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ABSORPTION THEOREM

George A. Elliott and Dan Kucerovsky

A common generalization is given of what are often re-
ferred to as the Weyl–von Neumann theorems of Voiculescu,
Kasparov, Kirchberg, and, more recently, Lin. (These in turn
extend a result of Brown, Douglas, and Fillmore.)

More precisely, an intrinsic characterization is obtained of
those extensions of one separable C∗-algebra by another—the
first, i.e., the ideal, assumed to be stable, so that Brown-
Douglas-Fillmore addition of extensions can be carried out—
which are absorbing in a certain natural sense related to this
addition, a sense which reduces to that considered by earlier
authors if either the ideal or the quotient is nuclear. The
specific absorption theorems referred to above can be deduced
from this characterization.

1. Let B be a C∗-algebra, and let C be a C∗-algebra containing B as
a closed two-sided ideal. Let us say that C is purely large with respect
to B if for every element c of C which is not in B, the C∗-algebra cBc∗

(the intersection with B of the hereditary sub-C∗-algebra of C generated
by cc∗) contains a sub-C∗-algebra which is stable (i.e., isomorphic to its
tensor product with the C∗-algebra K of compact operators on an infinite-
dimensional separable Hilbert space) and is full in B (i.e., not contained in
any proper closed two-sided ideal of B).

2. Let A and B be C∗-algebras, and let

0 → B → C → A → 0

be an extension of B by A (i.e., a short exact sequence of C∗-algebras). Let
us say that the extension is purely large if the C∗-algebra of the extension,
C, is purely large with respect to the image of B in it, in the sense described
above.

Note that, if B is non-zero, a purely large extension of B by A is essential
(that is, the image of B in the C∗-algebra of the extension is an essential
closed two-sided ideal—every non-zero closed two-sided ideal has non-zero
intersection with it).
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3. Let A and B be C∗-algebras, with A unital. An extension 0 → B →
C → A → 0 will be said to be unital if C is unital.

In this paper we shall consider primarily the context of unital extensions
(although we shall indicate how to modify our main result, Theorem 6, to
be valid in the non-unital setting).

4. Recall that an extension of B by A is determined by its Busby map—
the naturally associated map from A to the quotient multiplier algebra, or
corona, of B, M(B)/B. (The C∗-algebra of the extension is the pullback of
the Busby map and the canonical quotient map M(B)→ M(B)/B.)

Recall (see e.g., [6]) that, if B is stable, so that the Cuntz algebra O2 may
be embedded unitally in M(B), then the Brown-Douglas-Fillmore addition
of extensions, defined by

τ1 ⊕ τ2 := s1τ1s
∗
1 + s2τ2s

∗
2,

where τ1 and τ2 are (the Busby maps of) two extensions of B by A, and s1
and s2 are (the images in M(B)/B of) the canonical generators of O2 (which
are isometries with range projections summing to 1), is compatible with
Brown-Douglas-Fillmore equivalence (defined as unitary equivalence with
respect to the unitary group of M(B)—or, rather, the image of this group
in M(B)/B), and the resulting binary operation on equivalence classes is
independent of the embedding of O2.

With respect to this operation, the equivalence classes of extensions of
the stable C∗-algebra B by the C∗-algebra A form an abelian semigroup.

Recall that an extension of B by A is said to be trivial if, considered as
a short exact sequence of C∗-algebra maps, it splits. In other words, the
map C → A in the sequence 0 → B → C → A → 0 should have a left
inverse, C ← A. (Equivalently, the Busby map A→ M(B)/B should lift to
a C∗-algebra homomorphism A→ M(B).)

In the setting of unital extensions, we shall understand triviality of an
extension to mean that the splitting can be chosen to be unital.

Recall, furthermore, that, in [8], Kasparov called an extension absorbing
if, in the Brown-Douglas-Fillmore semigroup, it is equal to its sum with any
trivial extension. (Briefly, if it absorbs every trivial extension.) Of course,
a unital extension cannot be absorbing in this sense (unless the quotient
algebra is zero); let us say that a unital extension is absorbing if—in the
subsemigroup of unital extensions—it is equal to its sum with any trivial
unital extension. (Trivial in the sense of admitting a unital splitting.)

5. In order to be able to formulate our main result (Theorem 6, below) for
arbitrary (separable) C∗-algebras A and B (with B stable and A unital)—
i.e., without assuming A or B to be nuclear—we must restrict the notion of
trivial extension as follows.
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Let us say that an extension of C∗-algebras 0 → B → C → A → 0 is
trivial in the nuclear sense if the splitting homomorphism A → C may be
chosen to be weakly nuclear as defined by Kirchberg in [9]: The splitting
homomorphism π : A → C will be said to be weakly nuclear if, for every
b ∈ B ⊆ C, the map

A 3 a 7→ bπ(a)b∗ ∈ B ⊆ C
is nuclear. (Recall that a C∗-algebra map is said to be nuclear if it factors ap-
proximately through finite-dimensional C∗-algebras, by means of completely
positive contractions, in the sense of convergence in norm.)

Let us say, correspondingly, that an extension is absorbing in the nuclear
sense if it absorbs every extension which is trivial in the nuclear sense.
Again, let us say that a unital extension is absorbing in the nuclear sense to
mean that this holds within the semigroup of (equivalence classes of) unital
extensions. (With triviality in the nuclear sense the existence of a unital
weakly nuclear splitting.)

6.

Theorem. Let A and B be separable C∗-algebras, with B stable and A
unital. A unital extension of B by A is absorbing, in the nuclear sense, if,
and only if, it is purely large.

7. Purely large algebras have an approximation property similar to that
of purely infinite algebras. (This is the fundamental ingredient in the proof
of our main result, that an extension that is purely large is absorbing—either
in the unital setting, as in Theorem 6, or, if the extension is non-unital, as
in Corollary 16.)

Lemma. Let C be a C∗-algebra that is purely large with respect to a closed
two-sided ideal B, in the sense of Section 1. Then, for any positive element
c of C which is not in B, any ε > 0, and any positive element b of B, there
exists b0 ∈ B with

‖b− b0cb∗0‖ < ε.

If b is of norm one, and if the image of c in C/B is of norm one, then b0
may be chosen to have norm one.

Proof. Let c ∈ C+ \ B, b ∈ B+, and ε > 0 be given. Multiplying c by a
positive element of the sub-C∗-algebra it generates, and changing notation,
we may suppose that the hereditary sub-C∗-algebra Cc of C on which c acts
as a unit is not contained in B.

By hypothesis, there exists a full, stable sub-C∗-algebra D of B contained
in Cc.

Since D is full in B, there exist d ∈ D+ and b1, . . . , bn in B such that∥∥∥b−∑ bidb
∗
i

∥∥∥ < ε.
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(The set S of such elements
∑
bidb

∗
i is closed under the map x 7→ yxy∗ for

any y ∈ B, and therefore the closure of S is a hereditary subset of B+—
recall that if 0 ≤ s ≤ t in B then s

1
2 = lim ynt

1
2 with yn = s

1
2 (t+ 1

n)−
1
2 ∈ B,

so that s = lim ynty
∗
n. In particular, the closure of S is a subcone of B+, as

the sum of two elements of S, associated with d1 and d2, say, is majorized
by an element associated with the single element d1 + d2, and therefore is a
limit of elements associated with d1 + d2. The closure of S is thus a closed
subcone of B+ closed under the map x 7→ yxy∗ for any y ∈ B. Such a
subset is known to be the positive part of a closed two-sided ideal: as above
it must be a hereditary subset, and it is then the positive part of an ideal
by Theorem 2.7(ii) of [4].)

