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In this paper we consider the problem of deformation quan-
tization of the algebra of polynomial functions on coadjoint
orbits of semisimple Lie groups. The deformation of an orbit
is realized by taking the quotient of the universal enveloping
algebra of the Lie algebra of the given Lie group, by a suitable
ideal. A comparison with geometric quantization in the case
of SU(2) is done, where both methods agree.

1. Introduction.

A system in classical mechanics is given by a symplectic manifold X which
we call phase space and a function on X, H, which we call Hamiltonian.
The points in X represent possible states of the system, the commutative
algebra C∞(X) is the set of classical observables, corresponding to possible
measurements on the system, and the integral curves of the Hamiltonian
vector field XH represent the time evolution of the classical system.

A quantization of the classical system X has three ingredients [Be]:
1. A family of noncommutative complex algebras Ah depending on a real
parameter h, which we will identify with Planck’s constant, satisfying

Ah 7→ A = C∞(X)C when h 7→ 0,

or a suitable subalgebra of C∞(X)C determined by physical requirements,
but enough to separate the points of X. C∞(X)C denotes the complexifi-
cation of C∞(X).
2. A family of linear maps Qh : A 7→ Ah, called the quantization maps
satisfying

Qh(F ) ∗h Qh(G)−Qh(G) ∗h Qh(F )
h

7→ {F,G} when h 7→ 0,

where {, } is the Poisson bracket in A (extended by linearity).
3. A representation of Ah on a Hilbert space HX , R : Ah 7→ End(HX).
The real functions in Ah (belonging to C∞(X)) are mapped into hermitian
operators.

411

http://pjm.math.berkeley.edu/pjm
http://dx.doi.org/10.2140/pjm.2001.198-2


412 R. FIORESI AND M.A. LLEDÓ

The elements of Ah are the quantum observables and the rays in HX are
the states of the quantum system. Not every possible realization of Ah on a
Hilbert spaceHX satisfies the physical requirements for the quantum system,
since the set of rays of HX should be in one to one correspondence with the
quantum physical states. So further requirements should be imposed on
HX .

A first step to find a quantization of a physical system is the construc-
tion of a formal deformation of the Poisson algebra classical observables
[BFFLS]. In general, formal deformations do not present a closed solution
to the quantization problem. One needs to see if it is possible to specialize
the deformation to an interval of values of the formal parameter h (includ-
ing 0, so the limit h 7→ 0 is smooth), besides constructing the Hilbert space
where this algebra is represented. Nevertheless having a formal deformation
is a powerful technical tool in the process of quantization.

A first approach to this problem appears in [Be]. Berezin explicitly com-
putes ∗-products for Kähler manifolds that are homogeneous spaces. His
approach provides an explicit integral formula for a ∗-product where h is a
real number. In [RCG] a geometric construction of Berezin’s quantization
is performed.

Later De Wilde and Lecomte [DL] and Fedosov [Fe] separately, con-
structed and classified formal ∗-products on generic symplectic manifolds.
Etingof and Kazhdan [EK] proved the existence of a formal deformation for
another class of Poisson manifolds, the Poisson-Lie groups. Finally, Kont-
sevich [Ko] proved the existence of an essentially unique formal ∗-product
on general Poisson manifolds.

More recently Reshetekhin and Taktajan [RT], starting from Berezin’s
construction, were able to give an explicit integral formula for the formal
∗-product on Kähler manifolds.

It is our purpose to study the deformation quantization of coadjoint orbits
of semisimple Lie groups. In [ALM] it has been proven that a covariant ∗-
product exists on the orbits of the coadjoint orbit that admit a polarization.
We will consider the algebra of polynomials on coadjoint orbits. In the above
mentioned works ∗-products are given on C∞ functions, however there is no
guarantee that there is a subalgebra of functions that is closed under it.
Instead, we will obtain both a formal deformation and a deformation for
any real value of h for the subalgebra of polynomial functions.

In [Ko] Kontsevich briefly describes the algebra of polynomials over the
dual of the Lie algebra (a Poisson manifold) as a special case of his general
formula for ∗-product on Poisson manifolds (this special case was known
long before [Gu]). He does not however consider the restriction of those
polynomials to a coadjoint orbit submanifold and, as he points out later, the
knowledge of ∗-product on a certain domain is far from giving knowledge
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of ∗-product on subdomains of it. The formulation of a star product on
some coadjoint orbits using this deformation of the polynomial algebra was
investigated in the series of works [CG], [ACG] and [Ho] (and references
inside).

Our approach starts also from the fact that the universal enveloping al-
gebra of a complex semisimple Lie algebra is the deformation quantization
of the polynomial algebra on the dual Lie algebra. By quotienting by a
suitable ideal we get a deformation quantization of the polynomial algebra
on a regular coadjoint orbit. Using some known facts on real and complex
orbits this gives us a deformation quantization on the regular orbits of com-
pact semisimple Lie groups. No selection of ordering rule is needed for the
proof, which means that we obtain a whole class of star products on the
orbit. A proof of the analiticity of the deformation in the deformation pa-
rameter is provided here, and the convergence of the deformed product for
polynomials on the orbit is obtained. More general cases, as regular orbits of
non-compact Lie groups, involve some subtleties that are partially explored
in Section 2. Further developments will be given in a subsequent paper.
Also, the extension of the proof to non-regular (although still semisimple)
orbits is non-trivial.

Our construction has the advantage that it is given in a coordinate in-
dependent way. Also the symmetries and its possible representations are
better studied in this framework. The formal deformation is realized using
a true deformation of the polynomials on the complex orbit. We obtain
the deformation quantization as a non-commutative algebra depending on
a formal parameter h containing a subalgebra in which h can be specialized
to any real value.

Geometric quantization is another approach to the problem. The ele-
ments of the quantum system are constructed using the geometric elements
of the classical system. (For an introduction to geometric quantization, see
for example [Pu] and references inside.) In the case when the phase space
is R2n, a comparison between both procedures, deformation and geometric
quantization has been established [GV]. Less trivial systems, as coadjoint
orbits, have been the subject of geometric quantization. The guiding prin-
ciple is the preservation of the symmetries of the classical system after the
quantization. The idea of finding a unitary representation of the symmetry
group naturally attached to the coadjoint orbit is known as the Kirillov-
Kostant orbit principle. The action of the group on the Hilbert space of the
representation should be induced by the action of the group on the phase
space as symplectomorphisms. The algebra of classical observables should
be substituted by a non-commutative algebra and the group should act also
naturally by conjugation on this algebra.
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The procedure we used in constructing the formal deformation, that is
assigning an ideal in the enveloping algebra to the coadjoint orbit, makes the
comparison with geometric quantization easier. In Section 4 we show that in
the special case of SU(2) there is an isomorphism between our deformation
quantization and the algebra of twisted differential operators that appears
in geometric quantization.

