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A certain finiteness result for special values of character
twists of Koecher-Maass series attached to Siegel cusp of genus
g is proved.

1. Introduction.

Let f be an elliptic cusp form of even integral weight k on Γ1 := SL2(Z). Let
χ be a primitive Dirichlet character modulo a positive integer N and denote
by L(f, χ, s) (s ∈ C) the Hecke L-function of f twisted with χ, defined by
analytic continuation of the series∑

n≥1

χ(n)a(n)n−s (Re (s) � 0; a(n) = n-th Fourier coefficient of f).

Let g(χ) be the Gauss sum attached to χ. As is well-known, there exists a
Z-module Mf ⊂ C (depending only on f) of finite rank such that all the
special values

is+1(2π)−sg(χ)L(f, χ, s)

(s ∈ N, 1 ≤ s ≤ k − 1;

χ a primitive Dirichlet character modulo N, N ∈ N)

lie in Mf ⊗Z Z[χ], where Z[χ] is the Z-module obtained from Z by adjoining
the values of χ. In fact, if f is a Hecke eigenform, one has rkZ Mf ≤ 2
[1, 7, 8, 10].

The purpose of this paper is to give a generalization of the above result
to the case of a Siegel cusp form f , where now L(f, χ, s) is replaced by an
appropriate χ-twist of the Koecher-Maass series attached to f .

More precisely, let f be a cusp form of even integral weight k ≥ g + 1
w.r.t. the Siegel modular group Γg := Spg(Z) of genus g and write a(T ) (T
a positive definite half-integral matrix of size g) for its Fourier coefficients.
For χ as above we set

(1) L(f, χ, s) :=
∑

{T>0}/GLg,N (Z)

χ(trT )a(T )
εN (T )(detT )s

(Re (s) � 0),
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where the summation extends over all positive definite half-integral (g, g)-
matrices T modulo the action T 7→ T [U ] := U tTU of the group GLg,N (Z) :=
{U ∈ GLg(Z) |U ≡ Eg (mod N)} and εN (T ) := #{U ∈ GLg,N (Z) |T [U ] =
T} is the order of the corresponding unit group of T (note that εN (T ) = 1
whenever N > 2 by a classical result of Minkowski). Furthermore, trT
denotes the trace of T . Note that χ(trT ) depends only on the GLg,N (Z)-
class of T .

In §2 (Thm. 1) we shall prove that the series L(f, χ, s) have holomorphic
continuations to C and satisfy functional equations under s 7→ k − s. The
proof is fairly standard and follows the same pattern as in [6] for the case
N = 1 (compare also [5]) and [9, §3.6] for g = 1.

The main result of the paper (Thm. 2) which will be proved in §3, states
that all the special values

igs+
g(g+1)

2 π
g(g−1)

4
+[ g

2
] (2π)−gs g(χ) L(f, χ, s)

(
s ∈ N,

g + 1
2

≤ s ≤ k − g + 1
2

;

χ a primitive Dirichlet character moduloN, N ∈ N
)

are contained in Mf ⊗Z Z[χ] where Mf ⊂ C is a finite Z-module depending
only on f . Its rank is bounded by the rank of a certain singular relative
homology group of a toroidal compactification of a quotient space of Hg ×
Cgw, where Hg is the Siegel upper half-space of genus g and w := k−(g+1).
See §3 for details.

For the proof one represents the functions L(f, χ, s) (similar as in the case
g = 1) as finite linear combinations of integrals of certain differential forms
attached to f along certain g(g+1)

2 -dimensional real subcycles of Γg\Hg. Our
assertion then can be deduced if we use results of Hatada given in [2, 3].
More precisely, in [2] it is shown that the space of cusp forms of weight
k ≥ g + 1 w.r.t. a torsion-free congruence subgroup Γ ⊂ Γg is canonically
isomorphic to the space of holomorphic differential forms of highest degree
on a compactification of Γ ∝ Z2gw\Hg ×Cgw, and in [3] using [2] a certain
finiteness statement for a certain family of integrals of Siegel cusp forms is
derived. (Actually, as we think, some of the assertions of [3] have to be
slightly modified, for complete correctness’ purposes; cf. §3.)

