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We construct canonical bundles for Hamiltonian loop group
actions with proper moment maps. As an application, we
show that for certain moduli spaces of flat connections on
Riemann surfaces with boundary, the first Chern class is a
multiple of the cohomology class of the symplectic form.

1. Introduction.

One of the simplest invariants of a symplectic manifold is the isomorphism
class of the canonical line bundle. Suppose (M,ω) is a symplectic manifold.
For any ω-compatible almost complex structure J one defines the canonical
line bundle KM as the dual to the top exterior power of the tangent bundle
TM ,

KM = detC(TM)∗.

Since the space of ω-compatible almost complex structures on M is con-
tractible, the isomorphism class of KM is independent of this choice. If a
compact Lie group G acts by symplectomorphisms on M , we can take J to
be G-invariant, and KM is a G-equivariant line bundle.

The canonical bundle behaves well under symplectic quotients. If the
G-action is Hamiltonian, with moment map Φ : M → g∗, the symplectic
quotient of M is defined by

M//G := Φ−1(0)/G.

We assume that 0 is a regular value, so that M//G is a symplectic orb-
ifold. The canonical line bundle for the reduced space (symplectic quotient)
M//G = Φ−1(0)/G is related to the canonical bundle on M by

KM//G = KM//G := (KM |Φ−1(0))/G.(1)

The canonical bundle also behaves well under inductions. Let T be a
maximal torus of G with Lie algebra t. Suppose that N is a Hamiltonian
T -manifold with moment map Ψ : N → t∗. The symplectic induction M :=
G×T N has a unique closed two-form and moment map extending the given
data on N . If the image of Ψ is contained in the interior of a positive
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chamber t∗+, then M is symplectic and KM is induced from KN , after a
ρ-shift:

KM
∼= G×T (KN ⊗ C−2ρ).

Here C−2ρ is the T -representation with weight given by the sum −2ρ of the
negative roots.

In this paper we develop a notion of canonical line bundle for (infinite-
dimensional) Hamiltonian loop group manifolds with proper moment maps.
The idea is to use the property of the canonical bundle under inductions
as the definition in the infinite-dimensional setting. Just as in the finite
dimensional situation, the canonical bundle of the (finite dimensional) re-
duced spaces are obtained from the canonical bundle KM upstairs. For the
fundamental homogeneous space ΩG = LG/G, our definition agrees with
Freed’s computation [4] of the regularized first Chern class of ΩG.

As an application, we prove the following fact about moduli spaces of
flat G-connections on compact oriented surfaces Σ. Suppose G is simple
and simply connected, and let c be the dual Coxeter number. Suppose Σ
has b boundary components B1, . . . , Bb, and let C1, . . . , Cb be a collection
of conjugacy classes. Let M(Σ, C) be the (finite dimensional) moduli space
of flat G-connections on Σ with holonomy around Bj contained in Cj . The
subsetM(Σ, C)irr of irreducible connections is a smooth symplectic manifold.
Let [ω] be the cohomology class of the basic symplectic form on M(Σ, C)irr.

Theorem 1.1. If the conjugacy classes Cj consist of central elements, then
the first Chern class of KM(Σ,C)irr is equal to −2c[ω].

This was first proved in the special case of SU(2) by Ramanan [11]. In
general it is a consequence of the local family index theorem (Quillen [10],
Zograf and Takhtadzhyan [13]). See also Beauville, Laszlo, and Sorger [3],
and Kumar and Narasimhan [5]. Our application, Theorem 4.2 below, ex-
pands the list of conjugacy classes for which this result holds. It would be
interesting to know which of these are Kähler-Einstein. Our main applica-
tion of the canonical bundle will be given in a forthcoming paper [2], where
it enters a fixed point formula for Hamiltonian loop group actions.

