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In general, superbiharmonic functions do not satisfy a mini-
mum principle like superharmonic functions do, i.e., functions
u with 0 6≡ ∆2u ≥ 0 may have a strict local minimum in an
interior point. We will prove, however, that when a superbi-
harmonic function is defined on a disk and additionally subject
to Dirichlet boundary conditions, it cannot have interior local
minima. For the linear model of the clamped plate this means
that a circular plate, which is pushed from below, cannot bend
downwards even locally.

The simple biharmonic function u(x) := |x|2 shows that there are no
classical local maximum/minimum principles for the biharmonic operator
∆2 (and for higher order elliptic operators at all). On the other hand it is
known that boundary value problems like the clamped plate equation

∆2u = f in Ω,

u|∂Ω =
∂u

∂ν
|∂Ω = 0,

(1)

enjoy some positivity properties. Here Ω ⊂ R2 is a bounded smooth domain
with exterior unit normal ν at ∂Ω. This boundary value problem has an
obvious physical interpretation. The solution u gives the deflection of a plate
of shape Ω from the equilibrium u ≡ 0, which is clamped horizontically and
which is subject to the vertical force f . In this context there exist some
positivity results: If the domain Ω is the unit disk B =

{
x ∈ R2 : |x| < 1

}
(see [Bo]) or if Ω is close to the disk B in a suitable sense (see [GS1]),
then it is known that 0 6≡ f ≥ 0 implies u > 0, i.e., upwards pushing yields
(globally) upwards bending. So, at least in these domains, nonconstant
supersolutions of the clamped plate equation (1) are strictly positive. Here
we call a function u ∈ C4(Ω) ∩ C1(Ω̄) a supersolution of (1), if it solves
(1) with some f ≥ 0. It should be stressed that, in spite of the seemingly
quadratic structure of (1), the so called Dirichlet boundary conditions (1.b)
prevent us from iterating second order methods.

437

http://pjm.math.berkeley.edu/pjm
http://dx.doi.org/10.2140/pjm.2001.198-2


438 HANS-CHRISTOPH GRUNAU AND GUIDO SWEERS

Although existence/nonexistence of local minima is of no use for proving
positivity of solutions, it would be interesting to have a more precise infor-
mation about the shape of supersolutions to (1). So an interesting question
to ask in this context would be:

May a solution u to the clamped plate boundary value problem
(1) have a local minimum in Ω, although the right hand side is
nonnegative: f ≥ 0 and f 6≡ 0?

There are (highly nontrivial) examples even for arbitrarily smooth convex
domains Ω where the answer is affirmative, the first of which is due to Duffin
[Du]. Subsequently Garabedian could prove a striking result (see [Ga]): In
a long thin ellipse Ω there exists a right hand side 0 6≡ f ≥ 0 such that the
corresponding solution of (1) also has negative values and hence a (global
and local) negative minimum in Ω. For a more extensive survey on positivity
results/nonpositivity examples we refer to [GS1].

In contrast to the examples above, we shall show that it is actually possible
to exclude the existence of local minima, when Ω is a disk:

Theorem 1. Let Ω = B ⊂ R2 be the unit disk. Assume that u ∈ C4(B) ∩
C1(B̄) is a solution of the clamped plate equation (1) with some 0 6≡ f ≥ 0.
Then u has no local minimum in B.

We remark that this is not a one dimensional result, as neither u nor f
are assumed to be radially symmetric. The radial analogue of Theorem 1
can be found in [So, Proposition 1], cf. also [Da, Theorem 2.4].

To prove the result we reduce our nonsymmetric problem to a radial one:
A possible minimum will be moved to the origin by means of a suitable Moe-
bius transform. After radialization one would obtain a radial nonconstant
supersolution, which has an interior local minimum at the origin. Due to
Soranzo’s result just mentioned this is impossible.

We feel that positivity and absence of local minima should be related.
Could one perhaps show that in those domains Ω, where the Green function
for the clamped plate equation (1) is positive, solutions with 0 6≡ f ≥ 0 are
not only strictly positive, but don’t have any local minimum in Ω, too?

However, here we are restricted to the disk. Neither the proof of Theo-
rem 1 below nor the proof of our positivity result for domains close to the
disk in [GS1] seems to give any indication on how to treat such a conjecture.

We finish the introduction with a brief description of a further physical
interpretation of Theorem 1. Let the velocity field (v1, v2) and the pressure p
be a solution of the linear Stokes system in B ⊂ R2 subject to zero boundary
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conditions and an exterior force field (F1, F2):
−∆vj + pxj = Fj in B, j = 1, 2,

v1,x1 + v2,x2 = 0 in B,

vj |∂B = 0 j = 1, 2.

(2)

Then for the stream funtion u : B̄ → R, ux1 = −v2, ux2 = v1, normalized
by the condition u|∂B = 0, Theorem 1 yields: If the vorticity F2,x1 − F1,x2

of the force field is nonnegative (and not identically zero), then the stream
function cannot have a local minimum in B. That means that around an
interior rest point of the velocity field the fluid cannot rotate clockwise
provided the vorticity of the force field is nonnegative. According to the
above mentioned example of Garabedian [Ga] this could actually happen
e.g., in a long thin ellipse.

Moebius transforms. In what follows we will identify R2 and C and use
real and complex notation simultaneously: x = (x1, x2) = x1 + ix2. The dot
“ · ” denotes the multiplication in C: a · x = a1x1 − a2x2 + i(a1x2 + a2x1),
while we use brackets for the scalar product in R2: 〈a, x〉 = a1x1 + a2x2. In
case of holomorphic mappings h we denote the complex derivative by h′.