Inspecting the proof of Thm. 2, it is quite suggestive or even more or less
clear that a similar finiteness statement as given there can be proved for
special values of Dirichlet series of a much more general type. In fact, such
a result essentially seems to be true for finite linear combinations of all the
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partial series ∑
{T>0}/GL

(S)
g (Z)

e2πi tr (TS)a(T )
ε(S)(T )(detT )s

(Re (s) � 0),

where S is any rational symmetric matrix of size g, GL
(S)
g (Z) is the subgroup

{U ∈ GLg(Z) |S[U t] ≡ S (mod Z)} and ε(S)(T ) := #{U ∈ GL
(S)
g (Z) |T [U ]

= T}. However, we do not want to pursue this point further.

We finally remark that in [4] the Koecher-Maass series of a Siegel-Eisen-
stein series of genus g is explicitly expressed in terms of “elementary” zeta
functions. In particular, if g is odd it is shown to be a sum of products of
Riemann zeta functions. It would be interesting to investigate if a similar
statement as given in Thm. 2 would also hold in this case. In fact, it is
suggestive that such an assertion can be derived directly from the explicit
formulas given in [4].

One can also ask similar questions in the case of a Klingen-Siegel-Eisen-
stein series.

Notations. If A and B are complex matrices of appropriate sizes, we put
A[B] := BtAB. We simply write E = Eg resp. 0 = 0g for the unit resp.
zero matrix of size g if there is no confusion.

We often write elements of the group GSp+
g (R) ⊂ GL2g(R) consisting of

real symplectic similitudes of size 2g with positive scale in the form
(

A B
C D

)
,

understanding that A,B, C and D are real (g, g)-matrices.

If Y ∈ R(g,g), we write Y > 0 if Y is symmetric and positive definite.
The group GLg(R) operates on Pg := {Y ∈ R(g,g) |Y > 0} in the usual way
from the right by Y 7→ Y [U ].

If f(Z) is a complex-valued function on Hg, k a positive integer and

γ =
(

A B
C D

)
∈ GSp+

g (R), we set

(f |kγ)(Z) := det (CZ + D)−kf((AZ + B)(CZ + D)−1) (Z ∈ Hg).

We often write f |γ instead of f |kγ if there is no misunderstanding.

If k is a positive integer, Γ is a subgroup of Γg and χ is a character of Γ of
finite order, we denote by Sk(Γ, χ) the space of Siegel cusp forms of weight
k and character χ w.r.t. Γ. If χ = 1 we simply write Sk(Γ).
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2. Character twists of Koecher-Maass series.

For N a natural number we define

Γ∗
g,0(N

2) :=
{ (

A B
C D

)
∈ Γg |C ≡ 0 (mod N2),

D ≡ λE (mod N) for some λ ∈ Z
}

(note that λ must necessarily satisfy (λ, N) = 1).

It is easy to see that Γ∗
g,0(N

2) is a subgroup of Γg. If χ is a Dirichlet
character modulo N , we extend χ to a character of Γ∗

g,0(N
2) by putting

χ(γ) := χ(λ) if γ ≡
(
∗ ∗
0 λE

)
(mod N).

Lemma 1. Let f ∈ Sk(Γg) with Fourier coefficients a(T ) (T > 0 half-
integral). Let χ be a primitive Dirichlet character modulo N . Then the
function

fχ(Z) :=
∑
T>0

χ(trT )a(T )e2πi tr (TZ) (Z ∈ Hg)

belongs to Sk(Γ∗
g,0(N

2), χ2).

Proof. Let
g(χ) :=

∑
ν (mod N)

χ(ν)e2πiν/N

be the Gauss sum attached to χ. Since∑
ν (mod N)

χ(ν)e2πi tr(T ) ν
N = χ(trT )g(χ),

we obtain

(2) fχ =
1

g(χ)

∑
ν (mod N)

χ(ν) f |αν ,

where

αν :=
(

E ν
N E

0 E

)
(ν ∈ Z).

