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We find the spectrum of the inverse operator of the q-
difference operator Dq,xf(x) = (f(x) − f(qx))/(x(1 − q)) on
a family of weighted L2 spaces. We show that the spectrum
is discrete and the eigenvalues are the reciprocals of the ze-
ros of an entire function. We also derive an expansion of the
eigenfunctions of the q-difference operator and its inverse in
terms of big q-Jacobi polynomials. This provides a q-analogue
of the expansion of a plane wave in Jacobi polynomials. The
coefficients are related to little q-Jacobi polynomials, which
are described and proved to be orthogonal on the spectrum
of the inverse operator. Explicit representations for the little
q-Jacobi polynomials are given.

1. Introduction.

The q-difference operator Dq,x is defined by

Dq,xf(x) :=
f(x)− f(qx)

x(1− q)
.(1.1)

We shall use the following notations for finite and infinite products:

(z; q)0 := 1, (z; q)n :=
n−1∏
j=0

(1− qjz), n > 0 or n = ∞,

(z1, z2, . . . , zs; q)n :=
s∏

k=1

(zk; q)n, n ≥ 0 or n = ∞.

The infinite product is defined for |q| < 1.
A basic hypergeometric series is defined by

rφs

(
a1, . . . , ar

b1, . . . , bs

∣∣∣∣ q, z

)
= rφs(a1, . . . , ar; b1, . . . , bs; q, z)

:=
∞∑

n=0

(a1, . . . , ar; q)n

(q, b1, . . . , bs; q)n
zn
(
(−1)nqn(n−1)/2

)1+s−r
.

(1.2)

443
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Let t = (t1, t2) ∈ R2. The big q-Jacobi polynomials of Andrews and
Askey, [2], are defined by

pn(x, t) = pn(x; t1, t2) := 3φ2

(
q−n, at1t2q

n−1, t1x
t1, at1

∣∣∣∣ q, q

)
, 0 < q < 1

(1.3)

and are orthogonal with respect to the measure µ(x, t), [3, p. 594], [6],
defined by

µ(x, t) :=
µ(a)(x)

(t1x, t2x; q)∞
,(1.4)

where for a < 0, µ(a) is the discrete probability measure

µ(a) :=
∞∑

n=0

[
qn

(q, q/a; q)n(a; q)∞
δqn +

qn

(q, aq; q)n(1/a; q)∞
δaqn

]
.(1.5)

In (1.5), δz denotes the unit measure supported on {z}. The orthogonality
relation is, [3], [6],∫

R
pm(x, t)pn(x, t) dµ(x, t) = δm,nξn(t),(1.6)

where

ξn(t) =
(q, t2, at2, at1t2q

n−1; q)n(at1t2q
2n; q)∞

(t1, at1, t2, at2; q)∞(t1, at1; q)n
(−at21)

nqn(n−1)/2.(1.7)

Furthermore, (1.3), (1.6), (1.7), and the symmetry of µ in t1 and t2 imply
the symmetry relation

pn(x; t1, t2) =
tn1 (t2, at2; q)n

tn2 (t1, at1; q)n
pn(x; t2, t1).(1.8)

We shall use the following q-analogue of the Chu-Vandermonde sum, [4,
(II.6)],

2φ1(q−n, b; c; q, q) =
(c/b; q)n

(c; q)n
bn,(1.9)

and its special case (b = t2x, c = t2q
1−n/t1)

(t1x; q)n = (t1/t2; q)n2φ1(q−n, t2x; t2q1−n/t1; q, q).(1.10)

Letting t1 →∞ in (1.10) with t2 = t we obtain

tnxn =
n∑

j=0

[
n
j

]
q

(−1)jq(
j
2)−j(n−1)(tx; q)j ,(1.11)

where [
n
j

]
q

:=
(q; q)n

(q; q)j(q; q)n−j
, j = 0, . . . , n
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are the so called q-binomial coefficients.
We shall use Euler’s identities, [6],

eq(z) :=
1

(z; q)∞
=

∞∑
j=0

zj

(q; q)j
, |z| < 1,(1.12)

Eq(z) := (z; q)∞ =
∞∑

j=0

q(
j
2)(−z)j

(q; q)j
,(1.13)

and the terminating version of the q-binomial theorem, [6],

(z; q)n =
n∑

j=0

[
n
j

]
q

q(
j
2)(−z)j .(1.14)

We shall also use the following identity

(q1−n/A; q)k = (−1/A)kq(
k
2)+k(1−n) (A; q)n

(A; q)n−k
.(1.15)

The following theorem of H. Schwartz, [13], plays an important role in the
spectral analysis in Section 2.

Theorem 1.1. Let {pn,ν(x)} be a family of monic polynomials generated by

p0,ν(x) = 1, p1,ν(x) = x + Bν ,(1.16)

pn+1,ν(x) = (x + Bn+ν)pn,ν(x) + Cn+νpn−1,ν(x), n ≥ 1.(1.17)

If both
∞∑

n=0

|Bn+ν − β| < ∞ and
∞∑

n=0

|Cn+ν | < ∞(1.18)

hold, then xnpn,ν(−β + 1/x) converges uniformly on compact subsets of the
complex plane to an entire function of x.

The paper is organized in six sections. In Section 2, we study the eigen-
functions of the right inverse operator of Dq,x on the space L2(µ(·, qt)).
This right inverse operator will be denoted by Tt. The operator Tt is de-
fined first on the big q-Jacobi polynomials and then extended by linearity
to L2(µ(·, qt)), in which the big q-Jacobi polynomials are complete. The
operator Tt is also a discrete integral operator. The rest of the paper is de-
voted to the study of the properties of Tt and its eigenfunctions. It turns out
that the matrix representation of Tt in the basis formed by the big q-Jacobi
polynomials is tridiagonal. This gives a three-term recurrence relation for
the coefficients in the expansion of the eigenfunctions of Tt in big q-Jacobi
polynomials.

In Section 3, we find the polynomial solution of the recurrence relation
for the coefficients in the expansion of the eigenfunctions of the operator Tt
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from Section 2. The recurrence relation is identified with that of the little
q-Jacobi polynomials.

In Section 4, we find the expansion of the formal eigenfunctions of the
operator Dq,x on the space L2(µ(·, t)) in terms of {pn(x, t)}. The first co-
efficient of the expansion is used to determine the spectrum of the inverse
operator Tt. This eigenfunction expansion gives a discrete q-analogue (on
a q-linear lattice) of the well-known expansion of a plane wave exp(iλx) in
Jacobi polynomials.

Section 5 contains asymptotic properties of the orthogonal polynomials
found in Section 3 and a formula for the Stieltjes transform of the measure of
orthogonality. We prove that the measure of orthogonality is purely discrete
and we identify the location of its masses with the discrete zero-set of an
entire function and show how it is related to the spectrum of the operator
Tt.

The paper concludes with Section 6, where we find the connection coeffi-
cients between families of big q-Jacobi polynomials corresponding to differ-
ent values of the parameter t.

2. The Spectral Analysis.

Let t = (t1, t2). By qt we shall denote the pair (qt1, qt2). The Hilbert space
L2(µ(·, t)) is defined through the standard dot-product

〈f, g〉 =
∫
R

f(x)g(x) dµ(x, t),

and

L2(µ(·, t)) =

{
f : ||f ||L2(µ(·,t)) =

(∫
R
|f(x)|2 dµ(x, t)

)1/2

< ∞

}
.

Let Tt denote the right inverse operator of Dq,x on L2(µ(x, t)), that is, Tt

is a linear operator from L2(µ(x, qt)) to L2(µ(x, t)) such that Dq,xTt is the
identity operator on the range of Dq,x acting on L2(µ(x, t)). From (1.3) and
(1.1) we find

Dq,xpn(x, t) =
t1q

1−n(1− qn)(1− at1t2q
n−1)

(1− q)(1− t1)(1− at1)
pn−1(x, qt)(2.1)

=: σn(t)pn−1(x, qt).

Thus we require Tt to satisfy

Ttg(x) ∼
∞∑

n=0

(gn/σn+1(t)) pn+1(x, t)(2.2)
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if

g(x) ∼
∞∑

n=0

gnpn(x, qt).

The operator Tt can be expressed as an integral operator as well. From the
orthogonality relation (1.6) we get

gn =
1

ξn(qt)

∫
R

g(u)pn(u, qt) dµ(u, qt).

Substituting in (2.2) and formally interchanging the order of integration and
summation we get

Ttg(x) =
∫
R

g(u)

{ ∞∑
n=0

pn(u, qt)pn+1(x, t)
ξn(qt)σn+1(t)

}
dµ(u, qt).(2.3)

The sum in (2.3) is the kernel of the integral operator Tt.
We now consider the eigenvalue problem for the operator Tt, namely

Ttg = λg, g(x) =
∞∑

n=0

an(λ, t)pn(x, t),(2.4)

with g ∈ L2(µ(·, t))∩L2(µ(·, qt)). The function g can be expanded in terms
of the polynomials {pn(x, t)} since they are dense in L2(µ(·, t)). Further-
more, (2.2) implies a0(λ, t) = 0 since g is in the range of Tt.

We will need a connection coefficient formula of the form

pn(x, t) =
n∑

j=0

cn,j(t)pj(x, qt).