(Alternatively, to obtain the assertion of the preceding paragraph, ap-
proximate b

1
2 by

∑
b1id0b

∗
2i for some d0 ∈ D+ and b1i, b2i ∈ B. Replacing∑

b1id0b
∗
2i by its self-adjoint part (which has a similar form), and changing

notation, we may suppose that
∑
b1id0b

∗
2i is self-adjoint. (In any case, this

element is almost self-adjoint, which is sufficient.) Write∑
b1id0b

∗
2i = b1(d0)b∗2

where b1 and b2 denote the row vectors (b1i) and (b2i), and (d0) denotes the
square matrix of appropriate size with d0 repeated down the diagonal and
0 elsewhere. Note that b1(d0)b∗2 = b2(d0)b∗1. We then have

‖b− b1(d0)b∗2b2(d0)b∗1‖

= ‖b− b
1
2 b1(d0)b∗2 + b

1
2 b2(d0)b∗1 − b1(d0)b∗2b2(d0)b∗1‖

≤ ‖b
1
2 ‖ ‖b

1
2 − b1(d0)b∗2‖+ ‖b

1
2 − b1(d0)b∗2‖ ‖b2(d0)b∗1‖,

and the right side is arbitrarily small. Finally, noting that (d0)b∗2b2(d0)

belongs to the hereditary sub-C∗-algebra generated by (d
1
2
0 ), we may ap-

proximate this element by the element

((d
1
2
0 )c(d

1
2
0 ))((d

1
2
0 )c(d

1
2
0 ))∗ = (d

1
2
0 )c(d0)c∗(d

1
2
0 )

for some matrix c over B, and then with b′1 = b1(d
1
2
0 )c, the element

b− b′1(d0)b′∗1
is small, i.e., b−

∑
b′1id0b

′∗
1i is small, as desired.)

Since D is stable, we may suppose, changing d by a small amount, that
there exists a multiplier projection e of D such that ed = d and such that
for multipliers u1, . . . , un,

uiu
∗
j = δije.

Hence with di = d
1
2ui,

did
∗
j = δijd.
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Set ∑
bidi = b0.

Then, on the one hand,

b0b
∗
0 =

∑
bidid

∗
jb
∗
j =

∑
bidb

∗
i ,

and, on the other hand, as dic = di and so b0c = b0,

b0b
∗
0 = b0cb

∗
0.

We now have

‖b− b0cb∗0‖ = ‖b− b0b∗0‖ =
∥∥∥b−∑ bidb

∗
i

∥∥∥ < ε.

Now suppose that
‖b‖ = ‖c+B‖ = 1,

and let us show that b0 may be chosen with norm one. The modification
of c in the above construction may then be arbitrarily small, and so, as b0
will be chosen with norm one (see below), we may again suppose that the
hereditary sub-C∗-algebra Cc of C on which c acts as a unit is not contained
in B. Repeating the construction above with ε/2 in place of ε, we have
‖b− b0b∗0‖ ≤ ε/2, and so (as ‖b‖ = 1),

1− ε

2
≤ ‖b‖ − ‖b− b0b∗0‖ ≤ ‖b0b∗0‖ ≤ ‖b‖+ ‖b0b∗0 − b‖ ≤ 1 +

ε

2
.

Hence, ∥∥∥∥b0b∗0(1− 1
‖b0b∗0‖

)∥∥∥∥ = |‖b0b∗0‖ − 1| ≤ ε

2
,

and so ∥∥∥∥b− b0
‖b0‖

c
b∗0
‖b0‖

∥∥∥∥ =
∥∥∥∥b− b0b

∗
0

‖b0b∗0‖

∥∥∥∥ ≤ ε

2
+
ε

2
= ε.

8. Let us recall the generalization of Glimm’s Lemma due to Akemann,
Anderson, and Pedersen (Proposition 2.2 of [1]). Because we shall only need
the unital case, and that case is much easier, let us give a proof in that case.

Lemma. Let C be a separable unital C∗-algebra and let ρ be a pure state of
C. There exists c0 ∈ C+ with ‖c0‖ = 1 such that ρ(c0) = 1 and

lim
n→∞

‖cn0 (c− ρ(c))cn0‖ = 0, c ∈ C.

Proof. With Nρ = {c ∈ C; ρ(c∗c) = 0}, recall that, as ρ is pure, Kerρ =
Nρ +N∗

ρ . Hence,
C = C1 +Nρ +N∗

ρ .

Choose a strictly positive element h of Nρ ∩ N∗
ρ of norm at most one, and

set 1−h = c0. The desired convergence—which is additive—holds obviously
for c ∈ C, and it holds for c ∈ Nρ or N∗

ρ because hcn0 = h(1 − h)n → 0 (as
t(1− t)n → 0 uniformly for t ∈ [0, 1]).
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9. The following consequence of Lemmas 7 and 8 is the main step in the
proof of Theorem 6.

Corollary. Let C be a separable unital C∗-algebra that is purely large with
respect to the closed two-sided ideal B. Let ρ be a pure state of C that
is zero on B, let c1 = (c11, . . . , c1n) be a row vector over C and let b1 =
(b11, . . . , bn1) be a row vector over B. Denote the tensor product of ρ with
the identity on Mn(C),

id⊗ ρ: Mn(C) = Mn(C)⊗ C → Mn(C),

by ρn. The map

C → B

c 7→ b1ρn(c∗1cc1)b
∗
1

can be approximated on finite sets by the maps

c 7→ bcb∗, b ∈ B.

Proof. It is immediate to reduce to the case n = 1. (Considering b1 and c1
as elements of Mn(C), and C as the subalgebra of upper left corner matrices,
extend ρ to a pure state of Mn(C)—necessarily unique, and concentrated in
the upper left corner—and denote this again by ρ. If (bij) ∈ Mn(B) gives
an approximating map for the map

Mn(C) → Mn(B)

c 7→ b1ρ(c∗1cc1)b
∗
1,

which fulfils the hypotheses of the Corollary with n = 1 and with C and B
replaced by Mn(C) and Mn(B) (note that in this case ρ1 = ρ), then b11 ∈ B
gives an approximating map for the given map.)

Let a finite subset F ⊆ C be given. By Lemma 8, there exists c0 ∈
C+ such that ‖c0‖ = 1, ρ(c0) = 1, and c0c

∗
1cc1c0 is arbitrarily close to

c0ρ(c∗1cc1)c0 for each c ∈ F . Namely, c0 may be taken to be a power of the
c0 of Lemma 8; note that 0 ≤ c0 ≤ 1 and ρ(c0) = 1 imply that ρ(ck0) = 1 for
any k.

Since ρ(c20) = 1 and ρ(B) = 0, the element c20 does not belong to B and so
by Lemma 7 there exists b0 ∈ B such that b0c20b

∗
0 is arbitrarily close to any

given positive element of B. In particular, approximating an approximate
unit for B, we may choose b0 ∈ B such that b1(b0c20b

∗
0) is arbitrarily close

to b1. Since the image of c0 in C/B is of norm one, by Lemma 7 we may
suppose that ‖b0‖ = 1. Then, with b = b1b0c0c

∗
1, for each c ∈ F , the element

bcb∗ = b1b0(c0c∗1cc1c0)b
∗
0b
∗
1

is (by choice of c0), arbitrarily close to

b1b0c0ρ(c∗1cc1)c0b
∗
0b
∗
1 = b1b0c

2
0b
∗
0b
∗
1ρ(c

∗
1cc1),
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which in turn (by choice of b0) is arbitrarily close to

b1b
∗
1ρ(c

∗
1cc1) = b1ρ(c∗1cc1)b

∗
1.

