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Etienne F. Blanchard and Kenneth J. Dykema

Given reduced amalgamated free products of C∗-algebras
(A,φ) = ∗

ι∈I
(Aι, φι) and (D,ψ) = ∗

ι∈I
(Dι, ψι), an embedding

A ↪→ D is shown to exist assuming there are conditional–
expectation–preserving embeddings Aι ↪→ Dι. This result is
extended to show the existence of the reduced amalgamated
free product of certain classes of unital completely positive
maps. Finally, analogues of the above mentioned results are
proved for amagamated free products of von Neumann alge-
bras.

Introduction.

The reduced free product construction, and more generally the reduced
amalgamated free product construction for C∗-algebras, introduced inde-
pendently by Voiculescu [21] and (somewhat less generally) Avitzour [1],
has received much recent attention.

It is natural to ask: To what extent does the reduced free product con-
struction satisfy a universal property, analogous to those for the free product
of groups or the full free product of C∗-algebras? Since the reduced free prod-
uct of C∗-algebras frequently gives rise to simple C∗-algebras, (see [1], [15],
[10], [11] and [8]), it is clear that any universal property for the reduced
free product should be quite a bit more restrictive in character than for the
full free product; however, at first glance the following question still seems
reasonable.

Question 1. If
(A,φ) = ∗

ι∈I(Aι, φι)

is a reduced free product of C∗-algebras, where the φι are states on the unital
C∗-algebras Aι having faithful GNS representations, and if D is a unital C∗-
algebra with a state ψ and with unital ∗-homomorphisms κι : Aι → D such
that

(i) ψ ◦ κι = φι for every ι ∈ I,
(ii) the family

(
κι(Aι)

)
ι∈I is free with respect to ψ,
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does it follow that there is a ∗-homomorphism κ : A→ D such that, denoting
by αι : Aι → A the injective ∗-homomorphisms arising from the free product
construction, κ ◦ αι = κι for every ι ∈ I? (Note that κ would necessarily be
injective.)

Note that the homomorphism κ exists if and only if the GNS representa-
tion πψ : D → L(L2(D,ψ)) of ψ is faithful when restricted to the subalgebra
of D generated by

⋃
ι∈I κι(Aι). As observed in [16, 1.3], the answer to Ques-

tion 1 is “yes” if the state ψ on D is assumed to be faithful, (and a similar
result holds in the amalgamated case). However, in general the answer is
“no”, as was shown by the elementary example [16, 1.4], (see also the erra-
tum to [16]).

The main result of this paper is an embedding result (Theorem 1.3) im-
plying that the ∗-homomorphism π in Question 1 does exist provided that
the free subalgebras πι(Aι) lie in free subalgebras of D that taken together
generate D. Namely, we have the following property.

Property 2. Let I be a set and for every ι ∈ I let Aι ⊆ Dι be a unital
inclusion of unital C∗-algebras. Suppose φι is a state on Dι such that the
GNS representations of φι and of the restriction φι�Aι are faithful. Consider
the reduced free products of C∗-algebras,

(D,φ) = ∗
ι∈I(Dι, φι)

(A,ψ) = ∗
ι∈I(Aι, φι�Aι).

Then there is a ∗-homomorphism π : A → D such that for every ι ∈ I the
diagram

Dι ↪→ D
∪ ↑ π
Aι ↪→ A

commutes, where the horizontal arrows are the inclusions arising from the
free product construction.

This property was previously known under the additional assumption that
every ψι is faithful, which by [9] implies that ψ is faithful onD; as noted after
Question 1, this in turn implies the existence of π. Theorem 1.3 actually
proves more generally a version of Property 2 for reduced amalgamated free
products of C∗-algebras. Such an embedding result is frequently useful for
understanding reduced free product C∗-algebras; it has been used in [13]
and several times in [12].

We should point out that M. Choda has in [7] stated a theorem about
reduced free products of completely positive maps which is more general
than Property 2. However, her proof is incomplete, as it implicitly uses the
full generality of Property 2 without justifying its validity.
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In §1, the main theorem about embeddings of reduced amalgamated free
products of C∗-algebras is proved. In §2, Choda’s argument proving the exis-
tence of reduced free products of state–preserving completely positive maps
is generalized to prove existence of reduced amalgamated free products of
certain sorts of completely positive maps. In §3, we consider the reduced free
product with amalgamation of von Neumann algebras and prove analogues
of the results in §1 and §2 for von Neumann algebras.

Acknowledgements. Much of this work was done while K.D. was visit-
ing the Institute of Mathematics of Luminy. He would like to thank the
members of the Institute for their hospitality and for providing stimulating
atmosphere during his visit. The authors would like to thank the referee for
helpful comments.

1. Embeddings.

In this section we prove the main embedding result. We use the same nota-
tion as in [12] for the reduced amalgamated free product construction.

In the following lemma, with the reduced amalgamated free product of
C∗-algebras (A,φ) = ∗

ι∈I(Aι, φι) we view each Aι as a C∗-subalgebra of A
via the canonical embedding arising from the free product construction.

Lemma 1.1. Let B be a unital C∗-algebra, let I be a set and for every ι ∈ I
let Aι be a unital C∗-algebra containing a copy of B as a unital C∗-subalgebra
and having a conditional expectation φι : Aι → B whose GNS representation
is faithful. Let

(A,φ) = ∗
ι∈I(Aι, φι)

be the reduced amalgamated free product. Then for every ι0 ∈ I there is
a conditional expectation Φι0 : A → Aι0 such that Φι0�Aι = φι for every
ι ∈ I\{ι0} and Φι0(a1a2 · · · an) = 0 whenever n ≥ 2 and aj ∈ Aιj ∩ kerφιj
with ι1 6= ι2, . . . , ιn−1 6= ιn.

Proof. We let Eι = L2(Aι, φι), ξι = 1̂Aι ∈ Eι, Eι = ξιB ⊕ Eo
ι . Then A acts

(by definition) on the Hilbert B-module

E = ξB ⊕
⊕
n≥1

ι1,... ,ιn∈I
ι1 6=ι2,ι2 6=ι3,... ,ιn−1 6=ιn

Eo
ι1 ⊗B E

o
ι2 ⊗B · · · ⊗B Eo

ιn .