2. Hamiltonian loop group manifolds.

2.1. Notation. Let g be a simple Lie algebra, and G the corresponding
compact, connected, simply connected Lie group. Choose a maximal torus
T ⊂ G, with Lie algebra t, and let Λ ⊂ t resp. Λ∗ ⊂ t∗ denote the integral
resp. (real) weight lattice. Let R be the set of roots and R+ the subset of
positive roots, for some choice of positive Weyl chamber t+. We will identify
g ∼= g∗ and t ∼= t∗, using the normalized inner product · for which the long
roots have length

√
2. The highest root is denoted α0, and the half-sum of
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positive roots ρ = 1
2

∑
α∈R+

α. The integer

c = 1 + ρ · α0

is called the dual Coxeter number of G. The fundamental alcove for G is
the simplex

A = {ξ ∈ t+, α0 · ξ ≤ 1} ⊂ t ⊂ g.(2)

It parametrizes the set of conjugacy classes of G, in the sense that every
conjugacy class contains an element exp(ξ) for a unique ξ ∈ A. The cen-
tralizer Gexp(ξ) depends only on the open face σ containing ξ and will be
denoted Gσ. Introduce a partial ordering on the set of open faces of A by
setting σ ≺ τ if σ ⊂ τ . Then σ ≺ τ ⇒ Gσ ⊃ Gτ .

A similar discussion holds for semi-simple simply-connected groups, with
the alcove replaced by the product of the alcoves for the simple factors.

2.2. Loop groups. Let LG denote the loop group of maps S1 → G of
some fixed Sobolev class s > 1, Lg = Ω0(S1, g) its Lie algebra, and Lg∗ ∈
Ω1(S1, g) the space of Lie algebra valued 1-forms of Sobolev class s − 1.
Integration over S1 defines a non-degenerate pairing between Lg∗ and Lg.
One defines the (affine) coadjoint action of LG on Lg∗ ∈ Ω1(S1, g) by

g · µ = Adg µ− dg g−1(3)

where dg g−1 is the pull-back of the right-invariant Maurer-Cartan form on
G. Let L̂G be the basic central extension [9] of LG, defined infinitesimally
by the cocycle (ξ1, ξ2) 7→

∮
dξ1 · ξ2 on Lg. The adjoint action of L̂G on L̂g

descends to an action of LG since the central circle acts trivially, and for
the coadjoint action of LG on L̂g

∗
= Ω1(S1, g)⊕ R one finds

g · (µ, λ) = (Adg(µ) + λdgg−1, λ).(4)

This identifies Lg∗ with the affine hyperplane Ω1(S1, g)× {1} ⊂ L̂g
∗
.

There is a natural smooth map Hol : Lg∗ → G sending µ ∈ Lg∗, viewed
as a connection on the trivial bundle S1 × G, to its holonomy around S1.
This map sets up a 1-1 correspondence between the sets of G-conjugacy
classes and coadjoint LG-orbits, hence both are parametrized by points in
the alcove.

More explicitly this parametrization is given as follows. View A as a
subset of Lg∗ by the embedding ξ 7→ ξdθ/(2π). Then every coadjoint LG-
orbit passes through a unique point ξ ∈ A. The stabilizer group (LG)ξ

depends only on the open face σ ⊂ A containing ξ and will be denoted
(LG)σ. The evaluation map LG → G, g 7→ g(1) restricts to an isomorphism
(LG)σ

∼= Gσ; in particular (LG)σ is compact and connected. If σ ≺ τ then
(LG)σ ⊃ (LG)τ . In particular, every (LG)σ contains T = (LG)int A.
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2.3. Hamiltonian LG-manifolds. We begin by reviewing the definition
of a symplectic Banach manifold. A two-form ω on a Banach manifold M
is weakly non-degenerate if the map ω] : TM

m → T ∗
mM is injective, for all

m ∈ M . A Hamiltonian LG-manifold is a Banach manifold M together with
an LG-action, an invariant, weakly non-degenerate closed two-form ω and
an equivariant moment map Φ : M → Lg∗. Equivalently, one can think
of M has a Hamiltonian L̂G-manifold, where the central circle acts trivially
with constant moment map +1.

Example 2.1. 1) For any µ ∈ Lg∗, the coadjoint orbit LG ·µ is a Hamil-
tonian LG-manifold, with moment map the inclusion.

2) Let Σ be a compact oriented surface with boundary ∂Σ ∼= (S1)b. Let
G(Σ) = Map(Σ, G) be the gauge group, and G∂(Σ) be the gauge trans-
formation that are trivial on the boundary.

The space Ω1(Σ, g) of connections carries a natural symplectic struc-
ture, and the action of G∂(Σ) is Hamiltonian with moment map the
curvature. The symplectic quotient M(Σ) is the moduli space of flat
connection up to based gauge transformations. It carries a residual ac-
tion of LGb, with moment map induced by the pull-back of connections
to the boundary.