Such formula we can get using a simple duality theorem, [15, Theorem
2.5]. Let µ be a measure, w and ρ, weight functions, and {pn} and {qn},
polynomials orthogonal with respect to wµ and ρµ, respectively. Let αn =∫
|pn|2wdµ and βn =

∫
|qn|2ρdµ. If

w(x)pn(x) ∼ ρ(x)
∞∑

j=n

cn,jqj(x), then qn(x) =
n∑

k=0

(βn/αk)ck,npk(x).

Indeed, if qn =
n∑

k=0

dn,kpk, then dn,k = (1/αk)
∫

qnpkwdµ = (βn/αk)ck,n.

Moreover, if w/ρ is a polynomial of degree s, then cn,j = 0 for j > n + s.
In our case with w(x) = 1/(xqt1, xqt2; q)∞, ρ(x) = 1/(xt1, xt2; q)∞, and
µ = µ(a) we have w(x)/ρ(x) = (1− t1x)(1− t2x). Thus

pn(x, t) =
n∑

m=n−2

cm,n(t) (ξn(t)/ξm(qt)) pm(x, qt), n ≥ 0,(2.5)
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where the coefficients {cm,n(t)} satisfy the equation

(1− t1x)(1− t2x)pn(x, qt) =
n+2∑
k=n

cn,k(t)pk(x, t), n ≥ 0.(2.6)

The coefficients in (2.6) can be computed explicitly. Comparing the coeffi-
cients of xn+2 in (2.6) we get

cn,n+2(t) =
(q−n, at1t2q

n+1; q)n

(q−n−2, at1t2qn+1; q)n+2

(t1, at1, q; q)n+2

(qt1, aqt1, q; q)n

qn(−qt1)nq(
n
2)

qn+2(−t1)n+2q(
n+2

2 )
t1t2

=
(1− t1)(1− at1)(1− t1q

n+1)(1− at1q
n+1)

(1− at1t2q2n+1)(1− at1t2q2n+2)
(t2/t1)qn.

(2.7)

From (1.3) and (1.8) we have pm(1/t1; t1, t2) = 1 and

pm(1/t2; t1, t2) = tm1 (t2, at2; q)m/(tm2 (t1, at1; q)m).

Substituting in (2.6) x first by 1/t1 and then by 1/t2 we obtain

cn,n(t) + cn,n+1(t) + cn,n+2(t) = 0,(2.8)

cn,n(t) + αncn,n+1(t) + αnαn+1cn,n+2(t) = 0,(2.9)

where

αn :=
t1(1− t2q

n)(1− at2q
n)

t2(1− t1qn)(1− at1qn)
.

From (2.8) and (2.9) we obtain

cn,n(t) =
αn(αn+1 − 1)

αn − 1
cn,n+2(t)(2.10)

=
(1− t1)(1− at1)(1− t2q

n)(1− at2q
n)

(1− at1t2q2n)(1− at1t2q2n+1)
qn.

Applying Dq,x to both sides of (2.4) and using (2.1) and (2.5) we obtain

Dq,x(λg(x)) = λ
∞∑

n=1

an(λ, t)σn(t)pn−1(x, qt) = g(x)

=
∞∑

m=1

am(λ, t)pm(x, t)

=
∞∑

m=1

am(λ, t)
m∑

j=m−2

(ξm(t)/ξj(qt)) cj,m(t)pj(x, qt).
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The above identity implies that the coefficients {an(λ, t)} are generated by

λan(λ, t)σn(t) =
n+1∑

m=n−1

(ξm(t)/ξn−1(qt)) cn−1,m(t)am(λ, t), n ≥ 1,

(2.11)

a0(λ, t) = 0 and a1(λ, t) 6= 0 is arbitrary. Formula (2.11) and the initial
conditions show that an(λ, t)/a1(λ, t) is a polynomial of degree n − 1. We
set

ãm−1(λ, t) := ξm(t)am(λ, t)/(ξ1(t)a1(λ, t)), m ≥ 1,

ã−1(λ, t) := 0 and cn,m(t) := (1− t1)(1− at1)c̃n,m(t). Since

σn(t)ξn−1(qt)
ξn(t)

=
(1− t1)(1− at1)
−at1(1− q)

,

formula (2.11) can be written in the form

λãn(λ, t) = −at1(1− q)
n+2∑
m=n

c̃n,m(t)ãm−1(λ, t), n ≥ 0.(2.12)

In terms of the variable η and the functions b̃m(η, t) defined by

η := −λ/(at1(1− q)) and b̃m(η, t) := ãm(−at1(1− q)η, t),

formula (2.12) can be written in the form

ηb̃n(η, t) =
n+2∑
m=n

c̃n,m(t)b̃m−1(η, t), n ≥ 0(2.13)

with the initial conditions

b̃−1(η, t) = 0, b̃0(η, t) = 1.

From (2.10), (2.7) and (2.8) for the coefficients we obtain

c̃n,n = c̃n,n(t) =
(1− t2q

n)(1− at2q
n)

(1− at1t2q2n)(1− at1t2q2n+1)
qn,(2.14)

c̃n,n+2 = c̃n,n+2(t) =
(1− t1q

n+1)(1− at1q
n+1)t2

(1− at1t2q2n+1)(1− at1t2q2n+2)t1
qn,(2.15)

c̃n,n+1 = c̃n,n+1(t) = −(c̃n,n(t) + c̃n,n+2(t)).(2.16)

It is convenient to have (2.13) written in monic form. Let

b̃m(η, t) := Gm(t)bm(η, t).
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From (2.13) we have

ηbn(η, t) =
c̃n,nGn−1(t)

Gn(t)
bn−1(η, t) + c̃n,n+1bn(η, t)

+
c̃n,n+2Gn+1(t)

Gn(t)
bn+1(η, t), n ≥ 0,

which is a monic equation if the coefficient of bn+1(η, t) is 1, that is, if
Gn+1(t) = Gn(t)/c̃n,n+2. In this case

Gn(t) = G0(t)/
n−1∏
j=0

c̃j,j+2, n ≥ 1, G0(t) 6= 0,

and (2.13) takes the form

ηbn(η, t) = bn+1(η, t) + c̃n,n+1bn(η, t) + c̃n,nc̃n−1,n+1bn−1(η, t), n ≥ 0.
(2.17)

We set b0(η, t) = G0(t) = 1 and b−1(η, t) = 0. When the coefficients in
(2.17) are written explicitly in terms of t1, t2, and n, we obtain

(2.18) bn+1(η, t) =
(

η +
(1− t2q

n)(1− at2q
n)

(1− at1t2q2n)(1− at1t2q2n+1)
qn

+
(1− t1q

n+1)(1− at1q
n+1)t2

(1− at1t2q2n+1)(1− at1t2q2n+2)t1
qn

)
bn(η, t)

− (1− t1q
n)(1− at1q

n)(1− t2q
n)(1− at2q

n)t2
(1− at1t2q2n−1)(1− at1t2q2n)2(1− at1t2q2n+1)t1

q2n−1bn−1(η, t).

We now apply Schwartz’s theorem (Theorem 1.1). With Bn(t) =
−t1c̃n,n+1(t), Cn(t) = −t21c̃n,n(t)c̃n−1,n+1(t), and b̂n(η, t) = tn1 bn(η/t1, t),
(2.18) takes the form

b̂n+1(η, t) = (η + Bn(t))b̂n(η, t) + Cn(t)b̂n−1(η, t), n ≥ 0.

Furthermore, by (2.14)-(2.16) we have Bn(qνt) = Bn+ν(t), Cn(qνt) =
Cn+ν(t),

∞∑
n=0

|Bn(t)| < ∞, and
∞∑

n=0

|Cn(t)| < ∞.

Then by Theorem 1.1, ηnb̂n(1/η, t) = (t1η)nbn(1/(t1η), t), or equivalently,
ηnbn(1/η, t) converges locally uniformly in the complex plane to an entire
function of η.
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3. The Polynomial Solution of the Recurrence Equation for the
Coefficients.

In this section we solve recurrence equation (2.18):

bn+1(η, t) = (η + βnqn)bn(η, t)− γnq2n−1bn−1(η, t), n ≥ 0,(3.1)

with b−1(η, t) = 0, b0(η, t) = 1, and

βn =
(1− t2q

n)(1− at2q
n)

(1− at1t2q2n)(1− at1t2q2n+1)
+

(1− t1q
n+1)(1− at1q

n+1)t2
(1− at1t2q2n+1)(1− at1t2q2n+2)t1

,

(3.2)

γn =
(1− t1q

n)(1− at1q
n)(1− t2q

n)(1− at2q
n)t2

(1− at1t2q2n−1)(1− at1t2q2n)2(1− at1t2q2n+1)t1
.

(3.3)

The coefficients βn can be simplified. We have

t1(at1t2q
2n; q)3βn = t1(1− t2q

n)(1− at2q
n)(1− at1t2q

2n+2)

+ t2(1− t1q
n+1)(1− at1q

n+1)(1− at1t2q
2n)

= t1
(
1− (1 + a)t2qn + at22q

2n − at1t2q
2n+2

+a(1 + a)t1t22q
3n+2 − a2t1t

3
2q

4n+2
)

+ t2
(
1− (1 + a)t1qn+1 + at21q

2n+2 − at1t2q
2n

+a(1 + a)t21t2q
3n+1 − a2t31t2q

4n+2
)

= (t1 + t2)(1− a2t21t
2
2q

4n+2)− (1 + a)t1t2qn(1 + q)

+ a(1 + a)t21t
2
2q

3n+1(1 + q)

= (1− at1t2q
2n+1)

(
(t1 + t2)(1 + at1t2q

2n+1)

−(1 + a)(1 + q)t1t2qn) .