In other words, the desired approximation holds.

10. The following lemma, incorporating techniques of Kirchberg, brings
Corollary 9 to bear in the nuclear setting.

Lemma. Let C be a separable unital C∗-algebra and let B be a closed two-
sided ideal of C. Suppose that C is purely large with respect to B. Let ψ be
a completely positive map from C to B which is zero on B. If the map from
the quotient C/B to B determined by ψ is nuclear, and if B is stable, then
ψ can be approximated on finite sets by the maps

c 7→ b∗cb, b ∈ B.

Proof. First, without assuming that C is purely large, let us show, using
ideas of Kirchberg presented in [9], that if the map C/B → B determined by
ψ is nuclear then ψ can be approximated on finite sets by sums of maps of
the kind considered in Corollary 9 (each one corresponding to a row vector
over C, a pure state of C zero on B, and a column vector over B).

By the nuclearity hypothesis, which implies that ψ is the limit of a se-
quence of products of two completely positive maps, the first from C to Mk

for some k, and zero on B, and the second from Mk to B, we may suppose
that ψ itself is the product of two such maps—i.e., a completely positive
map C → Mk, zero on B, and a completely positive map Mk → B.

As B is stable, so that Ok is unitally contained in M(B)—unless B = 0
in which case the assertion is vacuous—, by Lemma 1.1 of [9] a completely
positive map Mk → B is necessarily of the form x 7→ RxR∗ where R is a
row vector over B. (As shown in [9] this holds with R the transpose of the
matrix (e1, . . . , ek)∗—i.e., for R = (e∗1, . . . , e

∗
k), where

(e1, . . . , ek) = (s1, . . . , sk)G
1
2

with s1, . . . , sk the canonical generating isometries of Ok and G the image
in Mk ⊗ B of the positive element (eij) of Mk(Mk) corresponding to the
canonical system of matrix units for Mk.)

It remains to show—in order to verify the assertion above—that a com-
pletely positive map C → Mk, zero on B, can be approximated on finite sets
by sums of maps of the form

c 7→ ρ(F ∗cF )

where F is a row vector over C of length k and ρ is a pure state of C zero
on B. Replacing C by C/B, we see that it is enough to establish this in the
case B = 0. In this case, we may proceed as follows (in a way somewhat
similar to the proof of Lemma 1.2 of [9]—which concerns the special case
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that C is simple and not elementary). By the Krein-Milman theorem, we
may suppose (since we are allowing sums) that the given completely positive
map C → Mk belongs to an extremal ray within the cone of all such maps.
(Consider a compact base for this cone.) By Stinespring’s theorem, the
given map may be expressed as a representation of C on a Hilbert space,
followed by cutting down to a generating subspace of dimension k—with a
specified orthonormal basis identifying the operators on this subspace with
the elements of Mk. By extremality of the ray containing the given map
(just as in the case of a positive linear functional), this representation must
be irreducible. By the Kadison transitivity theorem the specified basis then
has the form Fη where η is an arbitrary nonzero vector in the space of the
representation and F is a row vector over C. With ρ the pure state of C
determined by η, the given completely positive map is now equal to the map
c 7→ ρ(F ∗cF ).

This completes the proof that ψ can be approximated on finite sets by
sums of maps of the kind considered in Corollary 9, say in particular, on the
given finite subset S of C, by the sum

ψ1 + · · ·+ ψn

where each ψi is as in Corollary 9 (and in particular is zero on B, which
of course is no longer necessarily zero). Then—as C is purely large—by
Corollary 9, on a given finite family of elements of C, say S, the map ψ1 can
be approximated by the map c 7→ b1cb

∗
1 for some b1 ∈ B. By Corollary 9

again, the map ψ2 can be approximated by the map c 7→ b2cb
∗
2 for some

b2 ∈ B, not only on S but on any larger finite subset of C, and in particular
on the set

S2 := S ∪ {cb∗1b1c∗; c ∈ S ∪ S∗}.
Since ψ2 is zero on cb∗1b1c

∗, c ∈ S ∪ S∗, it follows that b2cb∗1b1c
∗b∗2 is small

for c ∈ S ∪ S∗, i.e., the norms ‖b2cb∗1‖ = ‖b2cb∗1b1c∗b∗2‖
1
2 and ‖b1cb∗2‖ =

‖b2c∗b∗1b1cb∗2‖
1
2 are small for each C ∈ S. Hence, for each c ∈ S,

(b1 + b2)c(b1 + b2)∗

is close to b1cb∗1 + b2cb
∗
2, and so to (ψ1 + ψ2)(c). Proceeding in this way (as,

for instance, in [2]), we obtain b1, · · · , bn ∈ B such that ψ1 + · · ·+ ψn—and
hence ψ—is approximated (arbitrarily closely) on S by the map

c 7→ (b1 + · · ·+ bn)c(b1 + · · ·+ bn)∗.

11. The following technique is basic in some form to all earlier absorption
results. It was formulated more or less explicitly in special cases in [2], [8],
and [9], and expressed in the following abstract form in a later version of
the preprint [9].
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Lemma (Kirchberg). Let C be a unital separable C∗-algebra and let B be
an essential closed two-sided ideal of C, so that we may view C as a unital
subalgebra of M(B):

B ⊆ C ⊆ M(B); 1 ∈ C.
Let φ : C → M(B) be a completely positive map which is zero on B, and
suppose that, for every b0 ∈ B, the map

b∗0φb0 : C → B

c 7→ b∗0φ(c)b0

can be approximated (on finite sets) by the maps

c 7→ b∗cb, b ∈ B.
It follows that there exists v ∈ M(B) such that

φ(c)− v∗cv ∈ B, c ∈ C.
The element v may be chosen so that the map c 7→ v∗cv also approximates
φ on a given finite subset of C.

Proof. Let us recall, for the convenience of the reader, the argument of (the
extended version of) [9].

First, by a slight reformulation of Theorem 2 of [2] (and its proof), there
exist positive elements w1, w2, . . . of B of norm one such that the series∑
wixiwi converges strictly in M(B) for any bounded sequence (xi) in M(B),

and such that the sum
∑
w2

i φ(c)w2
i ∈ M(B) is equal to φ(c) modulo B for

every c, and approximately equal to φ(c) in M(B) (in norm) for each c in a
given finite subset of C. The sequence w1, w2, . . . may be chosen furthermore
such that the sequence (

∑n
1 w

4
i ) is an approximate unit for B, and such that

w4
n+2 is orthogonal to

∑n
1 w

4
i for each n.

One now proceeds very much as in the proof of Lemma 10 above (which
dealt with a finite sum of maps from C to B) to show that the infinite sum
w2

1φw
2
1 + w2

2φw
2
2 + · · · of maps from C to B (convergent pointwise in the

strict topology of M(B) to a map from C to M(B)—equal to φ modulo B
and equal to φ approximately on the given finite set), each of which is zero
on B and is determined approximately by an element of B, is determined
approximately on the given finite set by a strictly converging sum of elements
of B, and determined by this multiplier exactly modulo B.

