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A NOTE ON GENERALIZED BERNOULLI NUMBERS
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In this paper, we consider the zeta function Z(P,x, s) as-

sociated with a polynomial P(X) € R[X4,...,X,] and x =
(x1y+++ »Xr) With x; non-trivial Dirichlet characters, defined
by
oo oo
Z(P, X 5) == Z ¢ Z Xl(nl) cc X’r‘(nr)P(nla oo anr)_s7
ni=1 n,=1

which is absolutely convergent for sufficiently large Re s under
some conditions on P(X). We shall prove that the special
value Z(P, x,—m) is completely determined by P™(X) in a
simple way. As an immediate application, we give a closed
expression for sums of products of any number of generalized
Bernoulli numbers.

1. Introduction and Notation.

As usual, N denotes the set of positive numbers, Ng = N|J{0} and R denotes
the field of real numbers. Let y be a non-trivial Dirichlet character with
conductor N. The L-series attached to x is defined by

L(s,x) = Zx(n)n’s, Res > 1.
n=1

It is well known [14] that L(s, x) may be continued analytically to the whole
complex s-plane. Furthermore, the special values at non-positive integers
s =—m (m = 0,1,2,...) can be expressed by the generalized Bernoulli
numbers B} (n =0,1,2,...) defined by

eNt—1 n! "’ N’
a=1 n=0
m—+1
Indeed, L(—m,x) = —l:if 1 as given on Page 30 of [14]. The generalized

Bernoulli numbers can be expressed in terms of Bernoulli polynomials as

Bl = N"! ix(a)Bn (%)
a=1

41
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where the Bernoulli polynomials B, (X ) are defined by

ZB . |t] < 2.

Also

Bn(X) = zn: <Z> B, . X"

k=0
where the Bernoulli numbers B, (n =0,1,2,...) are defined by

ZB , |t < 2.

Consequently, we can express the generahzed Bernoulli numbers in terms of
Bernoulli numbers as fOHOWS'

Zx Z( i

Let P(X) = P(Xy,..., T) be a polynomial of r variables with non-negative
real coefficients such that P(n) > 0 for all n € N” and the series

S Pt = 3 3 Pl n)

neN” ni=1 ny=1
is absolutely convergent for Res > o > 0. x1,..., X, are non-trivial Dirich-
let characters with conductors Ni,... , N, respectively. Consider the zeta

function associated with P and x = (x1,...,X,) defined by

Z(P XS Z Z Xl nl ( )P(nlv 7nr)_87 Res > o.

ni=1 ny=1
It is the main purpose of this paper to prove the following result.

Theorem. Z(P, x,s) defined above has a meromorphic analytic continua-
tion to the whole complex s-plane. For any integer m > 0, if

= ZCaXf‘l--~X;’T, p = deg P,
|a|=0
then

Z(P X> — Z C L alaXl) L(_a’MXT’)
|a|=0
T Baj+1
Co .
oS e

|a|=0 Jl
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Another zeta function Z (P &, s) defined by

Z(P,¢,s) Z Zg. £ P(ny, ... ,ny)~°

ni=1 ny=1

was considered by P. Cassou-Nougues in [2]. Her result for the special values
of Z(P,&,s) can be restated as

0 0
Z(Pg&—m) = lm 3o g g P (e
ni=1 ny=1

Here we also have the same formula for the special values of Z(P, x, s), i.e.,

Z(P7 X t1—1>I[I)l+ Z Z Xl nl 7“(nr)Pm(n)ei(nlerJrnT)t'
ni=1 ny=1
However x(n) = [[;_;x;(n;) is a multiplicative character while &"

= H§:1 5;” is an additive character. Hence the treatments are different
in some respect. As shown in Section 4, P. Cassou-Nougues’ formula for the
special values of Z(P,¢,s) follows from our formula for the special values
of Z(P, x,s). In additon we have another explicit expression for the special
values of Z(P,¢&,s).

A well-known relation among the Bernoulli numbers is

ne
Z (;Z) B Boy 9k = —(2n + 1) Bay, for n > 2.
k=1

This was found by many authors, including Euler (ref. [5], [8]). Dilcher [5]
generalized the formula for sums of products of any number of both Bernoulli
and Euler numbers. Bernoulli and Euler numbers are special cases of the
generalized Bernoulli numbers B belonging to a residue class character
x. However it is not easy to get the generalized formula for generalized
Bernoulli numbers. At the end of this paper, we give a closed expression for
the case as an immediate application of our main theorem.

