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We discuss the problem of finding a p-adic L-function at-
tached to an elliptic curve with complex multiplication over an
imaginary quadratic field K, for the case of a prime where the
curve has supersingular reduction. While the case of primes of
ordinary reduction has been extensively studied and is essen-
tially understood, yielding many deep and interesting results,
basic questions remain unanswered in the case of supersingu-
lar reduction. We will discuss a conjecture, related to another
in Rubin, 1987, and some ideas related to the problem in gen-
eral. The basic tools originate with the work of J. Coates and
A. Wiles in 1977 and 1978, and are developed in the work of
K. Rubin.

1. Set-up.

The analytic theory of L-functions and arithmetic properties of their special
values goes back to the 19th-century work of Kummer on the arithmetic of
cyclotomic fields. His congruences for Bernoulli numbers were re-cast more
than a century later as the p-adic interpolation of Riemann’s Zeta Function
and Dirichlet L-series, whose known special values are basically Bernoulli
numbers. Kummer himself introduced logarithmic differentiation modulo
a prime p and the use of cyclotomic units as a method of uncovering the
rich arithmetic structure of cyclotomic fields. In the modern theory, these
classical p-adic L-functions arise as a relation between the Zp[[t]]-module
of cyclotomic units and that of local p-adic units. The element relating
them is essentially the interpolating L-function, and the precise interpolation
result is obtained by a suitable logarithmic differentiation homomorphism.
The theory generalizes to the arithmetic of abelian extensions of imaginary
quadratic fields via the consideration of an elliptic curve as the arithmetic
object. Technical complications arise at primes p which do not split in the
quadratic extension, and relatively few results are known compared to the
ordinary split case. The main objective of this paper is to suggest a way
(§2) by which interesting two-variable p-adic L-functions may arise from an
elliptic curve with CM, at primes of supersingular reduction.

The relative complexity of the method hinges on the relation between the
arithmetic “elliptic” units and p-adic local units in the supersingular case,
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to the author’s knowledge as yet unclarified, and perhaps worthy of separate
interest in itself. Propositions 2.1 and 2.2 contain preliminary suggestions on
this problem. Theorem 5.5 expresses the L-values which we believe should
be interpolated by a “supersingular” p-adic L-function, in terms of p-adic
logarithmic derivatives on elliptic units. These are values twisted by a char-
acter of p-power order. §6 generalizes this to higher-order derivations of a
two-variable formal power series, showing how the p-character and the local
grossencharacter act together. Finally, Theorems 7.4 and 7.6 are local com-
putations with logarithmic derivatives analogous to those done by Coates
and Wiles in [1, 2] for primes of ordinary reduction, hopefully of use to those
who may wish to obtain explicit results on the p-adic growth properties of
L-values, for example. We prove the relevant properties of the logarith-
mic differentiation homomorphisms used for these computations. The form
of these results given supersingular reduction is similar to, but rather less
transparent than in the ordinary case, as far as taking p-adic valuations is
concerned.

Let E be an elliptic curve over an imaginary quadratic field K, with
complex multiplication by the ring of integers OK . The following notation
is standard. Let ψ be the Hecke grossencharacter attached to E, and f its
conductor. Pick a prime p of K not dividing 6f, and let p 6= 2, 3 be the
prime of Z below p. Assume that p remains prime in K. This implies that
E has good supersingular reduction at p. Let π = ψ(p). This is the unique
generator of p that reduces to Frobenius modulo p. Note that p and π differ
only by a unit of OK .

Consider for n ≥ 0 the abelian extensions K(Eπn+1)/K obtained by ad-
joining the coordinates of the pn+1-division points on E. Define Eπ∞ =⋃

n≥0Eπn+1 and consider the Galois groups Gn = G(K(Eπn+1)/K) G∞ =
G(K(Eπ∞)/K). Denote by Kp the completion of K at p and by Op its
local ring of integers. We use the same symbol p for the prime ideal of
Op. Let K̄p be a fixed algebraic closure of Kp. Let Kn = Kp(Eπn+1) and
K∞ =

⋃∞
n=0Kn = Kp(Eπ∞). One has canonically Gn = G(Kn/Kp) and

G∞ = G(K∞/Kp). The structure of these extensions is described by the
theory of Lubin-Tate formal groups. This is a very useful fact, since all
Lubin-Tate formal groups over Op are isomorphic and one can choose among
them one well suited for computations. This idea is illustrated in [1, 2].