More explicitly, one chooses b1 ∈ B such that b∗1cb1 is close to w1φ(c)w1

for c in a finite set S1, to be specified, one then chooses b2 ∈ B such that
b∗2cb2 is close to w2φ(c)w2 for c in a finite set S2, also to be specified—and
depending in addition on the choice of b1, as in the proof of Lemma 10—and
one continues in this way. As we shall show, with suitable choices of the
finite sets S1, S2, · · · and of the approximations at each stage, the series

b1w1 + b2w2 + · · ·
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converges strictly in M(B) to an element v with the desired properties (it
determines the sum of maps w2

1φw
2
1 +w2

2φw
2
2 + · · · , and hence also the map

φ, to within a specified approximation on a given finite set, and exactly,
modulo B, on all of C).

The sets S1, S2, . . . should of course all contain the given finite set, say
S, and their union should be dense in C. They should also all contain the
unit of C (1 ∈ M(B)); then for each i the element b∗i bi (= b∗i 1bi) is close to
wiφ(1)wi and in particular the sequence b1, b2, . . . is bounded. In order for
the series b1w1 + b2w2 + · · · to be strictly convergent, it would be sufficient
in view of the properties of the sequence w1, w2, . . . and the boundedness of
the sequence b1, b2, . . . to ensure that∑

‖bi − w4
i bi‖ < ∞,

as then convergence of the series b1w1 + b2w2 + · · · (in the strict topology)
follows from convergence of the series w4

1b1w1 + w4
2b2w2 + · · · , which holds

as the sequence w3
1b1, w

3
2b2, . . . is bounded.

It would also be sufficient to arrange that, instead of convergence of∑
‖bi − w4

i bi‖, one has convergence of the series∑
‖bi − z4

i bi‖

where z1, z2, . . . is some other sequence of positive elements of B with the
last property mentioned for (wi) (namely, that

∑n
1 z

4
i is an approximate unit

for B, and z4
n+2

∑n
1 z

4
i = 0 for each n). Indeed, this property (for both (wi)

and (zi)) is enough for the series∑
zixiwi

to converge strictly in M(B) for any bounded sequence xi in M(B). While
z4
i may be taken to be the sum of a consecutive group of elements w4

j , it
would not appear to be possible to choose zi = wi.

Let us now elaborate on the choice of the finite sets S1, S2, . . . , and on
the choice of a partition of N into consecutive subsets J1, J2, . . . such that,
with ∑

j∈Ji

w4
j =: z4

i ,

the necessary approximations can be made. (Namely, for
∑
biwi to exist

and have the desired properties; note that the introduction of zi is purely
to ensure convergence of the sum.)

The finite set Si should contain, as well as the given finite set S and the
unit, 1 ∈ C ⊆ M(B), the first i elements of a fixed dense sequence (c1, c2, . . . )
in C. Let us choose

S1 = S ∪ {c1} ∪ {1}.
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In order to ensure convergence of v =
∑
biwi, and negligibility of the cross

terms in the product v∗cv, for c ∈ S or, when working modulo B, for c ∈ C
(it is enough to consider c ∈ {c1, c2, . . . }), we must choose

S2 = (S1 ∪ {c2}) ∪


(

n1∑
1

w4
k

)2
 ∪ {cb1b∗1c∗; c ∈ S1 ∪ S∗1},

where b1 is such that b∗1cb1 is close to w1φ(c)w1 for c ∈ S1, and n1 is such
that the difference (

n1∑
1

w4
k

)
b1 − b1

is small; proceeding in this way, for each i ≥ 2 we must choose

Si+1 = (Si ∪ {ci+1}) ∪


(

ni∑
1

w4
k

)2
 ∪ {cbib∗i c∗; c ∈ Si ∪ S∗i },

where bi is such that b∗i cbi is close to wiφ(c)wi for c ∈ Si, and ni is such that
the difference (

ni∑
1

w4
k

)
bi − bi

is small. By “close”, and “small”, we mean that the sum of all the tolerances
in question should be finite, and smaller than a certain single number (small
enough that the desired approximation of φ occurs on the set S).

Note that, as φ(B) = 0, the element

b∗i+1

(
ni∑
1

w4
k

)2

bi+1,

is small, i.e., (
∑ni

1 w4
k)bi+1 is small. As (

∑ni+1

1 w4
k)bi+1 − bi+1 is small (by

the choice of ni+1), also(ni+1∑
ni+1

w4
k

)
bi+1 − bi+1 is small.

In other words, with

{ni + 1, . . . , ni+1} = Ji+1,

i = 1, 2, . . . , and with, say, J1 = {1, . . . , ni}, setting
∑

j∈Ji
w4

j = z4
i (with

zi ≥ 0), we have a sequence (zi) with the desired properties (including that
z4
i bi − bi is small, in the sense of being summable).
For each i, (biwi)∗c(biwi) is close to w2

i φ(c)w2
i for c ∈ S∪{1, c1, . . . , ci}—in

the summable sense described above. The cross terms in the expression

v∗cv =
(∑

biwi

)∗
c
(∑

biwi

)
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are negligible in the sense described above by the choice of the sequence
S1, S2, . . . (to correlate with the choice of b1, b2, . . . ; cf. proof of Lemma 10).

12. In order to prove that an arbitrary extension (of a stable separable
C∗-algebra by a separable C∗-algebra) which is absorbing in the nuclear
sense is purely large, we must first establish the existence of some purely
large extension, and in fact one which is trivial in the nuclear sense—so that
we can use the absorbing hypothesis. (It follows from the other implication
of Theorem 6 that, in the unital setting, such an extension is necessarily
unique—up to equivalence.)

An extension with these properties (purely large, and trivial in the nu-
clear sense) was constructed by Kasparov in [8]—although Kasparov did not
establish these properties. (What Kasparov proved, in terms of our termi-
nology, was that his extension was absorbing in the nuclear sense.) Let us
now verify the asserted properties.

Lemma. Let A and B be separable C∗-algebras, with B stable and A unital.
There exists a purely large unital extension of B by A which is trivial in the
nuclear sense (as a unital extension).

Proof. We may suppose that both A and B are non-zero. Kasparov in [8]
considered the extension of B ⊗K(H) by A with splitting

A ↪→ 1⊗B(H) ↪→ M(B ⊗K(H)),

where A ↪→ B(H) is a faithful unital representation of A on the separable
infinite-dimensional Hilbert spaceH. Choosing such a representation π of A,
and choosing an isomorphism of B ⊗K(H) with B, we obtain an extension
of B by A—obviously trivial (but a priori depending on the choices made).
Let us denote this extension by τ0.

To show that τ0 is trivial in the nuclear sense, it is sufficient to show that
the given splitting,

A
π−→ 1⊗B(H) ↪→ M(B ⊗K(H)) ∼= M(B),

is weakly nuclear. In other words, given d ∈ B⊗K(H), it is enough to show
that the map

dπd∗ : A 3 a 7→ dπ(a)d∗ ∈ B ⊗K(H)

is nuclear, i.e., factorizes approximately through a finite-dimensional C∗-
algebra by means of completely positive maps. With (en) an approximate
unit for K(H) consisting of projections of finite rank, note that for each n
the completely positive map

(enden)π(enden)∗,

where we write en again for 1⊗en ∈ M(B⊗K(H)), factors through the finite-
dimensional C∗-algebra enK(H)en (as the composition of the completely
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positive maps e 7→ enπ(a)en ∈ enK(H)en and x 7→ (enden)x(enden)∗ ∈
B ⊗K(H)). Since en = 1⊗ en converges to 1 in M(B ⊗K(H)) in the strict
topology, in the topology of pointwise convergence

(enden)π(enden)∗ → dπd∗.

