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This paper examines the module of derivations for a sub-
space arrangement. In particular, we consider those subspace
arrangements consisting of elements of the intersection lattice
of a generic hyperplane arrangement. We determine gener-
ators for the associated module of derivations. These gen-
erators are indexed by certain elements of the intersection
lattice.

1. Introduction.

Let V be a linear space of dimension ` over a field K. By an arrangement we
shall mean a finite collection of affine subspaces of V . If all of the subspaces
in an arrangement A have codimension k then we say that A is an (`, k)-
arrangement. If k = 1 and so A is a hyperplane arrangement then we shall
say that A is an `-arrangement.

Let A be an arrangement and S the coordinate ring for V . For each H ∈ A
let IH = V(H), the ideal of S which vanishes on H, and call it the defining
ideal for H. If H is a hyperplane, then we can choose a linear functional
αH ∈ S such that IH = (αH).

We now introduce the main character of this paper. IfA is an arrangement
then the module of A-derivations is D(A), the set of all K-linear derivations
of S which map each defining ideal to itself. Equivalently, one could define
D(A) to be the set of all polynomial vector fields which, at each subspace, are
parallel to that subspace. [1] contains an extensive review of the properties
of D(A) for hyperplane arrangements, especially for free arrangements. We
shall review the situation for generic arrangements in Section 3.

Recently interest has arisen in arrangements of subspaces of codimension
greater than one. The goal of this paper is to examine D(A) in this case.
In particular we investigate subspace arrangements consisting of elements of
the intersection lattice of a generic hyperplane arrangement, where we find
generators for D(A) as an S-module.

In Section 2 we list several elementary properties of D(A). In Section 3
we find generators of D(A) for generic arrangements. In Section 4 we discuss
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subspace arrangements arising from hyperplane arrangements and in Sec-
tion 5 we find generators for D(A) for those subspace arrangements arising
from generic hyperplane arrangements.

The author would like to thank Sergey Yuzvinsky for valuable suggestions
during the preparation of this paper.

2. Subspace Arrangements.

In this section we define our terminology and give some elementary results.
Let A = {H1, . . . ,Hn} be an arrangement with defining ideals {IH1 , . . . ,
IHn}. An element H of A is maximal if it is not contained in any other
subspace of A. A is central if T = ∩n

i=1Hi is non-empty. In this case we
choose coordinates so that 0 ∈ T . We say that A is essential if T = 0. We
shall primarily concern ourselves with central arrangements.

Let S be the coordinate ring for V . Let DerK(S) denote the set of K-
linear derivations of S, that is, K-linear maps θ : S → S such that θ(fg) =
fθ(g) + gθ(f) for all f, g ∈ S.

Definition 2.1. Let A be an arrangement in V . The module of A-deriva-
tions is

D(A) = {θ ∈ DerK(S) | θ(IH) ⊆ IH ∀ H ∈ A}.

One obvious consequence of the definition of D(A) is the following lemma.

Lemma 2.2. If B ⊆ A are a pair of arrangements then D(A) ⊆ D(B).

If A is central, then the defining ideals of A are all homogeneous with
degree one generators and hence D(A) is a graded S-module. In this case let
V ∗ denote the dual space of the vector space V and S+ denote the maximal
graded ideal of S. We shall abbreviate ∂

∂xi
by Di. The Euler derivation

is θE =
∑`

i=1 xiDi and has the property that if f ∈ S is homogeneous of
degree n then θE(f) = nf . As a result we have:

Lemma 2.3. If A is a central arrangement then θE ∈ D(A).

The Euler derivation plays a deeper role in some arrangements.

Lemma 2.4. If A is central and contains a hyperplane then SθE is a direct
summand of D(A).

Proof. If H ∈ A is a hyperplane choose a linear functional α ∈ V ∗ so that
H = V (α). If θ ∈ D(A) then α divides θ(α) and hence we can define the
function φ : D(A) → S by φ(θ) = θ(α)/α. Since θE ∈ D(A), φ is surjective
with section s : S → D(A) given by s(f) = fθE . This shows SθE is a direct
summand of D(A). �

While freeness is an important property for hyperplane arrangements, it
rarely occurs in more general arrangements.
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Theorem 2.5. If A contains a maximal subspace of codimension greater
than 1, then D(A) is not a free S-module.