The organization of the paper is as follows. In Section 2 we make a review
of the algebraic properties of the coadjoint orbits on which our method of
deformation is based. In Section 3 we prove the existence of the deformation
and describe it explicitly in terms of a quotient of the enveloping algebra by
an ideal. In Section 4 we make a comparison of our results with the results
of geometric quantization for a particularly simple case, the coadjoint orbits
of SU(2).

2. Algebraic Structure of Coadjoint Orbits of Semisimple Lie
Groups.

Let GR be a real Lie group and GR its Lie algebra. The coadjoint action of
GR on GR

∗ is given by

〈Ad∗(g)λ, Y 〉 = 〈λ, Ad(g−1)Y 〉 ∀ g ∈ GR, λ ∈ GR
∗, Y ∈ GR.

We will denote by CGR
(λ) (or simply Cλ if GR can be suppressed without

confusion) the orbit of the point λ ∈ GR
∗ under the coadjoint action of GR.

Consider now the algebra of C∞ functions on GR
∗, C∞(GR

∗). We can
turn it into a Poisson algebra with the so called Lie-Poisson structure

{f1, f2}(λ) = 〈[(df1)λ, (df2)λ], λ〉, f1, f2 ∈ C∞(GR
∗), λ ∈ GR

∗.

If f ∈ C∞(GR
∗), (df)λ is a map from GR

∗ to R, so it can be regarded as
an element of GR and [ , ] is the Lie bracket in GR. By writing the Poisson
bracket in linear coordinates, it is clear that R[GR

∗], the ring of polynomials
on GR

∗, is closed under the Poisson bracket.
The Hamiltonian vector fields define an integrable distribution on GR

∗

whose integral manifolds (the symplectic leaves) are precisely the orbits of
the coadjoint action. So all the coadjoint orbits are symplectic manifolds
with the symplectic structure inherited from the Poisson structure on GR

∗.

Let G be a connected complex, semisimple Lie group and G its Lie algebra.
We wish to describe the coadjoint orbits of different real forms of G. We
can identify G and G∗ by means of the Cartan-Killing form, so we will work
with the adjoint action instead. We denote by GR an arbitrary real form of
G, and GR its Lie algebra.

We start with the adjoint orbits of the complex group G itself. Let
Zs ∈ GR ⊂ G be a semisimple element. The orbit of Zs in G under G
will be denoted by CG(Zs). It is well known that this orbit is a smooth
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complex algebraic variety defined over R [Bo]. That means that the real
form of CG(Zs), CG(Zs)(R) = CG(Zs)∩GR is a real algebraic variety. If GR

is compact, CG(Zs)(R) coincides with the real orbit CGR
(Zs). In general

CG(Zs)(R) is the union of several real orbits CGR
(Xi), i ∈ I for some finite

set of indices I [Va2]. Hence the real orbits are not always algebraic vari-
eties. We will give one of such examples later. Still, the algebraic structure
of the closely related manifold CG(Zs)(R) will be useful for the quantization.

The algebra that we want to deform is the polynomial ring on the complex
orbit. When CG(Zs)(R) consists of one real orbit, the complex polynomial
ring is the complexification of the polynomial ring on the real orbit. In this
case, giving a formal deformation defined over R of the polynomial ring of
the complex orbit is completely equivalent to give a formal deformation of
the polynomial ring of the real orbit.

In general I will have many elements. One can always consider the alge-
bra of polynomials on CG(Zs)(R) and restrict it to each of the connected
components. The ∗-product we obtain can also be defined on the algebra
of restricted polynomials without ambiguity, so we have a deformation of
certain algebra of functions on the real orbit. Interesting subalgebras of the
restricted polynomials that still separate the points of the real orbit could
be found, being also closed under the ∗-product. We will see such kind of
construction in an example.

We summarize now the classification of real coadjoint orbits [Va2], [Vo].
The easiest situation is when GR is a compact group. In this case the orbits
are real algebraic varieties defined by the polynomials on G, invariant with
respect to the coadjoint action. These invariant polynomials (or Casimir
polynomials) are in one to one correspondence with polynomials on the
Cartan subalgebra that are invariant under the Weyl group. So every point
in a Weyl chamber determines a value of the invariant polynomials, and
hence, an adjoint orbit.

The general case is a refinement of this particular one. We will consider
only orbits that contain a semisimple element Zs ∈ GR. There are two special
cases: The elliptic orbits, when the minimal polynomial of the element Ze

has only purely imaginary eigenvalues, and the hyperbolic orbits, when the
minimal polynomial of Zh has only real eigenvalues. The general case Zs =
Zh + Ze can be understood in terms of the special cases.

Let us denote by U a compact real form of G and U its Lie algebra, while
G0 and G0 denote a non-compact form and its Lie algebra. The involution θ :
G0 7→ G0 induces the Cartan decomposition G0 = L0 +P0, and U = L0 +iP0.
K is a maximal compact subgroup of G0 with Lie algebra L0. We denote
by HP0 the maximal abelian subalgebra of P0 and by HL0 a CSA of L0.
W (G0,HL0) and W (G0,HP0) will denote the Weyl groups corresponding to
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the root systems of K (W (G0,HL0)) and the restricted root system of G0

(W (G0,HP0)).
The set of hyperbolic orbits is in one to one correspondence with the set

of orbits of W (G0,HP0) on HP0 , while the set of elliptic orbits is in one
to one correspondence with the set of orbits of W (G0,HL0) on HL0 . In
summary, each point in the Weyl chamber of the corresponding root system
determines a unique semisimple orbit and vice versa.

Example 2.1 (Orbits of SO(2, 1)). We want to show explicitly an example
where the real form of the complex orbit is the union of two real orbits. The
value of the invariant polynomials in this case doesn’t completely determine
a real orbit.

Consider the connected component containing the identity of the non-
compact orthogonal group SO(2,1)= {3 × 3 real matrices Λ/ΛT ηΛ = η},
where

η =

1 0 0
0 1 0
0 0 −1

 .

The Lie algebra so(2,1) is given by so(2,1)= span{G, Ẽ, F̃}, where

G =

 0 1 0
−1 0 0
0 0 0

 Ẽ =

0 0 0
0 0 1
0 1 0

 , F̃ =

0 0 1
0 0 0
1 0 0

 ,

with commutation relations

[G, Ẽ] = F̃ , [G, F̃ ] = −Ẽ, [Ẽ, F̃ ] = −G.

The involutive automorphism associated to this non-compact form of so(3)
is σ(X) = ηXη so the Cartan decomposition is given by L0 = span{G} and
P0 = span{Ẽ, F̃}. L0 is the Lie algebra of SO(2), the maximal compact
subgroup, which in this case is abelian.

The only Casimir polynomial is given in the coordinates X = xẼ+yF̃+zG
by P (X) = x2 + y2 − z2. The elliptic orbits are classified by the elements
{tG, t ∈ R− {0}}, so the equation describing this orbit is

x2 + y2 − z2 = −t2.

Notice that t and −t define the same equation (the same value for the
Casimir), but they define different orbits. In fact, the solution of the equa-
tion above is a double sheeted hyperboloid, each of the sheets being a dif-
ferent orbit (inside the past and future cone respectively).