We shall prove below, in Theorem 17(iii), that a considerably more gen-
eral construction than Kasparov’s also gives rise to a purely large extension
(trivial, but not necessarily in the nuclear sense). Therefore, rather than du-
plicating this proof—or omitting it in the more general case, which includes
the interesting class of extensions considered by Lin in [10]—, we shall omit
it in the present case.

13.

Lemma. The sum of any two C∗-algebra extensions one of which is purely
large is again purely large.

Proof. Recall that, by definition, an extension is purely large when the
associated C∗-algebra is purely large, with respect to the canonical closed
two-sided ideal. Recall also, that, in this case, the canonical closed two-sided
ideal is essential—so that the C∗-algebra of the extension may be considered
as a subalgebra of the multiplier algebra of the ideal. It is sufficient to show,
then, that if B is a C∗-algebra, if C is a sub-C∗-algebra of M(B) containing
B, and if there exists a projection e in M(B) commuting with C modulo B,
such that the C∗-algebra eCe is purely large with respect to the ideal eBe,
such that if c ∈ C and ece ∈ B then c ∈ B, and such that eBe is full in B,
then the C∗-algebra C is purely large with respect to the ideal B.

With B and C (and e) as above, let c be an element of C not contained
in B, and let us show that cBc∗ contains a stable sub-C∗-algebra which is
full in B.

Since c 6∈ B, by hypothesis ece 6∈ eBe, and so (eceBec∗e)− contains a
stable sub-C∗-algebra which is full in eBe, and hence also full in B. Hence,
as

eceBec∗e ⊆ ecBc∗e,

the sub-C∗-algebra (ecBc∗e)− of B contains a stable sub-C∗-algebra which
is full in B.

While (ecBc∗e)− may not be contained in (cBc∗)−, there is a natural iso-
morphism of the C∗-algebra (ecBc∗e)− with (c∗eBec)−, which is contained
in the algebra (c∗Bc)−. Furthermore, as this isomorphism consists of the
restriction to (ecBc∗e)− of the map

B∗∗ 3 b 7→ w∗bw ∈ B∗∗,
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where w denotes the partially isometric part of ec ∈ C ⊆ B∗∗, and its inverse
is the restriction to (c∗eBec)− of the map

B∗∗ 3 b 7→ wbw∗ ∈ B∗∗,

the subalgebras (ecBc∗e)− and (c∗eBec)− of B generate the same closed
two-sided ideal. This shows that (c∗Bc)− contains a stable sub-C∗-algebra
which is full in B. It follows by a similar argument (or just by replacing c
by c∗) that (cBc∗)− does, too.

14.

Lemma. Any C∗-algebra extension equivalent to a purely large one is purely
large.

Proof. The property in question is, by definition, a property of the C∗-
algebra of the extension, together with the distinguished ideal, not of the
extension itself. Equivalence of extensions preserves the isomorphism class
of the associated C∗-algebra, with its canonical ideal.

15. Proof of Theorem 6. Let τ be a unital extension of B by A. (We
shall identify τ with its Busby map A→ M(B)/B.)

Suppose that τ is purely large, and let us show that τ is absorbing in the
nuclear sense.

Given a unital extension τ ′ of B by A which is trivial in the nuclear sense,
i.e., which has a unital weakly nuclear splitting, we must show that

τ ∼ τ ⊕ τ ′,

i.e., that τ and τ ⊕ τ ′, considered as maps from A to M(B)/B, are unitarily
equivalent, by means of the image in M(B)/B of a unitary element of M(B).

As in the case of earlier absorption theorems, it is sufficient to prove (for
arbitrary τ ′ as above) that

τ ∼ σ ⊕ τ ′

for some unital extension σ, not necessarily equal to τ . Indeed, as in [2]
(which systematizes [13], and is the model for later absorption proofs, in-
cluding the present one)—see also below—one may construct a trivial ex-
tension τ ′′—trivial also in the nuclear sense, and as a unital extension—such
that

τ ′′ ⊕ τ ′ ∼ τ ′′.

Hence, with σ such that

τ ∼ σ ⊕ τ ′′,
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it follows that

τ ⊕ τ ′ ∼ (σ ⊕ τ ′′)⊕ τ ′

∼ σ ⊕ (τ ′′ ⊕ τ ′)
∼ σ ⊕ τ ′′

∼ τ.

A unital extension τ ′′ such that τ ′′ ⊕ τ ′ ∼ τ ′′, which is trivial in the
nuclear sense—as a unital extension—, is obtained by forming the infinite
multiplicity sum (π′)∞ of a unital weakly nuclear splitting π′ of τ ′ (cf. [2]).
This is defined first as just the map

π′ ⊕ 1 : A → M(B ⊗K)

a 7→ π′(a)⊗ 1.

This map then is transformed into a (unital) map

π′′ : A → M(B)

by identifying B with B⊗ e11 ⊆ B⊗K, and then transforming B⊗ e11 onto
B ⊗K by means of an isometry in M(B ⊗K), which we shall denote by s2,
such that s2s∗2 = 1⊗e11. (Such an isometry exists because B is stable; more
explicitly, with B = B0 ⊗K, we may choose s2 = 1⊗ t2 ∈ M(B0 ⊗ (K⊗K))
where t2 is an isometry in M(K⊗K) with range 1⊗e11.) Choose an isometry
t1 in M(K) with range 1−e11, and set 1⊗ t1 = s1. The (desired) equivalence

π′′ ⊕ π′ ∼ π′′

(unitary equivalence of maps from A to M(B)) then reduces (by transfor-
mation by s2) to the equivalence

(π′ ⊗ 1)⊕ s∗2(π′ ⊗ e11)s2 ∼ π′ ⊗ 1

(unitary equivalence of maps from A to M(B ⊗K)), which may be seen by
using the Cuntz isometries s1 and s2 to compute the left-hand side:

s1(π′ ⊗ 1)s∗1 + s2(s∗2(π
′ ⊗ e11)s2)s∗2 = π′ ⊗ (1− e11) + π′ ⊗ e11

= π′ ⊗ 1.

With τ ′′ the unital extension with splitting π′′, we then have τ ′′ ⊕ τ ′ ∼ τ ′′;
it remains only to note that τ ′′ is trivial in the nuclear sense, as π′ ⊗ 1 and
hence π′′ are weakly nuclear.

To show that τ ∼ σ⊕ τ ′, for some unital extension σ, with τ ′ as given—a
unital extension with a weakly nuclear unital splitting—we shall in fact not
use that this splitting is a C∗-algebra homomorphism, but only that it is
completely positive (and unital, and weakly nuclear, in the sense described
for a homomorphism).
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Since the C∗-algebra, C, of the extension τ is purely large with respect to
the closed two-sided ideal B (canonically contained in it), in particular B is
essential, and so we may write

B ⊆ C ⊆ M(B),

and aim to apply Lemma 11 to the completely positive map φ : C → M(B)
obtained by composing the canonical quotient map from C to A with a
weakly nuclear, unital, completely positive map from A to M(B) lifting τ ′.
(Note that the existence of such a map is clearly equivalent to the existence
of a splitting map with these properties from A to the C∗-algebra of the
extension τ ′, namely, the pullback of A and its preimage in M(B).)

In order to apply Lemma 11, we must verify that for every b0 ∈ B, the
map

b∗0φb0 : C 3 c 7→ b∗0φ(c)b0 ∈ B
can be approximated by the maps

c 7→ b∗cb, b ∈ B.
Fix b0 ∈ B, and set b∗0φb0 = ψ. Since, by construction, the map ψ from C
to B is zero on B, and the associated map from C/B to B is nuclear, the
approximibility of ψ by maps c 7→ b∗cb with b ∈ B is ensured by Lemma 10.