2.4. Symplectic cross-sections. In the case where the moment map Φ
is proper, a Hamiltonian LG-space with proper moment map behaves very
much like a compact Hamiltonian space for a compact group.1 The reason
for this is that the coadjoint LG-action on Lg∗ has finite dimensional slices,
and the pre-images of these slices are finite dimensional symplectic subman-
ifolds. To describe these slices, we view the alcove as a subset of Lg∗ as
explained above. Let

Aσ :=
⋃
τ�σ

τ.

Then the flow-out under the action of the compact group (LG)σ,

Uσ = (LG)σ · Aσ ⊂ Lg∗

is a slice for the LG-action at points in σ.
For example, if G = SU(2), then the alcove may be identified with the

interval
A = [0, 1/2].

For the three faces {0}, (0, 1/2), {1/2} we have

A{0} = [0, 1/2), A(0,1/2) = (0, 1/2), A{1/2} = (0, 1/2].

1In fact, there is a 1-1 correspondence between Hamiltonian LG-spaces with proper
moment map and compact Hamiltonian G-spaces with G-valued moment maps [1].
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The slice Y(0,1/2) = (0, 1/2), since LG(0,1/2) = T . The other slices Y{0}, Y{1/2}
are open balls of radius 1/2 in Lg∗{0}, resp. Lg∗{1/2}. Note that although
Lg∗{0}, Lg∗{1/2} are isomorphic as G-modules to the Lie algebra g, the inter-
section Lg∗{0} ∩ Lg∗{1/2} = Lg∗(0,1/2).

If M is a symplectic Hamiltonian LG-space with proper moment map Φ,
the symplectic cross-sections

Yσ = Φ−1(Uσ)

are finite-dimensional symplectic submanifolds. In fact, they are Hamilton-
ian (L̂G)σ-manifolds, where the central S1 acts trivially. The moment maps
are the restrictions Φσ = Φ|Yσ : Yσ → Uσ ⊂ (Lg)∗σ ⊂ L̂g

∗
. Here (Lg)∗σ is

identified with the unique (LG)σ-invariant complement to the annihilator of
(Lg)σ in Lg∗, or equivalently with the span of Uσ.

For a proof of the symplectic cross-section theorem for loop group actions,
see [8]. The flowouts LG · Yσ = LG ×(LG)σ

Yσ form an open covering of
M . Therefore, the Hamiltonian LG-space (M,ω, Φ) can be reconstructed
from its collection of symplectic cross-sections (Yσ, ωσ,Φσ) and the inclusions
Yτ ↪→ Yσ for σ ≺ τ .

3. Construction of the canonical bundle.

Suppose (M,ω, Φ) is a Hamiltonian LG-manifold with proper moment map.
In this section we contruct an L̂G-equivariant line bundle KM → M which
will play the role of a canonical line bundle.

For any L̂G-equivariant line bundle L → M , the (locally constant) weight
of the action of the central circle S1 ⊂ L̂G is called the level of L. Any L̂G-
bundle L → M is determined by the collection of (L̂G)σ-equivariant line
bundles Lσ → Yσ over the cross-sections, together with (LG)τ -equivariant
isomorphisms ϕσ,τ : Lσ|Yτ

∼= Lτ for all σ ≺ τ , such that

ϕσ,τ ◦ ϕτ,ν = ϕσ,ν(5)

if σ � τ � ν.
Let Kσ → Yσ be the canonical line for some invariant compatible almost

complex (a.c.) structure on Yσ. There exist (LG)τ -equivariant isomorphisms

Kσ|Yτ
∼= Kτ ⊗ detC(νσ

τ )∗(6)

where νσ
τ → Yτ is the symplectic normal bundle to Yτ inside Yσ. We will

therefore begin by describing the complex structure on νσ
τ .

3.1. The normal bundle of Yτ in Yσ. Suppose σ ≺ τ so that Yτ is
an (LG)τ -invariant submanifold of (LG)σ. Since (LG)σ ×(LG)τ

Yτ is an
open subset of Yσ, the normal bundle of Yτ in Yσ is (LG)τ -equivariantly
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isomorphic to the trivial bundle (Lg)σ/(Lg)τ . It carries a unique (LG)τ -
invariant complex structure compatible with the symplectic structure. In
terms of the root space decomposition this complex structure is given as
follows. Given a face σ of A, define the positive Weyl chamber t+,σ for
(LG)σ as the cone over A − µ, for any µ ∈ σ. Similarly define t+,τ . Let
R+,σ ⊃ R+,τ the corresponding collections of positive roots.