Consider now the following automorphism of so(2,1) (in the ordered basis
we gave before)

A =

−1 0 0
0 −1 0
0 0 1

 .
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A can in fact be written as A =Ad(g) with g an element in the complexifi-
cation of SO(2,1). In fact,

g =

−1 0 0
0 1 0
0 0 −1

 ,

belongs to SO(3), the compact real form. Acting on the CSA, span{G}, it
gives the only Weyl reflection (the Weyl group of SO(3) is {Id,−Id}), so g
is a representative of the non-trivial element in the Weyl group of SO(3).

Notice that the CSA of the maximal compact subgroup SO(2) and of
SO(3) have the same dimension, but the automorphism A is just the Weyl
reflection of SO(3) that is “missing” in SO(2). A takes a point in one sheet
of the hyperboloid and sends it to the other sheet, so A is a diffeomorphism
between the two real orbits.

Consider now the subalgebra of polynomials on G that are invariant under
A (since A2 = Id, {Id, A} is a subgroup of automorphisms of so(2,1)). It is
easy to see that it is also a Poisson subalgebra. Moreover, since the Casimir
polynomial is invariant under A, it is also possible to define a subalgebra of
the polynomial algebra of the complex orbit. It is defined over R, since A
leaves the real form so(2,1) invariant. This algebra is contained as subalgebra
in the algebra of polynomial functions over the real orbit (by polynomial
functions we mean polynomials in the ambient space restricted to the orbit).

The implementation of such kind of procedure for more general cases is
still under study and will be written elsewhere.

Hyperbolic orbits are classified by the Weyl chamber of the restricted root
system. One can take HP0 = span{Ẽ}, then H0 = span{Ẽ} so the only root
is the restricted root. The Weyl chamber is {tẼ, t ∈ R+}, so the hyperbolic
orbits are given by

x2 + y2 − z2 = t2.

This is a single sheeted hyperboloid, so in this case the orbit is an algebraic
manifold.

Finally we have the orbits in the light cone (nilpotent orbits) satisfying

x2 + y2 − z2 = 0.

There are three of them, one for z=0, others for z > 0 and z < 0, but we
are not studying nilpotent orbits here.

3. Deformation of the polynomial algebra of regular coadjoint
orbits of semisimple groups.

Definition 3.1. Given a real Poisson algebra P, a formal deformation of P
is an associative algebra Ph over R[h], where h is a formal parameter, with
the following properties:
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a. Ph is isomorphic to P[[h]] as a R[[h]]-module.
b. The multiplication ∗h in Ph reduces mod(h) to the one in P.
c. F̃ ∗h G̃ − G̃ ∗h F̃ = h{F,G} mod (h2), where F̃ , G̃ ∈ Ph reduce to

F,G ∈ P mod(h) and { , } is the Poisson bracket in P.

If X is a Poisson manifold and P = C∞(X) we call Ph a formal defor-
mation of X. Some authors also use the term deformation quantization of
X.

We can also speak of the formal deformation of the complexification A
of a real Poisson algebra. The formal deformation of A will be an asso-
ciative algebra Ah with the same properties (a), (b) and (c) where R has
been replaced by C. We want to note here that this doesn’t convert the
complexification of the symplectic manifold X in a real Poisson manifold of
twice the dimension.

We are going to describe first the formal deformation of the polynomial
algebra on the complex orbit.

In the first place we will consider C[h]-modules, that is, we will restrict
the modules appearing on Definition 3.1 to be modules over C[h], the alge-
bra of the polynomials in the indeterminate h. This will give us immediately
the formal deformation by extending to C[[h]]. Notice that our formal de-
formation will contain a subalgebra that can be specialized to any value of
h ∈ R.

Let G be a complex semisimple Lie group of dimension n, G its Lie algebra
and U the enveloping algebra of G. Let’s denote by TA(V ) the full tensor
algebra of a complex vector space V over a C-algebra A. Consider the
proper two sided ideal in TC[h](G)

Lh =
∑

X,Y ∈G
TC[h](G)⊗ (X ⊗ Y − Y ⊗X − h[X, Y ])⊗ TC[h](G).

We define Uh =def TC[h](G)/Lh. Uh can be interpreted in the following
way:
Let Gh be the Lie algebra over C[h] Gh = C[h]⊗C G with Lie bracket

[p(h)X, q(h)Y ]h = p(h)q(h)[X, Y ]

where [ , ] and [ , ]h denote the brackets in G and Gh respectively. Then, Uh

is the universal enveloping algebra of the algebra Gh.
We will denote with capital letters elements of the tensor algebras and of

Uh, while we will use lower case letters for the elements of the polynomial
algebra over G∗, C[G∗]. The product of two elements A,B ∈ Uh will be
written AB.
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Proposition 3.2 (Poincaré-Birkhoff-Witt theorem for Uh). Let {X1, . . . ,
Xn} be a basis for G. Then

1, Xi1 · · ·Xik 1 ≤ i1 ≤ · · · ≤ ik ≤ n

form a basis for Uh as C[h]-module.

Uh is a free C[h]-module. In particular, Uh is torsion free.

Definition 3.3. Let S(G) = TC(G)/L, with

L =
∑

X,Y ∈G
TC(G)⊗ (X ⊗ Y − Y ⊗X)⊗ TC(G),

be the symmetric algebra of G. The natural homomorphism from TC(G) to
S(G) is an isomorphism if restricted to the symmetric tensors. Let λ be the
inverse of such isomorphism.

The canonical isomorphism G∗∗ ∼= G, can be extended to an algebra iso-
morphism C[G∗] ∼= S[G] where C[G∗] denotes the polynomial algebra over
G∗. The composition of such isomorphism with λ will be called the sym-
metrizer map.

Let {X1, . . . , Xn} be a basis for G and {x1, . . . , xn} the corresponding
basis for G∗∗ ⊂ C[G∗]. Then the symmetrizer map Sym : C[G∗] −→ TC(G)
is given by

Sym(x1 · · ·xn) =
1
p!

∑
s∈Sp

Xs(1) ⊗ · · · ⊗Xs(p)

where Sp is the group of permutations of order p.

Let I ⊂ C[G∗] be the set of polynomials on G∗ invariant under the coad-
joint action,

I = {p ∈ C[G∗] | p(Ad∗(g)ξ) = p(ξ) ∀ξ ∈ G∗, g ∈ G}.
By Chevalley theorem we have that I = C[p1, . . . , pm], where p1, . . . , pm are
algebraically independent homogeneous polynomials and m is the rank of G.

Definition 3.4. We define a Casimir element in TC(G) as the image of an
invariant polynomial under the symmetrizer map. Since T (G) ⊂ TC[h](G)
Casimirs are also elements of TC[h](G). We call Casimir element in U (re-
spectively Uh) an element which is the image of a Casimir element in T (G)
(respectively in TC[h](G)) under the natural projection.

It is well known that the Casimir elements lie in the center of U . We want
now to prove that they also lie in the center of Uh.