In our case, the hypothesis of supersingular reduction is equivalent to this
formal group having height 2 and not 1 as in the case of ordinary reduction.

The p-part of the grossencharacter corresponds to the character κ : G∞ →
O∗p which gives the action of G∞ on p-power division points of any of the
Lubin-Tate formal groups associated to π over Op. If E is such a group, then

ωσ = [κ(σ)](ω) ∀ω ∈ Ep∞ , σ ∈ G∞,(1)
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where [α] is the Op-endomorphism of E corresponding to α ∈ Op. κ estab-
lishes isomorphisms Gn

∼= O∗p/(1+pn+1Op) ∼= µq−1×(1+pOp)/(1+pn+1Op),
and G∞ ∼= O∗p ∼= µq−1 × (1 + pOp) where q = p2 in the supersingular case.
These correspond to the decompositions Gn

∼= ∆×Γn G∞ ∼= ∆×Γ∞ where
∆ = G0 = G(Kp(Ep)/Kp),Γn = G(Kn/K0),Γ∞ = G(K∞/K0). In the case
of supersingular reduction we have κ : Γ∞ ∼= 1 + pOp

∼= Z2
p. These are

therefore Iwasawa Z2
p extensions, not Zp extensions as in the ordinary case,

which complicates matters. We let κ0 be the restriction of κ to ∆ = G0. It
establishes an isomorphism ∆ ∼= µq−1.

Let Λ = Zp[[G∞]] = lim←−Zp[Gn] be the Iwasawa algebra. Let ρ be, as in [5],
the Zp-representation of ∆ that reduces modulo p to the Fp-representation of
∆ giving the action on Ep. Lemma 11.5 of [5] shows that this is an irreducible
representation, and in the supersingular case, its degree is 2. In particular,
Λρ = Op[[Γ∞]] ∼= Op[[S, T ]] since Γ∞ ∼= Z2

p, although the isomorphism is
not canonical, depending on a choice of topological generators for Γ∞. For
this reason p-adic L-functions in the supersingular case will be 2-variable
L-functions.

We need the following facts. If ∗ denotes the action of the non-trivial
automorphism of Kp/Qp, then ρ ∼= κ0⊕κ0

∗ over Kp and κ0
∗ = κ0

p because
∗ gives the Frobenius element of Kp/Qp, and p is inert.

2. Iwasawa Structure of Local Units.

Let Un be the group of units of Kn congruent to 1 modulo the unique prime
ideal above p, and Cn the closure in Kn of the group of Robert elliptic units
of Kn. One has Cn ⊆ Un. Let U∞ = lim←−Un and C∞ = lim←−Cn, where the
limits are with respect to the norm maps. In [5], Lemma 11.9, it is shown
that Uρ

∞ ∼= (Λρ)2 and Cρ
∞ ∼= Λρ. Furthermore, one can decompose Uρ

∞ into
a direct sum

Uρ
∞ = U1 ⊕ U2(2)

such that δ(U1) = Op and δ(U2) = 0, where δ is the “reciprocity law map”
δ : Uρ

∞ → Op. δ is a “κ-homomorphism,” meaning δ(uσ) = κ(σ)δ(u) ∀σ ∈
G∞, and δ maps Λρ-submodules of Uρ

∞ to ideals of Op. (See [5], Prop. 11.7.)
We come now to a problem of central interest. In [8] it was stated that

one could choose a decomposition as in (2) in which Cρ
∞ would be contained

in one of the two free components U1, U2. The truth of this statement seems
still not to be known at this time. We will refer to this conjecture as (C).

If (C) is true, then a generator c of Cρ
∞ and a generator u of the free

component that Cρ
∞ would lie in are related by c = f · u, where f is an

element of Λρ; now f can be viewed as a power series in two variables with
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coefficients in Op. This would be a natural candidate for a two-variable p-
adic L-function, since this procedure is completely analogous to the way one-
variable p-adic L-functions arise in the ordinary case and in the “classical”
case over Q.