Therefore,

βn =
(t1 + t2)(1 + at1t2q

2n+1)− (1 + a)(1 + q)t1t2qn

(1− at1t2q2n)(1− at1t2q2n+2)t1
.(3.4)

Recurrence relation (3.1) can be identified with the recurrence relation of
the associated little q-Jacobi polynomials, [5]. The latter work gets the
little q-Jacobi polynomials as limiting cases of the associated big q-Jacobi
polynomials and does not give an explicit representation for the polynomials.
Theorem 4.1 below provides an explicit representation for the little q-Jacobi
polynomials.

We shall use (3.1)–(3.4) to find the coefficient βn,n−1 of ηn−1 in bn(η, t)
and to guess the structure of the polynomials bn(η, t). From (3.1) we get
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βn+1,n = βnqn +βn,n−1 which implies βn,n−1 =
n−1∑
j=0

βjq
j . From (3.4) we have

a(1− q)t1βjq
j = a(t1 + t2)qj

(
1

1− at1t2q2j
− q

1− at1t2q2j+2

)
−(1 + a)

(
1

1− at1t2q2j
− 1

1− at1t2q2j+2

)
=: R(qj)−R(qj+1),

where

R(z) =
a(t1 + t2)z − (1 + a)

1− at1t2z2
.

Then βn,n−1 becomes a telescoping sum and we find

a(1− q)t1βn,n−1

= (R(1) + 1)− (R(qn) + 1)

= −a(1− t1)(1− t2)
(1− at1t2)

+
a(1− t1q

n)(1− t2q
n)

(1− at1t2q2n)

=
a(1− t1q

n)(1− t2q
n)

(1− at1t2q2n)

(
1− (1− t1)(1− t2)(1− at1t2q

2n)
(1− at1t2)(1− t1qn)(1− t2qn)

)
.

The coefficient βn,n−1 can be written in a form that resembles similar for-
mulas for the Wimp polynomials from [16] and their q-analogue from [8]:

βn,n−1 = − (1− q−n/t1)(1− q−n/t2)
(1− q)(1− q−2n/(at1t2))

(at1)−1(3.5)

×
(

1 +
(q−1, t1, t2, at1t2q

2n; q)1q
(at1t2, t1qn, t2qn, q; q)1

)
.

The analogue of these polynomials that solves (3.1) is defined below.

Theorem 3.1. The polynomials bn(η, t) defined by

bn(η, t) =
n∑

j=0

(q−n/t1, q
−n/t2; q)j

(q, q−2n/(at1t2); q)j
(−at1)−jηn−j(3.6)

× 4φ3

(
q−j , t1, t2, at1t2q

2n+1−j

t1q
n+1−j , t2q

n+1−j , at1t2

∣∣∣∣ q, q

)
, n ≥ 0

are the solutions of the recurrence relation (3.1)-(3.4).

Proof. The proof is similar to the proof of Theorem 4.1 in [9]. Let b̃n(η, t)
denote the polynomial on the right-hand side of (3.6). We shall demonstrate
that b̃n(η, t) satisfies (3.1).
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The polynomials b̃n(η, t) can be written in the form

b̃n(η, t) =
n∑

j=0

ηn−j
j∑

k=0

(−1)j

(at1)j

(t1, t2; q)k

(q, at1t2; q)k
(3.7)

× (q−n/t1, q
−n/t2; q)j

(t1qn+1−j , t2qn+1−j ; q)k

(at1t2q
2n+1−j ; q)k

(q−2n/(at1t2); q)j

(q−j ; q)kq
k

(q; q)j

=
n∑

j=0

ηn−j
j∑

k=0

(−1)j

(at1)j

(t1, t2; q)k

(q, at1t2; q)k
ak (q−n/t1, q

−n/t2; q)j−k

(q, q−2n/(at1t2); q)j−k

=:
n∑

j=0

j∑
k=0

AkB
(n)
j−k(−1/t1)jak−jηn−j ,

where we applied formula (1.15) with A = 1/(t1qn), 1/(t2qn), 1/(at1t2q
2n),

and q, and we defined

Ak :=
(t1, t2; q)k

(q, at1t2; q)k
,

B(n)
s :=

(q−n/t1, q
−n/t2; q)s

(q, q−2n/(at1t2); q)s
.

We separate the leading term ηn+1 and write b̃n+1(η, t) in the form

b̃n+1(η, t) = η

b̃n(η, t)−
n∑

j=1

j∑
k=0

AkB
(n)
j−ka

k−j(−1/t1)jηn−j

(3.8)

+
n+1∑
j=1

j∑
k=0

AkB
(n+1)
j−k ak−j(−1/t1)jηn+1−j

= (η + βnqn) b̃n(η, t)− r̃n(η, t),
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where

r̃n(η, t) : =
n∑

j=1

j∑
k=0

AkB
(n)
j−ka

k−j(−1/t1)jηn+1−j(3.9)

−
n+1∑
j=1

j∑
k=0

AkB
(n+1)
j−k ak−j(−1/t1)jηn+1−j

+ βnqn
n∑

j=0

j∑
k=0

AkB
(n)
j−ka

k−j(−1/t1)jηn−j

=
n−1∑
j=0

j+1∑
k=0

AkB
(n)
j+1−ka

k−j−1(−1/t1)j+1ηn−j

−
n∑

j=0

j+1∑
k=0

AkB
(n+1)
j+1−ka

k−j−1(−1/t1)j+1ηn−j

+ βnqn
n∑

j=0

j∑
k=0

AkB
(n)
j−ka

k−j(−1/t1)jηn−j .

The coefficient of ηn in r̃n(η, t) equals
1∑

k=0

Ak

(
B

(n)
1−k −B

(n+1)
1−k

)
ak−1(−1/t1) + βnqn

= −
{

B
(n)
1 −B

(n+1)
1

}
/(at1) + βnqn

since A0 = 1 and B
(n)
0 = 1. Furthermore,

B
(n)
1 −B

(n+1)
1 = − a

1− q

(
(1− t1q

n)(1− t2q
n)

1− at1t2q2n
− (1− t1q

n+1)(1− t2q
n+1)

1− at1t2q2n+2

)
and then

− (at1t2q
2n; q2)2((1− q)/a)

{
B

(n)
1 −B

(n+1)
1

}
= (1− t1q

n)(1− t2q
n)(1− at1t2q

2n+2)

− (1− t1q
n+1)(1− t2q

n+1)(1− at1t2q
2n)

= −qn
(
(t1 + t2)(1− q)(1 + at1t2q

2n+1)− (1 + a)(1− q2)t1t2qn
)
.

Hence in view of (3.4) we get

−
{

B
(n)
1 −B

(n+1)
1

}
/(at1) = −βnqn,(3.10)

which shows that the coefficient of ηn in r̃n(η, t) is zero. Then in (3.9) we
can replace the lower bound of the range of j by 1 and then replace j by
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j + 1. We obtain

r̃n(η, t) = βnqn
n−1∑
j=0

j+1∑
k=0

AkB
(n)
j+1−ka

k−j−1(−1/t1)j+1ηn−j−1(3.11)

+
n−2∑
j=0

j+2∑
k=0

AkB
(n)
j+2−ka

k−j−2(−1/t1)j+2ηn−j−1

−
n−1∑
j=0

j+2∑
k=0

AkB
(n+1)
j+2−ka

k−j−2(−1/t1)j+2ηn−j−1.

Note that in (3.11) we can first separate the two constant terms, and then
in the last two double sums we can replace the upper bound j + 2 of the
range of k by j + 1 using that B

(n)
j+2−k − B

(n+1)
j+2−k = 0 if k = j + 2. Then we

can write

r̃n(η, t) = Kn +
n−2∑
j=0

j+1∑
k=0

Aka
k−j−2(−1/t1)j+24(n)

j+2−kη
n−j−1,(3.12)

where

4(n)
s = B(n)

s −B(n+1)
s − at1βnqnB

(n)
s−1, s = 1, . . . , n,(3.13)

and Kn is the constant term of r̃n(η, t).
From (3.10) we get 4(n)

1 = 0.
For s ∈ {2, . . . , n} we have

4(n)
s =

(q−n/t1, q
−n/t2; q)s

(q, q−2n/(at1t2); q)s
− (q−n−1/t1, q

−n−1/t2; q)s

(q, q−2n−2/(at1t2); q)s

− q−n−1

t1t2

(
(t1 + t2)(1 + q−2n−1/(at1t2))− (1 + a)(1 + q)q−n−1/a

)
(1− q−2n/(at1t2))(1− q−2n−2/(at1t2))

× (q−n/t1, q
−n/t2; q)s−1

(q, q−2n/(at1t2); q)s−1

=
(q−n/t1, q

−n/t2; q)s−1

(q; q)s(q−2n−2/(at1t2); q)s+2(1− q−2n/(at1t2))
×
{[

(1− q−n−1+s/t1)(1− q−n−1+s/t2)(q−2n−2/(at1t2); q)2
−(1− q−n−1/t1)(1− q−n−1/t2)(q−2n−2+s/(at1t2); q)2

]
× (1− q−2n/(at1t2))− (q−n−1/(t1t2))(1− qs)

×
(
(t1 + t2)(1 + q−2n−1/(at1t2))− (1 + a)(1 + q)q−n−1/a

)
× (1− q−2n−1/(at1t2))(1− q−2n−1+s/(at1t2))

}
.