Proof. Suppose that D(A) is free, with basis θ1, . . . , θm. Let H ∈ A be
maximal with codimension k > 1. Choose a basis {x1, . . . , x`} for V so that
IH = (x1, . . . , xk). Since H is maximal, for each K 6= H in A there exists
βK ∈ IK such that βK 6∈ IH. Let β =

∏
{βK |K 6= H} and note that β 6∈ IH.

Hence βD1 6∈ D(A), but x1βD1, x2βD1 ∈ D(A). Now x1βD1 =
∑m

i=1 piθi

and x2βD1 =
∑m

i=1 qiθi and hence x2pi = x1qi for all i. This shows that
x1|pi for all i and hence βD1 ∈ D(A). This is a contradiction, and hence
D(A) is not free. �

Different arrangements can yield the same module of derivations, as the
next theorem shows.

Theorem 2.6. If A is any arrangement, H1, . . . ,Hk ∈ A and B = A ∪
{H1 ∩ · · · ∩Hk} then D(A) = D(B).

Proof. This result follows since if J = H1 ∩ · · · ∩ Hk then IJ = IH1 + · · · +
IHk

. �

Hence one could routinely assume that an arrangement is closed under
intersections, as some authors do. In this paper, however, we shall not make
this assumption.

3. Generic hyperplane arrangements.

In this section we review the case where A is a generic hyperplane arrange-
ment. In particular, we find a minimal list of generators for D(A) if A is
a generic hyperplane arrangement, and then compute the projective dimen-
sion of D(A) as an S-module. Much of what is found here can be gleaned
from [2] and [4]. Here we give a straight-forward derivation of those results.

An essential `-arrangement A is generic if ` > 1 and every collection of
` hyperplanes from A is also essential. A boolean arrangement is a generic
arrangement with exactly ` hyperplanes. Every 2-arrangement is generic.

For the rest of this section we shall assume thatA is generic. Furthermore,
since each hyperplane is determined by an element of V ∗ we shall describe
each arrangement by listing functionals corresponding to each hyperplane.
To this end we shall always choose a basis {x1, . . . , x`} for V ∗ such that
A = {α1 = x1, . . . , α` = x`, α`+1, . . . , αn} and we let Q =

∏
αH and call

it a defining polynomial for A. If ` < 5 we shall often use x, y, z and w for
x1, . . . , x4.

The following two results are well-known.

Lemma 3.1. If A is a 2-arrangement then D(A) is a free S-module with
basis

{
θE ,

Q
xDy

}
.
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Lemma 3.2. If A is a boolean `-arrangement then D(A) is a free S-module
with basis {x1D1, . . . , x`D`}.

If ` > 3 and A is generic but not boolean, then D(A) is not free. To
find generators of D(A) in this case we consider the intersection poset L(A).
L(A) consists of all intersections of the elements of V , including the empty
intersection V . Let L(A)k be the elements of L(A) of dimension k. If
X ∈ L(A) let AX = {H ∈ A |X ⊆ H}, QX be a defining polynomial for AX

and πX = Q
QX

. If X ∈ L(A)1 choose γX =
∑
biDi non-zero with bi ∈ K

such that γX(αH) = 0 for all H ∈ AX . This derivation may be identified
with a vector parallel to X and is projectively unique. Let θX = πXγX .
One can easily see that θX ∈ D(A). These derivations, together with θE ,
will be generators of D(A). To prove this we need to introduce the concept
of deletion and restriction.

Let A be any hyperplane arrangement and choose H ∈ A. Let A′ =
A \ {H} and call it the deletion of A with respect to H. Let A′′ be the
hyperplane arrangement in H with hyperplanes {H′ ∩ H |H′ ∈ A′} and call
it the restriction of A to H. (A,A′,A′′) is called a triple of arrangements.

If A is generic and non-boolean then A′ is also generic. If ` > 2 and A
is generic then A′′ is also generic. Furthermore, if A is generic then L(A′′)
may be identified with those elements of L(A) contained in H.