As complex (L̂G)τ -representations,

(Lg)σ/(Lg)τ =
⊕

α∈R+,σ\R+,τ

Cα.

In particular,

detC(νσ
τ )∗ =

⊗
α∈R+,σ\R+,τ

Cα = C−2(ρσ−ρτ ),(7)

where ρσ, ρτ are the half-sums of positive roots of R+,σ,R+,τ respectively.

3.2. Compatibility condition. Our candidate for Lσ = (KM )|Yσ will be
of the form Kσ ⊗ Cγσ , for suitable weights γσ ∈ Λ∗ × Z. The key point
which makes the problem non-trivial is that in order for Cγσ to give L̂Gσ-
representations, the weight γσ should be fixed under the (L̂G)σ-action on
L̂g

∗
. According to (6) and (7) these weights should satisfy

γσ − γτ = 2(ρσ − ρτ )

for all faces σ ≺ τ .
The following Lemma gives a solution to this system of equations.

Lemma 3.1. For all faces σ ⊂ A, the difference 2ρ − 2ρσ ∈ Λ∗ is the
orthogonal projection of 2ρ to the affine span of the dilated face 2cσ. In
particular the weight

γσ := −(2ρ− 2ρσ, 2c) ∈ Λ∗ × Z

is fixed under (L̂G)σ.

Proof. The weight 2ρσ is characterized by the property

2ρσ · α = α · α
for every simple root α of (LG)σ. Letting {α1, . . . , αl} be the simple roots
for G, the simple roots for (LG)σ are precisely those roots in the collection
{α1, . . . , αl,−α0} which are perpendicular to the span of σ − µ (where µ ∈
σ). In particular −α0 is a simple root for (LG)σ precisely if 0 6∈ σ.

If α ∈ {α1, . . . , αl} is a simple root of (LG)σ then 2ρ ·α = 2ρσ ·α = α ·α
so that (2ρ − 2ρσ) · α = 0. If 0 6∈ σ so that −α0 is among the set of simple
roots for (LG)σ, we also have

(2ρ− 2ρσ) · α0 = 2(c− 1) + α0 · α0 = 2c,
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as required. �

The solution given by the lemma is unique, since for σ = {0} the group
LGσ = G has the unique fixed point γ0 = (0,−2c).

3.3. Gluing. Let Lσ = Kσ ⊗Cγσ . We still have to construct isomorphisms
ϕσ,τ : Lσ|Yτ → Lτ satisfying the cocycle condition. If the compatible a.c.
structures on Yσ can be chosen in such a way that for σ ≺ τ , Yτ is an
a.c. submanifold of Yσ, the isomorphisms would be canonically defined and
the cocycle condition would be automatic. Unfortunately, it is in general
impossible to choose the a.c. structures to have this property.

To get around this difficulty we replace the sets Yσ with smaller open sub-
sets. The compact set M/LG is covered by the collection of sets Yσ/(LG)σ

with σ a vertex of A, since A is covered by the (relative) open subsets Aσ.
It is therefore possible to choose for each vertex σ of A, an (LG)σ-invariant,
open subset Y ′

σ ⊂ Yσ, such that the collection of these subsets has the fol-
lowing two properties:

a. The collection of all Y ′
σ/(LG)σ covers M/LG.

b. The closure of Y ′
σ is contained in Yσ.

Given such a collection of subsets {Y ′
σ} we define, for any open face τ of

A,
Y ′

τ =
⋂

σ�τ, dim σ=0

Y ′
σ.

Then Y ′
τ is an (LG)τ -invariant open subset of Yτ , with the property that its

closure in M is contained in Yτ .

Lemma 3.2. There exists a collection of (LG)σ-invariant compatible a.c.
structures on the collection of Y ′

σ, with the property that for all σ � τ ,
the embedding Y ′

τ ↪→ Y ′
σ is a.c.. Moreover, any two a.c. structures on the

disjoint union
∐

σ Y ′
σ with the required properties are homotopic.

Proof. We construct a.c. structures Jσ on Y ′
σ with the required properties

by induction over dimension of the faces σ, starting from the interior of the
alcove A and ending at vertices.