Let γ =
(

A B
C D

)
∈ Γ∗

g,0(N
2) and put

A′ := A +
ν

N
C,

B′ := B +
ν

N
(E −ADt)D − ν2

N2
CDtD,

D′ := D − ν

N
CDtD.
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Then A′, B′ and D′ are integral matrices, one has D′ ≡ D (mod N) and

ανγ =
(

A′ B′

C ′ D′

) (
E ν

N DtD
0 E

)
;

in particular
(

A′ B′

C ′ D′

)
∈ Γ∗

g,0(N
2), and it follows that

fχ|γ =
1

g(χ)

∑
ν (mod N)

χ(ν) f |
(

E ν
N DtD

0 E

)

= χ(λ2) · 1
g(χ)

∑
ν (mod N)

χ(ν) f |αν (D ≡ λE (mod N))

= χ2(γ)f.

This proves the claim.

Lemma 2. Let the notations be as in Lemma 1 and put

WN2 :=
(

0 −E
N2E 0

)
.

Then
fχ|WN2 = g(χ)2N−gk−1fχ.

Proof. For (ν, N) = 1 determine λ, µ ∈ Z with λN − µν = 1. Then

ανWN2 = N

(
0 −E
E 0

) (
NE −µE
−νE λE

)
αµ.

Hence

g(χ) · fχ|WN2 = N−gk
∑

ν (mod N),(ν,N)=1

χ(ν)f |αµ

= χ(−1)N−gk
∑

µ (mod N),(µ,N)=1

χ(µ)f |αµ

= χ(−1)g(χ)N−gkfχ.

Since g(χ)g(χ) = χ(−1)N , we obtain our claim.

Theorem 1. Let k be even and let f ∈ Sk(Γg). Let χ be a primitive Dirich-
let character modulo N and define L(f, χ, s) (Re (s) � 0) by (1). Let

γg(s) := (2π)−gs
g∏

ν=1

π(ν−1)/2Γ
(

s− ν − 1
2

)
(s ∈ C)

and set
L∗(f, χ, s) := Ngsγg(s)L(f, χ, s) (Re (s) � 0).
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Then L∗(f, χ, s) extends to a holomorphic function on C, and the functional
equation

L∗(f, χ, k − s) = (−1)
gk
2 g(χ)2

1
N

L∗(f, χ, s)

holds, where g(χ) is the Gauss sum attached to χ.

Proof. Since {(
U 0
0 (U t)−1

)
|U ∈ GLg,N (Z)

}
⊂ Γ∗

g,0(N
2)

and k is even, the function fχ(iY ) (Y > 0) is invariant under Y 7→ Y [U ] (U ∈
GLg,N (Z)). Hence it follows in the usual way that

(3) L∗(f, χ, s) =
1
2
Ngs

∫
Fg,N

fχ(iY )(det Y )sdv (Re (s) � 0),

where Fg,N is any fundamental domain for the action of GLg,N (Z) on Pg

and dv = (det Y )−(g+1)/2dY is the GLg(R)-invariant volume element on Pg.

We fix a set of representatives U1, . . . , Ur for GLg(Z)/GLg,N (Z) and now
take

(4) Fg,N =
r⋃

ν=1

Rg[Uν ],

where Rg is Minkowski’s fundamental domain for the action of GLg(Z).

Since GLg,N (Z) is closed under transposition, also F−1
g,N is a fundamental

domain for GLg,N (Z).

We let

Pg,+ := {Y ∈ Pg |det Y ≥ N−g}, Pg,− := {Y ∈ Pg |det Y ≤ N−g},

write
Fg,N =

(
Fg,N ∩ Pg,+

)
∪

(
Fg,N ∩ Pg,−

)
and observe that Fg,N ∩ Pg,− under the map Y 7→ (N2Y )−1 is transformed
bijectively onto F−1

g,N ∩ Pg,+. We also observe that both Fg,N ∩ Pg,+ and
F−1

g,N ∩ Pg,+ are fundamental domains for the induced action of GLg,N (Z)
on Pg,+, the integral in (3) is absolutely convergent and the integrand is
invariant under GLg,N (Z).