The question (see [8]) would then also be to find a generator u of suffi-
ciently explicit form that the Coates-Wiles logarithmic differentiation map
and its generalizations, which yield L-values when applied to elliptic units,
yield a sufficiently explicit factor when applied to u. This is what Coates
and Wiles do in the ordinary case [1, 2], using the basic Lubin-Tate formal
group. This in turn leads to an understanding of the p-adic interpolation
properties of those L-values. Over Q this theory gives the classical congru-
ences of Kummer, Clausen and Von Staudt.

We study to what extent a decomposition of Uρ
∞ as in (2) can be “per-

turbed.”

Proposition 2.1. If u ∈ Uρ
∞, then:

(i) δ(Λρu) = Op if and only if δ(u) 6≡ 0 mod π.
(ii) If u1, u2 ∈ Uρ

∞ with Λρu2 ⊆ Λρu1, and δ(u1), δ(u2) 6= 0, then Λρu2 =
Λρu1 if and only if ordp(δ(u2)) = ordp(δ(u1)).

Proof. (i) is straightforward from the properties of δ. In general, δ(Λρu) =
Opδ(u). For (ii), write u2 = f · u1 and apply δ. Since δ(u2) = f(κ(γ1) −
1, κ(γ2)−1)δ(u1), (see [1]), Λρu2 = Λρu1 if and only if f is a unit in Λρ, and
this is so if and only if f(0, 0) is a unit at p. Since f(κ(γ1)− 1, κ(γ2)− 1) ≡
f(0, 0) mod π, we see that this is the case if and only if the quotient of
δ(u1), δ(u2) is a unit at p. �

Proposition 2.2. Suppose we have Uρ
∞ = U1 ⊕ U2 with δ(U2) = 0, and

hence δ(U1) = Op. Let u ∈ Uρ
∞ such that δ(u) ∈ O∗p. Using additive notation,

let u = u1+u2, with u1 ∈ U1, u2 ∈ U2. Then U1 = Λρu1 and Uρ
∞ = Λρu⊕U2.

Proof. For the first part, note that δ(u1) = δ(u) ∈ O∗p and, since Λρu1 ⊆ U1,
by the remarks above, equality must hold. As for the second, clearly u1 =
u − u2 ∈ Λρu + U2, therefore U1 ⊂ Λρu + U2, and hence Uρ

∞ = Λρu + U2.
The sum is direct: If v ∈ Λρu ∩ U2 then v = f · u = v2 for some f ∈ Λρ

and v2 ∈ U2. Thus f · u1 = v2 − f · u2 ∈ U1 ∩ U2 = 0, and so f = 0 and
v2 = 0. �

Hence if we find an element u in Uρ
∞ such that δ(u) is a unit, and we start

with a given decomposition Uρ
∞ = U1 ⊕ U2, where δ(U2) = 0, then we can

replace our U1 with Λρu (i.e., assume that U1 is generated by u) without
changing U2. There is then a relation c = f · u + f̃ · v, where c generates
Cρ
∞, δ(v) = 0 and f, f̃ are two-variable power series with coefficients in Op.
A natural u having a particularly “simple” form was already used by

Wiles in [2] for the ordinary case, and works also in the supersingular case.
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The more explicit the evaluation of the Coates-Wiles derivations on u, v is,
the more explicit the relation becomes.

If (C) holds, then the second term with f̃ and v disappears. If (C) is
false, then one must also study the “extra factor” v. We know that δ(v) = 0,
but the generalized δ-maps need not vanish at v. The nature of these is
connected with explicit reciprocity laws. If (C) is true, this would raise
the further question (C′) of whether the elliptic units Cρ

∞ lie in the free
component U1 having as generator the “special” sequence of local units u
discovered by Coates and Wiles, in which case we would get an explicit
relation of the form f(∗, ∗) = (L− value) · (explicit factors) , but this may
be too good to be true. Nevertheless, see [9] for a different approach to this
problem and evidence that in any case makes investigation of the problem
interesting.

