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We study the singularities of maps of surfaces from a knot
theoretic point of view. We define and study colors and signs
of branch and triple points on knotted surface projections and
give formulas among the numbers of these. We prove that
cusps can be canceled on the planar projections of knotted
surfaces. For orientable knotted surfaces, we prove that both
cusps and branch points can be canceled.

1. Introduction.

In classical knot theory (knotted circles in 3-space), it is common to use the
diagram and the projection of a knot to perform calculations. For example,
the Jones [19] and Alexander-Conway [16] polynomials can be computed
by a skein relation. Vassiliev [29] invariants obey similar skein relations [2]
for singular knots. The combinatorics contained in the projection are used
extensively in [23] and [25] for example, and the algebraic information that
is encoded in either a diagram or a projection can be found in [3].

In this paper, we explore projections of knotted surfaces in 4-space and
their isotopies. By a knotted surface we mean a smoothly embedded surface
in 4-dimensional Euclidean space and we work in the smooth category. We
define and relate signs of triple points of the projection of surfaces and relate
these notions to the normal Euler number. There are two ways of defining
signs for triple points. In the first way, oriented surfaces are considered, and
the sign is the orientation of the normals to the top, middle, and bottom
sheets, in that order. In the second way, the surface need not be oriented,
but a checker-board shading is initially chosen. Then normals to the top,
middle, and bottom sheets are chosen to point into a black region. These
two notions of signs are related, and formulas relating their numbers will be
given. Such numbers are interelated to the number of signed and colored
branch points when these are present. It is, then, natural to consider the
numbers of other singularities on knotted surface projections. We show that
a knotted surface can be isotoped so that the planar projection has one or
no cusps. For orientable knotted surfaces, we show that both cusps and
branch points can be canceled.
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2. Preliminaries.

In this section we review knotted surface diagrams and surface braid theory
that will be used in the paper. More details can be found in [15].
2.1. Generic projections and diagrams. For classical knots and links,
under-arcs are broken in the projections to define knot diagrams. We gen-
eralize this notion to knotted surfaces as broken surface diagrams. First
we develop some notation. Let f : F → R4 denote a smooth embedding
of a closed surface F into 4-dimensional space (with the standard smooth
structure). Choose a direction v ∈ R4 and project R4 onto a 3-plane perpen-
dicular to the vector v. Choose such an affine hyperplane so that f : F → R4

lies in one component of R4 \R3. Denote such a projection by pv or p.
The embedding f may be moved slightly so that the composition pv ◦ f

will be a generic surface in 3-space. In this case, any point of the image
surface has a neighborhood U in 3-space such that pv(f(F )) ∩ U looks like
one of the pictures indicated in Figure 1 on the left. In other words, there is
a diffeomorphism of U into R3 such that the image of F coincides with the
intersection of 1, 2 (a double point curve), or 3 coordinate planes (a triple
point), or is like the cone on a figure 8 (a branch point). The neighborhood of
a double point curve, a triple point, a branch point are depicted in Figure 1
(A), (B), and (C) respectively, on the left of the figures.

There is an immersion in R3 of a compact 1-manifold with boundary
whose image is the closure of the set

{x ∈ p(f(F ))|p(f(x1)) = x = p(f(x2))

for some x1 6= x2, where x1, x2 ∈ F}.
The closure of the above set is called the double point set. The image of the
boundary points of the 1-manifold are the branch points of the map p◦f. At
a triple point three curves meet transversely, so a triple point is a 6-valent
vertex.

Similarly, there is a closed 1-manifold (called the double decker manifold)
which is immersed into F such that the image (called the double decker set)
is the closure of the set

{x ∈ F : #(p ◦ f)−1(p(f(F ))) ≥ 2}.
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Figure 1. Projections and diagrams of knotted surfaces.

The portion of the double decker set on f(F ) that is most distant from
the hyperplane of projection is called the lower-deck; the upper-deck is the
portion of the double decker set that is closest to this hyperplane.