(3.14)
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We set x = q−n−1/t1, y = q−n−1/t2, α = qs, β = 1/a, S = x + y, and
P = xy. Let E1 and E2 denote the expressions inside { } and [ ] in (3.14),
respectively. Then

E1 = E2(1− q2βP )

− (1− α) (S(1 + qβP )− (1 + β)(1 + q)P ) (1− qβP )(1− qαβP )

and

E2 = (1− αx)(1− αy)(1− βP )(1− qβP )

− (1− x)(1− y)(1− αβP )(1− qαβP ).

We now simplify E2. We have

E2 = 1− αS + α2P − (1 + q)βP (1− αS + α2P ) + qβ2P 2(1− αS + α2P )

− 1 + S − P + (1 + q)αβP (1− S + P )− qα2β2P 2(1− S + P )

= (1− α) [S − (1 + α)P − (1 + q)βP

+(1 + q)αβP 2 + q(1 + α)β2P 2 − qαβ2P 2S
]

= (1− α)
[
S(1− qαβ2P 2)−(1 + α)(1− qβ2P )P−(1 + q)β(1− αP )P

]
.

(3.15)

From (3.15) and the definition of E1 and E2 we obtain

E1/(1− α) = S
[
(1− qαβ2P 2)(1− q2βP )− (1− q2β2P 2)(1− qαβP )

]
(3.16)

− P
[(

(1 + α)(1− qβ2P ) + (1 + q)β(1− αP )
)
(1− q2βP )

−(1 + q)(1 + β)(1− qβP )(1− qαβP )]
=: B1S −B2P,

where B1 and B2 denote the expressions inside the brackets. We factor B1

and B2:

B1 = 1− qαβ2P 2 − q2βP + q3αβ3P 3 − 1 + q2β2P 2 + qαβP − q3αβ3P 3

(3.17)

= qβP (α + qβP − q − αβP ) = qβ(α− q)(1− βP )P,
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B2 = (1 + α + (1 + q)β − β (qβ(1 + α) + (1 + q)α) P ) (1− q2βP )

− (1 + q)(1 + β)
(
1− qβ(1 + α)P + q2αβ2P 2

)
= α− q + β

(
(1 + α)(q(1 + q)(1 + β)− qβ − q2)− (1 + q)(α + q2β)

)
P

+ q2β2 (q(1 + α)β + (1 + q)α− (1 + q)α(1 + β))P 2

= α− q + β
(
(1 + α)(q + βq2)− (1 + q)(α + βq2)

)
P + q2(q − α)β3P 2

= −(q − α) + β(q − α)(1− βq2)P + q2(q − α)β3P 2

= −(q − α)(1− βP )(1 + q2β2P ).

(3.18)

From (3.16)-(3.18) we obtain

E1

(1− α)(q − α)(1− βP )
=
(
−qβS + (1 + q2β2P )

)
P(3.19)

=
(
−qβ(x + y) + 1 + q2β2xy

)
xy = (1− qβx)(1− qβy)xy.

We recall that α = qs, β = 1/a, x = q−n−1/t1, y = q−n−1/t2, and s ∈
{2, . . . , n}.

From (3.14)-(3.19) we get

4(n)
s

=
(q−n/t1, q

−n/t2; q)s−1q

(1− α)(q − α)(q; q)s−2(q−2n−2/(at1t2); q)s+2(1− q−2n/(at1t2))
× (1− α)(q − α)(1− βxy)(1− qβx)(1− qβy)xy

=
(q−n+1/t1, q

−n+1/t2; q)s−2

(q, q−2n+2/(at1t2); q)s−2

× (1− q−n/t1)(1− q−n/t2)(1− q−n/(at1))(1− q−n/(at2))q−2n−1/(t1t2)
(q−2n−1/(at1t2); q)3(1− q−2n/(at1t2))

= a2t21γnq2n−1B
(n−1)
s−2 .

(3.20)

At the end we used formula (3.3) for γn.
From (3.12) and (3.20) we obtain

r̃n(η, t) = γnq2n−1
n−2∑
j=0

j∑
k=0

AkB
(n−1)
j−k ak−j(−1/t1)jηn−1−j + Kn,(3.21)

where by (3.8), Kn is the constant term of

r̃n(η, t) = (η + βnqn)b̃n(η, t)− b̃n+1(η, t).(3.22)

We recall that b̃n(η, t) denotes the polynomial on the right-hand side of
(3.6).
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To complete the proof it remains to show that Kn equals γnq2n−1 times
the constant term of b̃n−1(η, t). Let fn denotes the constant term of b̃n(η, t).
From (3.22) we have Kn = βnqnfn − fn+1. Therefore, it is enough to verify
that

fn+1 = βnqnfn − γnq2n−1fn−1.(3.23)

From (3.6) and (1.15) we have

fn =
(q−n/t1, q

−n/t2; q)n(−1)n

(q, q−2n/(at1t2); q)nantn1
φn =

(t1q, t2q; q)nq(
n
2)

(q, at1t2qn+1; q)ntn1
φn,(3.24)

with

φn = 4φ3

(
q−n, at1t2q

n+1, t1, t2
qt1, qt2, at1t2

∣∣∣∣ q, q

)
.(3.25)

We shall use a recurrence formula for the Askey-Wilson polynomials (see [8]
or [12]). The Askey-Wilson polynomials pn(x;A,B, C, D | q) are defined by

pn(x;A,B, C, D|q) := 4φ3

(
q−n, ABCDqn−1, Aeiθ, Ae−iθ

AB, AC, AD

∣∣∣∣ q, q

)
,

(3.26)

where x = cos θ = (eiθ + e−iθ)/2. They satisfy the recurrence equation

xpn(x;A,B, C, D|q) =
An

2
pn+1(x;A,B, C, D|q)(3.27)

+
Bn

2
pn(x;A,B, C, D | q) +

Cn

2
pn−1(x;A,B, C, D | q), n ≥ 0,

with p−1(x;A,B, C, D | q) = 0, p0(x;A,B, C, D | q) = 1, and coefficients

An =
(1−ABqn)(1−ACqn)(1−ADqn)(1−ABCDqn−1)

A(1−ABCDq2n−1)(1−ABCDq2n)
,(3.28)

Cn =
A(1− qn)(1−BCqn−1)(1−BDqn−1)(1− CDqn−1)

(1−ABCDq2n−2)(1−ABCDq2n−1)
,(3.29)

Bn = A + 1/A−An − Cn.(3.30)

As in Section 2 recurrence equation (3.27) can be written in monic form in
terms of the polynomials

qm = qm(x;A,B, C, D | q) = pm(x;A,B, C, D | q)2−m
m−1∏
j=0

Aj .

The monic equation is

xqn = qn+1 + (Bn/2)qn + (CnAn−1/4)qn−1, n ≥ 0,(3.31)

q−1 = 0, q0 = 1.



AN INTEGRAL OPERATOR 459

We select A =
√

t1t2, B = q
√

t1/t2, C = q
√

t2/t1, D = a
√

t1t2 and
eiθ =

√
t1/t2. Then x = cos θ = (t1 + t2)/(2

√
t1t2), and from (3.24)-(3.31)

we obtain

An =
(1− t1q

n+1)(1− t2q
n+1)(1− at1t2q

n)(1− at1t2q
n+1)√

t1t2(1− at1t2q2n+1)(1− at1t2q2n+2)
,(3.32)

Cn =
√

t1t2(1− qn)(1− qn+1)(1− at1q
n)(1− at2q

n)
(1− at1t2q2n)(1− at1t2q2n+1)

,(3.33)

Bn =
√

t1t2 + 1/
√

t1t2 −An − Cn,(3.34)

and

qn = 2−n

n−1∏
j=0

Aj

(3.35)

× pn

(
(t1 + t2)/(2

√
t1t2);

√
t1t2, q

√
t1/t2, q

√
t2/t1, a

√
t1t2 | q

)
=

(t1q, t2q, at1t2, at1t2q; q)n

2n(t1t2)n/2(at1t2q; q)2n
φn =

(t1q, t2q, at1t2; q)n

2n(t1t2)n/2(at1t2qn+1; q)n
φn

=
(q, at1t2; q)n(t1/t2)n/2

2nq(
n
2)

fn.

Furthermore, from (3.31) and (3.34) we have

qn+1 =
(

t1 + t2
2
√

t1t2
− t1t2 + 1

2
√

t1t2
+

An

2
+

Cn

2

)
qn −

CnAn−1

4
qn−1(3.36)

=: (Rn/(2
√

t1t2))qn − (CnAn−1/4)qn−1.

From (3.35), (3.36), (3.32), (3.33), and (3.3) we get

fn+1 =
Rnqn

(1− qn+1)(1− at1t2qn)t1
fn −

4q2n−1

(qn, at1t2qn−1; q)2t1/t2
(3.37)

× 1
4

(1− qn)(1− qn+1)(1− at1q
n)(1− at2q

n)
(1− at1t2q2n)(1− at1t2q2n+1)

× (1− t1q
n)(1− t2q

n)(1− at1t2q
n−1)(1− at1t2q

n)
(1− at1t2q2n−1)(1− at1t2q2n)

fn−1

=
Rnqn

(1− qn+1)(1− at1t2qn)t1
fn − γnq2n−1fn−1.

To complete the proof of (3.23) and the theorem we have to show that the
coefficient of fn in (3.37) equals βnqn. From (3.36), (3.32), and (3.33) we
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get

(at1t2q
2n; q)3Rn = −(1− t1)(1− t2)(at1t2q

2n; q)3
+(1− t1q

n+1)(1− t2q
n+1)(1− at1t2q

n)(1− at1t2q
n+1)(1− at1t2q

2n)

+(1− qn)(1− qn+1)(1− at1q
n)(1− at2q

n)(1− at1t2q
2n+2)t1t2.