3. The Basic Lubin-Tate Formal Group.

See [3] for details or proofs of the following facts. The basic Lubin-Tate
formal group associated to π is the formal group E in which multiplication
by π is given by the polynomial [π](X) = πX + Xq. It is the simplest
series over Op satisfying the Lubin-Tate conditions f(X) ≡ X mod X2 and
f(X) ≡ πX mod p, and is simpler to work with computationally. In general
we let [α] denote the power series representing the Op-endomorphism of E
given by the action of α.

Let Nm,n,Tm,n,Nn,Tn represent the norm and trace maps from Km to
Kn and from Kn to Kp respectively. Let u denote addition in E and λ the
logarithm (normalized isomorphism with the additive formal group Ga).

We fix a generator (ωn) of the Tate module, that is, a sequence with
ωn in the ring of integers of Kn such that [π](ωn+1) = ωn for all n ≥ 0.
Then Kn = Kp(ωn) and in fact this sequence is also norm compatible:
Nn+1,n(ωn+1) = ωn.

If u = (un)n≥0 ∈ U∞, denote by gu the Coleman power series associated
to u, that is, the unique series gu ∈ Op[[T ]]∗ such that gu(ωn) = un for
all n ≥ 0. For σ in G∞, given the definition of κ, we have the relation
guσ = gu ◦ [κ(σ)].

4. L-values.

Over the complex numbers C, special values of Hecke L-functions at the
integers may be expressed as logarithmic derivatives of theta functions. One
may obtain an analogous p-adic relationship. Details of these facts may be
found in [6], which draws from [1, 2]. To get L-values, one uses the Robert
elliptic units, which are defined by picking a suitable theta function Θ. One
can find a sequence c = (cn) of elliptic units whose projection onto the ρ-
eigenspace generates Cρ

∞ over the Iwasawa algebra Λ. ([6] Theorem 12.11.)
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Let Φ be the Coleman power series corresponding to c. Let Ω be an OK-
generator for the period lattice of a suitable Weierstrass model of E/C. The
central relation is contained in the following result of Rubin [6], §12.

Theorem 4.1. Let Q ∈ E(K̄) be of exact order fpn+1. Then for k ≥ 1, and
χ a character of Gn of p-power order,∑

σ∈Gn

χ(σ)Dk log Φσ
∣∣
T=ωn

σ =
∑

σ∈Gn

χ(σ)
(
d

dz

)k

log Θ(z)|z=Qσ

= B · πn+1 · Ω−1Lfp

(
ψ̄kχ, k

)
where Df = 1

λ′
f ′

f is the Coates-Wiles logarithmic derivation ([9], §2) and
B = Bk may be chosen to be a unit over p, at least for 1 ≤ k ≤ q − 1.

5. Formal logarithmic derivatives.

Definition 5.1. Let L denote the “formal logarithmic derivative” onO[[T ]],
given by Lf = 1

λ′(T )D log(f) = 1
λ′(T )

f ′

f for f in O[[T ]].

It is easily seen to satisfy Lf1f2 = Lf1 + Lf2 for f1, f2 ∈ O[[T ]] and
L(f ◦ [α]) = α · (Lf ◦ [α]) for f ∈ O[[T ]] and α ∈ Op.

Definition 5.2. Let u = (un)n≥0 ∈ U∞, and define δm(u) =
π−mTmLgu(ωm). Then δm(u) = δn(u) for all m,n ≥ 0. Let δ(u) be the
common value.

Lemma 5.3. We have δ(u) = (π−1)Lgu(0) for all n ≥ 0. Thus δ(u) ∈ Op.

Proof. See [3], §8. �

Definition 5.4. For a character χ of Gn, taking values in K̄p
∗
, define a

map δn,χ : U∞ → K̄p by the formula δn,χ(u) =
∑

σ∈Gn
χ(σ)Lgu(ωσ

n).