In a broken surface diagram of a knotted surface, the portion of the sur-
face that is most distant from the hyperplane of projection is broken. We
remove a small open tubular neighborhood of the lower-deck and embed the
resulting surface with boundary into 3-space using the restriction of p ◦ f .
In a neighborhood of the branch points, the deleted neighborhood comes
to a cone at each branch point. Then we can reconstruct an embedding in
4-space that is isotopic to the given knot f(F ), by gluing the neighborhood
of the lower-deck to the embedded surface in 3-space: The boundary of this
neighborhood lies in 3-space, and the interior protrudes “below” this hyper-
plane — in other words, the neighborhood lies in the same component of
R4 \R3 that f(F ) does.

This broken surface diagram is the diagram of the knotting f(F ). Along
open arcs of double points there are top and bottom sheets, and these are
neighborhoods of the upper and lower deck (Figure 1 (A) right). In a neigh-
borhood of a triple point, there is a top, middle, and bottom sheet (Figure 1
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(B) right), and a branch point is a point along a double curve at which the
bottom sheet converges to the top sheet (Figure 1 (C) right).

In the discussion of Section 7, we consider the further projection of the
diagram into a plane. In such a plane, the surface has fold lines and cusps.
However, the definition of a knotted surface diagram does not include fold
and cusp information.

2.2. Cusps and folds. Recall that a generic smooth map from a surface
(2-dimensional manifold) to the plane has fold lines and isolated cusp points
as its singularities. This fact was proved by Whitney (see [18] p. 146, and
Fig. 8). In Fig. 8 surfaces are depicted in 3-space for visualization though
the maps discussed here are from (abstract) surfaces to the plane. We call
the image of the singularities in the plane (resp. the preimage in the surface)
the fold curves and cusp points (resp. fold loci and cusp loci) to be precise.
However, we call both fold curves (or folds) and cusp points (or cusps) when
the context is clear.

2.3. Surface braid theory. The notion of surface braids, a generalization
of Artin’s braid theory, was originally proposed by Viro, and a similar notion
had been used by Rudolph [28]. Recently the theory has been developed by
Kamada [21, 22] and two of the authors [9, 8]. We now review this theory.

Figure 2 shows how to express certain generic surfaces in 3-space by means
of planar graphs. We consider a surface S (this S corresponds to f(F ) in
the preceding section) in a box B = I1 × I2 × I3 ⊂ R3 a schematic of which
is depicted on the right of Figure 2, where Ij denotes a copy of the unit
interval, for j = 1, 2, 3. We require that the surface S in B satisfies the
following conditions.

• S is generic.
• The boundary ∂S of S is contained in ∂(I1 × I2)× I3.
• The projection π : I1 × I2 × I3 → I1 × I2 restricted to S is a branched

covering such that each branch point is of degree 2.

Let D be the double point set of S. Then π(D) ⊂ I1×I2 is a planar graph.
Let us call this an un-oriented chart. An un-oriented chart has univalent
vertices corresponding to branch points, 4-valent vertices that correspond
to the crossings of the projections of double arcs, and 6-valent vertices cor-
responding to triple points of S. A generic intersection S ∩ I1 × {t} × I3,
consists of intersecting strings in I1×{t}× I3. Such intersections are shown
in the figure by movie strips.

By capping off the nested boundary circles on the boundary of the box
B by nested disjoint disks, we get a closed surface in 3-space. If it is a
projection of a knotted surface, taking such a closure gives rise to a closed
knotted surface in 4-space. The generalization of Alexander’s Theorem we
need in this paper is as follows.
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Figure 2. Generic surfaces, movies, and surface braids.

Theorem 2.3.1 (Viro, Kamada [22]). Any orientable closed knotted sur-
face in 4-space can be isotoped to a closed surface braid.

3. Colors and Signs of Multiple Point Sets.

In this section we define signs and colors of double point and triple points,
and study their combinatorics. Signs of triple points are defined in [13]
and [14] in different ways. The former used the checker board coloring of
regions, and the latter used the orientations. Furthermore in [6] the signs
of branch points that were originally defined by Banchoff [1] were studied.
In this section we combine these ideas and study their relationships.