By Lemma 11, there exists v ∈ M(B) such that

φ(c)− v∗cv ∈ B, c ∈ C,
and such that also v∗cv is close to φ(c) for c belonging to any given finite
set, and in particular for c = 1. As φ is unital, v∗v is close to 1, and equal to
1 modulo B. Hence, replacing v by v(v∗v)−

1
2 , we may suppose that v∗v = 1.

The first property of v may be rewritten as

τ ′ = v∗τv

(i.e., τ ′(a) = v∗τ(a)v, a ∈ A, where v denotes the image of v ∈ M(B) in
M(B)/B).

Since τ ′ is multiplicative this in particular implies that the projection
vv∗ ∈ M(B)/B commutes with τ(A). (As v is an isometry, also vτ ′v∗ is
multiplicative, and therefore also (vv∗)τ(vv∗); with vv∗ = e we then have
eτ(a∗)τ(a)e = eτ(a∗a)e = eτ(a∗)eτ(a)e, whence eτ(a∗)(1 − e)τ(a)e = 0,
i.e., (1 − e)τ(a)e = 0; since a is arbitrary, also (1 − e)τ(a∗)e = 0, and so
τ(a)e = eτ(a).)

Since Brown-Douglas-Fillmore addition of (equivalence classes of) exten-
sions is independent of the choice of the unital copy of O2 in M(B) (cf.
above), to show that

τ ∼ σ ⊕ τ ′

it would be sufficient to know that the projection 1 − vv∗ is Murray-von
Neumann equivalent to 1 in M(B). Indeed, with s1 an isometry with range
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1− vv∗, and s2 = v,

τ = (1− vv∗)τ + vv∗τ

= (1− vv∗)τ(1− vv∗) + vv∗τvv∗

= s1s
∗
1τs1s

∗
1 + s2s

∗
2τs2s

∗
2

= s1σs
∗
1 + s2τ

′s∗2

= σ ⊕ τ ′

where σ = s∗1τs1 (recall that τ ′ = v∗τv).
Instead of showing directly that it is possible to choose v above with

1 − vv∗ equivalent to 1, let us choose v with respect to τ ′ ⊕ τ ′ instead of
τ ′—and call this w. (Note that τ ′⊕τ ′ has a unital weakly nuclear completely
positive splitting if τ ′ does.) Then

τ = (1− ww∗)τ + ww∗τ

= (1− ww∗)τ + e1τ + e2τ,

where e1 and e2 are projections equivalent to 1 with e1 + e2 = ww∗, com-
muting with τ(A) modulo B, and e2τ is equivalent (by means of an isometry
with range e2) to τ ′. Provided we show that also (1−ww∗)+e1 is equivalent
to 1, this says that τ = σ ⊕ τ ′.

Let us show, then, using that B is stable, that if e is a projection in
M(B) equivalent to 1, and f is any projection orthogonal to e, then e + f
is equivalent to 1. We shall deduce this from the well known fact that
M(K), and hence M(B), contains an infinite sequence of mutually orthogonal
projections, say e1, e2, . . . , equivalent to 1 and with sum 1 (in the strict
topology). It follows that any sequence of projections (fi) in M(B) with
fi ≤ ei also has convergent sum. Clearly, the projection e2 + e3 + · · · is
equivalent to e1 + e2 + · · · = 1. If f1 is any subprojection of e1, choose
a subprojection fi of ei for i ≥ 2 equivalent to f1, and note that, also,
f1 + f2 + · · · is equivalent to f2 + f3 + · · · . Therefore, by additivity of
equivalence, on adding the single projection (e2 − f2) + (e3 − f3) + · · · to
both of these projections we obtain that f1 + e2 + e3 + · · · is equivalent to
e2 + e3 + · · · , as desired.

(The preceding considerations are superfluous in the case B = K, consid-
ered in [13] and [2].)

Now assume that τ is absorbing, in the nuclear sense, and let us show
that τ is purely large.

By Lemma 12, there exists a purely large unital extension τ0 of B by A
which is trivial in the nuclear sense. By hypothesis,

τ ∼ τ ⊕ τ0.
By Lemma 13, τ ⊕ τ0 is purely large. Hence by Lemma 14, τ is purely large,
as desired.
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16. It follows immediately from Theorem 6 that, if one considers the
non-unital setting (i.e., extensions which are not necessarily unital, or with
a non-unital quotient), then one has the following criterion for an extension
τ of a stable separable C∗-algebra B by a separable C∗-algebra A to be
absorbing in the nuclear sense:

The unital extension τ̃ of B by Ã, the C∗-algebra A with unit adjoined
(i.e., a new unit if A is already unital), naturally corresponding to τ (with
Busby map extending that of τ), should be purely large.

(To see this, note that by Theorem 6, the preceding condition is equiva-
lent to the condition that τ̃ be absorbing in the nuclear sense, as a unital
extension. This, on the other hand, is equivalent to the condition that τ be
absorbing in the nuclear sense (in the non-unital setting): the extensions of
B by A which are trivial in the nuclear sense are in bijective correspondence
with the unital extensions of B by Ã which are trivial in the nuclear sense,
in the unital setting, by the map σ 7→ σ̃. Finally it is clear that τ + σ ∼ τ
if, and only if, τ̃ + σ̃ ∼ τ̃ .)

Let us note that, for the extension τ̃ of B by Ã to be purely large, it is
necessary and sufficient for τ itself to be purely large, and non-unital. (If C
is purely large with respect to B, and non-unital, we must show that also
C̃ is purely large with respect to B. (Clearly, if C̃ is purely large then C
is purely large and non-unital.) In other words, we must show that for any
c ∈ C, ((1 + c)B(1 + c)∗)− contains a full stable sub-C∗-algebra of B. If
(1 + c)C ⊆ B, then the image of −c in M(B)/B is a unit for the image of
C in M(B)/B; hence, the image of C in M(B) contains 1 ∈ M(B); as τ is
essential the map C → M(B) is injective, and hence C is unital, contrary
to hypothesis. This shows that there exists c′ ∈ C with (1 + c)c′ not in B.
Hence, the subalgebra

((1 + c)c′B((1 + c)c′)∗)− ⊆ ((1 + c)B(1 + c)∗)−

contains a stable sub-C∗-algebra which is full in B.) (As a consequence,
Corollary 9 and Lemma 10 hold also in the non-unital case—but we will not
use this.)

Let us summarize:

Corollary. Let B be a stable separable C∗-algebra, and let A be a separable
C∗-algebra. Let τ be an extension of B by A.

The extension τ is absorbing, in the nuclear sense, if and only if τ is
purely large and non-unital.

In particular, if A is non-unital (i.e., does not have a unit element), then
τ is absorbing if and only if τ is purely large.

17. Let us now show directly that those extensions previously known
to be absorbing (in the nuclear sense) are purely large. (We refer to the
absorption theorems of [3], [13], [11], [8], [9], and [10].)
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On the one hand, this yields a new proof—via Theorem 6—of the ab-
sorption property. On the other hand, as pointed out in Section 12, the
proof that an arbitrary extension which is absorbing in the nuclear sense is
purely large depends on first knowing the existence of at least one purely
large extension—which is also trivial in the nuclear sense. This is proved in
Lemma 12, using Theorem 17(iii) below.