Setting S = t1 + t2, P = t1t2, and α = qn we obtain

(at1t2q
2n; q)3Rn = −(1− S + P )(1− aα2P )(1− aqα2P )(1− aq2α2P )

+ (1− qαS + q2α2P )(1− aαP )(1− aqαP )(1− aα2P )

+ (1− α)(1− qα)(1− aαS + a2α2P )(1− aq2α2P )P
=: E1S + E2P + E3P.

(3.38)

The expressions {Ej}3
j=1 are defined and factored below:

E1 := (1− aα2P )(1− aqα2P )(1− aq2α2P )(3.39)

− qα(1− aαP )(1− aqαP )(1− aα2P )

− aα(1− α)(1− qα)(1− aq2α2P )P

= (1− aα2P )
[
1− aqα2P − aq2α2P + a2q3α4P 2

−qα + aqα2P + aq2α2P − a2q2α3P 2
]

− aα(1− α)(1− qα)(1− aq2α2P )P

= (1− qα)
(
(1− aα2P )(1− a2q2α3P 2)

−aα(1− α)(1− aq2α2P )P
)

= (1− qα)(1 + a3q2α5P 3 − aαP − a2q2α4P 2)

= (1− qα)(1− aαP )(1− a2q2α4P 2),

E2 :=
(
−(1− aα2P )(1− aqα2P )(1− aq2α2P )

+ (1− aαP )(1− aqαP )(1− aα2P )
)
/P

= (1− aα2P )aα(αq + αq2 − aq3α3P − 1− q + aqαP )

= aα(1− qα)(1− aα2P ) (−(1 + q) + (1 + qα)aqαP )

= −aα(1−qα)
[
1 + q−aα((1 + q)α + q(1 + qα))P + a2qα3(1 + qα)P 2

]
,

(3.40)
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and

E3 := −(1− aα2P )(1− aqα2P )(1− aq2α2P )

+ q2α2(1− aαP )(1− aqαP )(1− aα2P )

+ (1− α)(1− qα)(1 + a2α2P )(1− aq2α2P )

= (1− aα2P )
(
−1 + aq(1 + q)α2P + q2α2 − aq2(1 + q)α3P

)
+ (1− α)(1− qα)(1 + a(a− q2)α2P − a3q2α4P 2)

= (1− qα)(1− aα2P )(−1− qα + aq(1 + q)α2P )

+ (1− qα)(1− α)
(
1 + a(a− q2)α2P − a3q2α4P 2

)
= (1− qα)

[
−(1 + q)α + aα2

(
q(1 + q) + 1 + qα + (1− α)(a− q2)

)
P

−a2qα4(1 + q + aq(1− α))P 2
]
.

(3.41)

Combining (3.40) and (3.41) we obtain

(E2 + E3)/(1− qα) = −(1 + q)(1 + a)α

+ aα2
(
aα + aqα + aq + aq2α + q

+1 + qα + a− aα + q2α
)
P

− a2qα4(a(1 + qα) + 1 + q + aq(1− α))P 2

= −(1 + q)(1 + a)α + aα2(1 + q)(aqα + a + 1 + qα)P

− a2qα4(1 + q)(1 + a)P 2

= −(1 + q)(1 + a)α
(
1− aα(1 + qα)P + a2qα3P 2

)
= −(1 + q)(1 + a)α(1− aαP )(1− aqα2P ).

(3.42)

Then from (3.38), (3.39), and (3.42) we get

(at1t2q
2n; q)3Rn = (1− qα)(1− aαP )(1− aqα2P )(3.43)

×
(
(1 + aqα2P )S − (1 + q)(1 + a)αP

)
.

In terms of α = qn, S = t1 + t2, and P = t1t2, (at1t2q
2n; q)3 = (aα2P ; q)3,

hence (3.43) implies

Rn

(1− qn+1)(1− at1t2qn)t1
=

Rn

(1− qα)(1− aαP )t1
(3.44)

=
(1 + aqα2P )S − (1 + q)(1 + a)αP

(1− aα2P )(1− aq2α2P )t1
= βn

in view of (3.4). The proof of Theorem 3.1 is complete. �
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4. The Spectrum of the Inverse Operator.

To find the spectrum of the operator Tt, that is, to solve eigenvalue problem
(2.4) we consider the eigenfunctions of the q-difference operator Dq,x. It is
easy to see that for every λ the equation Dq,xf(x) = λf(x) has solution
fλ(x) = 1/(λ(1 − q)x; q)∞ = eq(λ(1 − q)x). The eigenfunctions of Tt are
also eigenfunctions for Dq,x, in fact if gλ is such that Ttgλ = λgλ, then
gλ = Dq,xTtgλ = λDq,xgλ and therefore, gλ(x) = f1/λ(x) = eq((1 − q)x/λ).
Hence, the eigenvalues of Tt are the reciprocals of the numbers λ such that

fλ(x) =
∞∑

n=0

cn(λ, t)pn(x, t) ∈ L2(µ(·, t)) ∩ L2(µ(·, qt)).(4.1)

From equations Ttgλ = λgλ, gλ = f1/λ, (2.2), and (4.1) we get c0(1/λ, t) = 0.
It turns out that the condition c0(1/λ, t) = 0 completely characterizes the
spectrum of the operator Tt.

We proceed with computing the coefficients {cn(λ, t)} in (4.1). Let λ be
small enough so that |λ(1 − q)| < 1. Using the orthogonality relation (1.6)
and applying Euler’s identity (1.12) to fλ(x) = eq(λ(1− q)x) we obtain

cn(λ, t)ξn(t) =
∫
R

fλ(x)pn(x, t) dµ(x, t) =
∞∑

s=0

(λ(1− q))s

(q; q)s
dn,s(λ, t),(4.2)

where we have defined

dn,s(λ, t) :=
∫
R

xspn(x, t) dµ(x, t).(4.3)

By (1.6), dn,s = 0 if s < n, hence we may assume that s ≥ n.
From (1.11) and (1.3) we have

xs =
1
ts2

s∑
j=0

as,j(t2x; q)j , as,j := (−1)jq(
j
2)−j(s−1)

[
s
j

]
q

,

pn(x, t) =
n∑

k=0

bn,k(t1x; q)k, bn,k :=
(q−n, at1t2q

n−1; q)k

(t1, at1, q; q)k
qk.

Then for dn,s(λ, t) we get

dn,s(λ, t) =
s∑

j=0

n∑
k=0

as,jbn,k
1
ts2

∫
R

dµ(a)(x)
(qkt1x, qjt2x; q)∞

(4.4)

=
s∑

j=0

n∑
k=0

as,jbn,k
1
ts2

(at1t2q
k+j ; q)∞

(qkt1, qjt2, aqkt1, aqjt2; q)∞
,
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where (6.4) was used to evaluate the integrals. From the formulas for as,j

and bn,k, and (4.4) we obtain

dn,s =
(at1t2; q)∞(q; q)s

(t1, at1, t2, at2; q)∞ts2

×
s∑

j=0

n∑
k=0

(−1)jq(
j
2)−j(s−1)+k(q−n, at1t2q

n−1; q)k(t2, at2; q)j

(q; q)j(q; q)s−j(q; q)k(at1t2; q)k+j

= c(1)
s∑

j=0

(−1)jq(
j
2)−j(s−1)(t2, at2; q)j

(q; q)j(q; q)s−j(at1t2; q)j
2φ1

(
q−n, at1t2q

n−1

at1t2q
j

∣∣∣∣ q, q

)
,

(4.5)

where c(1) denotes the coefficient of the double sum. By (1.9) the 2φ1 sum
is equal to

(qj+1−n; q)n(at1t2q
n−1)n

(at1t2qj ; q)n
,

which is 0 for j < n. Then for s ≥ n we obtain

dn,s = c(2)
s∑

j=n

(−1)jq(
j
2)−j(s−1)(t2, at2; q)j

(q; q)j−n(q; q)s−j(at1t2; q)n+j
,(4.6)

where c(2) = (at1t2q
n−1)nc(1) and we used the identity (qj+1−n; q)n = (q; q)j/

(q; q)j−n. Replacing j by n + l we get

dn,s = c(3)
s−n∑
l=0

(−1)lq(
n+l
2 )−(n+l)(s−1)(t2qn, at2q

n; q)l

(q; q)l(q; q)(s−n)−l(at1t2q2n; q)l
, s ≥ n,(4.7)

with c(3) = (−1)n(t2, at2; q)n/(at1t2; q)2nc(2). Next with p = s− n we have

(q; q)p

(q; q)p−l
=

p∏
j=p−l+1

(1− qj) = (−1)lq(
p+1
2 )−(p−l+1

2 )(q−p; q)l

and(
n + l

2

)
− (n + l)(s− 1) +

(
p + 1

2

)
−
(

p− l + 1
2

)
=
(

n

2

)
− n(s− 1) + l.

Substituting these identities in (4.7) we obtain

dn,s = c(4)
3φ2

(
q−(s−n), t2q

n, at2q
n

at1t2q
2n, 0

∣∣∣∣ q, q

)
, s ≥ n,(4.8)

where

c(4) = c(4)
n,s =

(at1t2q
2n; q)∞(t2, at2; q)n(at1t2)n(q; q)sq

(n
2)+n(n−s)(−1)n

(t1, at1, t2, at2; q)∞(q; q)s−nts2
.