Identify the submodule ξB ⊕ Eo
ι0 of E with the Hilbert B-module Eι0 and

let Qι0 : E → Eι0 be the projection. Then Φι0(x) = Qι0xQι0 has the desired
properties. �

Explication 1.2. Consider the GNS representation
(
σ, L2(A,Φι0), η

)
=

GNS(A,Φι0) associated with the conditional expectation Φι0 : A → Aι0
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found in Lemma 1.1. Since A is the closed linear span of B and the set of
reduced words of the form a1a2 · · · an where aj ∈ Aιj ∩kerφιj and ιj 6= ιj+1,
we see that the Hilbert Aι0-module in the GNS representation is

L2(A,Φι0) = Aι0 ⊕
⊕
n≥1

ι1,... ,ιn∈I
ι1 6=ι2,... ,ιn−1 6=ιn

ιn 6=ι0

Eo
ι1 ⊗B · · · ⊗B Eo

ιn ⊗B Aι0 .(1)

Moreover, the action σ of A on L2(A,Φι0) is determined by its restrictions
σ�Aι , which are easily described.

Let ρ : Aι0 → L(V) be a unital ∗-homomorphism, for some Hilbert space
V. Then σ ⊗ 1 : A → L

(
L2(A,Φι0) ⊗ρ V

)
is a ∗-homomorphism; it is

the representation induced, in the sense of Rieffel [19], from ρ up to A,
with respect to the conditional expectation Φι0 , and we will denote this
induced representation by ρ �A. We have the following explicit description
of ρ �A, obtained by tensoring (1) with ⊗ρV on the right. Writing H =
L2(A,Φι0)⊗ρ V we have

H = V⊕
⊕
n≥1

ι1,... ,ιn∈I
ι1 6=ι2,... ,ιn−1 6=ιn

ιn 6=ι0

Eo
ι1 ⊗B · · · ⊗B Eo

ιn ⊗ρ V.(2)

Moreover, the ∗-homomorphism σ ⊗ 1 is determined by its restrictions

σι
def= (σ ⊗ 1)�Aι : Aι → L(H),

given as follows. Consider the Hilbert spaces

H(ι) =



(ηιB ⊗ρ�B V)⊕
⊕
n≥1

ι1,... ,ιn∈I
ι1 6=ι2,... ,ιn−1 6=ιn

ιn 6=ι0, ι1 6=ι

Eo
ι1 ⊗B · · · ⊗B Eo

ιn ⊗ρ V if ι 6= ι0

⊕
n≥1

ι1,... ,ιn∈I
ι1 6=ι2,... ,ιn−1 6=ιn
ιn 6=ι0, ι1 6=ι0

Eo
ι1 ⊗B · · · ⊗B Eo

ιn ⊗ρ V if ι = ι0,

where ηιB is just the Hilbert B-module B with identity element denoted by
ηι. If ι ∈ I\{ι0} let

Wι : Eι ⊗B H(ι) → H(3)
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be the unitary defined, using the symbol
..
⊗ to denote the tensor product

in (3), by

Wι : ξι
..
⊗ (ηι ⊗ v) 7→ v

ζ
..
⊗ (ηι ⊗ v) 7→ ζ ⊗ v

ξι
..
⊗ (ζ1 ⊗ · · · ⊗ ζn ⊗ v) 7→ ζ1 ⊗ · · · ⊗ ζn ⊗ v

ζ
..
⊗ (ζ1 ⊗ · · · ⊗ ζn ⊗ v) 7→ ζ ⊗ ζ1 ⊗ · · · ⊗ ζn ⊗ v

whenever v ∈ V, ζ ∈ Eo
ι , ζj ∈ Eo

ιj and ι 6= ι1, ι1 6= ι2, . . . , ιn−1 6= ιn, ιn 6= ι0.
Then for every ι ∈ I\{ι0} and a ∈ Aι, we have

σι(a) = Wι(a⊗ 1H(ι))W
∗
ι .

Similarly, define the unitary

Wι0 : V⊕
(
Eι ⊗B H(ι0)

)
→ H

by

Wι0 : v ⊕ 0 7→ v

0⊕
(
ξι0

..
⊗ (ζ1 ⊗ · · · ⊗ ζn ⊗ v)

)
7→ ζ1 ⊗ · · · ⊗ ζn ⊗ v

0⊕
(
ζ
..
⊗ (ζ1 ⊗ · · · ⊗ ζn ⊗ v)

)
7→ ζ ⊗ ζ1 ⊗ · · · ⊗ ζn ⊗ v.

Then
σι0(a) = Wι0

(
ρ(a)⊕ (a⊗ 1H(ι0))

)
W ∗
ι0 .

Note that the above description is related to the construction of the condi-
tionally free product, due to Bożejko and Speicher [5], (see also [4]).

Theorem 1.3. Let B ⊆ B̃ be a (not necessarily unital) inclusion of unital
C∗-algebras. Let I be a set and for each ι ∈ I suppose

1 eAι ∈ B̃ ⊆ Ãι
∪ ∪

1Aι ∈ B ⊆ Aι

are inclusions of C∗-algebras. Suppose that φ̃ι : Ãι → B̃ is a conditional
expectation such that φ̃ι(Aι) ⊆ B and assume that φ̃ι and the restriction
φ̃ι�Aι have faithful GNS representations, for all ι ∈ I. Let

(Ã, φ̃) = ∗
ι∈I(Ãι, φ̃ι)

(A,φ) = ∗
ι∈I(Aι, φ̃ι�Aι)

be the reduced amalgamated free products of C∗-algebras. Then there is a
unique ∗-homomorphism κ : A→ Ã such that for every ι ∈ I the diagram

Ãι ↪→ Ã
∪ ↑ κ
Aι ↪→ A

(4)
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commutes, where the horizontal arrows are the inclusions arising from the
free product construction. Moreover, κ is necessarily injective.

Proof. Since A is generated by
⋃
ι∈I Aι, it is clear that κ will be unique if

it exists. Let 1 denote the identity element of B̃ and let p be the identity
element of B. If p 6= 1 then we may replace B by B+C(1− p) and each Aι
by Aι +C(1− p); hence we may without loss of generality assume that B is
a unital C∗-subalgebra of B̃ and thus each Aι is a unital C∗-subalgebra of
Ãι. Let

(π̃ι, Ẽι, ξ̃ι) = GNS(Ãι, φ̃ι),

(πι, Eι, ξι) = GNS(Aι, φι)

and

(Ẽ, ξ̃) = ∗
ι∈I(Ẽι, ξ̃ι),

(E, ξ) = ∗
ι∈I(Eι, ξι).