Next, we recall the short exact sequence of [1, Prop. 4.45]. If we choose
coordinates for V so that the functional associated with H is x1, then mul-
tiplication by x1 yields an injective homomorphism µ : D(A′) → D(A).
We can also restrict derivations to H. We identify the coordinate ring of
H with S′′ = K[x2, . . . , x`]. The canonical surjection S → S′′ then pro-
vides an S-module structure for D(A′′). If θ ∈ D(A) and f ∈ S′′ then
let r(θ)(f) = θ(f)|x1=0. It was shown in [1] that r(D(A)) ⊆ D(A′′) and
that the sequence 0 → D(A′) → D(A) → D(A′′) is an exact sequence of
S-modules. We shall show that the last map is surjective in the case of
generic arrangements, and in the process find a minimal generating set of
D(A).

Let A be a hyperplane arrangement and fix K ∈ A. Let F (A) denote the
submodule of D(A) generated by θE and {θX |X ∈ L(A)1, X ⊆ K} and
F (A′′) the submodule of D(A′′) generated by θ′′E = r(θE) and {θX′′ |X ′′ ∈
L(A′′)1, X ′′ ⊆ K ∩H}.
Lemma 3.3. Let A be a generic arrangement and K ∈ A. If H ∈ A and
H 6= K then r(F (A)) = F (A′′).

Proof. The θX with X ⊆ K fall into two categories. If X 6⊆ H then x1|πX

and so r(θX) = 0. If X ⊆ H then H ∈ AX and x1 is not a factor of πX . If
X ′′ = ∩{J | J ∈ AX} then X ′′ ∈ L(A′′) and since A and A′′ are generic, one
can see that r(θX) = θX′′ . Furthermore, since A is generic, each element of
L(A′′) containing K∩H arises in this fashion; and hence, r is surjective. �
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Theorem 3.4. If A is a non-boolean generic `-arrangement then

0 −−→ D(A′)
µ−−→ D(A) r−−→ D(A′′) −−→ 0

is a short exact sequence of S-modules. Furthermore, for any K ∈ A, D(A)
is generated by θE ∪ {θX |X ∈ L(A)1, X ⊆ K}.

Proof. We shall prove the theorem by induction on `. The base case ` = 2 is
Lemma 3.1. Now let ` > 2. We shall prove this by induction on the number
of hyperplanes of A. For this inner induction, we shall prove the base case
together with the inductive step.

Let A be a non-boolean generic `-arrangement. Since A is generic and
non-boolean, A′ and A′′ are generic and by induction, Lemma 3.1 or
Lemma 3.2, have generators listed by the theorem. Since

D(A′′) = r(F (A)) ⊆ r(D(A)) ⊆ D(A′′),

we see that r is surjective.
Now suppose that θ ∈ D(A). Since D(A′′) = F (A′′) we can, by Lemma 3.3,

choose η ∈ F (A) so that r(η) = r(θ). By exactness we have θ−η ∈ µ(D(A′)).
But by induction D(A′) is generated by the forms θ′X where X ′ ⊆ K. Now
A is generic so each X ′ ∈ L(A′) is also an element of L(A) where we denote
it by X. By definition we then have x1θX′ = θX and so µD(A′) ∈ F (A) and
hence θ ∈ F (A). �

The above theorem shows that if |A| = n and A is generic, then at most(
n−1
`−2

)
+ 1 generators are needed. The short exact sequence given above

allows us to compute the projective dimension of D(A).

Corollary 3.5. If A is generic and non-boolean then the projective dimen-
sion of D(A) as an S-module is `− 2.

Proof. We proceed by induction on `. If ` = 2 then D(A) is free, so the
result holds. Now assume ` > 2. We proceed by induction on the number
of hyperplanes in A. If |A| = ` + 1 then A′ is boolean and so D(A′) is
free. Now consider the exact sequence of Theorem 3.4. A′′ is generic and
non-boolean, thus pdimS′′D(A′′) = ` − 3. But S′′ ' S/αHS and hence, by
[3, Theorem 4.3.3], pdimSD(A′′) = `− 2. As a result, by [3, Exercise 4.1.2],
if ` 6= 3 we have pdimSD(A) = `− 2. If ` = 3 then our arrangement is that
of [1, Example 4.34], which was shown to not be free, which implies that
pdimSD(A) in this case is also `− 2.