Let f : F → R4 be a knotted oriented surface. Let p : R4 → R3 be a
projection such that p ◦ f is generic. Fix the orientation of R3 by the right
hand rule. Define the normal vector n at every point of f(F ) in R3 except at
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branch points such that the orientation of R3 matches the triple (n, v1, v2)
where (v1, v2), tangent vectors to f(F ), form the orientation of F .

There is a checker-board coloring for the domains divided by (p ◦ f)(F )
such that each domain is colored either black or white and adjacent regions
(that is, regions sharing the same face) have different colorings. Fix such
a coloring. Observe that if the other coloring is used, then the discussion
below remains true with the words “white” and “black” and related numbers
universally interchanged.

Definitions 3.1. 1. A distinguished region of R3 \ f(F ) at a double point
curve is one of four regions near the double point curve into which both the
normal vectors point. A distinguished region of R3 \ f(F ) at a triple point
is one of eight regions near the triple point into which all the normal vectors
point. Distinguished edges of the double point curves near a triple point
are the three (among six) edges sharing the triple point that are contained
in the closure of the distinguished region. (The last two of the above are
defined in [14].)

2. (cf. [14]) The orientation of a double curve γ is required to satisfy
that the triple (γ, v1, v2) matches the orientation of R3, where v1 (resp. v2)
is a normal to the upper (resp. lower) sheet.

3. The color of the double point curves is defined to be the color of the
distinguished region at the given double point curve.

4. The color of triple points is defined to be the color of the distinguished
region at the given triple point.

5. The sign of a triple point is defined as follows. If the triple (v1, v2, v3)
matches the right-hand orientation of R3, then the sign is positive and
negative if otherwise. Here v1 (resp. v2, v3) is a normal to the top (resp.
middle, bottom) sheet at the given triple point.

6. (cf. [13]) A neighborhood of a branch point looks like the cone on the
figure eight. The color of a branch point is defined to be the color of inside
the figure eight.

The sign of a branch point is defined as follows. If the the double curve
ending at the given branch point is oriented towards (resp. outwards) the
branch point, then the sign is negative (resp. positive).

Figure 3 depicts some of the above definitions. In this figure, the normal
vectors are depicted by vi, i = 1, 2, 3. The orientations of double point
curves are also depicted in the right of the figure.

In this figure we observe that (1) the triple point is negative and black,
(2) all three distinguished edges are black and exactly two of them point
towards the triple point.

Indeed we have the following from [14]: The number of the distinguished
edges whose orientations point towards the triple point is exactly one, or
exactly two. In the figure the edges oriented towards the triple points are
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Figure 3. Orientations of double curves and colors of triple points.

that formed by top and middle sheets, and that formed by middle and
bottom sheets. It is always the case that the colors of all distinguished edges
are the same as the color of triple point, and the rest have the opposite color.

Proposition 3.2. The following hold at every triple point.

(1) All distinguished edges have the same color, this is the same as the
color of the triple point, and the other three edges have the opposite
color.

(2) The triple point is positive if and only if among the three distinguished
edges the edge formed by the top and bottom sheets has its orientation
pointing towards the triple point.

Proof. We check all the possible cases near triple points. First we can pick
arbitrary normal vectors to the bottom and the middle sheet and move
the given local picture to the one depicted in Fig. 3 so that the crossing
information and normals match. Thus we have two choices for the normal
to the top sheet, one depicted in the figure, and the other case. We now
check the case where the normal to the top sheet is reversed. In such a
case we observe: (1) the triple point is positive and white, (2) exactly one
distinguished edge is oriented towards the triple point. This edge is formed
by the top and the bottom sheet.

Next we check different coloring possibilities. There are the other color-
ing choices for both of the above two cases. For the opposite coloring of
Fig. 3, we have (1) the triple point is negative and white, (2) exactly two
distinguished edges are oriented towards the triple point. For the second
case with the opposite coloring, we have (1) the triple point is positive and
black, (2) exactly one distinguished edge is oriented towards the triple point.

This completes the proof. �

Definition 3.3. We use the following notation for the numbers of various
types of triple points and branch points.
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Singularity \ color—sign black + black – white + white –
Triple point T (B,+) T (B,−) T (W,+) T (W,−)
Branch point P (B,+) P (B,−) P (W,+) P (W,−)

Here P stands for a pinch point, another name of a branch point (to avoid
the confusion between b for branch or black). Thus T (B,+) denotes the
number of black triple points that have a positive sign, etc.