The inclusion Aι ↪→ Ãι gives an inner–product–preserving isometry of Ba-
nach spaces Eι ↪→ Ẽι sending ξι to ξ̃ι, and we identify Eι with this subspace
of Ẽι and thereby Eo

ι with the subspace of Ẽo
ι . This allows canonical iden-

tification of the tensor product module

Eo
ι1 ⊗B · · · ⊗B Eo

ιp−1
⊗B Ẽo

ιp ⊗ eB · · · ⊗ eB Ẽo
ιn

with a closed subspace of Ẽo
ι1 ⊗ eB · · ·⊗ eB Ẽo

ιn . Hence, we may and do identify
E with the subspace

ξ̃B ⊕
⊕
n≥1

ι1,... ,ιn∈I
ι1 6=ι2,... ,ιn−1 6=ιn

Eo
ι1 ⊗B · · · ⊗B Eo

ιn

of Ẽ. Let A = (∗B)ι∈IAι be the universal algebraic free product with amal-
gamation over B. Let σ : A → L(E), respectively σ̃ : A → L(Ẽ), be the
homomorphism extending the homomorphisms πι : Aι → L(E), respectively
π̃ι�Aι : Aι → L(Ẽ), (ι ∈ I). In particular, we have σ(A) = A. In order to
show that κ exists, it will suffice to show that

∀x ∈ A ‖σ̃(x)‖ ≤ ‖σ(x)‖.

Note that the subspace E of Ẽ is invariant under σ̃(A) and that the restric-
tion of σ̃(·) to E gives σ. This implies

∀x ∈ A ‖σ̃(x)‖ ≥ ‖σ(x)‖,

which will in turn imply that κ is injective, once it is known to exist. Let τ
be a faithful representation of B̃ on a Hilbert space W. Consider the Hilbert
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space Ẽ⊗τ W and let λ̃ : L(Ẽ) → L(Ẽ⊗τ W) be the ∗-homomorphism given
by λ̃(x) = x⊗ 1W. Then λ̃ is faithful, and hence it will suffice to show that

∀x ∈ A ‖λ̃ ◦ σ̃(x)‖ ≤ ‖σ(x)‖.(5)

Our strategy will be to show that λ̃ ◦ σ̃ decomposes as a direct sum of
subrepresentations, each of which is of the form (ν �A) ◦σ, where ν �A is the
∗-representation of A induced from a representation ν of some Aι.

Given n ≥ 1 and ι1, . . . , ιn with ι1 6= ι2, . . . , ιn−1 6= ιn, and given p ∈
{1, 2, . . . , n}, consider the Hilbert space

Eo
ι1 ⊗B · · · ⊗B Eo

ιp−1
⊗B Kιp ⊗ eB Ẽo

ιp+1
⊗ eB · · · ⊗ eB Ẽo

ιn ⊗τ W =

def=

(
Eo
ι1 ⊗B · · · ⊗B Eo

ιp−1
⊗B Ẽo

ιp ⊗ eB Ẽo
ιp+1

⊗ eB · · · ⊗ eB Ẽo
ιn ⊗τ W

	 Eo
ι1 ⊗B · · · ⊗B Eo

ιp−1
⊗B Eo

ιp ⊗B Ẽ
o
ιp+1

⊗ eB · · · ⊗ eB Ẽo
ιn ⊗τ W

)
.

Heuristically, Kι takes the place of Ẽι 	 Eι, even when the latter does not
make sense. Then

Ẽ ⊗τ W =(E ⊗τ�B W)⊕

⊕
⊕
n≥1

ι1,... ,ιn∈I
ι1 6=ι2,... ,ιn−1 6=ιn
p∈{1,2,... ,n}

Eo
ι1 ⊗B · · · ⊗B Eo

ιp−1
⊗B

⊗B Kιp ⊗ eB Ẽo
ιp+1

⊗ eB · · · ⊗ eB Ẽo
ιn ⊗τ W.

As mentioned earlier, σ̃(A)E ⊆ E and σ̃(·)�E = σ(·), so E⊗τ�BW is invariant
under λ̃ ◦ σ̃(A), and

∀x ∈ A ‖λ̃ ◦ σ̃(x)�E⊗τW‖ = ‖σ(x)‖.
Since π̃ι(Aι)Eι ⊆ Eι, it is not difficult to check that for every n ≥ 1 and for
every ι1, . . . , ιn ∈ I with ι1 6= ι2, . . . , ιn−1 6= ιn,

W̃(ι1, . . . , ιn)
def= λ̃ ◦ σ̃(A)(Kι1 ⊗ eB Ẽo

ι2 ⊗ eB · · · ⊗ eB Ẽo
ιn ⊗τ W)

= (Kι1 ⊗ eB Ẽo
ι2 ⊗ eB · · · ⊗ eB Ẽo

ιn ⊗τ W) ⊕

⊕
⊕
q≥1

ι′1,... ,ι
′
q∈I

ι′1 6=ι′2,... ,ι′q−1 6=ι′q
ι′q 6=ι1

Eo
ι′1
⊗B · · · ⊗B Eo

ι′q
⊗B Kι1 ⊗ eB Ẽo

ι2 ⊗ eB · · · ⊗ eB Ẽo
ιn ⊗τ W.

Thus
Ẽ ⊗τ W = (E ⊗τ�B W)⊕

⊕
n≥1

ι1,... ,ιn∈I
ι1 6=ι2,... ,ιn−1 6=ιn

W̃(ι1, . . . , ιn);
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hence in order to prove the theorem it will suffice to show that for every
choice of ι1, . . . ιn,

∀x ∈ A ‖λ̃ ◦ σ̃(x)� eW(ι1,... ,ιn)‖ ≤ ‖σ(x)‖.(6)

But letting V = Kι1 ⊗ eB Ẽo
ι2 ⊗ eB · · · ⊗ eB Ẽo

ιn ⊗τ W, letting ν : Aι1 → L(V) be
the ∗-homomorphism ν(a) = (π̃ι1(a)⊗ 1 eEo

ι2
⊗B ···⊗B eEo

ιn
⊗τW

)�V, and appealing
to Explication 1.2, it is straightforward to check that

λ̃ ◦ σ̃(·)� eW(ι1,... ,ιn) = (ν �A) ◦ σ,

where ν �A is the representation of A induced from ν with respect to the
conditional expectation Φι1 : A → Aι1 found in Lemma 1.1; this in turn
implies (6). �

Remark 1.4. Let us consider for a moment Theorem 1.3 when the sub-
algebra B over which we amalgamate is the scalars, C. When taking the
reduced free product (A,φ) = ∗

ι∈I(Aι, φι) of C∗-algebras, one usually requires
the states φι to have faithful GNS representation. However, one could ex-
tend the construction to the case of completely general states φι; one then
obtains

∗
ι∈I(Aι, φι) = ∗

ι∈I((Aι/ kerπι),
.
φι),

where πι is the GNS representation of φι and where
.
φι is the state induced on

the quotient Aι/ kerπι by φι. Thus the canonical ∗-homomorphism Aι → A
has the same kernel as πι.