If |A| > ` + 1 then pdimSD(A′) = pdimSD(A′′) = ` − 2 and again [3,
Exercise 4.1.2] shows that pdimD(A) = `− 2. �

[4] provides a minimal projective resolution of D(A) which also shows
that the minimal number of generators of D(A) is exactly

(
n−1
`−2

)
+ 1.
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4. Arrangements arising from L(A).

In this section we discuss arrangements which consist of a subset of L(A)
for a hyperplane arrangement A. In particular, choose k ≥ 2 and let Ak be
the (`, k)-arrangement consisting of those elements of L(A) of codimension
k. Note that A1 = A. The next result gives a filtration which may be an
interesting object of study.

Theorem 4.1. If A is a hyperplane arrangement, then

D(A) ⊆ D(A2) ⊆ · · · ⊆ D(A`).

If A is essential then D(A`) = S+DerK(S).

Proof. If θ ∈ D(A)k then θ(I(X)) ⊆ SI(X) for each X ∈ L(A)`−k. If
Y ∈ L(A)`−k−1 then Y = X1∩X2 whereX1 andX2 are elements of L(A)`−k;
but then V (Y ) = V (X1) + V (X2) and hence θ(Y ) ⊆ Y and θ ∈ D(A)k+1.
If A is essential then L(A)0 = {0} and since V (0) = S+ it is clear that
D(A)` = S+DerK(S). �

Next we apply the notion of deletion and restriction to these modules.
One easy result is the following:

Lemma 4.2. If A is an `-arrangement and H ∈ A with defining functional
αH then αHD(A′

k) ⊆ D(Ak).

Next we consider the restriction map of Section 3.

Lemma 4.3. If A is a hyperplane arrangement, H ∈ A, and A′′ is the
restriction of A to H, then r (D(Ak)) ⊆ D(A′′

k−1) for every 2 ≤ k ≤ `.

Proof. First choose coordinates so that αH = x1 = x. We identify S′′ with
K[x2, . . . , x`]. Let θ ∈ D(Ak). If X ∈ L(A′′)`−k then I(X) = (β1, . . . , βk−1)
where the βi are linear functionals associated to the elements of A′′. There
exist a1, . . . , ak−1 ∈ K such that αi = aix + βi are functionals defin-
ing elements of A. But note that there exists Y ∈ Ak such that IY =
(x, α1, . . . , αk−1) = (x, β1, . . . , βk) and so θ(I(X)) ⊆ (x, β1, . . . , βk−1) and
hence r(θ)(I(X)) = θ(I(X))|x=0 ⊆ (β1, . . . , βk−1). Since this holds true for
all X ∈ L(A′′) we see that r(θ) ∈ D(A′′

k−1). �

These two results will be used later when we find generators of D(Ak)
when A is generic. If A is boolean, the D(Ak) are easily described. Let V
be a vector space of dimension `. Let us say that a subset T of V ∗ is generic
if every subset of T of size at most ` is linearly independent.

Lemma 4.4. Let V be a vector space of dimension `, S = SV ∗ and A =
{α1, . . . , αn} be a generic subset of V ∗. Let Q =

∏n
i=1 αi and if X ⊆
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{1, . . . , n} let πX =
∏

j∈X αj. For each 1 ≤ k < ` the ideal
⋂

i1<···<ik
(αi1 ,

. . . , αik) is generated by{
Q

πX

∣∣∣∣∣X ⊆ {1, . . . , n}, |X| = k − 1

}
and the ideal

⋂
1<i2<···<ik

(α1, . . . , αik) is generated by

{α1} ∪

{
Q

α1πX

∣∣∣∣∣X ⊆ {2, . . . , n}, |X| = k − 2

}
.

Proof. Let N =
⋂

2≤i2<···<ik
(α1, αi2 , . . . , αik) and L =

⋂
2≤i1<···<ik

(αi1 ,

. . . , αik). Our goal is to show that I = N ∩ L. To prove this we shall
induct on k. If k = 1 then the result is clear. Now assume k > 1. To prove
the inductive step we shall induct on n. If n = k, then again the result is
clear. Now assume n > k.

Let φ : S → S/(α1) and denote φ(f) by f . Since φ is surjective and ker(φ)
is a subset of every (α1, αi2 , . . . , αik) we have

φ(N) =
⋂
φ (α1, αi2 , . . . , αik) =

⋂
(αi2 , . . . , αik) .