Therefore, since by Lemma 2

fχ(i(N2Y )−1) = (−1)
gk
2 g(χ)2Ngk−1(detY )k fχ(iY ),
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we conclude that

L∗(f, χ, s) =
1
2

∫
Fg,N∩Pg,+

(
fχ(iY )(Ngdet Y )s(5)

+ (−1)
gk
2 g(χ)2N−1fχ(iY )(Ngdet Y )k−s

)
dv.

Standard arguments and estimates taking into account (4) and properties
of Rg (compare e.g., [5, Chap. VI]) now show that the integral on the right
of (5) is (absolutely) convergent for all s ∈ C and represents a holomorphic
function of s.

Since
g(χ)g(χ) = χ(−1)N,

we also easily see the claimed functional equation. This concludes the proof
of the Theorem.

3. Special values.

In this section we shall prove:

Theorem 2. Let k be even, k ≥ g+1 and let f ∈ Sk(Γg). If χ is a primitive
Dirichlet character modulo N , define L(f, χ, s) (s ∈ C) by holomorphic
continuation of the series (1) (Theorem 1). Let g(χ) be the Gauss sum
attached to χ and let Z[χ] be the Z-module obtained from Z by adjoining the
values of χ.

Then there exists a Z-module Mf ⊂ C depending only on f of finite rank
such that all the special values

igs+
g(g+1)

2 π
g(g−1)

4
+[ g

2
] (2π)−gs g(χ) L(f, χ, s)

where s ∈ N, g+1
2 ≤ s ≤ k − g+1

2 and χ runs over all primitive Dirichlet
characters modulo all positive integers N , are contained in Mf ⊗Z Z[χ].

Proof. From (2) and (3) and the proof of Theorem 1 we find that
(6)

g(χ)γg(s)L(f, χ, s) =
1
2

∑
ν (mod N)

χ(ν)
∫
Fg,N

f
(
iY +

ν

N
E

)
(detY )s− g+1

2 dY

for all s ∈ C.

Note that the individual integrands on the right of (6) are GLg,N (Z)-

invariant since f(Z) is invariant under
{(

U 0
0 (U t)−1

)
|U ∈ GLg,N (Z)

}
and under translations. Let w ∈ Z, w ≥ 0 and Spg(R) ∝ R2gw be the

semi-direct product of Spg(R) and R2gw ∼= (R2g)w with multiplication given
by

(γ, λ)(γ′, λ′) = (γγ′, λγ′ ↑ + λ′)
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where by γ 7→ γ↑ we denote the diagonal embedding of Spg(R) into
GL2gw(R).

The group Spg(R) ∝ R2gw acts on Hg ×Cgw (with Cgw ∼= (Cg)w) from
the left by

(γ, λ) ◦
(
Z, (ζ1, . . . , ζw)

)
=

(
(AZ + B)(CZ + D)−1,

(
ζ1 + (µ1, ν1)

(
Z
Eg

)
(CZ + D)−1,

. . . , ζw + (µw, νw)
(

Z
Eg

)
(CZ + D)−1

))
where γ =

(
A B
C D

)
and λ =

(
(µ1, ν1), . . . , (µw, νw)

)
with µj , νj ∈ Rg for

all j. The discrete subgroup Γg ∝ Z2gw acts properly discontinuously.

Let Γ ⊂ Γg be any congruence subgroup acting without fixed points on
Hg (e.g., the principal congruence subgroup Γg(`) with ` ≥ 3) and view f
as an element of Sk(Γ).

Put w := k − (g + 1). It was shown in [2] that the map

h(Z) 7→ h(Z)dZdζ

gives an isomorphism between Sk(Γ) and the space of holomorphic differ-
ential forms of degree g(g+1)

2 + gw of (any) non-singular compactification of
the quotient space Γ ∝ Z2gw\Hg ×Cgw.

Using toroidal compactifications, in [3] from this a certain finiteness state-
ment for certain cycle integrals attached to h was derived which we now want
to describe in the special case we need.