Concerning the notion of absorbing extension, note that if an extension is
absorbing in the sense that it absorbs every trivial extension (in the class of
unital extensions, say), then it is certainly absorbing in the nuclear sense; on
the other hand, so far the only known examples of true absorbing extensions
are in the case that either the ideal or the quotient is nuclear, so that the
true sense and the nuclear sense coincide (every trivial extension is trivial
in the nuclear sense).

Theorem. Let A and B be separable C∗-algebras, with B stable. Let τ be
a C∗-algebra extension of B by A. Suppose that τ is essential (i.e., that
the Busby map A → M(B)/B is injective; see Section 2). In each of the
following cases, τ is purely large (in the sense of Section 2).

(i) B = K. (Cf. [3], [13].)
(i)′ B = C0(X)⊗K where X is a finite-dimensional locally compact Haus-

dorff space, and the map from A to the canonical quotient M(K)/K of
M(B)/B corresponding to each point of X is injective (in other words,
τ is homogeneous in the sense introduced for such a B in [11]). (Cf.
[11].) (In [11], X is restricted to be compact.)

(ii) B is simple and purely infinite. (Cf. [9].)
(iii) τ is trivial, with a splitting

π : A→ 1⊗M(B1) ↪→ M(B0 ⊗B1) = M(B)

for some tensor product decomposition B = B0 ⊗ B1, with B0 stable,
such that, for any non-zero a ∈ A, the closed two-sided ideal of B1

generated by π(a)B1 is equal to B1. (This last property is automatic
if B1 is simple—for instance, as in [10], or as in the case B1 = K
considered in [8] and in Lemma 12 above. It is also automatic if A is
simple and π(A)B1 is dense in B1—as considered also in [10].)

Proof. As in the proof of Theorem 6, since the map A→ M(B)/B is injec-
tive, we may suppose that the C∗-algebra of the extension is a subalgebra
of M(B).

Ad (i). For any c ∈ M(K) which is not in K, the hereditary sub-C∗-
algebra (cKc∗)− of K is infinite-dimensional and hence, as it is equal to
eKe for some projection e ∈ M(K) (M(K) being the bidual of K), it is
isomorphic to K and in particular is stable and full.
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Ad (i)′. By hypothesis, for any c ∈ M(B) belonging to the C∗-algebra of
the extension, but not to B, the hereditary sub-C∗-algebra (cBc∗)− of B is
full. (This is a simple reformulation of the hypothesis of homogeneity.)

Let us show, that for any such c the C∗-algebra (cBc∗)− is stable. By
hypothesis, for each point of X, not only is the image of (cBc∗)− in the
quotient K of B at this point non-zero, but (since the C∗-algebra of the
extension contains B, and this property holds with c replaced by c + b for
any b ∈ B) also this image is stable.

Let us show that, more generally, any hereditary sub-C∗-algebra of B the
image of which in each primitive quotient of B is stable (possibly equal to
zero) is itself stable. Here, B is still as above. Let D be such a hereditary
sub-C∗-algebra of B. Note that D is a C∗-algebra with continuous trace—as
B has continuous trace, and this property is preserved (as is easily seen)
under passage to a hereditary sub-C∗-algebra. By Theorem 10.9.5 of [5],
D is determined up to isomorphism, among the class of all separable C∗-
algebras with continuous trace, with all primitive quotients equal to K and
with the same spectrum as D (note that this space has finite dimension),
by its Dixmier-Douady invariant. By inspection of the construction of this
invariant (see 10.7.14 of [5]), one sees that it is unchanged by tensoring by
K. It follows that D is isomorphic to D ⊗K, as desired.

Ad (ii). For any c ∈ M(B) which is not in B, the hereditary sub-C∗-
algebra (cBc∗)− of B is non-zero and therefore (by the definition of purely
infinite simple C∗-algebra that we shall use) contains an infinite projection.
In other words, (cBc∗)− contains a partial isometry v such that vv∗ < v∗v.
The partial isometries vn(v∗v − vv∗), n = 1, 2, . . . , generate a sub-C∗-
algebra of (cBc∗)− isomorphic to K, full in B as B is simple.

(In fact, in the present case, as (cBc∗)− cannot be unital, by [14] this
algebra itself is stable.)

Ad (iii). Recall that, as shown by Hjelmborg and Rørdam in [7], using
the criterion for stability that they established, as B is separable and stable
the hereditary sub-C∗-algebra ((1 + b)B(1 + b)∗)− is stable for any b ∈ B.

Let us begin by noting that a similar, but rather simpler, argument shows
that, also, the hereditary sub-C∗-algebra ((1 + b)B(1 + b)∗)− is full in B for
each b ∈ B. (We are indebted to M. Rørdam for this argument.) With (un)
a sequence of unitary elements of M(B) such that

b1unb2 → 0 for all b1, b2 ∈ B,

as exists by [7] if B is stable (un may be chosen to be 1⊗ vn with (vn) such
a sequence in M(K), in particular a sequence of unitaries corresponding to
finite permutations of an orthonormal basis), one has for each fixed b ∈ B,

un(1 + b)u∗n → 1 strictly in M(B).
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Hence, for each b′ ∈ B,

(un(1 + b)u∗n)b′(un(1 + b)u∗n)∗ → b′.

This shows in particular that the closed two-sided ideal generated by (1 +
b)B(1 + b)∗ is dense in B, i.e., ((1 + b)B(1 + b)∗)− is full in B, as asserted.

Now let us show that for any element c of C, the C∗-algebra of the exten-
sion, not contained in B, the C∗-algebra (cBc∗)− contains a stable sub-C∗-
algebra which is full in B. We shall base our argument on the case c = 1+b,
considered above.

The special nature of the present setting may be expressed as follows:
In a certain decomposition of B as B1 ⊗ K, with B1 stable (and hence

isomorphic to B), the given element c ∈ M(B) is decomposed as c1+b where
c1 ∈ 1⊗M(K) and b ∈ B1 ⊗K.

This may then be exploited as follows:
Write B1 as B2 ⊗K, so that c = c1 + b with

c1 ∈ 1⊗ 1⊗M(K) ⊆ M(B2 ⊗K ⊗K)

and b ∈ B2⊗K⊗K. As in [7] (see also above), choose a sequence of unitaries
(un) in M(B2 ⊗K ⊗K) with

b1unb2 → 0 for all b1, b2 ∈ B2 ⊗K ⊗K,

such that, in addition,

un = 1⊗ vn ⊗ 1 with vn ∈ M(K).

Then, as c1 ∈ 1⊗ 1⊗M(K),

unc1u
∗
n = c1.

Hence (cf. above),

uncu
∗
n → c1 strictly in M(B2 ⊗K ⊗K) = M(B).

(This holds as c = c1 + b with unc1u
∗
n = c1 and unbu

∗
n → 0 strictly.)

Note also that (c1bc∗1)
− is stable, and full in B, as c1 ∈ 1 ⊗ M(K) ⊆

M(B1 ⊗K) = M(B) and c1 6∈ B. (See proof of Case (i).)
Let us first show that (cBc∗)− is full in B—this is the simpler step. Since

(uncu
∗
n)b′(uncu

∗
n)∗ → c1b

′c∗1 for all b′ ∈ B,

the closed two-sided ideal of B generated by cBc∗ contains (c1Bc∗1)
−, and

hence is equal to B, as desired.
We are unable to prove that (cBc∗)− is stable, for arbitrary c as above,

i.e., for c equal to c1 + b, with c1 fixed as above, and b arbitrary in B.
Nevertheless, we shall show that, for arbitrary such c, the algebra (cBc∗)−

contains a stable sub-C∗-algebra which is full in B, which is all that is
required. (The subalgebra will be constructed to be (c′Bc′∗)− for some
c′ ∈ C \B; such a subalgebra is full in B by the preceding paragraph.)
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Note that for any x ∈ M(B) the sub-C∗-algebra (xBx∗)− is equal to
(xx∗Bxx∗)−, so that the problem reduces to considering the case that c is
positive—and dividing by B we see that c1 is then positive, too. Of course,
we may also suppose that c and c1 have norm at most one.