As a caveat, we would like to point out that with this relaxed definition of
reduced free product, (allowing φι with nonfaithful GNS representation), the
statement of Theorem 1.3 does not in general hold. Indeed, if for some ι ∈ I
Aι = C ⊕C with φι non-faithful, if Ãι = M2(C) with a unital embedding
Aι ↪→ Ãι and if φ̃ι is a state on M2(C) such that φ̃�Aι = φι, then Aι → A

is not injective, while Ãι ↪→ Ã is injective. This shows that there can be no
∗-homomorphism κ : A → Ã making the diagram (4) commute. However,
there is no problem allowing the φ̃ι to have nonfaithful GNS representations,
as long as the restrictions φι are taken with faithful GNS representations.

2. Completely positive maps.

M. Choda [7] gave an argument which, when combined with an embedding
result like Property 2, proves that if θι : Aι → Dι is a unital completely
positive map between unital C∗-algebras for every ι ∈ I, if φι and ψι are
states on Aι and respectively Dι, each having faithful GNS representation,
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and if ψι ◦ θι = φι then letting

(A,φ) = ∗
ι∈I(Aι, φι)

(D,ψ) = ∗
ι∈I(Dι, ψι)

be the reduced free products of C∗-algebras, there is a unital completely
positive map θ : A → D such that θ�Aι = θι for every ι ∈ I, and such that
θ(a1a2 · · · an) = θ(a1)θ(a2) · · · θ(an) whenever aj ∈ Aιj ∩ kerφιj for some
ιj ∈ I with ι1 6= ι2, . . . , ιn−1 6= ιn.

In this section, we generalize this argument of Choda’s to the case of
reduced amalgamated free products of C∗-algebras. The generalization con-
sists of, in essence, replacing Stinespring’s dilation theorem for completely
positive maps into bounded operators on a Hilbert space by Kasparov’s gen-
eralization [17] to the case of completely positive maps into the algebra of
bounded adjointable operators on a Hilbert B-module (see alternatively the
book [18]). We would like to point out that Theorem 2.2 is quite similar in
appearance to analogous results of F. Boca [2], [3] about completely posi-
tive maps on universal amalgamated free products of C∗-algebras. However,
the universal and reduced free products of C∗-algebras are quite different in
character, and we do not believe that Boca’s results can be used directly to
prove Theorem 2.2.

Lemma 2.1. Let A and B be C∗-algebras, let E and Ẽ be Hilbert A-modules,
let F and F̃ be Hilbert B-modules and let v ∈ L(E, Ẽ), w ∈ L(F, F̃ ). Sup-
pose π : A → L(F ) and π̃ : A → L(F̃ ) are ∗-homomorphisms and suppose
that

∀a ∈ A ∀ξ ∈ F w(π(a)ξ) = π̃(a)w(ξ).(7)

Let E ⊗π F and Ẽ ⊗eπ F̃ be the interior tensor products. Then there is an
element v ⊗ w ∈ L(E ⊗π F, Ẽ ⊗eπ F̃ ) such that

∀ζ ∈ E ∀ξ ∈ F (v ⊗ w)(ζ ⊗ ξ) = (vζ)⊗ (wξ).

If, moreover, 〈v(ζ), v(ζ)〉 = 〈ζ, ζ〉 for every ζ ∈ E and 〈w(ξ), w(ξ)〉 = 〈ξ, ξ〉
for every ξ ∈ F then 〈v ⊗ w(η), v ⊗ w(η)〉 = 〈η, η〉 for every η ∈ E ⊗π F .

Proof. That v⊗w is bounded is a standard argument (compare p. 42 of [18]).
Then one sees (v ⊗ w)∗ = v∗ ⊗ w∗. The final statement follows using the
polarization identity. �

Theorem 2.2. Let B be a unital C∗-algebra, let I be a set and for every
ι ∈ I let Aι and Dι be unital C∗-algebras containing copies of B as unital
C∗-subalgebras and having conditional expectations φι : Aι → B, respectively
ψι : Dι → B, whose GNS representations are faithful. Suppose that for each
ι ∈ I there is a unital completely positive map θι : Aι → Dι that is also a
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B–B bimodule map and satisfies ψι ◦ θι = φι. Let

(A,φ) = ∗
ι∈I(Aι, φι)

(D,φ) = ∗
ι∈I(Dι, ψι)

be the reduced amalgamated free products of C∗-algebras. Then there is a
unital completely positive map θ : A→ D such that for all ι ∈ I the diagram

Aι� _

��

θι //

φι

AAA

  A
AA

Dι� _

��

ψι
}}}

~~}}}

B

A

φ}}}

>>}}}

θ___ //___ D

ψBBB

``BBB

(8)

commutes, where the vertical inclusions are those arising from the free prod-
uct construction, and satisfying

θ(a1a2 · · · an) = θ(a1)θ(a2) · · · θ(an)(9)

whenever aj ∈ Aιj ∩ kerφιj and ι1 6= ι2, ι2 6= ι3, . . . , ιn−1 6= ιn.

Proof. Note first that the assumptions imply that each θι is the identity map
on B. Let

(πι, Eι, ξι) = GNS(Dι, ψι), (E, ξ) = ∗
ι∈I(Eι, ξι).