(4.9)
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From formula (1.7) for ξn(t) and (4.9) we get

c(4)
n,s =

(t1, at1; q)n(q; q)sq
n(n−s)tn−s

2

(at1t2qn−1, q; q)n(q; q)s−ntn1
ξn(t).(4.10)

Then from (4.2), (4.8), (4.9), and (4.10) we get

cn(λ, t) =
∞∑

s=n

((1− q)λ)s

(q; q)s
(dn,s/ξn(t)) =

(t1, at1; q)n(1− q)n

(at1t2qn−1, q; q)ntn1
λn(4.11)

×
∞∑

k=0

((1− q)/(t2qn))k

(q; q)k
λk

3φ2

(
q−k, t2q

n, at2q
n

at1t2q
2n, 0

∣∣∣∣ q, q

)
,

with k = s− n. Applying the transformation, [6],

3φ2

(
q−k, a, b

c, 0

∣∣∣∣ q, q

)
=

(b; q)ka
k

(c; q)k
2φ1

(
q−k, c/b
q1−k/b

∣∣∣∣ q, q/a

)
(4.12)

to the 3φ2 expression in (4.11) we get

3φ2

(
q−k, t2q

n, at2q
n

at1t2q
2n, 0

∣∣∣∣ q, q

)
=

(at2q
n; q)k(t2qn)k

(at1t2q2n; q)k
2φ1

(
q−k, t1q

n

q1−k−n/(at2)

∣∣∣∣ q, q1−n/t2

)
.

Then the second sum in (4.11) can be written in the form
∞∑

k=0

(at2q
n; q)k(1− q)k

(at1t2q2n, q; q)k
λk

k∑
j=0

(q−k; q)j(t1qn; q)j(q1−n/t2)j

(q1−k−n/(at2); q)j(q; q)j
.(4.13)

Using (1.15) we obtain

(q−k; q)j

(q1−k−n/(at2); q)j
=

(q; q)k(at2q
n; q)k−j

(q; q)k−j(at2qn; q)k
(at2q

n−1)j .

Hence the double sum in (4.13) equals
∞∑

k=0

((1− q)λ)k

(at1t2q2n, q; q)k

k∑
j=0

[
k
j

]
q

(t1qn; q)j(at2q
n; q)k−ja

j .(4.14)

The above formulas hold when |(1−q)λ| < 1 since in this range (1.12) can
be applied. To extend the formulas to arbitrary λ we need a meromorphic
continuation of the function in (4.14). We set

αk(a, t1, t2) :=
1

(at1t2, q; q)k

k∑
j=0

[
k
j

]
q

(t1; q)j(at2; q)k−ja
j ,(4.15)

A(z; a, t1, t2) :=
∞∑

k=0

αk(a, t1, t2)zk, |z| < 1.(4.16)
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Note that the sum in (4.14) equals A((1−q)λ; a, qnt). For |z| < 1 we consider
the product of the functions (z, az; q)∞ and A(z; a, t1, t2). Using (1.13) we
get

(z; q)∞A(z; a, t1, t2) =
∞∑

n=0

zn

(
n∑

k=0

αk(a, t1, t2)
(−1)n−kq(

n−k
2 )

(q; q)n−k

)
.(4.17)

The coefficient of zn in (4.17) equals

n∑
k=0

 k∑
j=0

[
k
j

]
q

(t1; q)j(at2; q)k−ja
j

(at1t2, q; q)k

 (−1)n−kq(
n−k

2 )

(q; q)n−k

(4.18)

=
n∑

j=0

(t1; q)ja
j

(at1t2, q; q)j(q; q)n−j

(
n−j∑
ν=0

[
n− j

ν

]
q

(at2; q)ν(−1)n−j−νq(
n−j−ν

2 )

(at1t2qj ; q)ν

)

with ν = k − j. The sum over ν in (4.18) has the form
m∑

ν=0

[
m
ν

]
q

(α; q)ν

(β; q)ν
(−1)m−νq(

m−ν
2 )

= (−1)mq(
m
2 )

m∑
ν=0

(q−m, α; q)ν

(β, q; q)ν
qν

= (−1)mq(
m
2 )2φ1

(
q−m, α

β

∣∣∣∣ q, q

)
= (−1)mq(

m
2 ) (β/α; q)m

(β; q)m
αm,

where we first used the identity

(q; q)m/(q; q)m−ν = (−1)νq(
m+1

2 )−(m−ν+1
2 )(q−m; q)ν ,(4.19)

and then (1.9). Then the coefficient of zn in (4.17) given with (4.18) equals
n∑

j=0

(t1; q)ja
j

(at1t2, q; q)j(q; q)n−j
(−1)n−jq(

n−j
2 ) (t1qj ; q)n−j(at2)n−j

(at1t2qj ; q)n−j
(4.20)

=
(t1; q)nan

(at1t2, q; q)n

n∑
j=0

[
n

n− j

]
q

q(
n−j

2 )(−t2)n−j =
(t1, t2; q)nan

(at1t2, q; q)n
,

where we applied (1.14). From (4.17) and (4.20) we get

(z; q)∞A(z; a, t1, t2) = 2φ1

(
t1, t2
at1t2

∣∣∣∣ q, az

)
, |az| < 1.(4.21)
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From (1.13) and (4.21) for z such that max{|z|, |az|} < 1 we have

(z, az; q)∞A(z; a, t1, t2)(4.22)

=
∞∑

m=0

(
m∑

k=0

(t1, t2; q)k

(at1t2, q; q)k

(−1)m−kq(
m−k

2 )

(q; q)m−k

)
amzm

=
∞∑

m=0

(−1)mq(
m
2 )

(q; q)m
3φ2

(
q−m, t1, t2

at1t2, 0

∣∣∣∣ q, q

)
amzm

=
∞∑

m=0

(−t1)mq(
m
2 )(t2; q)m

(at1t2, q; q)m
2φ1

(
q−m, at1
q1−m/t2

∣∣∣∣ q, q/t1

)
amzm,

where we applied (4.19) and (4.12). Next, from (1.15) we have

(q−m; q)j

(q1−m/t2; q)j
=

(q; q)m(t2; q)m−j

(q; q)m−j(t2; q)m
(t2/q)j ,

which combined with (4.22) yields

(z, az; q)∞A(z; a, t1, t2) =
∞∑

m=0

(−t1)mq(
m
2 )

(at1t2; q)m

×

 m∑
j=0

(at1; q)j(t2; q)m−j

(q; q)j(q; q)m−j
(t2/t1)j

 amzm.

(4.23)

Clearly (z, az; q)∞ is an entire function of z. Furthermore, the right-hand
side of (4.23) is an entire function of z, and in an open neighborhood of z = 0
it coincides with the function (z, az; q)∞A(z; a, t1, t2). Hence a meromorphic
extension of A(z; a, t1, t2) to the complex plane can be found by dividing the
right-hand side of (4.23) by (z, az; q)∞.

The main results of this section can be described with the following two
theorems.

Theorem 4.1. The coefficients in the expansion formula for the eigenfunc-
tion fλ(x) = eq(λ(1 − q)x) in terms of big q-Jacobi polynomials {pn(x, t)}
are given by

cn(λ, t) =
1

((1− q)λ, a(1− q)λ; q)∞
(t1, at1; q)n(1− q)n

(at1t2qn−1, q; q)ntn1
λn

×
∞∑

m=0

(−t1q
n)mq(

m
2 )

(at1t2q2n; q)m

 m∑
j=0

(at1q
n; q)j(t2qn; q)m−j

(q; q)j(q; q)m−j

(
t2
t1

)j
 am(1− q)mλm.

(4.24)
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Furthermore, the coefficients {cn(λ, t)} satisfy the recurrence equation

σn(t)cn(λ, t) = λ
n+1∑

m=n−1

(ξm(t)/ξn−1(qt)) cn−1,m(t)cm(λ, t), n ≥ 1,

(4.25)

where {cn,m(t)}n+2
m=n are the coefficients defined with (2.7)-(2.10).

The spectrum of the inverse operator Tt is described in Theorem 4.2.

Theorem 4.2. The function fλ(x) belongs to the space L2(µ(·, t)) for every
λ that is not a zero of ((1− q)λ, a(1− q)λ; q)∞.

The spectrum of Tt, the inverse operator of the q-difference operator Dq,x,
acting on the space L2(µ(·, t)) ∩ L2(µ(·, qt)) is the set of the reciprocals of
the zeros of the meromorphic function c0(λ, t).

Proof. From (1.6), (1.7), (4.1), and (4.24) it immediately follows that

||fλ||2L2(µ(·,t)) =
∞∑

n=0

cn(λ, t)2ξn(t) < ∞

for all λ such that 1/((1− q)λ) /∈ supp
(
µ(a)

)
and all parameters t for which

the function c0(λ, t) is well-defined. This is due to the presence of the factor
q(

n
2) in ξn(t). Furthermore, Ttgλ = λgλ implies gλ = f1/λ and c0(1/λ, t) = 0.