4. Formulas Coming from Normal Euler Number.

The normal Euler number of an orientable knotted surface vanishes [17]. On
the other hand, coloring was used in [13] to get a formula for normal Euler
numbers for (not necessarily orientable) knotted surfaces. Here we apply
the ideas of [13] in the orientable case to get new triple point formulas.

In [13] a sign for triple points was defined for not necessarily orientable
surfaces that we call the colored sign of triple points. We review the definition
here. There are eight regions near a triple point. Pick a black region,
B, among four of them. Choose ~v1, ~v2 and ~v3 to be the normals to the
top, middle, and bottom sheets, respectively such that these vectors point
into the black region, B. See Figure 3. Define the triple point to have
a positive colored sign if the orientation of 3-space defined by the ordered
triple (~v1, ~v2, ~v3) matches the originally fixed orientation of the 3-space. The
colored sign is negative otherwise. Figure 3 depicts such vectors and checker-
board coloring at the neighborhood of a triple point. In the right hand
convention this is a negative triple point. This definition depends upon
the fixed orientation of the 3-space and the coloring, but it does not depend
upon the choice of the black region. Thus each triple point has a well-defined
colored sign.

Now we relate the colored sign and the sign defined in Section 3.
Now suppose that the given surface is orientable (so that the signs of

Section 3 are defined). If a triple point is (black, positive), then all the
normals point into a black region, and they match the orientation of the
space. Thus it has a positive colored sign. If it is (black, negative), it has a
negative colored sign. If the triple point is (white, positive), then change the
normal to the top sheet to get the triple (−v1, v2, v3) all of which point into
a black region. They do not match the space orientation, so that the triple
point has a negative colored sign. If the triple point is (white, negative),
then for the same reason it is has a positive colored sign.

Thus we obtain:

Lemma 4.1. A triple point has a positive colored sign if it is either (black,
positive) or (white, negative). A triple point has a negative colored sign if it
is either (black, negative) or (white, positive).
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The convention on the colors and signs of branch points are the same (pos-
sibly up to multiplication by (-1) for the sign, depending on the orientation
convention). Thus Theorem 3.1 in [13] implies:

Proposition 4.2. It holds that

(T (B,+) + T (W,−)− T (B,−)− T (W,+))

+ (P (W,+)− P (W,−)) + 2(P (B,+)− P (B,−)) = 0.

Corollary 4.3. If the projection of the knotted surface is an immersion,
then

T (B,+) + T (W,−)− T (B,−)− T (W,+) = 0.

5. Colors and Signs for Surface Braids.

In this section we describe signs that we defined in terms of surface braid
theory.

5.1. Conventions. We choose the plane of projection for a surface braid
so that the normal to the surface always points to the plane into which the
braid chart is projected. We fix the checker-board coloring of 3-space so
that the region that contains infinity is black.

Then the region of 3-space that lies between the sheet labeled 2i− 1 and
that labeled 2i is white and the region between the sheet labeled 2i and that
labeled 2i+1 is black. Thus in a surface braid a double curve that is labeled
by an odd (resp. even) number on the chart is black (resp. white).

On a braid chart, a triple point is a six-valent vertex labeled with i and
i+1. The edges labeled i+1 are distinguished edges. Proposition 3.2 implies
(1) a triple point is black (resp. white) if i + 1 is odd (resp. even); (2) a
triple point is positive (resp. negative) if exactly one edge (resp. two edges)
among those labeled i + 1 is (resp. are) oriented towards the triple point.
Call i + 1 the label of the triple point.

A branch point is black (resp. white) if the edge is labeled by an odd
(resp. even) number.

In summary we have:

Proposition 5.2. For braid charts the colors and signs are determined as
follows.

(1) An edge is black if and only if it is labeled by an odd number.
(2) A triple point is black if and only if it is labeled by an odd number.
(3) A triple point is positive if and only if there is exactly one edge with

the largest label oriented towards the triple point.
(4) A branch point is black if and only if the edge is labeled by an odd

number.
Roughly, black if and only if odd.
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Figure 4. Braid chart of the 2-twist spun trefoil.