Let’s denote by Ũh0 the algebra Uh/((h − h0)1), where h0 ∈ C, and by
evh0 the natural projection Uh −→ Ũh0 .

Lemma 3.5. Let P be a Casimir in Uh. Then evh0(P ) is in the center of
Ũh0.
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Proof. This is because Ũh0 is the universal enveloping algebra of Gh0 , where
Gh0 is the complex Lie algebra coinciding with G as vector space and with
bracket [X, Y ]h0 = h0[X, Y ] where [ , ] is the bracket in G.

Theorem 3.6. The Casimir elements lie in the center of Uh.

Proof. Let P be a Casimir element and let X1, . . . , Xn be generators for G
hence for Gh. We need to show: PXi = XiP for all 1 ≤ i ≤ n.

PXi −XiP =
∑

1≤i1≤···≤ik≤n

ui1...ik(h)Xi1 · · ·Xik .

Let us apply the evh0 map.

evh0

PXi −XiP −
∑

1≤i1≤···≤ik≤n

ui1...ik(h)Xi1 · · ·Xik


= −

∑
1≤i1≤···≤ik≤n

ui1...ik(h0)Xi1 · · ·Xik = 0

because by Lemma 3.5 ev0(PXi − XiP ) = 0. Since there are no relations
among the standard monomials Xi1 · · ·Xik (Proposition 3.2) we have that
ui1...ik(h0) = 0. Since this is true for infinitely many h0 and since ui1...ik(h)
is a polynomial we have that ui1...ik(h) ≡ 0.

We now restrict our attention to the regular coadjoint orbits, that is the
orbits of regular elements. We recall here the definition of a regular element
in G∗. Consider the characteristic polynomial of ad∗(ξ), ξ ∈ G∗,

det(T · 1− ad∗(ξ)) =
∑
i≥m

qi(ξ)T i

where m = rankG∗. The qi’s are invariant polynomials. An element ξ ∈ G∗
is regular if qm(ξ) 6= 0. The regular elements are dense in G∗ and they are
semisimple. In particular the regular elements in a Cartan subalgebra form
the interior of the Weyl chambers.

The orbits of regular elements are orbits of maximal dimension n − m.
Observe also that the 0-eigenspace coincides with the centralizer of ξ, Zξ.
A semisimple element ξ is regular if and only if dim(Zξ) = m.

Let us fix the coadjoint orbit Cξ of a regular element ξ ∈ G∗. The ideal
of polynomials vanishing on Cξ is given by

I0 = (pi − ci0, i = 1, . . . ,m), ci0 ∈ C,

where the pi have been defined above (see after Definition 3.3). I0 is a
prime ideal or equivalently the orbit Cξ is an irreducible algebraic variety.
(In fact, the orbit of any semisimple element, regular or not, is an irreducible
algebraic variety [Ks]).
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Let’s consider the Casimirs P̂i = Sym(pi), where the p1, . . . , pm are gen-
erators for I that satisfy Chevalley theorem. Let Pi be the image of P̂i in Uh.
Define the two sided ideal generated by the relations Pi−ci(h), i = 1, . . . , m:

Ih = (Pi − ci(h), i = 1, . . . , m) ⊂ Uh

for ci(h) =
∑

j cijh
j , cij ∈ C (ci(0) = ci0, the constants appearing in the

definition of I0).
It is our goal to give a basis of the algebra Uh/Ih as C[h]-module. We

need first a couple of lemmas.

Lemma 3.7. Let ξ ∈ G∗ be a regular element of G∗ (or equivalently a point
in which the centralizer has dimension equal to the rank of G∗). Then (dp1)ξ,
. . . , (dpm)ξ are linearly independent.

Proof. See [Va3].

Lemma 3.8. Let r be a fixed positive integer and let all the notation be as
above. Let ∑

1≤i1≤···≤ir≤m

ai1...ir(pi1 − ki1) . . . (pir − kir) = 0

with ai1...ir ∈ C[G∗], ki1 . . . kir ∈ C. Then ai1...ir ∈ (p1 − k1, . . . , pm − km) ⊂
C[G∗].

Proof. By Lemma 3.7 we can choose local coordinates (z1, . . . , zn) in a
neighborhood of ξ so that zi = pi− ki, i = 1, . . . ,m. Since ai1...ir(z1, . . . , zn)
are analytic functions, we can represent them as power series in z1, . . . , zn:

ai1...ir(z1, . . . , zn) =
∑

1≤j1≤···js≤n
0≤s

ai1...ir,j1...jszj1 · · · zjs .

This can be rewritten as:

ai1...ir(z1, . . . , zn) =
∑

m+1≤j1≤···js≤n
0≤s

ai1...ir,j1...jszj1 · · · zjs

+
∑

1≤l1≤···lt≤n
l1<m, 1≤t

ai1...ir,l1...ltzl1 · · · zlt .

By substituting into the given equation we get:∑
1≤i1≤···ir≤m

∑
m+1≤j1≤···js≤n

0≤s

ai1...ir,j1...jszj1 · · · zjszi1 · · · zir

+
∑

1≤i1≤···ir≤m

∑
1≤l1≤···lt≤n

l1<m,1≤t

ai1...ir,l1...ltzl1 · · · zltzi1 · · · zir = 0.



422 R. FIORESI AND M.A. LLEDÓ

Notice that, by the way the sums are defined, and being r fixed, both terms
in the above equations have no monomials in common. This implies that∑

1≤i1≤···ir≤m

∑
m+1≤j1...js≤n

ai1...ir,j1...jszj1 . . . zjszi1 . . . zir = 0

from which

ai1...ir,j1...js = 0 ∀ 1 ≤ i1 . . . ir ≤ m, m + 1 ≤ j1 · · · js.

This implies
ai1...ir(z1 . . . zm) ∈ (z1 . . . zr).

That is, locally
ai1...ir =

∑
bi1...irj(pj − kj).

So we have obtained that for all η in a neighbourhood of ξ:

ai1...ir(η)−
∑

bj
i1...ir

(η)(pj(η)− kj) = 0.

But since this function is algebraic and Cξ is irreducible this means that this
function is identically 0 on Cξ. Hence the Lemma is proven.

Let’s consider the projection π : Uh −→ Uh/(h1) ∼= S(G) ∼= C[G∗]. We
have that π(A) = π(B) if and only if A ≡ B modh. To simplify the notation
we will denote the element of C[G∗] corresponding to π(A) by a (same letter,
but lower case), as we did for the Casimirs Pi before.

Lemma 3.9. Let k be a fixed integer and let∑
i1≤···ik≤m

Ai1...ik(Pi1 − ci1(h)) · · · (Pik − cik(h)) ≡ 0 mod h

where Ai1...ik ∈ Uh and the Pi’s and ci(h)’s have been defined above. Then∑
i1≤···ik≤m

Ai1...ik(Pi1 − ci1(h)) · · · (Pik − cik(h))

= h
∑

i1≤···ik≤m

Bj1...jl,i1...ik(Pj1 − cj1(h)) · · ·

(Pjl
− cjl

(h))(Pi1 − ci1(h)) · · · (Pik − cik(h)).