(We will usually write simply dζ instead of πι(d)ζ, when d ∈ Dι and ζ ∈ Eι.)
Recall that then Eι = ξιB ⊕ Eo

ι , that the action πι�B leaves Eo
ι globally

invariant, and that

E = ξB ⊕
⊕
n≥1

ι1,... ,ιn∈I
ι1 6=ι2,... ,ιn−1 6=ιn

Eo
ι1 ⊗B · · · ⊗B Eo

ιn .

Consider the Hilbert B-module Fι = Aι ⊗πι◦θι Eι and the specified element
ηι = 1 ⊗ ξι ∈ Fι. Since θι restricts to the identity map on B, in Fι we
have b ⊗ ζ = 1 ⊗ (bζ) for every b ∈ B and ζ ∈ E. Consider the unital
∗-homomorphism σι : Aι → L(Fι) given by

∀a′, a ∈ Aι ∀ζ ∈ Eι σι(a′)(a⊗ ζ) = (a′a)⊗ ζ,

(cf. page 48 of [18]). Consider the map ρι : L(Fι) → B given by ρι(x) =
〈ηι, xηι〉. If x ∈ L(Fι) and if b1, b2 ∈ B then ρι

(
σι(b1)xσι(b2)

)
= b1ρι(x)b2. If

we use σι to identify B with σι(B) ⊆ L(Fι) then we have that ρι : L(Fι) →
B is a conditional expectation. Clearly L2(L(Fι), ρι) ∼= Fι and the GNS
representation of ρι is faithful on L(Fι). We have that ρι ◦ σι = φι since

ρι ◦ σι(a) = 〈1⊗ ξι, a⊗ ξι〉 = 〈ξι, θι(a)ξι〉 = ψι ◦ θι(a) = φι(a).(10)
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Let
(M, ρ) = ∗

ι∈I(L(Fι), ρι)

be the reduced amalgamated free product of C∗-algebras. Note that M ⊆
L(F ) where

(F, η) = ∗
ι∈I(Fι, ηι).

By Theorem 1.3 there is a ∗-homomorphism σ : A→ M such that σ�Aι = σι,
(ι ∈ I).

Consider the operator vι : Eι → Fι given by ζ → 1 ⊗ ζ, and note that
〈vιζ, vιζ〉 = 〈ζ, ζ〉 for every ζ ∈ Eι, hence vι(Eo

ι ) ⊆ F o
ι . A calculation using

e.g. Lemma 5.4 of [18] shows that there is a bounded operator Fι → Eι
sending a⊗ζ to θι(a)ζ, which is then the adjoint of vι. Hence vι ∈ L(Eι, Fι),
and clearly v∗ι vι = 1. Since θι is a left B-module map, we have for every
b ∈ B and ζ ∈ Eι that vι(bζ) = 1 ⊗ (bζ) = b ⊗ ζ = b(vι(ζ)). Therefore,
taking direct sums of operators vι1 ⊗ · · · ⊗ vιn given by Lemma 2.1, we get
v ∈ L(E,F ) such that 〈vζ, vζ〉 = 〈ζ, ζ〉 for every ζ ∈ E, vξ = η and

v(ζ1 ⊗ ζ2 ⊗ · · · ⊗ ζn) = (vι1ζ1)⊗ (vι2ζ2)⊗ · · · ⊗ (vιnζn)

whenever ζj ∈ Eo
ιj , ι1, . . . , ιn ∈ I and ιj 6= ιj+1. Let θ : A → L(E) be the

unital completely positive map θ(x) = v∗σ(x)v.
We will show that the diagram (8) commutes and and that (9) holds,

which will furthermore imply that θ(A) ⊆ D. In order to show (8) commutes,
let wι : E → Eι⊗BE(ι) and yι : F → Fι⊗BF (ι) be the unitaries used in the
free product constructions to define the inclusions Aι ↪→ A and, respectively,
L(Fι) ↪→ M. Note that vι

(
E(ι)

)
⊆ F (ι) and that yιv = (vι ⊗ v�E(ι))wι.

Furthermore, observe that for a ∈ Aι and ζ ∈ Eι,(
v∗ι σι(a)vι)ζ = v∗ι (a⊗ ζ) = θι(a)ζ.

Hence for a ∈ Aι,
θ(a) = v∗σ(a)v = v∗σι(a)v = v∗y∗ι

(
σι(a)⊗ 1F (ι)

)
yιv =

= w∗
ι

(
v∗ι σι(a)vι ⊗ (v�E(ι))

∗v�E(ι)

)
wι = w∗

ι (θι(a)⊗ 1E(ι))wι = θι(a),

and thus (8) commutes. Now to show that (9) holds, consider aj ∈ Aιj ∩
kerφιj for some ιj ∈ I (1 ≤ j ≤ n) with ιj 6= ιj+1. It is easy to see that

θι1(a1) · · · θιn(an)ξ = θ̂ι1(a1)⊗ · · · ⊗ θ̂ιn(an)(11)

= v∗
(
(a1 ⊗ ξι1)⊗ · · · ⊗ (an ⊗ ξιn)

)
= θ(a1 · · · an)ξ.

Now consider an element ζ1 ⊗ · · · ⊗ ζp ∈ E, where ζj ∈ Eo
kj

for some kj ∈ I
with kj 6= kj+1.

Let P0 : E → ξB be the projection and for ` ∈ N let

P` : E →
⊕

ι1,... ,ι`∈I
ι1 6=ι2,... ,ι`−1 6=ι`

Eo
ι1 ⊗ · · · ⊗ Eι`
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be the projection. Taking adjoints and using (11), we see that

P0θι1(a1) · · · θιn(an)(ζ1 ⊗ · · · ⊗ ζp) = P0θ(a1 · · · an)(ζ1 ⊗ · · · ⊗ ζp).

Now letting ` ∈ N we will use standard techniques (see, for example, [14]
and [12]) to show that

P`θι1(a1) · · · θιn(an)(ζ1 ⊗ · · · ⊗ ζp) = P`θ(a1 · · · an)(ζ1 ⊗ · · · ⊗ ζp).(12)

If ` > n + p or ` < |n − p| then it is clear that both sides of (12) are zero.
If ` = n + p then both sides of (12) are zero unless ιn 6= k1, in which case
a calculation similar to (11) shows that (12) holds. Let Qo

ι : Eι → Eo
ι and

Ro
ι : Fι → F o

ι be the projections, and note that Ro
ι vι = vιQ

o
ι . Consider

when n + p − ` = 1. Then both sides of (12) are zero unless ιn = k1, in
which case

P`θι1(a1) · · · θιn(an)(ζ1 ⊗ · · · ⊗ ζp)

= θ̂ι1(a1)⊗ · · · ⊗ ̂θιn−1(an−1)⊗Qo
ιn(θιn(an)ζ1)⊗ ζ2 ⊗ · · · ⊗ ζp

= v∗ι
(
(a1 ⊗ ξι1)⊗ · · · ⊗ (an−1 ⊗ ξιn−1)⊗Ro

ιn(an ⊗ ζ1)

⊗ (1⊗ ζ2)⊗ · · · ⊗ (1⊗ ζp)
)

= P`θ(a1 · · · an)(ζ1 ⊗ · · · ⊗ ζp).