Given k ≥ 0, suppose that we have constructed compatible a.c. structures
on all Yσ with dim σ > dim t−k, in such a way that if σ � τ , the embedding
Yτ ↪→ Yσ is a.c. on some open neighborhood of the closure of Y ′

τ . Let ν be
a face of dimension dim t− k. Each of the a.c. structures on Yτ with τ � ν
defines an invariant compatible a.c. structure on Yν , and by hypothesis
these complex structures match on some open neighborhood of

⋃
ν≺τ (LG)ν ·

Y ′
τ . We choose an invariant a.c. structure on Yν such that it matches

with the given a.c. structures over a possibly smaller open neighborhood
of

⋃
ν≺τ (LG)ν · Y ′

τ . This can be done by choosing a Riemannian metric on
Yν which matches the given one in a possibly smaller neighborhood, and
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taking the compatible almost complex structure defined by the metric in
the standard way (see e.g. [6]).

Now let {J0
σ}, {J1

σ} be two collections of a.c. structures with the required
properties. They define Riemannian metrics g0

σ, g1
σ. Let gt

σ = (1−t)g0
σ+t g1

σ,
and let J t

σ be the compatible a.c. structure which it defines. For σ ≺ τ , the
metric gt

τ on Y ′
τ is the restriction of gt

σ and the symplectic normal bundle of
Y ′

τ in Y ′
σ coincides with the Riemannian normal bundle. This implies that

the embedding Y ′
τ → Y ′

σ is a.c.. �

Choose a.c. structures on Yσ as in the Lemma, and define (L̂G)σ-equi-
variant line bundles L′σ = K ′

σ ⊗Cγσ . We then have canonical isomorphisms

φσ,τ : L′σ|Y ′
τ = L′τ

and they automatically satisfy the cocycle condition. It follows that there is
a unique L̂G-equivariant line bundle KM → M with KM |Y ′

σ = L′σ. By con-
struction, the collection of line bundles L′σ, hence also KM , is independent
of the choice of a.c. structures up to homotopy.

Lemma 3.3. The isomorphism class of KM is independent of the choice of
“cover” Y ′

σ.

Proof. Given two choices Y 1
σ and Y 2

σ labeled by the vertices of A, let Y 3
σ =

Y 1
σ ∪Y 2

σ . Given a.c. structures J j
σ on Y j

σ and the canonical line bundles Kj
M

constructed from them, we have an equivariant homotopy K1
M ∼ K3

M ∼ K2
M

(because J3
σ restricts to a.c. structures on Y 1

σ and Y 2
σ ). �

This completes our construction of the canonical bundle. The central
circle in L̂G acts with weight −2c, that is, KM is a line bundle at level −2c.

3.4. Examples.

3.4.1. Coadjoint orbits. Let M = LG · µ be the coadjoint orbit through
µ ∈ A, and let σ ⊂ A denote the open face containing µ. Thus M ∼=
LG/(LG)σ. Since Yσ = {µ}, the canonical line bundle KM is the associated
bundle

KLG/(LG)σ
:= L̂G×

(dLG)σ
C−2(ρ−ρσ ,c).(8)

This definition of canonical bundle agrees with Freed’s computation [4] of a
regularized first Chern class of the fundamental homogeneous space ΩG =
LG/G. In this paper, Freed provides further evidence for this being the
correct definition of a first Chern class, the simplest being that since ρ̂ =
(ρ, c) is the sum of fundamental affine weights (cf. [9]), the canonical bundle
for LG/T is expected to be KLG/T = L̂G×bT C−2ρ̂. and that for LG/G should
be L̂G× bG C−2(0,c).
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Since LG/(LG)σ is a homogeneous space the canonical line bundle carries
a unique L̂G-invariant connection. Its curvature equals −2πi times the
symplectic form for the coadjoint orbit (at level−2c) through−2(ρ−ρσ, c) =
−γσ. Recall that (ρ−ρσ)/c ∈ A is the orthogonal projection of ρ/c onto the
affine subspace spanned by σ. Therefore:

Lemma 3.4. If (M,ω) is the coadjoint LG-orbit (at level 1) through the
orthogonal projection µ of ρ/c onto some face σ of A, the curvature of the
canonical line bundle is given by i