Proof. By induction on N =maxi1...ikdegai1...ik , where, using the the con-
vention above, ai1...ik = π(Ai1...ik). Let N = 0. We have:∑

ai1...ik(pi1 − ci10) · · · (pik − cik0) = 0

with ai1...ik ∈ C. By Lemma (3.8) ai1...ik ∈ I0 hence ai1...ik = 0. This implies
that Ai1...ik = hBi1...ik .

Let’s now consider a generic N ,∑
ai1...ik(pi1 − ci10) · · · (pik − cik0) = 0.
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By Lemma (3.8)

ai1...ik =
∑

j

ai1...ikj(pj − cj0)

with maxi1...ikdegai1...ikj < N . Again we have that

Ai1...ik =
∑

j

Ai1...ikj(Pj − cj(h)) + hCi1...ik .

Let’s substitute Ai1...ik∑
Ai1...ikj(Pj − cj(h))(Pi1 − ci1(h)) · · · (Pik − cik(h)) ≡ 0 modh.

By induction we have our result.

Lemma 3.10. If hF ∈ Ih then F ∈ Ih.

Proof. Since hF ∈ Ih and since the Pi are central elements:

hF =
∑

Ai(Pi − ci(h)).

We have
∑

Ai(Pi− ci(h)) ≡ 0 modh. Hence, by Lemma 3.9 and also by the
fact that Uh is torsion free we have our result.

We have shown that Uh/Ih is a C[h]-module without torsion. We are
ready now to show that it is a free module by explicitly constructing a
basis. Let’s fix a basis {X1, . . . , Xn} of G and let x1, . . . , xn be the corre-
sponding elements in C[G∗]. With this choice C[G∗] ∼= C[x1, . . . , xn]. Let
{xi1 , . . . , xik}(i1,...,ik)∈A be a basis in of C[G∗]/I0 as C-module, where A is a
set of multiindices appropriate to describe the basis. In particular, we can
take them such that i1 ≤ · · · ≤ ik.

Proposition 3.11. The monomials {Xi1 · · ·Xik}(i1,...,ik)∈A are linearly in-
dependent in Uh/Ih.

Proof. Suppose that there exists a linear relation among the Xi1 , · · ·Xik ’s,
(i1, . . . , ik) ∈ A and let G ∈ Ih be such relation,

G = G0 + G1h + · · · , Gi ∈ spanC{Xi1 · · ·Xik}(i1...ik)∈A.

Assume Gi = 0, i < k, Gk 6= 0. We can write G = hkF , with

F = F0 + F1h + · · · , F0 6= 0.

Since hkF ∈ Ih by hypothesis, using Lemma (3.10) we have that F ∈ Ih,
that is

F =
∑

Ai(Pi − ci(h)),

and reducing mod h,
f =

∑
ai(pi − ci0).
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This would mean that f represents a non-trivial relation among the monomi-
als {xi1 · · ·xik}(i1...ik)∈A in C[G∗]/I0, which is a contradiction, so the linear
independence is proven.

We want to give a procedure to construct a basis on C[G∗]/I0 starting
from a set of generators of C[G∗], S = {xi1 · · ·xik} ∀ 1 ≤ i1 ≤ · · · ik ≤ n.
As a linear space I0 =spanC{xi1 · · ·xik(pi − ci)}. Every element of the set
that spans I0 will provide one relation that will allow us to eliminate at
most one element of the set S. We can choose to eliminate successively the
greatest element with respect to lexicographic ordering. This means that
any monomial in S will be expressed in terms of monomials of degree less
or equal to its degree.

Remarks 3.12. We want to make two remarks that will be used later.
1. An arbitrary monomial xj1 · · ·xjr in C[G∗] can be written as:

xj1 · · ·xjr =
∑
k≤r

(m1,...,mk)∈A

aj1...jr
m1...mk

xm1 · · ·xmk
+

∑
i,di+gi≤r

bi(pi − ci)

where bi is polynomial of degree gi, di=degpi and aj1...jr
m1...mk ∈ C.

2. Let A ∈ Uh, A 6= 0, A ∈ spanC{Xj1 · · ·Xjp}p≤r, j1 . . . jp not necessarily
ordered. If A ≡ 0 modh, then A = hB, B ∈ spanC{Xi1 · · ·Xip} p<r

i1≤···≤ip

.

Next proposition will show the generation, so we will have a basis.

Proposition 3.13. The standard monomials {Xi1 · · ·Xik} with (i1, . . . , ik)
∈ A generate Uh/Ih as C[h]-module.

Proof. By Proposition 3.2 (PBW theorem in Uh) it is sufficient to prove
that

Xj1 · · ·Xjr ∈ spanC[h]{Xi1 · · ·Xik}(i1,...,ik)∈A

where 1 ≤ j1 ≤ · · · jr ≤ n and Xj1 · · ·Xjr denotes also the projection onto
Uh/Ih of the standard monomial.

We proceed by induction on r. For r = 0 it is clear. For generic r we
write (see Remark 3.12)

xj1 · · ·xjr =
∑
k≤r

(m1,...,mk)∈A

aj1...jr
m1...mk

xm1 · · ·xmk
+

∑
i,di+gi≤r

bi(pi − ci).

Lifting this equation from the symmetric algebra to the enveloping algebra
we have

Xj1 · · ·Xjr −
∑
k≤r

(m1,...,mk)∈A

aj1...jr
m1...mk

Xm1 · · ·Xmk
−

∑
i

Bi(Pi − ci(h)) = hB

where, by the Remark 2 in 3.12, B ∈ span{Xi1 · · ·Xip}p<r. Applying the
induction hypothesis, we have our result.
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Let Ch[G∗] = C[h] ⊗C[G∗], I ′0 = C[h] ⊗ I0. We are now ready to prove
the following theorem:

Theorem 3.14. Let the notation be as above. We have that Uh/Ih has the
following properties:

1. Uh/Ih is isomorphic to Ch[G∗]/I ′0 as a C[h]-module.
2. The multiplication in Uh/Ih reduces mod(h) to the one in C[G∗]/I ′0.
3. If FG−GF = hP , F,G, P ∈ Uh/Ih, then p = {f, g}, where {, } is the

Poisson bracket on the orbit defined by I0. (We are using the same
convention, f = π(F ).)

Proof.
1. It is a consequence of Propositions 3.11 and 3.13.
2. It is trivial.
3. This property is satisfied by the multiplication in Uh and the Poisson
bracket in C[G∗] (see [Ko], [CP], [Ki]). The Poisson bracket in the C[G∗]/I0

is induced from the one in C[G∗], it is enough to see that p will not depend
on the representative chosen in Uh/Ih, which is trivial.