Hence c0(1/λ, t) = 0 is a necessary and sufficient condition for λ to be in
the spectrum of the operator Tt. �

5. Asymptotic Properties of the Polynomials {bn(η, t)}.

In Section 2 we applied Schwartz’s theorem to prove that the sequence
{ηnbn(1/η, t)} converges locally uniformly in the complex plane to an en-
tire function. The recurrence relation (2.17) has bounded coefficients, hence
the polynomials {bn(η, t)} are orthogonal with respect to a unique measure
ϕ(·, t) with compact support, [1], [14]. From Markov’s theorem, [15], the
Stieltjes transform of ϕ(·, t) is given by∫

R

dϕ(u, t)
z − u

= lim
n→∞

b∗n(z, t)
bn(z, t)

, z /∈ R,(5.1)

where {b∗n(η, t)} is the solution of (2.17) or equivalently, (3.1) satisfying the
initial conditions

b∗0(η, t) = 0, b∗1(η, t) = 1.

We observe that βn(t) and γn(t) defined with (3.4) and (3.3) have the prop-
erty

βn−1(qt) = βn(t) and γn−1(qt) = γn(t).(5.2)
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From (3.1) with n, t and η replaced by n − 1, qt and η/q, respectively, we
get

bn(η/q, qt) =
(
η/q + βn−1(qt)qn−1

)
bn−1(η/q, qt)(5.3)

−γn−1(qt)q2n−3bn−2(η/q, qt).

Multiplying (5.3) by qn and using (5.2) we see that

b∗n(η, t) = qn−1bn−1(η/q, qt), n ≥ 0.(5.4)

We now study the limiting behavior of ηnbn(1/η, t) as n →∞. For each
fixed j the 4φ3 expression in (3.6) is bounded by M1(t)1φ0(q−j ;−; q,−q) and
the coefficient of the 4φ3 is bounded by M2(t)|η/t1|jqj(j−1)/2/(q; q)j . Here
both M1(t) and M2(t) are positive and depend only on t. The following
estimate

∞∑
j=0

∣∣∣∣ ηt1
∣∣∣∣j q(

j
2)

(q; q)j
2φ1(q−j ;−; q,−q) ≤

∞∑
j=0

|η/t1|j

(q; q)j

j∑
ν=0

q(
j−ν
2 )

(q; q)j−ν
≤ (−1; q)∞

(|η/t1|; q)∞

holds for η with |η| < |t1|. In the last inequality we used Euler’s identities
(1.12) and (1.13). Hence for |η| < |t1|, Tannery’s theorem (the discrete
version of the Lebesgue dominated convergence theorem) can be applied.
Using formula (3.6) we get

lim
n→∞

ηnbn(1/η, t) =
∞∑

j=0

q(
j
2)(η/t1)j

(q; q)j
3φ2

(
q−j , t1, t2
at1t2, 0

∣∣∣∣ q, q

)
(5.5)

=
∞∑

k=0

(t1, t2; q)kq
k

(at1t2, q; q)k

∞∑
j=k

(q−j ; q)kq
(j
2)(η/t1)j

(q; q)j

=
∞∑

k=0

(t1, t2; q)k(−η/t1)k

(at1t2, q; q)k

∞∑
j=k

q(
j−k
2 )(η/t1)j−k

(q; q)j−k

= (−η/t1; q)∞2φ1

(
t1, t2
at1t2

∣∣∣∣ q, −η/t1

)
,

where we also used (1.13).
From (5.1), (5.5), and (5.4) for z /∈ R we get∫

R

dϕ(u, t)
z − u

= lim
n→∞

z−nqn−1bn−1(z/q, qt)
z−nbn(z, t)

(5.6)

= 2φ1(qt1, qt2; at1t2q
2; q,−1/(t1z))

z2φ1(t1, t2; at1t2; q,−1/(t1z))
, |z| > 1/|t1|.
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An analytic continuation of (5.6) can be found using the Heine transforma-
tion [4, (III.1)],

2φ1(A,B;C; q, Z) =
(B,AZ; q)∞
(C,Z; q)∞

2φ1(C/B, Z;AZ; q, B), |Z|, |B| < 1.

(5.7)

From (5.6) and (5.7) we obtain

∫
R

dϕ(u, t)
z − u

=
(1− at1t2)(1− at1t2q)

(1− t2)(z + 1)
2φ1(aqt1,−1/(t1z);−q/z; q, qt2)
2φ1(at1,−1/(t1z);−1/z; q, t2)

.

(5.8)

The Heine transformation also provides an analytic continuation of formula
(5.5).

Formulas (4.11)-(4.16), (4.22), and (5.5) imply

c0(λ, t) = A((1− q)λ; a, t) = ((1− q)λ, a(1− q)λ; q)−1
∞(5.9)

×
∞∑

j=0

q(
j
2)(−a(1− q)λ)j

(q; q)j
3φ2(q−j , t1, t2; at1t2, 0; q, q)

=
1

((1− q)λ; q)∞
2φ1

(
t1, t2
at1t2

∣∣∣∣ q, a(1− q)λ
)

.

From (5.6) and (5.9) we obtain∫
R

dϕ(u, t)
z − u

=
c0(−1/(a(1− q)t1z), qt)
zc0(−1/(a(1− q)t1z), t)

.(5.10)

The c0-functions in (5.10) have no common zeros. This can be seen as
follows: Assume that c0(λ0, t) = c0(λ0, qt) = 0 for some λ0. Formula (4.11)
implies

cn(λ, qt) =
(1− at1t2q

n)(1− qn+1)t1
(1− t1)(1− at1)(1− q)λ

cn+1(λ, t).

Then our assumption implies c1(λ0, t) = 0 and from the three term re-
currence equation (4.25) we get cn(λ0, t) = 0 for all n ≥ 0. But then by
Theorem 4.1,

eq(λ0(1− q)x) = (λ0(1− q)x; q)−1
∞ =

∞∑
n=0

cn(λ0, t)pn(x, t) ≡ 0,

which is impossible.
The Perron-Stieltjes inversion formula is

F (z) =
∫
R

dµ(t)
z − t

if and only if(5.11)

µ(x)− µ(y) = lim
ε→0+

∫ x

y

F (t− iε)− F (t + iε)
2πi

dt.
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This inversion formula shows that ϕ is a purely discrete measure. It is clear
that an isolated point mass m of ϕ located at x = x0 contributes m/(z−x0)
to the left-hand side of (5.8). Thus the isolated point masses of ϕ coincide
with the isolated poles of the right-hand side of (5.8) and the masses are
the corresponding residues. Below we will show that x = 0, which is the
only essential singularity of the right-hand side of (5.8) does not support
a discrete mass, so let us assume this for the time being. Formula (5.10),
Theorem 4.2, and the above discussion describe the relationship between the
support of the measure ϕ(·, t) and the spectrum of the operator Tt.

Theorem 5.1. The support of the measure of orthogonality ϕ(·, t) is the set
of the elements of the spectrum of the operator Tt multiplied by −1/(a(1 −
q)t1).

It remains to show that x = 0 is not a mass point for ϕ. From the theory
of the moment problem [1], [14], it is known that when the measure ϕ is

unique then x = x0 is a mass point for the measure if and only if
∞∑

n=0
pn(x0)2

converges, {pn(x)} being the orthonormal polynomials. From Theorem 3.1
we find

bn(0, t)=
(q−n/t1, q

−n/t2; q)n

(q, q−2n/(at1t2); q)n
(−at1)−n

4φ3

(
q−n, at1t2q

n+1, t1, t2
t1q, t2q, at1t2

∣∣∣∣ q, q

)
.

(5.12)

Applying (1.15) to (5.12) we get

bn(0, t) =
(qt1, qt2; q)n

(q, at1t2qn+1; q)n

q(
n
2)

tn1
4φ3

(
q−n, at1t2q

n+1, t1, t2
t1q, t2q, at1t2

∣∣∣∣ q, q

)
.

(5.13)

Ismail and Wilson, [10], determined the asymptotic behavior of the Askey-
Wilson polynomials. They proved that

lim
n→∞

(z/A)n
4φ3

(
q−n, ABCDqn−1, Az, A/z

AB, AC, AD

∣∣∣∣ q, q

)
(5.14)

=
(Az,Bz, Cz,Dz; q)∞
(z2, AB, AC, AD; q)∞

,

for |z| < 1, and that the left-hand side of (5.14) is bounded if |z| = 1 but
z 6= ±1. If z = ±1 then the left-hand side of (5.14) is O(n). The 4φ3

quantity in (5.13) corresponds to the 4φ3 function in (5.14) with A =
√

t1t2,
B = q

√
t1/t2, C = q

√
t2/t1, D = a

√
t1t2, and z =

√
t1/t2 if |t1| ≤ |t2| and

z =
√

t2/t1 otherwise. The orthonormal polynomials associated with the
bn’s are

pm(η, t) = bm(η, t)ξ−1/2
0 (t)

m∏
n=1

u−1/2
n ,
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where −un denotes the coefficient of bn−1(η, t) in (2.18). From (2.18) we get

n∏
k=1

uk =
(qt1, aqt1, qt2, aqt2; q)n

(at1t2q, at1t2q2; q)2n
(t2/t1)nq2(n+1

2 )−n.