If p+n− ` = 2r+ 1 for r ∈ {1, 2, . . . ,min(p, n)− 2} then both sides of (12)
are zero unless ιn = k1, ιn−1 = k2, . . . , ιn−r+1 = kr, in which case

P`θι1(a1) · · · θιn(an)(ζ1 ⊗ · · · ⊗ ζp)

= θ̂ι1(a1)⊗ · · · ⊗ ̂θιn−r−1(an−r−1)⊗
⊗Qo

ιn−r

(
θιn−r(an−r)〈ξ, θιn−r+1(an−r+1) · · · θιn(an)ζ1 ⊗ · · · ⊗ ζr〉ζr+1

)
⊗

⊗ ζr+2 ⊗ · · · ⊗ ζp

= θ̂ι1(a1)⊗ · · · ⊗ ̂θιn−r−1(an−r−1)⊗

⊗Qo
ιn−r

(
θιn−r(an−r)〈θ̂ιn(a∗n)⊗ · · · ⊗ ̂θιn−r+1(a∗n−r+1), ζ1 ⊗ · · · ⊗ ζr〉ζr+1

)
⊗ ζr+2 ⊗ · · · ⊗ ζp

= v∗
(
(a1 ⊗ ξι1)⊗ · · · ⊗ (an−r−1 ⊗ ξιn−r−1)⊗

⊗Ro
ιn−r

(
θιn−r(an−r) ·

·
〈
σιn(a

∗
n) · · ·σιn−r+1(a

∗
n−r+1)η, (1⊗ ζ1)⊗ · · · ⊗ (1⊗ ζr)

〉
(1⊗ ζr+1)

)
⊗

⊗ (1⊗ ζr+2)⊗ · · · ⊗ (1⊗ ζp)
)
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= v∗
(
(a1 ⊗ ξι1)⊗ · · · ⊗ (an−r−1 ⊗ ξιn−r−1)⊗

⊗Ro
ιn−r

(
θιn−r(an−r) ·

·
〈
η, σιn−r+1(an−r+1) · · ·σιn(an)(1⊗ ζ1)⊗ · · · ⊗ (1⊗ ζr)

〉
(1⊗ ζr+1)

)
⊗

⊗ (1⊗ ζr+2)⊗ · · · ⊗ (1⊗ ζp)
)

= P`θ(a1 · · · an)(ζ1 ⊗ · · · ⊗ ζp).

A similar calculation shows that (12) holds also when n+p−` = 2min(p, n)−
1.

If n+ p− ` = 2r is even for r ∈ {1, 2, . . . ,min(p, n)− 1} then both sides
of (12) are zero unless ιn = k1, ιn−1 = k2, . . . , ιn−r+1 = kr and ιn−r 6= kr+1,
in which case

P`θι1(a1) · · · θιn(an)(ζ1 ⊗ · · · ⊗ ζp)

= θ̂ι1(a1)⊗ · · · ⊗ ̂θιn−r(an−r)⊗
⊗ 〈ξ, θιn−r+1(an−r+1) · · · θιn(an)ζ1 ⊗ · · · ⊗ ζr〉ζr+1 ⊗
⊗ ζr+2 ⊗ · · · ⊗ ζp

= θ̂ι1(a1)⊗ · · · ⊗ ̂θιn−r(an−r)⊗

⊗ 〈θ̂ιn(a∗n)⊗ · · · ⊗ ̂θιn−r+1(a∗n−r+1), ζ1 ⊗ · · · ⊗ ζr〉ζr+1 ⊗
⊗ ζr+2 ⊗ · · · ⊗ ζp

= v∗
(
(a1 ⊗ ξι1)⊗ · · · ⊗ (an−r ⊗ ξιn−r)⊗

⊗
〈
η, σιn−r+1(an−r+1) · · ·σιn(an)

(
(1⊗ ζ1)⊗ · · · ⊗ (1⊗ ζr)

)〉
(1⊗ ζr+1)⊗

⊗ (1⊗ ζr+2)⊗ · · · ⊗ (1⊗ ζp)
)

= P`θ(a1 · · · an)(ζ1 ⊗ · · · ⊗ ζp).

Similar calculations show that (12) holds also when p+ n− ` = 2min(p, n).
This finishes the proof of (9), and of the theorem. �

3. Amalgamated free products of von Neumann algebras.

This section contains results for amalgamated free products of von Neumann
algebras that are analogous to those for C∗-algebras found in §1 and §2.
The free product of von Neumann algebras with respect to given normal
states was defined by Voiculescu in [21] and has been much studied. See
also Ching’s paper [6], where the free product of von Neumann algebras
with respect to normal faithful tracial states from a certain class was first
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defined. We begin this section by describing the “folklore” construction
of amalgamated free products of von Neumann algebras (with respect to
normal conditional expectations onto a von Neumann subalgebra). We are
grateful to the referee for pointing out this simplification of the construction
we originally gave.

Construction 3.1. Let B be a von Neumann algebra contained as a unital
von Neumann subalgebra of von Neumann algebras Aι (ι ∈ I). Suppose
there are normal conditional expectations φι : Aι → B. The amalgamated
free product of von Neumann algebras, which we will denote

(A,φ) = ∗
ι∈I

(Aι, φι),

is constructed as follows. Let

(A, ϕ) = ∗
ι∈I(Aι, φι)

be the C∗-algebra reduced amalgamated free product. Let ψ be a normal
state on B with faithful GNS representation and consider the state ψ ◦ ϕ
on A. Let πψ◦ϕ be the GNS representation of A associated to ψ ◦ ϕ, let
A = πψ◦ϕ(A)′′ ⊆ L(L2(A, ψ ◦ ϕ)) and thereby regard A as a weakly dense
subalgebra of A. The Hilbert space projection L2(A, ψ◦ϕ) → L2(B,ψ) gives
rise to a normal conditional expectation φ : A → B whose restriction to A

is ϕ. It remains to see that the pair (A,φ) is independent of the choice of
ψ. If ψ′ is any normal state on B then the state ψ′ ◦ ϕ of A extends to the
normal state ψ′ ◦ φ of A. Hence πψ′◦ϕ(A)′′ = πψ′◦φ(A) is a quotient of A.
Thus (A,φ) is independent of the choice of ψ.