Example 5.3. A chart for the 2-twist spun trefoil knot was given in [20].
We reproduce this illustration in Fig. 4. The corresponding projection has
6 triple points and 6 branch points. By the above Proposition, we compute
the numbers of colored and signed multiple points as follows.

type \ color —sign black + black − white + white −
Branch points 2 2 1 1
Triple points 1 1 2 2

6. Formulas for Colored and Signed Triple Points.

In this section, we use the technique of smoothing that is depicted in Fig. 5
to establish some triple point formulas.
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Figure 5. Smoothing a triple point.

Theorem 6.1. For the diagram of a knotted orientable surface it holds that

T (B,+)− T (B,−)− T (W,+) + T (W,−)− P (W,+) + P (W,−) = 0
P (B,+)− P (B,−) + P (W,+)− P (W,−) = 0.

Proof. We show that the following expression is zero.

TP (G) = x(T (B,+)− T (B,−)− T (W,+) + T (W,−))
+ z(P (B,+)− P (B,−)) + (z − x)(P (W,+)− P (W,−)).

The smoothing of a triple point that is depicted in Fig. 5 is a 1-handle
addition to the surface. It is realized by an embedding when the handle
is attached between the top and middle sheets or the middle and bottom
sheets. In other words after the smoothing we obtain a knotted surface dia-
gram for a knotted surface in 4-space. Furthermore we can and do perform
smoothings so that the result is orientable. This smoothing was used in
[6, 12, 11].

The smoothing replaces a (black, negative) triple point by a pair of a
(black, negative) and a (white, positive) branch points. Similarly all the
other replacements are a (black, positive) triple point by a pair of a (black,
positive) and a (white, negative) branch points, a (white, positive) triple
point by a pair of a (white, positive) and a (black, negative) branch points,
and a (white, negative) triple point by a pair of a (white, negative) and a
(black, positive) branch points.

The effects of the smoothing are computed as follows. When a (black,
negative) triple point is replaced by a pair of a (black, negative) and a (white,
positive) branch points by a smoothing, the numbers (T (B,−), P (B,−),
P (W,+)) change to (T (B,−) − 1, P (B,−) + 1, P (W,+) + 1). This causes
adding x − z + (z − x) = 0 to TP (G). Similarly the rest of the cases
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respectively cause addition of −x+ z− (z−x) = 0, x+ (z−x)− z = 0, and
−x− (z − x) + z = 0.

Therefore, we conclude that the expression does not change by smooth-
ings. Let G′ be the surface obtained from G by smoothing all the triple
points of G. Then TP (G) = TP (G′).

Since G′ does not have any triple points, branch points are paired by
embedded double point arcs. The neighborhood of these arcs are annuli since
G′ is orientable by construction. (Another possibility for non-orientable case
is that the neighborhood can be a Mobius band.) Therefore each such pair
consists of branch points of opposite signs and the same color. Thus for G′

we have P (B,+) = P (B,−) and P (W,+) = P (W,−). Thus the expression
for G′, TP (G′), is zero.

In the above discussion we proved that for any x and z the expression
TP (G) = 0. Thus the coefficients of both x and z are 0, and we obtain the
identities. �

Remark 6.2. Both these identities together imply the identity (4.2) but
not vice versa.

Lemma 6.3. For an immersed diagram of a knotted surface, it holds that

T (B,+) + T (W,+) = T (B,−) + T (W,−).

In other words, the number of positive triple points and that of negative ones
are equal.

Proof. The double point curve D is an oriented immersed closed curve in
3-space for an immersed projection of a knotted surface. Push D off of f(F )
towards the normal vector’s direction to get an oriented immersed closed
curve D′ such that D′ intersects f(F ) in finitely many isolated points. Thus
D′ lies in the region where two normals point into along the double point set
of f(F ). The surface f(F ) and the curve D′ has intersection points only at
neighborhoods of triple points. Near a triple point, the self-intersection point
of D′ lies in the distinguished region. By Proposition 3.2 (2), the intersection
number between f(F ) and D′ is 1 (resp. −1) if the triple point is positive
(resp. negative) where we define that the intersection is 1 (resp. −1) if an
orientated curve intersects f(F ) in the same (resp. opposite) direction as
the normal to f(F ). Since 3-space has trivial 1- and 2-dimensional integral
homology, the intersection number of f(F ) and D′ is zero. This proves the
Lemma. �

Theorem 6.4. For an immersed diagram of a knotted surface, it holds that

T (B,+) = T (B,−), T (W,+) = T (W,−).