Combining the above formulas we obtain

qnξ0(t)z2npn(0, t)2 =
(qt1, qt2; q)n

(aqt1, aqt2; q)n

(at1t2q; q)2n(1− at1t2q
2n+1)

(q; q)2n(1− at1t2q)
z2n

(t1t2)n

(5.15)

× 4φ3

(
q−n, at1t2q

n+1, t1, t2
qt1, qt2, at1t2

∣∣∣∣ q, q

)2

→ (qt1, qt2; q)∞(at1t2q; q)2∞
(aqt1, aqt2; q)∞(1− at1t2q)

×
(z
√

t1t2, qz
√

t1/t2, qz
√

t2/t1, az
√

t1t2; q)2∞
(z2, qt1, qt2, at1t2, q; q)2∞

, n →∞,

if |z| ≤ 1 and z 6= ±1. If z = 1 the right-hand side of (5.15) becomes

unbounded. Since |z| ≤ 1 and |q| < 1, (5.15) clearly implies that
∞∑

n=0
pn(0, t)2

diverges.
Equations (3.1)–(3.3) show that the polynomials {bn(η, t)} are constant

multiples of birth and death process polynomials associated with a process
with birth and death rates

(1− t1q
n+1)(1− at1q

n+1)t2qn

(1− at1t2q2n+1)(1− at1t2q2n+2)
and

(1− t2q
n)(1− at2q

n)t1qn

(1− at1t2q2n)(1− at1t2q2n+1)
,

respectively. An exposition of the theory of birth and death processes and
orthogonal polynomials can be found in [7].

6. Connection Coefficients for the Big q-Jacobi Polynomials.

In this section we will compute the connection coefficients in the formula

pn(x, t) =
n∑

l=0

an,l(t, s)pl(x, s),(6.1)
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where t = (t1, t2) and s = (s1, s2). From (6.1), (1.6), and (1.10) we get

an,l(t, s)ξl(s)(6.2)

=
∫
R

pn(x, t)pl(x, s) dµ(x, s)

=
∫
R

n∑
k=0

(q−n, at1t2q
n−1; q)kq

k

(t1, at1, q; q)k

(
(t1/s2; q)k

k∑
ν=0

(q−k, s2x; q)νq
ν

(s2q1−k/t1, q; q)ν

)

×
l∑

j=0

(q−l, as1s2q
l−1; q)jq

j

(s1, as1, q; q)j
(s1x; q)j dµ(x, s).

Changing the order of summation in (6.2) we obtain

an,l(t, s)ξl(s) =
n∑

ν=0

(
n∑

k=ν

(q−n, at1t2q
n−1; q)kq

k

(t1, at1, q; q)k

(t1/s2; q)k(q−k; q)ν

(s2q1−k/t1; q)ν

)
qν

(q; q)ν

×
l∑

j=0

(q−l, as1s2q
l−1; q)jq

j

(s1, as1, q; q)j

∫
R

dµ(a)(x)
(xs1qj , xs2qν ; q)∞

.

(6.3)

The last integral is evaluated using the q-beta integral evaluation from [6]

∫
R

dµ(a)(x)
(xt1, xt2; q)∞

=
(at1t2; q)∞

(t1, at1, t2, at2; q)∞
.(6.4)

To evaluate the last sum in (6.3) we use (1.9). We get

(6.5)
(as1s2q

ν ; q)∞
(s1, as1, s2qν , as2qν ; q)∞

l∑
j=0

(q−l, as1s2q
l−1; q)j

(as1s2qν , q; q)j
qj

=
(as1s2q

ν ; q)∞
(s1, as1, s2qν , as2qν ; q)∞

(qν+1−l; q)l

(as1s2qν ; q)l
(as1s2q

l−1)l.

Since (qν+1−l; q)l vanishes for ν < l, the first sum in (6.3) is over ν ∈
{l, . . . , n}.
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Let Sn,ν(t, s) denote the sum over k in equation (6.3). Applying (1.15)
to (q−k; q)ν and (s2q

1−k/t1; q)ν we obtain

Sn,ν(t, s) =
(q−n, at1t2q

n−1; q)νq
ν

(t1, at1; q)ν

×
n∑

k=ν

(q−(n−ν), at1t2q
n+ν−1; q)k−νq

k−ν

(t1qν , at1qν ; q)k−ν

q−ν(t1/s2; q)k−ν

(s2/t1)ν(q; q)k−ν

=
(q−n, at1t2q

n−1; q)ν(t1/s2)ν

(t1, at1; q)ν
3φ2

(
q−(n−ν), at1t2q

n+ν−1, t1/s2

t1q
ν , at1q

ν

∣∣∣∣ q, q

)
.

(6.6)

From (6.3), (6.5), and (6.6) using the identities (qν+1−l; q)l/(q; q)ν =
1/(q; q)ν−l and

(as1s2q
ν ; q)∞

(as1s2qν ; q)l
= (as1s2q

ν+l; q)∞ =
(as1s2q

2l; q)∞
(as1s2q2l; q)ν−l

we obtain the following result.

Theorem 6.1. The connection coefficients in the expansion of the polyno-
mial pn(x, t) in terms of the polynomials {pl(x, s)} are given by the formula

an,l(t, s) =
1

ξl(s)
(as1s2q

2l; q)∞(at1s1q
l)l

(s1, as1, s2ql, as2ql; q)∞
(q−n, at1t2q

n−1; q)l

(t1, at1; q)l

×
n∑

ν=l

(q−(n−l), at1t2q
n+l−1, s2q

l, as2q
l; q)ν−l(t1q/s2)ν−l

(t1ql, at1ql, as1s2q2l, q; q)ν−l

× 3φ2

(
q−(n−ν), at1t2q

n+ν−1, t1/s2

t1q
ν , at1q

ν

∣∣∣∣ q, q

)
, l = 0, . . . , n.

(6.7)

The connection coefficient formula (6.7) can be used to find the connec-
tion coefficients in certain special cases. In Section 2, we computed these
coefficients for the case s = qt.

We will now use (6.7) to give another proof of the fact that an,l(t, qt) =
0 for l < n − 2. In view of (1.8) it is enough to consider the case s =
(qt2, qt1) since for every l ∈ N, pl(x; t1, t2) and pl(x; t2, t1), and therefore
the coefficients an,l(t, qt) and an,l(t, qt∗) are linearly dependent, where t∗ =
(t2, t1). So let s = qt∗. In view of (6.7) it is enough to show that S̃n,l(t) = 0
for l < n− 2, where S̃n,l(t) denotes the sum in (6.7) with s = qt∗. For this
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sum by (6.7) we have

(6.8) (1− t1q
l)(1− at1q

l)S̃n,l(t) =
n∑

ν=l

(q−(n−l), at1t2q
n+l−1; q)ν−l

(at1t2q2l+2, q; q)ν−l

× (1− t1q
ν)(1− at1q

ν)

(
1− (1− q−(n−ν))(1− at1t2q

n+ν−1)
(1− t1qν)(1− at1qν)

)

=
n−l∑
i=0

(q−(n−l), at1t2q
n+l−1; q)i

(at1t2q2l+2, q; q)i

×
[
(1− t1q

l+i)(1− at1q
l+i)− (1− q−(n−l)+i)(1− at1t2q

n+l+i−1)
]

= ql(−t1 − at1 + q−n + at1t2q
n−1)2φ1

(
q−d, at1t2q

d+2l−1

at1t2q
2l+2

∣∣∣∣ q, q

)
+ (at21q

2l − at1t2q
2l−1)2φ1

(
q−d, at1t2q

d+2l−1

at1t2q
2l+2

∣∣∣∣ q, q2

)
,

with d = n− l. We now show that the 2φ1 expressions in (6.8) vanish.
For integer numbers d > 0, d1 ≥ 0, and d2 > 0 we consider

Ad,d1,d2(α, q) := 2φ1

(
q−d, αqd1

α

∣∣∣∣ q, qd2

)
.(6.9)

We claim that Ad,d1,d2(α, q) ≡ 0 if d1 + d2 < d. Indeed we have

Ad,d1,d2(α, q) =
d∑

j=0

(q−d, αqd1 ; q)j

(α, q; q)j
qd2j(6.10)

=
d∑

j=0

[
d
j

]
q

(αqd1 ; q)j

(α; q)j

(
−q−d+d2

)j
q(

j
2)

=
d∑

j=0

[
d
j

]
q

(αqj ; q)d1

(α; q)d1

(
−q−(d−d2)

)j
q(

j
2),

where we used the identity

(αqj ; q)d1(α; q)j = (α; q)d1+j = (αqd1 ; q)j(α; q)d1 .
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By the q-binomial theorem (1.14) we have (z; q)l =
l∑

s=0
al,s(q)zs with coeffi-

cients al,s(q) = (−1)sq(
s
2)
[
l
s

]
q

. Then (6.10) can be continued as follows

Ad,d1,d2(α, q) =
1

(α; q)d1

d1∑
s=0

ad1,s(q)αs

 d∑
j=0

[
d
j

]
q

(
−qs−(d−d2)

)j
q(

j
2)


= (1/(α; q)d1)

d1∑
s=0

ad1,s(q)αs(qs−(d−d2); q)d = 0, d− d2 > d1,

(6.11)

where at the end we used (1.14). From (6.8) and (6.11) we get S̃n,l(t) = 0
for d = n− l > 2, since in this case it is a linear combination of Ad,d−3,1(α, q)
and Ad,d−3,2(α, q) with α = at1t2q

2l+2. Then an,l(t, qt) = 0 for l < n− 2.
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[16] J. Wimp, Some explicit Padé approximants for the function φ′/φ and a related quad-
rature formula involving Bessel functions, SIAM J. Math. Anal., 16 (1985), 887-895.

Received May 14, 1999. The first author’s research partially was supported by NSF grant
DMS 99-70865.

Department of Mathematics
University of South Florida
Tampa, FL 33620-5700
E-mail address: ismail@math.usf.edu

Department of Mathematics & Computer Science
University of Houston-Downtown
Houston, TX 77002-1094
E-mail address: simeonovp@zeus.dt.uh.edu