We list the basic properties of the maps δn,χ from [9], §2, and some others.
1) δn,χ(u1 · u2) = δn,χ(u1) + δn,χ(u2) for u1, u2 ∈ U∞.
2) By continuity, δn,χ(ua) = aδn,χ(u) if a ∈ Op.
3) If χ = 1, then δn,χ = πnδ.
4) If χ is a character of Gn, and τ is any element of G∞, then lifting χ

to G∞, one has δn,χ(uτ ) = κχ−1(τ)δn,χ(u).
5) Let γ1, γ2 be Zp-generators of Γ∞. Then for all χ of p-power order,

u ∈ Uρ
∞ and f ∈ Λρ, δn,χ(f ·u) = f

(
κχ−1(γ1)−1, κχ−1(γ2)−1

)
δn,χ(u)

(this is slightly different from [9] but is proved similarly using that the
character values are congruent to 1 modulo the prime above p in K̄p).

In light of this definition and 4.1 we have the following:

Theorem 5.5. For n ≥ 0, δn,χ(c) = B · πn+1 · Ω−1Lgp(ψ̄χ, 1), where B is
a p-unit.
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We determine the action of δn,χ on an element in the ρ-eigenspace Uρ
∞ and

prove some additional properties of these maps. If u is any element in U∞,
let uρ denote the ρ-component of u in Uρ

∞. Note Tr(ρ) = κ0 +κ0
∗ = κ0 +κp

0.

Proposition 5.6. If χ ∈ Ĝn and χ = 1 on ∆, then δn,χ(uρ) = δn,χ(u).

Proof.

δn,χ(uρ) = δn,χ

(
u

1
q−1

P
σ∈∆ Tr(ρ(σ−1))σ

)
=

1
q − 1

∑
σ∈∆

κ0χ
−1(σ)

(
κ0
−1(σ) + κ0

−p(σ)
)
δn,χ(u)

=
1

q − 1

(∑
σ∈∆

χ−1(σ) +
∑
σ∈∆

χ−1κ0
1−p(σ)

)
δn,χ(u).

From the above we see that

δn,χ(uρ) =

{
δn,χ(u) if χ = 1 or κ1−p

0 on ∆
0 otherwise.

(3)

�

Note that the condition χ = 1 on ∆ is equivalent to χ having p-power
order, and in fact to really being a character on Γn. This is clear from the
decomposition Gn

∼= ∆ × Γn and #∆ = p2 − 1,#Γn = p2n. From now on,
let us assume that the characters χ have p-power order.

Proposition 5.7. Let Γm,n = G(Km/Kn) for m ≥ n. If χ ∈ Γ⊥m,n (i.e.,
χ = 1 on Γm,n ⊆ Γn), then δm,χ = πm−nδn,χ.

Proof. Using the basic properties of L and gu as in [3],

δm,χ(u) =
∑

σ∈Γm/Γm,n

∑
τ∈Γm,n

χ(στ)Lgu(ωστ
m )(4)

=
∑

σ∈Γm/Γm,n

χ(σ)
∑

τ∈Γm,n

Lgu(ωτ
m)σ

=
∑

σ∈Γm/Γm,n

χ(σ)
(
Tm,nLgu(ωm)

)σ
= πm−n

∑
σ∈Γn

χ(σ)Lgu(ωσ
n)

= πm−nδn,χ(u).

�

Corollary 5.8. For χ ∈ ˆΓn+1, δn+1,χp = πδn,χp .
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Proof. From the structure of the local extensions Kn one sees immediately
that Γ⊥n+1,n is the subgroup of p-th powers. It follows that for any χ ∈ ˆΓn+1,

we have χp ∈ Γ⊥n+1,n, and so we can view χp as a character of Γn. �

Thus in calculations we can assume that the character χ has maximum
order.

6. Higher Derivatives.

We may easily generalize the maps δn,χ so that we obtain information con-
cerning the values Lfp(ψ̄kχ, k).

Definition 6.1. For u ∈ U∞, n ≥ 0, k ≥ 1, define

δk
n,χ(u) =

∑
σ∈Gn

χ(σ)Dk−1Lgu(ωσ
n),

where D is the derivation 1
λ′(X)

d
dx .