Remark 3.2. In the above construction, we have A ⊆ L(E) for the Hilbert
B,B-bimodule E = L2(A, ϕ). The GNS Hilbert space L2(A, ψ ◦ϕ) is canon-
ically isomorphic to the internal tensor product E ⊗πψ L2(B,ψ), where
πψ : B → L(L2(B,ψ)) is the GNS representation of ψ, and the representa-
tion πψ◦ϕ is given by πψ◦ϕ(a) = a ⊗ 1 ∈ L(E ⊗πψ L2(B,ψ)). We will later
use this picture in proofs.

Following Rieffel [20, 1.5], if A and B are von Neumann algebras, if
E is a Hilbert B-module and if θ : A → L(E) is a completely positive
map, we say that θ is normal if for every ζ1, ζ2 ∈ E, the map A 3 a 7→
〈ζ1, θ(a)ζ2〉 ∈ B is normal. This coincides with the usual notion of normality
when B = C (in which case E is a Hilbert space). It is clear that if B is
a von Neumann subalgebra of a von Neumann algebra A having a normal
conditional expectation φ : A → B then the GNS representation of A as
bounded adjointable operators on the Hilbert B-module L2(A,φ) is normal.

Part (i) of the following straightforward lemma was proved in the case of
a ∗-homomorphism by Rieffel as part of [20, 5.2].
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Lemma 3.3. Let A and B be von Neumann algebras, let E be a Hilbert
B-module and suppose that θ : A→ L(E) is completely positive map. Let H

be a Hilbert space and let τ : B → L(H) be a normal ∗-representation. Let
θ ⊗ 1 denote the completely positive map A 3 a 7→ π(a)⊗ 1 ∈ L(E ⊗τ H) of
A into bounded operators on the Hilbert space E ⊗τ H. We have:

(i) if θ is normal then θ ⊗ 1 is normal;
(ii) if θ ⊗ 1 is normal and if τ is faithful then θ is normal.

Proof. If ζ1, ζ2 ∈ E and v1, v2 ∈ H then〈
ζ1 ⊗ v1, (θ ⊗ 1)(x)(ζ2 ⊗ v2)

〉
=
〈
v1, τ

(
〈ζ1, θ(x)ζ2〉

)
v2
〉
.(13)

If θ is normal then (13) shows that θ ⊗ 1 is continuous from the σ(A,A∗)
topology on A to the weak–operator topology on L(E ⊗τ H), which implies
θ ⊗ 1 is normal and proves (i).

If θ ⊗ 1 is normal then (13) shows that x 7→ τ(〈ζ1, θ(x)ζ2〉) is normal.
Assuming also τ is faithful, it follows that θ is normal. �

The following application of Lemma 3.3(i) is in [20, 5.2].

Lemma 3.4. Let B be a unital von Neumann subalgebra of a von Neumann
algebra A with a normal conditional expectation Φ : A → B. Let τ be
a normal ∗-representation of B on a Hilbert space H. Then the induced
representation, τ �A, of τ to A with respect to the conditional expectation Φ
is normal.

Proof. By definition, and in the notation of Lemma 3.3, τ �A = π⊗ 1 : A→
L(L2(A,Φ)⊗τ H), where π is the GNS representation of A on L2(A,Φ). �

Lemma 3.5. Let A, B1 and B2 be von Neumann algebras and let Ej be a
Hilbert Bj-module (j = 1, 2). If θ : A → L(E1) and σ : B1 → L(E2) are
normal completely positive maps, then the completely positive map θ ⊗ 1 :
A→ L(E1 ⊗σ E2) is normal.

Proof. Let τ : B2 → L(H) be a faithful normal ∗-representation of B2 on
a Hilbert space H. Applying Lemma 3.3 in succession we find that σ ⊗ 1 :
B1 → L(E2 ⊗τ H) is normal, θ ⊗ 1⊗ 1 : A→ L(E1 ⊗σ E2 ⊗τ H) is normal,
and thus θ ⊗ 1 : A→ L(E1 ⊗σ E2) is normal. �

Lemma 3.6. Let B be a unital von Neumann algebra, let I be a set and
for every ι ∈ I let Aι be a unital von Neumann algebra containing a copy
of B as a unital von Neumann subalgebra and having a normal conditional
expectation φι : Aι → B whose GNS representation is faithful. Let

(A,φ) = ∗
ι∈I

(Aι, φι)

be the reduced amalgamated free product of von Neumann algebras. Then for
every ι0 ∈ I, there is a normal conditional expectation Φι0 : A → Aι0 such
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that Φι0�Aι = φι for every ι ∈ I\{ι0} and Φι0(a1a2 · · · an) = 0 whenever
n ≥ 2 and aj ∈ Aιj ∩ kerφιj with ι1 6= ι2, . . . , ιn−1 6= ιn.

Proof. Let ψ be a normal faithful state on B and let τ = πψ : B → L(H) be
the associated GNS representation. The construction of A can be realized
on the Hilbert space E ⊗τ H. The projection Qι0 : E → Eι0 from the proof
of Lemma 1.1 gives rise to the projection Qι0 ⊗ 1H : E ⊗τ H → Eι0 ⊗τ H,
compression with which provides a normal positive linear map Θι0 : A →
L(Eι0 ⊗τ H). Let λι0 : Aι0 → L(Eι0 ⊗τ H) be the GNS representation
Aι0 ↪→ L(Eι0) followed by the inclusion L(Eι0) 3 x 7→ x⊗1H ∈ L(Eι0⊗τ H).
Then Θι0 maps a weakly dense ∗-subalgebra of A into the image of λι0 ,
hence maps all of A there. Let Φι0 = λ−1

ι0 ◦ Θι0 . The desired properties of
Φι0 are easily verified. �

Here is an embedding result, analogous to Theorem 1.3, for amalgamated
free products of von Neumann algebras.