In other words, the number of positive triple point and that of negative ones
are equal for each color.

Proof. This follows from the preceding Lemma and Theorem. �
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Figure 6. A cusp passing through a fold line.

7. Cusps and Knotted Surfaces.

7.1. Canceling Cusps on Planar Projections of Knotted Surfaces.
We look at planar projections of knotted surfaces. Let p : R4 → R2 be
a projection onto a 2-dimensional subspace which does not intersect with
f(F ) and such that p|f(F ) is generic. Thus (p ◦ f)(F ) has folds and cusps.
Furthermore cusps are isolated and do not intersect with other folds, and
folds have isolated transverse double crossing points. We prove that we can
cancel pairs of cusps by isotopies of knotted surfaces in this section. The
proof uses the projection q1 : R4 → R3 onto 3-space to visualize the knotted
surface.

We remark that Kamada’s notion of surface braids certainly project with-
out cusps, but these are not generic projections. A slight perturbation of the
surface will result in a surface with at least one cusp in the neighborhood
of the branch point. Furthermore, the proof for canceling cusps does not
depend on the orientability of the surface. However, in proving that result,
we have to introduce branch points that are generic singularities of maps
from surfaces into 3-space. In Section 7.3 we prove that orientable surfaces
embedded in 4-space are isotopic to surfaces whose generic projections have
neither cusps or folds. We mention here that planar projections played an
essential role in the study of knotted surfaces in [5], and in [4] we used the
planar diagram to show that the “one third turned trefoil” toroidal surface
is unknotted. In this section we prove:

Proposition 7.2. Let f : F → R4 be a knotted surface, and p : R4 → R2

be a projection onto a 2-dimensional subspace that does not intersect f(F ),
and such that p|f(F ) is generic. Then f is isotopic to g such that (p ◦ g)(F )
has none or a single cusp depending on whether the Euler characteristic of
F is even or odd respectively.

Proof. The parity of the cusp set is the same as the parity of the Euler
characteristic [27]. There is a collection of embedded arcs on the surface that
connects the cusps in pairs with the odd Euler characteristic case leaving
an odd man out. These arcs may be chosen to be mutually disjoint, for at a
transverse intersection between two arcs, the arcs can be re-routed via the
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Figure 7. A Cusp passing through a sheet.

cusp points fold curves

Figure 8. Canceling a pair of cusps.

local replacement xy = 0 7→ xy = −1. Furthermore the arcs can be chosen
to initially lead away from the cusps as indicated on the left of Fig. 6. The
cusps are then pushed along the connecting arcs as indicated in Figs. 7 and 6
until a pair of cusps is joined by a short arc. If the cusps, appear as on the
left of Fig. 8, then they can be canceled as on the right of that figure.

On the other hand, the two proximate cusps may be of differing types
as indicated in Fig. 9. In this case we change the type of one of these as
indicated in Fig. 10, and then apply the cancelation of Fig. 8. In Fig. 10,
a pair of branch points has been introduced in the projection q1. But the
bottom of the figure indicates that surface is embedded in this neighborhood.
It is an excercise in the moves from [5] to see that the resulting surface is
ambiently isotopic to the original.

Cancel each pair of cusps that are joined by arcs in this fashion. In the
odd Euler characteristic case only one cusp remains. In the even case, there
are no more. �

7.3. Canceling Cusps and Branch Points. While canceling a pair of
cusps, it may be necessary to introduce a pair of branch points. On the
other hand, surfaces that have trivial normal Euler class project without
branch points [6]. For example, orientable surfaces satisfy this condition. In
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Figure 9. Two types of cusps.