Since A is generic Q′′ = φ(Q/α1) is square free and so, by induction on
k, φ(N) is generated by the Q′′

πX
= φ

(
Q

α1πX

)
where X ⊆ {2, . . . , n} and

|X| = k − 2. This shows that

N = (α1) +

({
Q

α1πX

∣∣∣∣∣X ⊆ {2, . . . , n}, |X| = k − 2

})
.

Denote the first ideal on the right by J and the second by K. By induction
on n we see that

L =

({
Q

α1πX

∣∣∣∣∣X ⊆ {2, . . . , n}, |X| = k − 1

})
.

Thus I is an intersection of the form (J +K) ∩ L with K ⊆ L and whence
I = J ∩ L+K.

We claim that

J ∩ L+K =

({
Q

πX

∣∣∣∣∣X ⊆ {1, . . . , n}, |X| = k − 1

})
and denote the latter ideal by M . Clearly M ⊆ I and K ⊆ M . It remains
to show that J ∩ L ⊆ M . If g ∈ J ∩ K then g = hα1 =

∑
X fX

Q
α1πX

. If
Y ⊆ {2, . . . , n} with |Y | = k − 1 and IY = ({αi | i ∈ Y }) then consider
ψ : S → S/IY and again denote ψ(f) by f . Since k < `, this is an integral
domain. Note that g = hα1 = fY

Q
α1πY

and hence there exists hY such that
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fY = α1hY and so fY = α1hY + gY where gY ∈ IY , but then fY
Q

α1πY
∈M .

Since this holds for all Y we see that J∩L ⊆M and the result is proven. �

We can use the above result to determine generators for D(Ak) if A is
essential and boolean.

Theorem 4.5. Let A = {H1, . . . ,H`} be a boolean `-arrangement with Hi =
V (xi) and let Q =

∏`
i=1 xi then, for each k > 1, D(Ak) is generated as an

S-module by

{xiDi}`
i=1

⋃{
Q

QX
Di

∣∣∣∣∣X ∈ L(A)`−k+1, X ⊆ Hi, 1 ≤ i ≤ `

}
.

Proof. Let θ ∈ D(Ak) and write θ =
∑
piDi. Choose 1 ≤ j ≤ ` and

let J = {1, . . . , n} \ {j}. Now pj = θ(xj) ∈
⋂

Y⊆J
|Y |=k−1

(αj , {αm}m∈Y ) =(
αj ,

{
Q

αjπY

∣∣∣∣∣Y ⊆ J, |Y | = k − 2

})
. But each αjπY is the defining polyno-

mial of a subarrangement of A of size k − 1 corresponding to an element of
L(A) of dimension `− k + 1. The result follows. �

Note that as k increases the modules pick up smaller and smaller “factors”
of the QDi. This pattern will also hold for generic arrangements. The above
result also allows us to compute the projective dimensions of D(A2) for a
boolean arrangement.

Theorem 4.6. If A is boolean then the pdimS(D(A2)) = 1.

Proof. It suffices to consider the case where A is essential. Let P0 be the
free S-module with generators α1, . . . , α`, β1, . . . , β`. Let ψ : P0 → D(A) be
the map define by ψ(αi) = xiDi and ψ(βi) = Q

xi
Di. We will show that kerψ

is a free S-module.
Suppose ψ(

∑
fiαi +

∑
giβi) = 0, then for each i we have xifi + Q

xi
gi = 0.

Thus there exists hi so that fi = Q
xi
hi and gi = −xihi. Thus kerψ ={∑(

Q
xi
αi − xiβi

)
hi |hi ∈ S

}
is a free S-module of rank `. �

5. Generic (l, k) arrangements.

In this section we assume that A is a generic `-arrangement and work with
the associated (`, k) arrangements. We begin by finding generating sets for
D(A2) using elements of L(A). It is useful to consider some examples of
(`, 2)-arrangements arising in this fashion. It is convenient to describe the
subspaces using their corresponding ideals.

Example 5.1. In K3 let A = {x, y, z, x+ y + z}, so that

A2 = {(x, y), (x, z), (x, x+ y + z), (y, z), (y, x+ y + z), (z, x+ y + z)}.
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D(A2) has generators

θE , yz(x+ y + z)Dx, xy(Dx −Dy), xyzDz

y(x+y+z)Dy, xz(x+y+z)Dy, z(x+y+z)Dz, xy(x+y+z)Dz.