Let S be a given rational symmetric matrix of size g and let n be an
integer with 0 ≤ n ≤ w. Define

Tg(S;n) :=
⋃

Y ∈Pg

{S + iY }

×
(
(Rg)w−n × {(µ1iY, . . . , µniY ) |µ1, . . . , µn ∈ Rg}

)
⊂ Hg ×Cgw.

Then Tg(S;n) is a real submanifold of Hg ×Cgw of dimension g(g+1)
2 + gw.

(In the notation of [3, §6] we have taken a1 = a2 = . . . = aw−n ∈
{g + 1, . . . , 2g} and aw−n+1 = . . . aw ∈ {1, . . . , g}. Also note that in the
definition of Tg(a1, . . . , aw;X) in [3, p. 401] we have replaced the “Z” in
W (a1, . . . , aw)[Z] by “iY ”. We think that this is the correct definition,
since otherwise the corresponding integrals in [3, Lemma 6.2 and Thm. 5]
in general would not be convergent.)



SPECIAL VALUES 381

Put

Ug :=
{(

U 0
0 (U t)−1

)
|U ∈ GLg(R)

}
⊂ Spg(R),

Vg,n := {(λ1, . . . , λw−n, (µ1, 0), . . . , (µn, 0)) |λ1, . . . ,

λw−n ∈ R2g, µ1, . . . , µn ∈ Rg}

and
Hg,n := Ug ∝ Vg,n ⊂ Spg(R) ∝ R2gw.

Let

α(S) :=
(

E S
0 E

)
.

Then one easily checks that the conjugate subgroup

H(S)
g,n := (α(S), 0) ·Hg,n · (α(S), 0)−1

leaves Tg(S;n) stable.

Note that H
(S)
g,n consists of all pairs((

U S(U t)−1 − US
0 (U t)−1

)
,
(
λ1, . . . , λw−n, (µ1,−µ1S), . . . , (µn,−µnS)

))
with λ1, . . . , λw−n ∈ R2g and µ1, . . . , µn ∈ Rg.

Let
H

(S)
g,n,Γ := H(S)

g,n ∩ Γ ∝ Z2gw.

Write M := Γ ∝ Z2gw\Hg × Cgw and denote by M a fixed toroidal com-
pactification of M . Let ∂M = M \M . Then according to [3, Lemma 6.1]
the closure of the image of H

(S)
g,n,Γ\Tg(S;n) in M w.r.t. the usual complex

topology is the support of a singular relative g(g+1)
2 + gw-cycle with integral

coefficients w.r.t. (M, ∂M).

Since H g(g+1)
2

+gw
(M, ∂M,Z) is of finite rank, one concludes that for any

given h ∈ Sk(Γ) all the numbers∫
H

(S)
g,n,Γ\Tg(S;n)

h(Z)dZdζ (S ∈ Q(g,g), S = St)

are contained in a finite Z-module (depending only on h) whose rank is
bounded by the rank of the above cohomology group ([3, Thm. 5], compare
our above remark).
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On the other hand (compare [3, Lemma 6.2]) one has the equality∫
H

(S)
g,n,Γ\Tg(S;n)

h(Z)dZdζ(7)

=
∫

α(S)·Ug ·(α(S))−1∩Γ\{S+iY |Y ∈Pg}
h(Z) det (Z − S)ndZ.

In particular, now take Γ = Γg(`) with some fixed ` ≥ 3. Then the
integral on the right of (7) is equal to

ign+
g(g+1)

2

∫
Pg/GL

(S)
g,` (Z)

h(S + iY ) (det Y )ndY,

where
GL

(S)
g,` (Z) := {U ∈ GLg,`(Z) |S[U t] ≡ S (mod `Z)}.

Let S = ν
N E with ν ∈ Z (so α(S) = αν in the notation of §2). Then we

see that GLg,`N (Z) is contained in GL
(S)
g,` (Z). Since the index of GLg,`N (Z)

in GLg,N (Z) is bounded by a number depending only on `, the assertion of
Thm. 2 now follows taking into account (6) and the fact that Γ(1

2+ν) ∈ Q
√

π
for ν = 0, 1, 2 . . . .
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