It is now immediate to obtain the properties of Definition 3.1 when we
consider the extension of C[h] to C[[h]]. We define

C[h][G∗] = C[[h]][G∗] I[0] ⊂ C[h][G∗]

U[h] = TC[[h]](G)/L[h] I[h] ⊂ U[h]

being I[0] and I[h] the ideals obtained by extending I0 and Ih to C[h][G∗] and
U[h] respectively.

Theorem 3.15. U[h]/I[h] is a formal deformation (or a deformation quanti-
zation) of C[h][G∗]/I[0].

We want to note here that whatever is the real form chosen, the deformed
algebra is defined over R, provided cij ∈ R. Care should be taken, never-
theless, in choosing the appropriate generators of I0 with real coefficients
and this is always possible ([Bo]).

Finally we want to come back to Example 2.1 and exhibit the deformed
algebra.

Example 3.16. Let G = SL2(C). The standard basis for G = sl2(C) is
{H,X, Y } with commutation relations

[H,X] = 2X [H,Y ] = −2Y [X, Y ] = H.

We identify G and G∗ via the Cartan Killing form. The only independent
invariant polynomial is:

p =
1
4
h2 + xy
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or, in terms of the compact generators

E =
1
2
(X − Y ) F = i/2(X + Y ) G = i/2H

p = −(e2 + f2 + g2).

The orbit Cξ of the regular semisimple element ξ =
(

ia/2 0
0 −ia/2

)
(see

the fundamental representation in the next section) has coordinate ring
C[h, x, y]/(e2 + f2 + g2 − a2). So we have that

U[[h]]/(E2 + F 2 + G2 − a2 + c1h + · · ·+ clh
l)

is a formal deformation of Cξ. If one chooses a, c1, . . . , cl to be real, then
it becomes the complexification of a formal deformation of the real orbit
Cξ ∩ su(2).

To go to the non-compact form it is enough to take the basis {Ẽ = iE, F̃ =
iF, G}. The deformed algebra is

U[[h]]/(−Ẽ2 − F̃ 2 + G2 − a2 + c1h + · · ·+ clh
l).

A basis for U/I0 is

{gmẽnf̃µ}m,n=0,1,2...
µ=0,1

.

The subalgebra invariant under the automorphism A of Example 2.1, has
instead a basis

{gmẽ2n−mf̃µ}m,n=0,1,2...
µ=0,1

.

We can also express this algebra in terms of the set of commutative gener-
ators

v1 = g2, v2 = ẽ2, v3 = gẽ, v4 = f̃

with relations
v2
3 = v1v2, v1 − v2 − v2

4 = a2.

It is clear that this algebra separates the points of the real orbit. Since the
Casimir element is invariant under the automorphism A (extended to Uh),
it restricts to an automorphism of Uh/Ih. Analogously to the commutative
case, the subalgebra of Uh/Ih invariant under A can be given in terms of
the generators

V1 = G2, V2 = Ẽ2, V3 = GẼ, V4 = F̃

and relations

V 2
3 = V1V2 − hV3V4 − h2V1, V1 − V2 − V 2

4 = c(h),
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in addition to the commutation relations

V4V1 − V1V4 = h(2V3)− h2V4, V4V2 − V2V4 = h(2V3)− h2V4,

V4V3 − V3V4 = h(V1 + V2), V3V1 − V1V3 = −h(2V1V4)− h2V3,

V3V2 − V2V3 = h(V4V2 + V2V4) + h2V3 − h3V4,

V2V1 − V1V2 = −h(2V3V4) + h2(V 2
4 − V2 − V1).

4. Geometric quantization of S2.

The subject of geometric quantization is a very vast one and we do not
intend to make a review here. Many excellent reviews exist in the literature
(see for example [Pu], [Vo]). We will try to explain only what is needed
to understand the geometric quantization of our particular case, S2. Some
of the results we exhibit here date back to [So]. We will follow closely the
scheme of [Vo], because there the importance of constructing the algebra of
observables is emphasized.

Consider a classical system with phase space X and a group G of symme-
tries. This means that G is a group of symplectomorphisms of the symplectic
manifold X,

g ∈ G, g : X 7→ X satisfying g∗ω = ω,

where ω is the symplectic form on X. The Hamiltonian is a G-invariant
function, that is, gH = H, so G is a group of symmetries of the equations
of motion.

We want to find a quantization of the classical system that preserves the
symmetry under the group G. The goal of geometric quantization is to
construct the Hilbert space HX and the algebra of quantum observables Ah

acting on HX using only the geometrical elements of the classical system.
This construction should be “natural”, that is, the action of G on X as
symplectomorphisms should induce a unitary representation of G on HX

and an action of G on Ah. This action should reduce to the conjugation by
the unitary representation on the operators onHX representing the elements
of Ah.

Integral orbit data.

Let ξ ∈ G0
∗ and let Gξ the isotropy group of ξ and G0ξ the corresponding

Lie algebra. It is clear that for Z ∈ G0ξ, ad∗Zξ = 0, which implies

ξ([Z, Y ]) = 0, ∀ Y ∈ G0.(4.1)

Suppose that we have a character τ of Gξ satisfying

τ(eX) = eiξ(X), Z ∈ G0ξ.
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Such character is called an integral orbit datum. Notice that property (4.1)
is essential. Also, ξ must be such that ξ(Z) = 2πm, m ∈ Z whenever
eZ = Id.

From an integral orbit datum we can construct a unitary representation
of G by induction. We consider the induced vector bundle E(G/Gξ,Cτ ) =
(G×C)/τ , where the equivalence relation is given by

(g, v) ≈ (gh−1, τ(h)v), h ∈ Gξ.

We can describe the sections on this bundle by functions f : G 7→ C satis-
fying

f(gh) = τ(h)−1f(g).(4.2)

By considering the compactly supported sections, and from the fact that
there is a a G-invariant measure on G/Gξ the construction of the Hilbert
space is straightforward, with bilinear form

〈f1, f2〉 =
∫

G/Gξ

f1f̄2.

The problem is that this representation is not necessarily irreducible. Nev-
ertheless, in many cases (like for elliptic orbits), it is possible to restrict
naturally the space of sections (4.2) to an irreducible component. We are
then interested in computing the integral orbit data for SU(2).

The Lie algebra of SU(2) is spanned by the matrices

G =
i

2
σ3, E =

i

2
σ2, F =

i

2
σ1

with

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

and commutation relations1

[E,F ] = G, [F,G] = E, [G, E] = F.

Consider ξa ∈ G0
∗ such that ξa(xE + yF + zG) = az. The isotropy group is

Gξa = {ezG, z ∈ R} =
{(

eiz/2 0
0 e−iz/2

)
, z ∈ R

}
with Lie algebra G0ξa

= span{G}. If z = 4πn, n ∈ Z, then ezG = Id, so in
order to have an integral orbit datum,

ξa(4πnG) = 4πna ∈ 2πZ ∀ n,

which is possible if and only if a ∈ Z/2.