In K3 if B = {x, y, x+ y, z, x+ y + z} then D(B) is a free S-module but
B2 is the same arrangement as A2 listed above. Hence a free arrangement
and a generic arrangement may yield identical (`, 2)-arrangements.

Example 5.2. In K4 let A = {w, x, y, z, w + x+ y + z}, so that

A2 = {(w, x), (w, y), (w, z), (w,w + x+ y + z), (x, y),

(x, z), (x,w + x+ y + z), (y, z), (y, w + x+ y + z), (z, w + x+ y + z)}
D(A2) has generators

θE , xyz(w + x+ y + z)Dw, wyz(w + x+ y + z)Dx

wxz(w + x+ y + z)Dy, wxy(w + x+ y + z)Dz, xy(Dx −Dy)

yz(Dy −Dz), wx(Dw −Dx), xyzwDy

y(w + x+ y + z)Dy, z(w + x+ y + z)Dz.

These examples motivate the following definition. As usual, choose a basis
{x1, . . . , x`} of V ∗. Let H ∈ A with αH its defining functional and write
αH =

∑
aixi. Let ηH = Q

αH

∑
aiDxi . One can easily see that ηH ∈ D(A2).

Our goal is to show that the θX and ηH together with θE generate D(A2)
for a generic arrangement.

To prove this we will induct on the number of hyperplanes of A using the
method of deletion and restriction. An examination of the examples listed
above leads us to the following lemma.

Lemma 5.3. If A is generic, then r : D(A2) → D(A′′) is surjective.

Proof. The result is clear if ` = 2. If ` > 2 and A is generic, then so is A′′.
One then notes that {r(θX)}X∈L(A)1

∪ r(θE) is the generating set of D(A′′)
given in Theorem 3.4. �

We can now state one of our main results:

Theorem 5.4. Let A be a generic `-arrangement with ` > 2 and H ∈ A.
The sequence

D(A′
2)⊕ S

φ→D(A2)
r→D(A′′) → 0

is exact where φ(θ, f) = αHθ + fηH.



510 JONATHAN WIENS

Proof. Since r(ηH) = 0 we only need to show that ker(r) ⊆ imφ. Let
A = {H,H2, . . . ,Hn} and choose coordinates so H = V (x1). Let θ ∈ ker(r)
and write θ =

∑`
i=1 piDi. Since r(θ) = 0, pi = xiqi for i > 1.

Since A is generic the ideals {(x1, αi)}i>1 are distinct, hence θ(x1) ∈
∩n

i=2(x1, αi) = (x1,
∏n

i=2 αi) = (x1,
Q
x1

). So write p = x1q1 + Q
x1
s, and

τ =
∑`

i=1 qiDxi so that θ = x1τ + sηX . It suffices to show τ ∈ D(A′
2). Let

X ∈ L(A′)2, then since Q
x1
∈ IX we see that θ(IX) ⊂ IX iff x1µ(IX) ⊆ IX .

But since x1 6∈ IX (as A is generic), we see that x1µ(IX) ⊆ IX iff µ(IX) ⊆
IX , hence µ ∈ D(A′

2). �

With the above exact sequence we can prove the following result.

Theorem 5.5. Let A be a generic arrangement, ` > 2 and K ∈ A. D(A2)
is generated by {θE} ∪ {θX |X ∈ L(A)1, X ⊆ K} ∪ {ηH |H ∈ A}.

Proof. The proof here is very similar to that of Theorem 3.4. We induct
on `. We shall prove the base case together with the inductive step. To
show these we induct on |A|. If A is boolean then the result follows from
Theorem 4.5. If |A| > ` then we use the exact sequence of the previous
theorem. If θ ∈ D(A2) then since r is surjective and A′′ is generic we can
choose η ∈ D̃(A) so that r(η) = r(θ). Hence θ − η is in the image of φ.
But A′ is generic or boolean, so by induction its generators are given by the
theorem. As in the proof of Theorem 3.4 one sees that when the generators
of D(A′) are multiplied by αH they become the generators postulated for
D(A). The result follows. �

Now assume k > 2. For each H ∈ A write αH =
∑
aixi. Now let

Y ∈ L(A)`−k+1 with Y ⊆ H and let ηH,Y = Q
πY

∑
aiDxi . Let F (Ak) be the

S-submodule of D(Ak) generated by θE together with the θX and the set of
all ηH,Y .