By Theorem 4.1, we have δk
n,χ(c) = πn+1 ·B ·Ω−1Lfp(ψ̄kχ, k), where B is

a unit, if 1 ≤ k ≤ q − 1. In his paper [4], Katz has shown that a family of
derivations Dn may be defined by the formula f(XuY ) =

∑∞
n=0Dnf(X)Y n

and in addition, if 0 ≤ m ≤ q − 1, then Dm = 1
m!D

m. Since gu ≡ 1
mod (π,X), log gu converges formally, and we may write Dk−1L = Dk log .
Substituting f = log gu above gives log gu(tu s) =

∑∞
k=0Dk log gu(t)sk. We

may then define a power series, given a character χ of Gn and a sequence of
units u ∈ U∞, by

g(u, χ, t, s) =
∑

σ∈Gn

χ(σ) log gu([κ(σ)](t) u s)

=
∞∑

k=0

(∑
σ∈Gn

χ(σ)(Dk log gu) ◦ [κ(σ)](t)

)
sk.

It is readily seen from the above remarks that

δk
n,χ(u) =

(
d

ds

)k

g(u, χ, ωn, s)
∣∣
s=0

if 1 ≤ k ≤ q − 1.

In particular, g(c, χ, ωn, s) yields L-values.

7. Special Local Units.

As was done in [2] for the ordinary case, we now describe a sequence of local
units which will give elements of U∞ with simple Coleman power series. As
usual, q = p2. Let β inOp be such that βq−1 = 1−π and β ≡ 1 mod π. Such a
β exists by Hensel’s Lemma applied to the polynomial f(X) = Xq−1−(1−π).
If ζ is any one of the q − 1 roots of unity in Kp, then f(ζ) = π ≡ 0 mod p
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and f ′(ζ) = (q − 1)ζ−1 6≡ 0 mod p, so that there is a lifting of ζ to a root
in Op.

Lemma 7.1. NKn+1/Kn
(β − ωn+1) = (β − ωn) for all n ≥ 0.

Proof. The minimal polynomial of ωn+1 over Kn is P (X) = Xq + πX − ωn,
and hence the minimal polynomial of β − ωn+1 over Kn is −P (β − X). It
follows that Nn+1,n(β − ωn+1) = −(−1)qP (β) = P (β) = βq + πβ − ωn =
β − ωn. �

Theorem 7.2. For each d dividing q − 1, we have Nn+1,n(βd − ωd
n+1) =

(βd − ωd
n).

Proof. The lemma is valid for any β such that βq−1 = π, in particular with
β changed to ζβ where ζq−1 = 1. Taking the product over ζd = 1 gives the
result. �

We obtain a sequence of units u(d) = (u(d)
n ) ∈ U∞ for d|q − 1 whose

Coleman power series is βd −Xd.

Corollary 7.3. δ(u(d)) = 0 if d 6= 1. δ(u(1)) = (1− π)β−1 6≡ 0 mod π.

Proof. Explicit calculation, using Lemma 5.3. �

Theorem 7.4. u(d)ρ = 1 unless d = 1.

Proof. We calculate the Coleman power series of the projections. First we
compute the ρ-part of the unit u(d) = (u(d)

n ):

u(d)ρ
n =

∏
σ∈∆

u(d)
n

1
q−1

Tr(ρ(σ−1))σ
=
∏
σ∈∆

(βd − κd
0(σ)ωd

n)
1

q−1
Tr(ρ(σ−1))

.

We have used the fact that [κ0(σ)](X) = κ0(σ)X in the basic Lubin-Tate
formal group. The Coleman power series for u(d)ρ must then be

G(X) =
∏
σ∈∆

(βd − κd
0(σ)Xd)

1
q−1

Tr(ρ(σ−1))
.