1The spin operators which are used in physics are given by G′ = −i~G, E′ =
−i~E, F ′ = −i~F . We can reintroduce ~ = h/2π in the analysis with this rescaling,
the multiplication by −i changing a representation by antihermitian operators of SU(2)
to hermitian operators.
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The Cartan-Killing form allows the identification of G0 and G0
∗, also in-

tertwining the adjoint and coadjoint representations. It is given by

〈X, Y 〉 = −1
2
Tr(adXadY ), X, Y ∈ G0

that is,
〈E,E〉 = 〈F, F 〉 = 〈G, G〉 = 1

and the rest 0. So ξa ≈ aG, and the orbit is given by the Casimir polynomial

C = x2 + y2 + z2 = a2.

We conclude that only orbits with half integer radius have integral or-
bit data. We will denote by τm the corresponding integral orbit datum,
τm(ezG) = (eiz/2)m.

It is easy to convince oneself that the representation in the space of func-
tions (4.2) is far too large to be irreducible. To overcome this problem we
need to further restrict the space of sections. We will do that with the help
of a complex polarization.

Complex polarization and Hilbert space.

Elliptic orbits have a G-invariant complex structure. We define this com-
plex structure following [Vo]. From now on we use the identification between
G0 and G0

∗ given by the Cartan-Killing form, so we will use alternatively
ξ = ξX ∈ G0

∗ with X ∈ G0.

Theorem 4.1. Let X ∈ G0 be such that adX has only imaginary eigenval-
ues. Let G be the complexified Lie algebra of G0 and let Gt (t ∈ R) be the
t-eigenspace of adiX . Then

G =
∑
t∈R

Gt, (G0X)c = GX = G0

is a gradation of G. We define

PX =
∑
t≥0

Gt, NX =
∑
t>0

Gt.

The following properties are satisfied

a. Gs and Gt are orthogonal unless s = −t.
b. Ḡs = G−s. (Bar means complex conjugation with respect to the real

form G0.)
c. The adjoint action of GX preserves Gt.

G/GX ≈ TξX
(G · ξX)c is the complexified tangent space at the identity

coset. The G-invariant complex structure can be characterized by requiring
that PX/GX is the antiholomorphic tangent space at the identity coset.
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Let us write down the standard complex structure on S2 to relate it with
this formalism. Let V = xE + yF + zG = x∂x + y∂y + z∂z ∈ G0. We take a
representative aG for the orbit of radius a,

x2 + y2 + z2 = a2.

Stereographic coordinates are given in terms of the embedding coordinates
by

V1 = S2 − {(0, 0,−a)}, u1 =
ax

z + a
, v1 =

ay

z + a

V2 = S2 − {(0, 0, a)}, u2 =
ax

z − a
, v2 =

ay

z − a
.

The action of SU(2) is the one induced by the adjoint representation of
SU(2).

Let x1 : U1 −→ C, x2 : U2 −→ C be the projective coordinates for the
complex projective space P1 = U1 ∪ U2. If we identify

x1 ≡ −v1 + iu1, x2 ≡ −v2 − iu2,

we obtain a diffeomorphism S2 ≈ P1. This gives to S2 the complex structure
mentioned above. For this particular choice, the action of SU(2) obtained
from the three dimensional representation restricted to S2 coincides with
the one obtained from the fundamental representation with the projective
structure.

We write now the complexification of su(2), sl(2,C), in the standard basis

H = −i2G, X = E − iF, Y = −E − iF.

The eigenvalues of iaG are −a, 0,+a and the corresponding eigenspaces are

G0 = span{G}, Ga = span{Y }, G−a = span{X}.

The tangent space at the North pole (x = y = 0, z = a) is spanned by
∂x, ∂y ∈ G0/G0aG and in terms of the stereographic coordinates,

∂x =
1
2
∂u1 , ∂y =

1
2
∂v1 .

In the complexified tangent space,

X = ∂x − i∂y =
i

2
(−∂v1 − i∂u1), Y = −∂x − i∂y =

i

2
(−∂v1 + i∂u1),

and since the complex coordinate is x1 = −v1 + iu1,

Ga = span{Y } = span{∂x̄1}.

Definition 4.2. A G-invariant complex polarization is a lagrangian sub-
space of the complexified tangent bundle at ξ, Tξ(G · ξ)c ≈ G/Gξ.
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We remind that a subspace is a lagrangian subspace if the symplectic
form is 0 on that subspace and its dimension is half the dimension of the
symplectic manifold. Because of property a in Theorem 4.1, PX/GX is a
lagrangian subspace and then a complex polarization.

Consider now an integral orbit datum, τ . One can prove that dτ extends
to a representation φ of PX .This extension satisfies φ|NX

= 0. The induced
bundle associated to the character τ , E(G/GX ,Cτ ) has also a complex
structure and the holomorphic sections are characterized by

Z.f = −φ(Z)f Z ∈ PX(4.3)

where f : G 7→ C satisfies f(gh) = τ(h)−1f(g), g ∈ G, h ∈ GX . We will
see that in our case this construction gives directly the Hilbert space. For
other groups, further corrections are needed.

It is easy to see that for SU(2) the principal bundle E(SU(2)/U(1),U(1))
is only a reduction of the principal bundle given by the natural projection

π : C2 − {0} 7→ S2 ≈ P1

that we call Θ(S2,C∗). The corresponding associated bundles by the repre-
sentation τm (extended to C∗), will be denoted by E(m), Θ(m). Θ(m) is an
holomorphic vector bundle, whose sections satisfy (4.3), which in this case
is simply

∂x̄1f = 0.

Line bundles over S2 are well studied. A holomorphic section on Θ(m)

s : P1 7→ Θ(m)/ π ◦ s = idP1 ,

can be given in terms of a function

s̃ : C2 − {0} 7→ Cm

((λ, ρ) ∈ C2−{0}) satisfying s̃(λ · γ, λ · ρ) = λms̃(γ, ρ) where s̃ is a homoge-
neous polynomial in two variables of degree m. The group SU(2) naturally
acts on this space of sections, constituting the (m+1)-dimensional (unitary)
irreducible representation of SU(2).

We see that geometric quantization associates quite naturally to the orbit
a Hilbert space where the group G acts. The last step now is to find the
algebra of quantum observables.

Quantum observables.
Following [Vo], the algebra of observables is the algebra of “twisted dif-

ferential operators” [Vo] on sections of the bundle given by the polarization
(real or complex). These operators are endomorphisms of the space of sec-
tions of the bundle satisfying certain conditions (which make plausible the
name of “differential operators”). We will not give here the general defini-
tion, but we will work with the SU(2)-bundles using the description given
above.
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Consider the space of functions f : C2 − {0} −→ C, and (γ, ρ) global
coordinates on C2 − {0}. Consider the algebra of differential operators
generated by the elements

γ∂γ , γ∂ρ, ρ∂γ , ρ∂ρ.

We denote this algebra by D. It is a filtered algebra (each of the elements
above has degree 1).

The algebra of twisted differential operators on Θ(m) is

Dm = D/(D −mId)

where D = γ∂γ + ρ∂ρ is an element in the center of D.
We want to give a presentation for Dm and compare it to the algebra

Uh/Ih obtained in Section 3.

