

2k∑
j=1

log |z − zj,k| =
∫

J(cn)

log |z − ζ| dνa
k (ζ).

Again, we only have to show that every weakly convergent subsequence
(λ`) of (νa

k ) has the limit µ∗. If λ` → λ as ` → ∞ weakly, then for z ∈
A(cn)(∞)

lim
`→∞

∫
J(cn)

log |z − ζ| dλ`(ζ) =
∫

J(cn)

log |z − ζ| dλ(ζ).

On the other hand we have
1
2k

log |Fk(z)− Fk(a)| = 1
2k

log
∣∣∣∣Fk(z)− Fk(a)

Fk(z)

∣∣∣∣
+

1
2k

log |Fk(z)| → g(cn)(z) as k →∞.

This implies

g(cn)(z) =
∫

J(cn)

log |z − ζ| dλ(ζ) (z ∈ A(cn)(∞)),

and since µ∗ is unique the assertion follows. �
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