2π curv(KM ) = −2cω. In particular, this
is true for µ = ρ and for µ a vertex of A.
3.4.2. Moduli spaces of flat connections. Let Σ be a compact, oriented
surface with boundary ∂Σ ∼= (S1)b and (M(Σ), ω) the corresponding moduli
space. From now on, we assume that b = 1, although the more general case
is only more difficult notationally. By Corollary 3.12 of [7] there is a unique
L̂G-equivariant line bundle at each level, so that every L̂G-equivariant line
bundle overM(Σ) at level k is isomorphic to the kth tensor power of the pre-
quantum line bundle L(Σ).2 In particular the canonical bundle KM(Σ) →
M(Σ) carries an invariant connection such that i

2π curv(KM(Σ)) = −2cω.

4. Quotients of canonical bundles.

In this section, we show that the bundles KM behave well under symplectic
quotients, that is, that the symplectic quotient of KM is the usual canoni-
cal bundle on the quotient. For any Hamiltonian LG-space (M,ω, Φ) with
proper moment map, and any coadjoint LG-orbit O ⊂ Lg∗, the reduced
space MO at level O is a compact space defined as the quotient

MO := Φ−1(O)/LG.

Let µ ∈ A is the point of the alcove through which O passes, σ the open
face containing µ, and

Oσ := O ∩ Uσ = (LG)σ · µ.

Then
MO = Φ−1(µ)/(LG)σ = (Yσ)Oσ

which identifies MO as a reduced space of the symplectic cross-section (Yσ,
ωσ,Φσ). It follows that the standard theory of symplectic reduction applies:
If µ is a regular value then MO is a finite dimensional symplectic orbifold,
and in general it is a finite dimensional stratified symplectic space in the
sense of Sjamaar-Lerman [12].

2A sketch of the argument is as follows: Two line bundles at the same level differ by
a line bundle at level 0, which descends to the quotient M(Σ)/ΩG by the based loop
group. From the holonomy description of the moduli space we have M(Σ)/ΩG ∼= G2g.
Since H2

G(G2g) is trivial, the descended line bundle is trivial, so the two line bundles are
isomorphic.
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Over the level set Φ−1(O) we have two line bundles at level −2c, the re-
striction of the canonical bundle of M and the pull-back by Φ of the canonical
bundle KO on the coadjoint orbit. They differ by an LG-equivariant line
bundle (that is an L̂G-bundle at level 0),

KM |Φ−1(O) ⊗K∗
O.

Proposition 4.1. Suppose O consists of regular values of Φ. The canonical
line bundle for the reduced space MO is the quotient,(

KM |Φ−1(O) ⊗ Φ∗K∗
O

)
/LG.

Proof. Since

KM = L̂G×
(dLG)σ

(Kσ ⊗ Cγσ), KO = L̂G×
(dLG)σ

(KOσ ⊗ Cγσ)

we have
KM |Φ−1(O) ⊗ Φ∗K∗

O = L̂G×
(dLG)σ

(Kσ ⊗ Φ∗
σK∗

Oσ
).

Taking the quotient by LG we obtain(
KM |Φ−1(O) ⊗ Φ∗K∗

O
)
/LG =

(
Kσ|Φ−1

σ (Oσ) ⊗ Φ∗
σK∗

Oσ
)/(LG)σ

which is the canonical bundle for the reduced space (Yσ)Oσ = MO. �

Theorem 4.2. Let M(Σ) be the moduli space of flat connections on a com-
pact oriented surface with boundary, and Cµ the conjugacy class correspond-
ing to the projection µ of ρ/c onto σ for some face σ. Suppose µ is a regular
value for the moment map M(Σ), so M(Σ, Cµ) the moduli space of flat con-
nections with holonomy in Cµ is a compact symplectic orbifold. Then the
Chern class c1(KM ) for M = M(Σ, Cµ) is −2c times the cohomology class
of the reduced symplectic form.

Proof. Let O be the a coadjoint orbit through the element ρσ/c. By Sec-
tion 3.4, KM(Σ) resp. KO are isomorphic to the −2c-th tensor power of
the pre-quantum line bundles on M(Σ) resp. O. By Proposition 4.1, the
canonical line bundle on the quotient is isomorphic to the −2c-th power
of the quotient of the pre-quantum line bundle on the product, which is a
pre-quantum line bundle on the quotient. �
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