Consider now U the universal enveloping algebra of the Lie algebra su(2)C

≈ sl(2,C). Let {X, Y,H} be the standard basis of sl(2,C) (Example 3.16).

Lemma 4.3. The filtered algebra homomorphism p : U −→ D, given by

p(X) = −γ∂ρ, p(Y ) = −ρ∂γ , p(H) = −γ∂γ + ρ∂ρ

is injective.

Proof. Notice that D acts on the space Pm = {homogeneous polynomials of
degree m}. We denote by Rm : D −→ End(Pm) this representation. Notice
that R̃m = Rm ◦ p is the m + 1-dimensional irreducible representation of
su(2). Since we have that R̃m(Z) = 0 Z ∈ U ∀ m ⇒ Z = 0 [HC], it follows
that p is an injective map.

Lemma 4.4.

D ∼= U ⊗ span {D}/
(

C − D

2

(
D

2
+ 1

))
where C = 1

2(XY + Y X + 1
2H2) is the Casimir element in U .

Proof. Define the Lie algebra homomorphism

U ⊗ span {D} S−→ D
as S(W ⊗ D) = p(W )D. Since {p(X), p(Y ), p(H), D} generate D, S is
surjective. We want to show that kerS=I, where I = (C −D/2(D/2 + 1)).
One can check directly that I ⊂ kerS. We prove kerS ⊂ I by contradiction.

Observe first that any element P ∈ U ⊗ span{D}/(C − D
2 (D

2 + 1)) can be
written as AD + B. In fact, let P =

∑N
k=0 AkDk. By induction on N . The

cases of N = 0, 1 are obvious. Let N > 1.

P = ANDN−2(4C − 2D) +
N−1∑
k=0

AkDk.
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By induction we have our result.

Let PN−1 = B1D + B0 be a non zero element in kerS that is not in I.
Let us construct the combination

P ′
N−1 = B1P1 +

1
4
PN−1 =

(
1
4
B0 −

1
2
B1

)
D + B1C

it is clear that P ′
N−1 doesn’t belong to I unless it is identically 0, that is,

B0 = B1 = 0. In this case PN−1 is also 0, against the hypothesis. So P ′
N−1

is in kerS and not in I. Let us construct now the combination

PN =
(

1
4
B0 −

1
2
B1

)
PN−1 − P ′

N−1B1 =
1
4
B2

0 −
1
2
B1B0 −B2

1C.

Since PN ∈ kerS and PN does not contain D, by the injectivity of p we must
have PN = 0, that is

1
4
B2

0 −B2
1C =

1
2
B1B0.

Similarly if we construct

P ′
N = PN−1

(
1
4
B0 −

1
2
B1

)
− P ′

N−1B1 =
1
4
B2

0 −
1
2
B0B1 −B2

1C.

P ′
N must also be 0, so we have that

1
4
B2

0 −B2
1C =

1
2
B0B1.

It follows that B1 and B0 commute. Lets us rewrite any of these two relations
as

(B0 −B1)2 = (4C + 1)B2
1 .(4.4)

We show that this relation cannot be satisfied unless B0 = B1 = 0 and
this will be a contradiction. Consider the homomorphism from the (filtered)
enveloping algebra to the (graded) symmetric algebra, given by the natural
projections

πn : U (n) −→ Sn = U (n)/U (n−1)

and project (4.4) to the symmetric algebra (isomorphic to the polynomial
algebra). It is obvious that the polynomial πn(4C + 1) is not the square of
another polynomial. It follows that (4.4) cannot be satisfied unless B0 =
B1 = 0.

Theorem 4.5.

Dm = U/
(
C − m

2

(m

2
+ 1

)
Id

)
.
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Proof. Immediate from the definition of D and the Lemma 4.4.

We now want to make an explicit comparison with the result of deforma-
tion quantization, let us make the rescaling

X̃ 7→ ~X, Ỹ 7→ ~Y, H̃ 7→ ~H, D̃ = ~D.(4.5)

In what follows, ~ is a number, not an indeterminate; so we are comparing
the geometric quantization with the specialization for a value of ~ of the
deformation of the polynomial algebra obtained in Section 3. Notice that
with this rescaling we obtain a family of isomorphic Lie algebras

[H̃, X̃] = ~2X̃, [H̃, Ỹ ] = −~2Ỹ , [X̃, Ỹ ] = ~H̃

(and D̃ in the center) except for ~ 7→ 0 (while keeping the generators con-
stant) in which the algebra becomes abelian. U~ is the enveloping algebra
of the Lie algebra for each value of ~.

The Casimir operator is

C̃ =
1
2

(
X̃Ỹ + Ỹ X̃ +

1
2
H̃2

)
.

Using (4.4), the corresponding ideal in U~ is

(C̃ − l(l + ~)), l = ~m/2.

It is enough to take c(~) = l(l + ~) to obtain the result of Section 3.
Since l is the eigenvalue of the central element D/2 in the corresponding

representation, taking the limit ~ 7→ 0 and keeping the generators constant
(abelian Lie algebra) is equivalent to take m 7→ ∞. In the physical picture
one says that the classical limit corresponds to large quantum numbers.

We want to make the following observations. By choosing different poly-
nomials c(h) and different values of h we obtain that the specialized C-
algebras in general are not isomorphic. In fact, it is a known result (see
[Va1]) that U/(C − µ1) has no finite dimensional representations when µ
is not rational, hence different values of µ (that is of c(h)) may give non-
isomorphic algebras.

We also want to remark that our deformation quantization not only gives a
subalgebra that can be specialized for any value of h (namely the subalgebra
of elements that have coefficients that are polynomials in h), but in the
special case of SU(2), SL(2,C), when h is taking certain values, realizes
the subalgebra as a concrete algebra of differential operators on the space
of sections described above.

Finally, comparing with the approach of [BBEW], it is easy to see that
the subalgebra of observables with converging star product is the same as the
one we obtain, that is, the algebra of polynomials on the algebraic manifold.
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Non-localité d’une déformation symplectique sur la sphère S2, Bull. Soc. Math.
Belg., 36 B (1987), 207-221.

[CGR] M. Cahen, S. Gutt and J. Rawnsley, On tangential star product for the coadjoint
Poisson Structure, Comm. Math. Phys., 180 (1996), 99-108.

[CP] V. Chari and A. Pressley, A Guide to Quantum Groups, Cambridge University
Press, (1994).

[DL] M. De Wilde and P.B.A. Lecomte, Existence of star-products and of formal
deformations in Poisson Lie algebras of arbitrary symplectic manifolds, Lett.
Math. Phys., 7 (1983), 487-496.

[EK] P. Etingof and D.A. Kazhdan, Quantization of Lie bialgebras, I, Selecta Math.,
New Series 2(1) (1996), 1-41.

[Fe] B. Fedosov, A simple geometric construction of deformation quantization, J.
Diff. Geom., 40(2) (1994), 213-238.
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