Now, set c
1
2 c1c

1
2 = c′ and c

1
2
1 cc

1
2
1 = c′′, and note that, first,

0 ≤ c′ ≤ c, 0 ≤ c′′ ≤ c1,

so that
(c′Bc′)− ⊆ (cBc)−, (c′′Bc′′)− ⊆ (c1Bc1)−,

and, second, the hereditary sub-C∗-algebras (c′Bc′)− and (c′′Bc′′)− are iso-
morphic. (As shown in the proof of Lemma 13, (xBx∗)− is isomorphic to

(x∗Bx)− for any x ∈ M(B), and applying this with x = c
1
2
1 c

1
2 yields

(c′Bc′)− = (xBx∗)− ∼= (x∗Bx)− = (c′′Bc′′)−,

as asserted.)
It now suffices, to complete the proof, to show that (c′′bc′′)− is stable—as

then (c′Bc′)− is a stable sub-C∗-algebra of (cBc)−, full in B by the first part
of the proof.

To simplify notation, let us assume that already c ≤ c1, and let us show
that, at least in this case, (cBc)− is stable. We shall essentially repeat the
proof of Corollary 4.3 of [7].

Recall that b1unb2 → 0 for all b1, b2 ∈ B. Let us verify the criterion (b)
of Proposition 2.2 of [7], shown in Proposition 2.2 and Theorem 2.1 of [7]
to be equivalent to stability for a C∗-algebra with countable approximate
unit (in particular, for a separable C∗-algebra), with (cBc)− in place of A.
Fix 0 ≤ a ∈ (cBc)−. Since (cBc)− ⊆ (c1Bc1)−, there exists a continuous
function (a root) d1 of c1 such that d1a is arbitrarily close to a. Since
c = c1 + b, also d − d1 ∈ B where d is the corresponding function of c.
Therefore, for large n, duna

1
2 is arbitrarily close to d1una

1
2 = und1a

1
2 and

hence also to una
1
2 . Since

(una
1
2 )∗(una

1
2 ) = a,

with an = duna
1
2 ∈ (cBc)− we have that, if n is sufficiently large, the element

a∗nan is close to a, and the product of equivalent elements

(a∗nan)(ana
∗
n) = a∗n(duna

1
2duna

1
2 )an

is close to zero (as a
1
2duna

1
2 → 0), as required in the criterion 2.2(b) of

Hjelmborg and Rørdam.

18. Questions. A number of questions arise naturally in connection
with the notion of purely large extension.
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For instance, is the obvious stronger form of the property that an exten-
sion is purely large in fact the same thing? In other words, if the C∗-algebra
C is purely large with respect to the closed two-sided ideal B, i.e., if (cBc∗)−

always contains a stable sub-C∗-algebra which is full in B for any c ∈ C not
in B, must the subalgebra (cBc∗)− always be stable itself (for such c)?

Again, is it possible to characterize when an extension is purely large
in terms of the image of the Busby map in the corona of B, the quotient
M(B)/B? (Remembering also that the extension is essential—equivalently,
that the Busby map is injective.) Of course, this must mean by some intrin-
sic property of the image, which makes sense more generally—perhaps in
an arbitrary C∗-algebra. (As the image of the Busby map in the corona—if
this is given as the corona—is already enough to reconstruct the C∗-algebra
associated with an essential extension—which by definition contains suffi-
cient information to determine whether the extension is purely large.) For
instance, is it sufficient that every non-zero element of the image be full (i.e.,
not contained in any proper closed two-sided ideal)? This condition is at
least necessary—at least in the separable case—as can be seen by Theorem 6,
together with the (obvious) fact that Kasparov’s extension (17(iii) above)
satisfies this condition—and, as shown in Lemma 12, is trivial in the nuclear
sense (and so, by Theorem 6, is absorbed by a purely large extension).

Note that as (by Theorem 17(iii)) Kasparov’s extension is also absorbing
in the nuclear sense, an extension of one separable C∗-algebra by another is
purely large—equivalently, absorbing in the nuclear sense—precisely when it
absorbs Kasparov’s extension. One might ask whether this characterization
of purely large extensions can be extended to the non-separable case. The
difficulty with this is that Kasparov’s extension, being based on an extension
of K, does not exist if the quotient has too large a cardinality. On the other
hand, the characterization of purely large extensions simply as those which
are absorbing in the nuclear sense (either among unital extensions, if the
extension is unital, or among all extensions if it is not unital—Theorem 6
and Corollary 16), although it is proved using Kasparov’s extension, makes
sense and could conceivably still hold in the non-separable case.

One thing the notion of purely large extension—or, more precisely, the no-
tion of extension which is absorbing in the nuclear sense (cf. Theorem 6 and
Corollary 16)—makes possible is a generalization of Kasparov’s semigroup
description of Ext(A,B) in the setting of nuclear (separable) C∗-algebras.
Namely, for arbitrary (separable) C∗-algebras A and B, with B stable, the
extensions of B by A which are absorbing in the nuclear sense form, as we
have shown, a semigroup with zero element. The invertible elements of this
semigroup are seen—on using Kasparov’s Stinespring Theorem, [8]—to be
precisely the weakly nuclear extensions which are absorbing in the nuclear
sense.
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Here, by a weakly nuclear extension of B by A we mean an extension for
which the Busby mapA→ M(B)/B lifts to a completely positive contraction
A → M(B) which is weakly nuclear, in the sense described in Section 5 for
homomorphisms. (Recall that if A is exact, then by Corollary 5.11 of [9], any
weakly nuclear map with domain A is nuclear.) One should note that the
proof of Kasparov’s Stinespring theorem preserves weak nuclearity: a weakly
nuclear completely positive map dilates to a weakly nuclear homomorphism.
The group of invertible elements of this semigroup with zero (the semigroup
of absorbing extensions in the nuclear sense, i.e., those extensions absorbing
every trivial extension with a weakly nuclear splitting) therefore maps into
the group, which we shall denote by Extnuc(A,B), of all Brown-Douglas-
Fillmore equivalence classes of weakly nuclear extensions of B by A, modulo
extensions trivial in the nuclear sense. Since Kasparov’s extension is weakly
nuclear, and, what is more, trivial in the nuclear sense, and so zero in
Extnuc(A,B), and since the sum of this with any extension is absorbing
in the nuclear sense, this mapping is onto Extnuc(A,B). Since any two
extensions which are both absorbing and trivial in the nuclear sense are
equivalent, this map is injective, and therefore an isomorphism.

It is interesting to consider whether the group Extnuc(A,B) defined above
—and realized as a subset of the Brown-Douglas-Fillmore semigroup—is iso-
morphic in the natural way to the group KKnuc(A,B) defined by Skandalis
in [12]. (With the appropriate dimension shift.) This amounts to the fol-
lowing, perhaps surprising, question:

As pointed out above, any extension which is trivial in the nuclear sense—
i.e., has a weakly nuclear splitting—is weakly nuclear. Is every weakly nu-
clear trivial extension trivial in the nuclear sense?
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