The rest of this section is devoted to the proof of the following theorem.

Theorem 5.6. Let ` > 2, A be a generic `-arrangement, 2 ≤ k < ` and
K ∈ A. D(Ak) is generated as an S-module by

{θE} ∪ {θX |X ∈ L(A)1, X ⊆ K}
∪ {ηH,Y |H ∈ A, Y ∈ L(A)`−k+1, Y ⊆ H}.

We shall prove this by induction on `. The base case ` = 3 is Theorem 5.5.
Now assume ` > 3. To prove this we induct on k. The case k = 2 is also
Theorem 5.5, so assume k > 2. To show this we induct on the number of
hyperplanes of A. If |A| = `, then the result follows from Theorem 4.5.
Hence, we assume that |A| > `.

We begin by choosing H ∈ A with H 6= K, and choose coordinates so
that αH = x1. Let A′ be the deletion of A with respect to H and A′′
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the restriction of A to H. Let F (Ak) be the S-module generated by the
derivations given in the theorem. Our goal is to show that F (Ak) = D(Ak).

Lemma 5.7. If A is generic, then r : F (Ak) → D(A′′
k−1) is surjective.

Proof. Since A is generic, so is A′′ and, by induction on `, D(A′′
k−1) has

generators given in the theorem. One then notes that restriction of the
generators of F (Ak) are either zero or precisely the generators given for
D(A′′

k−1). In particular, let H′′ ∈ A′′ and Y ′′ ∈ L(A′′)`−k+1 then there is
a unique Y ∈ L(A) so that Y = Y ′′. Since Y ⊂ H we have x1|πY . Now
ηH,Y = Q

πY

∑`
k=1 aiDi = Q/αH

πY /αH

∑`
i=1 aiDi and since Q

αH
|x1=0 = Q′′ and

πY
αH
|x1=0 = πY ′′ we see that r(ηH,Y ) = Q′′

πY ′′

∑`
i=2 aiDxi = ηH′′,Y ′′ . �

Lemma 5.8. Let A be a generic arrangement and H ∈ A, then the sequence

D(A′
k)

⊕
Y ∈L(A)k−1

Y⊆H

S
φ−−→ D(Ak)

r−−→ D(A′′
k−1) −−→ 0

is exact where φ (θ, (fY )) = αHθ +
∑

Y fY ηH,Y .

Proof. We only need to show that ker(r) ⊆ imφ. Let A = {H,H2, . . . ,Hn}
and choose coordinates so that H = V (x1). Let θ ∈ ker(r) and write θ =∑`

i=1 piDi. If r(θ) = 0 then pi = x1qi for each i > 1.
Since A is generic the ideals {(x1, αi2 , . . . , αik) | 2 ≤ i2 < · · · < ik} are

distinct, hence by Lemma 4.4

θ(x1) ∈
⋂

2≤i2<···<ik

(x1, αi2 , . . . αik)

=

(
x1,

{
Q

x1πX

∣∣∣∣∣X ⊂ {2, . . . n} |X| = k − 2

})
.

Write p1 = x1q1 +
∑

X sX
Q

x1πX
s, and let τ =

∑`
i=1 qiDi so that θ = x1τ +∑

sXηX . Hence, it suffices to show τ ∈ D(A′
k). Let Y ∈ L(A′)k, then since

Q
x1πX

∈ IY for each X 6= Y we see that θ(IY ) ⊂ IY iff x1τ(IY ) ⊆ IY . But
since x1 6∈ IY (as A is generic), we see that x1τ(IY ) ⊆ IY iff τ(IY ) ⊆ IY ,
hence τ ∈ D(A′

k). �

With the above exact sequence we can finish the proof our main result.
If θ ∈ D(Ak) then choose η ∈ F (Ak) so that r(θ) = r(η), in which case
θ − η ∈ imφ. But by induction D(A′

k) = F (A′
k) and since φ sends the

generators of D(A′
k) to generators of F (Ak), we see that θ ∈ F (Ak).

An interesting result would be to compute minimal resolutions of these
modules.
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