Theorem 3.7. Let B ⊆ B̃ be a (not necessarily unital) inclusion of von
Neumann algebras. Let I be a set and for each ι ∈ I suppose

1 eAι ∈ B̃ ⊆ Ãι
∪ ∪

1Aι ∈ B ⊆ Aι

are inclusions of von Neumann algebras. Suppose that φ̃ι : Ãι → B̃ is a
normal conditional expectation such that φ̃ι(Aι) ⊆ B and assume that φ̃ι
and the restriction φ̃ι�Aι have faithful GNS representations, for all ι ∈ I.
Let

(Ã, φ̃) = ∗
ι∈I

(Ãι, φ̃ι)

(A,φ) = ∗
ι∈I

(Aι, φ̃ι�Aι)

be the amalgamated free products of von Neumann algebras. Then there is
a unique normal ∗-homomorphism κ : A → Ã such that for every ι ∈ I the
diagram

Ãι ↪→ Ã
∪ ↑ κ
Aι ↪→ A

(14)

commutes, where the horizontal arrows are the inclusions arising from the
free product construction. Moreover, κ is necessarily injective.

Proof. This is very much like the proof of Theorem 1.3, to which we refer
in detail. Assume without loss of generality that B is a unital subalgebra of
B̃. We now insist that τ be a normal faithful representation of B̃; we must
show that the algebra homomorphism λ̃ ◦ σ̃ : A → L(Ẽ ⊗τ W) extends to a
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normal representation of the von Neumann algebra A. But Ẽ ⊗τ W is the
direct sum of E ⊗τ�B W and the various W̃(ι1, . . . , ιn). The homomorphism
λ̃ ◦ σ̃ restricted to E ⊗τ�B W extends to the defining representation of A.
Let n ≥ 1 and let ι1, . . . , ιn ∈ I be such that ιj 6= ιj+1; we have the normal
∗-representation, µ, of Aι1 on the Hilbert space Kι1 ⊗ eBEι2 ⊗ eB · · ·⊗ eBEιn⊗τ
W, obtained from the normal representation of Aι1 in L(Ẽι1); let µ �A be
the representation of the von Neumann algebra A on W̃(ι1, . . . , ιn) induced
from µ with respect to the normal conditional expectation Φι1 : A → Aι1
found in Lemma 3.6; then λ̃ ◦ σ̃ restricted to W̃(ι1, . . . , ιn) extends to the
∗-homomorphism µ �A : A → L(W̃(ι1, . . . , ιn)), which by Lemma 3.4 is
normal. �

Here is the construction, analogous to Theorem 2.2, of free products of
certain completely positive maps in the von Neumann algebra setting.

Theorem 3.8. Let B be a von Neumann algebra, let I be a set and for
every ι ∈ I let Aι and Dι be von Neumann algebras containing copies of B as
unital von Neumann subalgebras and having normal conditional expectations
φι : Aι → B, respectively ψι : Dι → B, whose GNS representations are
faithful. Suppose that for each ι ∈ I there is a normal unital completely
positive map θι : Aι → Dι that is also a B–B bimodule map and satisfies
ψι ◦ θι = φι. Let

(A,φ) = ∗
ι∈I

(Aι, φι)(15)

(D,φ) = ∗
ι∈I

(Dι, ψι)

be the reduced amalgamated free products of von Neumann algebras. Then
there is a normal unital completely positive map θ : A→ D satisfying

∀ι ∈ I θ�Aι = θι(16)

and

θ(a1a2 · · · an) = θ(a1)θ(a2) · · · θ(an)(17)

whenever aj ∈ Aιj ∩ kerφιj and ι1 6= ι2, ι2 6= ι3, . . . , ιn−1 6= ιn.

Proof. Let

(A, ϕ) = ∗
ι∈I(Aι, φι)

(D, ρ) = ∗
ι∈I(Dι, ψι)

be the C∗-algebra reduced amalgamated free products. Thus A and D are
the closures in strong–operator topology of A and respectively D in the ap-
propriate representations. We need only show that the unital completely
positive map θ : A → D found in Theorem 2.2 extends to a normal com-
pletely positive map θ : A→ D.
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Consider, from the proof of Theorem 2.2, the Hilbert B-modules (E, ξ) =
∗
ι∈I(Eι, ξι), and (F, η) = ∗

ι∈I(Fι, ηι), the ∗-homomorphism σ : A → L(F ) and
the bounded operator v ∈ L(E,F ); denote by iA the GNS representation
of A on L2(A, ϕ). Recall that σ is a free product of embeddings σι : Aι →
L(Fι). From the proof of Theorem 1.3, and letting τ = πµ : B → L(V) be
the GNS representation of a normal faithful state µ of B, we see that the
representation σ⊗ 1 of A on F ⊗τ V given by a 7→ σ(a)⊗ 1 splits as a direct
sum, σ⊗ 1 =

⊕
λ∈Λ(σ⊗ 1)�Wλ

, where each summand (σ⊗ 1)�Wλ
is either a

copy of iA⊗1 : A → L(L2(A, ϕ)⊗τ V) or is the induced representation ν �A of
a representation ν of some Aι on a Hilbert space, where ν is the restriction
to an invariant subspace of the representation σι⊗1 : Aι → L(Fι⊗τ V). The
representation iA ⊗ 1 extends to a normal ∗-representation of A as seen in
Construction 3.1. Using Lemma 3.3 we see that σι ⊗ 1 is normal; hence ν
is normal and by Lemma 3.4, ν �A extends to a normal ∗-representation of
A. Hence σ ⊗ 1 extends to a normal ∗-representation of A, which we will
denote by σ : A→ L(F ⊗τ V).

The isometry v ∈ L(E,F ) gives rise to an isometry v⊗1 : E⊗τV → F⊗τV.
Letting iD : D → L(E) be the defining representation, by Remark 3.2 the
weak closure of the image of iD ⊗ 1 : D → L(E ⊗τ V) is the von Neumann
algebra D. Consider the normal unital completely positive map θ : A →
L(E ⊗τ V) given by θ(x) = (v ⊗ 1)∗σ(x)(v ⊗ 1). If a ∈ A then θ(a) =
iD(θ(a))⊗ 1. So θ extends the map θ : A → D; hence θ(A) ⊆ D. �
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