Figure 10. Changing types of cusps.

this section, we show that orientable surfaces are isotopic to surfaces that
project with neither branch points nor cusps.

Theorem 7.3.1. Any orientable knotted surface can be isotoped so that the
projection into 3-space has no branch points and the projection into a plane
has no cusps.
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Figure 11. A generic perturbation of surface braids.

We use the theory of surface braids to prove this theorem.

7.4. Generic perturbations of surface braids. In the description of
charts for surface braids, every branch point is mapped non-generically into
the plane. There are several ways to get generic planar maps by perturbing
the map. Here we use the generic map depicted in Fig. 11. It is seen that
this generic map is isotopic to the original surface braid locally. Notice
that there is only one cusp and one branch point in this perturbation. The
pertubation is a specific choice of moving the surface slightly in 4-space so
that its projection into the plane consist of the two small (dotted) circles of
fold lines. The fold lines correspond to the critical points in the stills of the
movie with the respect to the obvious height function on the page. The solid
arc is the projection of the double curve; its end point is the branch point.
Each still in the movie correspond to a non-critical slice of the chart on the
right of the figure. Top to bottom on the still corresponds to right to left on
the chart. For example, in the 4th still in the movie we see (reading from



PROJECTIONS OF SURFACES 37

top to bottom) a maximum a minimum a subsequent maximum, a crossing
point and a minimum. In the next still, a pair of maximum and minimum
points are introduced by a saddle point move; these are the critical points
on the left (therefore below in the still) of the image of the double curve.

Such a perturbation is chosen for each branch point of the chart. Notice
then that the cusps that are introduced are all of the form −x3 − tx for
t ∈ [−1, 1].

Proof of Theorem 7.3.1. Any orientable knotted surface is isotopic to a
closed surface braid. This gives a particular map q1 : R4 → R3 and
q2 : R3 → R2.

Recall that the sign of a branch point is positive if the branch point ap-
pears as the birth of a positive braid generator or the death of a negative
braid generator in the braid movie. Otherwise it is negative. Furthermore,
the number of positive branch points is equal to the number of negative
branch points since each branch point gives a local contribution to the nor-
mal Euler class, and that is a trivial invariant for orientable surfaces [6, 1].

For i = 1, . . . n, let γi be an arc on the surface braid F that connects
a pair branch points of opposite signs. Assume that the arcs γi are in
general position with double decker curves and each other. This means
that the arcs intersect the pre-image of the double curves and intersect
each other in a finite number of transverse points. (We assume that F is
connected here, however, for disconnected case the argument can be repeated
componentwise.) We can also assume that the arcs γi stay inside the smallest
fold circle of the closed surface braid.

If a pair of arcs, say γi and γj intersect, then we can smooth this intersec-
tion to get two new arcs that each connect a pair of positive and negative
branch points. By induction on the number of intersection points, we may
assume then that the connecting arcs do not intersect.

By isotopy perturb the map locally at branch points so that we get a
generic planar map such that at each branch point the map is as described
in the preceding section.

Each cusp is near an associated branch point. So we push the cusps along
the arcs that joint them as in the proof of Prop. 7.2. The branch points
follow close behind. These arcs are pairwise disjoint and only intersect the
fold set at their end points.

On the other hand, the arc on the surface that joins the pair of cusps
might intersect the double decker set of the projection. In this case the
branch point and cusp can be pushed through the double point set.

Therefore the cusps and branch points are pushed to be near each other
along their joining arcs. They can be canceled without using a Whitney
trick (such as was needed in [6]). One of the cusps is changed as depicted in
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Figure 12. Canceling both cusps and branch points.

Fig. 12. In particular, no new pairs of branch points need to be introduced.
This completes the proof. �

We conclude the paper with a conjecture.

Conjecture 7.4.1. Any knotted surface can be isotoped so that the pro-
jection into a plane has no cusps or a single cusp depending on the Euler
characteristic is even or odd respectively, and the projection into 3-space has
the same number of branch points as the absolute value of twice the normal
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Euler number. In other words we can minimize both the numbers of cusps
and branch points by isotopy.
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pogy Meeting, Sociedade Brasileira de Matemática (Rio de Janeiro, 1997), 21-115,
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