Note that 1
q−1Tr(ρ(σ−1)) is an element of Zp and that βd − κd

0(σ)Xd ≡
1 mod (π,X), so this expression indeed defines a power series in Op[[X]],
satisfying G(ωn) = un

e(ρ) for all n ≥ 0. Furthermore, G(X) ≡ 1 mod (π,X).
Writing (βd − κd

0(σ)Xd) = βd · (1− (κ0(σ)X/β)d) we compute

log G(X) =
∑
σ∈∆

1
q − 1

Trρ(σ−1) logp(β
d)

+
∑
σ∈∆

1
q − 1

Trρ(σ−1) log
(

1− κd
0(σ)
βd

Xd

)
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where logp is the p-adic logarithm, and the logarithm of a power series which
is congruent to 1 modulo (π,X) is given by the usual series expansion for
log(1 +X). Then

log G(X) = −
∑
σ∈∆

1
q − 1

Trρ(σ−1)
∞∑

k=1

κdk
0 (σ)
βdk

Xdk

k
(5)

= −
∞∑

k=1

(
1

q − 1

∑
σ∈∆

Trρ(σ−1)κdk
0 (σ)

)
Xdk

kβdk
.

We have Trρ(σ−1)·κdk
0 (σ) =

(
κ0(σ−1) + κ∗0(σ

−1)
)
κdk

0 (σ) and, since κ∗0 = κp
0,

when we sum over ∆ the result is
∑

σ∈∆(κdk−1
0 (σ) + κdk−p

0 (σ)), which is 0
unless dk − 1 ≡ 0 mod q − 1 or dk − p ≡ 0 mod q − 1, in which cases it
is equal to q − 1. However, since d|q − 1, we see that unless d = 1 these
congruences are impossible, and hence log G(X) = 0, so that G(X) = 1 and
thus ud projects trivially. �

For d = 1, we have log G(X) = −
∑

k≡1,pmodq−1X
k/kβk. It is easy to

compute

Q = LG =
1

λ′(X)
d

dx
log G(X) = − 1

λ′(X)

∑
k≡1,p

Xk−1

βk

= − 1
λ′(X)

β−1
∑

k≡0,p−1

Xk

βk
.

Compare this to the result in the ordinary case in [1, 2]. We may sum the
series,

Q(X) = − 1
λ′(X)

β−1

(
1 +

[
X

β

]p−1
)

1

1− Xq−1

1− π

.

We could further modify this, by employing the definition of β and the
formula (1−X2ma)(1 +Xa)−1 =

∑2m−1
n=0 (−1)nXan. This gives

Q(X) = − 1
λ′(X)

· β−1

1−
(

X
β

)p−1
+
(

X
β

)2(p−1)
+ · · · −

(
X
β

)p(p−1)
.

Note that δn,χ(uρ) =
∑

σ∈Gn
χ(σ)Q(ωσ

n), although this does not simplify the
expression δn,χ(uρ) = δn,χ(u) = −

∑
σ∈Gn

χ(σ) 1
λ′(ωn

σ) ·
1

β−ωn
σ . We compute

λ′(ωn).
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Lemma 7.5. For all n ≥ 0, we have λ′(ωn) =
n∏

k=0

(
1 +

q

π
ωk

q−1
)
.

Proof. By differentiating the relation λ ◦ [πn+1](X) = πn+1λ(X) we obtain
[πn+1]′(X)λ′ ◦ [πn+1] = πn+1λ′(X). Substitute X = ωn and λ′(0) = 1 to

get [πn+1]′(ωn) = πn+1λ′(ωn). If f is a function and fn = f ◦ n times◦ f then
f ′m(X) =

∏m−1
n=0 f

′(fn(X)) for every m ≥ 1. Applying this to f = [π] gives

[πn+1](ωn) =
n∏

k=0

[π]′([πk](ωn)) =
n∏

k=0

[π]′(ωn−k) =
n∏

k=0

[π]′(ωk).

Since [π]′(X) = π + qXq−1 we conclude

λ′(ωn) = π−(n+1)[πn+1]′(ωn) = π−(n+1)
n∏

k=0

(π+qωq−1
k ) =

n∏
k=0

(
1 +

q

π
ωk

q−1
)
.

�

We finish by mentioning a connection to sums Sn(χ, k)=
∑

σ∈Γn
χ(σ)(ωσ

n)k.
A straightforward calculation gives:

Theorem 7.6. Let λ′(X)−1 =
∑∞

i=0 biX
(q−1)i, with bi ∈ Op. Then δn,χ(uρ)

= (1− q)β−1
∑∞

m=0 cmSn (χ, (q − 1)m) , where cm =
∑

i+j=m
bi

(1−π)j .
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