For a ∈ B we consider the biholomorphic Moebius transform

h : B̄ → B̄, h(x) =
a− x

1− ā · x
(3)

and its inverse h−1 = h. We have h(B) = B, h(∂B) = ∂B, h(0) = a,
h(a) = 0. We know from Loewner [Loe] that Moebius transforms as in
(3) and suitable simultaneous transformations of the dependent variable u
leave the biharmonic equation invariant. As we are interested in biharmonic
inequalities we need a slightly more precise information:

Lemma 1. Let u ∈ C4 (B, R). For some a ∈ B we consider the Moebius
transform h from (3). For the C4-function v defined by

v(x) :=
1

|h′(x)|
u(h(x)), x ∈ B,(4)

we have

∆2v(x) = |h′(x)|3
(
∆2u

)
(h(x)) , x ∈ B.(5)

Proof. Instead of the real variables x1, x2, we use the complex variables x, x̄
and also z = h(x), z̄ = h(x) = ā−x̄

1−a·x̄ .

One has ∂
∂x̄h (x) = 0, ∂

∂xh (x) = 0, h′ = ∂
∂xh (x) = |a|2−1

(1−ā·x)2
and

h′′ (x) =
|a|2 − 1

(1− ā · x)3
2ā =

2ā

1− ā · x
h′ (x) .
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In complex notation we have(
1− |a|2

)
v (x, x̄) = (1− ā · x) (1− a · x̄) u

(
h (x) , h (x)

)
.

Then(
1− |a|2

)
vxx (x, x̄)

= −2ā (1− a · x̄) h′ uz + (1− ā · x) (1− a · x̄)
((

h′)2
uzz + h′′ uz

)
= (1− ā · x) (1− a · x̄)

(
h′)2

uzz

and similarly(
1− |a|2

)
vxxx̄x̄ (x, x̄) = (1− ā · x) (1− a · x̄)

(
h′)2 (

h′
)2

uzzz̄z̄

=
(
1− |a|2

) ∣∣h′∣∣3 uzzz̄z̄

and the relation (5) follows by ∆2u = 16uzzz̄z̄. �

Proof of Theorem 1.
Let u ∈ C4(B) ∩ C1(B̄) be a solution of the clamped plate equation (1)

with Ω = B and 0 6≡ f ≥ 0. We assume by contradiction that u has a local
minimum at a ∈ B.

From u we want to construct a radial superbiharmonic function with
homogeneous Dirichlet boundary conditions, which would also have a local
minimum. According to [So] that will be impossible.

Before we may radialize the solution, we will move the point a, where
u has a local minimum, into the origin. For this purpose we consider the
Moebius transform (3) and define v ∈ C4(B) ∩ C1(B̄) according to (4):

v(x) :=
1

|h′(x)|
u(h(x)), x ∈ B̄.

By means of (5) from Lemma 1 we see that v solves a related clamped plate
equation 

∆2v = |h′|3 (f ◦ h) in B,

v|∂B =
∂v

∂ν
|∂B = 0.

Now we radialize. As radialization and the Laplace operator commute, we
see that the radially symmetric function

w(x) :=
1
2π

∫
|ξ|=1

v (|x|ξ) dω(ξ)(6)

is also in C4(B) ∩ C1(B̄) and solves the Dirichlet problem
∆2w = g in B,

w|∂B =
∂w

∂ν
|∂B = 0.

(7)
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Here we have set

g(x) :=
1
2π

∫
|ξ|=1

(
|h′|3 (f ◦ h)

)
(|x|ξ) dω(ξ).

Obviously we have 0 6≡ g ≥ 0.
Due to the dilation factor 1

|h′| in the definition (4) of v it is not clear
whether or not v has a local minimum in 0. But for the radialization w this
is indeed the case. Using that u has a local minimum in a, we conclude for
|x| small enough:

w(x) =
1
2π

∫
|ξ|=1

1
|h′ (|x|ξ)|

u (h (|x|ξ)) dω(ξ)

≥ u(a)

{
1 + |a|2|x|2

1− |a|2
− |x|

π (1− |a|2)

∫
|ξ|=1

〈a, ξ〉 dω(ξ)

}

=
1 + |a|2|x|2

1− |a|2
u(a) ≥ 1

1− |a|2
u(a) =

1
|h′(0)|

u(h(0)) = w(0).

Here we used that u(a) ≥ 0, which follows from f ≥ 0 and from the positivity
of the corresponding Green’s function in B, see [Bo].

Let us sum up what we have shown. From our assumption that u has a
local minimum in some point a ∈ B we could conclude that there is a radial
supersolution w of the clamped plate equation (7) with 0 6≡ g ≥ 0, which
has a local minimum in 0. (If a 6= 0, this minimum would be even strict.)
We obtain a contradiction by a result of Soranzo [So, Proposition 1] (cf.
also [Da, Theorem 2.4]), according to which w is strictly radially decreasing
in |x| ∈ (0, 1). �

Remark. The same method applies to solutions of the clamped plate equa-
tion 

∆2u = f in B ⊂ R2,

u|∂B = 0,

(
−∂u

∂ν

)
|∂B = ϕ,

(8)

where the boundary datum ϕ, as well as the right hand side f , is assumed
to be nonnegative (and one of these two not identically zero). It may seem
unsatisfactory that the solution itself has to be prescribed homogeneously
on ∂B, but also in [GS2] this boundary datum played a special role. There
we were concerned with a perturbation theory for positivity in generalized
clamped plate equations under inhomogeneous Dirichlet boundary condi-
tions.
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