2. Some Basic Results.
We need some classical results reproduced in [15].

Proposition 1. Suppose that ¢(s) = > \oqaxA™° (X ranges over a se-
quence of positive real numbers tending +00) is a Dirichlet series converging
for sufficiently large Re 5. f(t) = > 5<p axe M is the corresponding expo-
nential series. Suppose that at t =0, f(t) has the asymptotic expansion

Z Cnt”/p
n>0

where p is a fived positive number. Then:
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(1) ©(s) has a meromorphic continuation to the whole complex plane.
(2) ©(s) has possible simple poles at s = —n/p, where n is not a multiple
of p , with residue Cy,/T'(—n/p), and has no other poles.
(3) o(=n) = (=1)"n!Chp.
Note that the above proposition is different from Proposition 2 of [15].
However, it follows from

o(s)I(s) = /OOO t5= L (t)dt, Res > o
:/ 5~ 120 t”/pdt+/ L)t

0 n=0

5+* oo
= Z o / 5L (t)dt
1)

where d is a small positive number so that f(t) = >0, C,,t"/P. From the
above, we get our assertions.
A function f(z) is called a rapidly decreasing function if it belongs to

C*°(R™) and satisfies

lim |z/*|DYf(z)] =0

|| —o0
for any « and any integer £ > 0 (ref. [10], or page 245 in [11]). The
following is a consequence of the Euler-Maclaurin summation formula which
is also reproduced in [15].

Proposition 2. Suppose that f is a rapidly decreasing function on [0, 00)
and att =0, f has the power series expansion

Suppose that g(t) = Y 2, f(nt). Then at t = 0, g(t) has the asymptotic
expansion

9+§:(—1)r Brit sy with C’—/oof(t)dt
0

t = (r+1)!
To find the special value at s = —m of the zeta function
Z(P,x,s Z Z x1(n1) -+ xr(ny) P(n) 7,
ni=1 nyr=1

by Proposition 1, it is equivalent to find the coefficient of ™ in the asymp-
totic expansion at t = 0 of the function

33 i) xo ) expl— P(o)t).

ni=1 ny=1
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It is also equivalent to find the constant term in the asymptotic expansion
at t = 0 of the function

gty =Y - > xa(m) - xo(n) P™ (n) exp{—P(n)t}.
ni=1 ny=1

For the given polynomial

p
P(X)= ) AuX®,  p=degP,
|ee|=0

we let
P
QX,Y)= > AuXoyrlel
|ee|=0
be the corresponding homogeneous polynomial in 7+ 1 variables. Obviously,

Q(nt,t) = P(n)t? and so

g(t") =Y xa(n) - xr(ne) P (n) exp{—P(n)t"}
neN"

=Y xi(m) - xr(n,) P (n) exp{—Q(nt, 1)}

neN”
mp
=3 o S xalm) - xe(n)n exp{—Q(nt, 1)}
|a|=0 neN"
where
mp
P"(X) = Z Co X and  n%=nl'---n".
|a|=0

In the next section, we shall compute the asymptotic expansion at ¢ = 0 of
the function

fﬁ(t) = Z xi(n1) - - X,«(TLT)TLB exp{—Q(nt,t)}.

neN”

3. The Proof of the Theorem.

First we shall prove the case r = 1. Indeed this special case plays an
important role in our proof of the theorem.

Lemma 1. Let P be a polynomial with real coefficients such that P(n) > 0
for all n € N and Q be the corresponding polynomial defined above. Let
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h(z,t) = 28 exp{—Q(xt,t)}, N a positive integer and 1 < j < N. Further-
more, denote

fi(t) h(kN + j,t)

B
Il
o

M

(kN + )7 exp{—Q((kN + j)t,1)}.

iy
o

Then
W =nG+ [ S~ D" Brit () oy
B0 =G0+ | bty + 32 S SO ON

where h(") (x,t) is the r-th partial derivative with respect to x.

Proof. 1t follows from the Euler-Maclaurin summation formula that

SOR(RN +j,t) = /0 T (Ve 4 ) exp{—QU(Na + j)t,1)}d

k=1

[e.9]
7“+1 7») AN
+ZO T+1 (]7)

\

1 r+1 1) r
=% } xtd:):—l—z (j,t)N".

O

Proposition 3. Let x be a non-trivial character with conductor N. Let
6 > 0 be an integer, and P, QQ polynomials as given in the previous lemma.
Suppose that

B =3 x(n)n” exp{—Q(nt,1)}.

Then
N N
£ = S XGIG.0 — 5 Yo x0) [ bt
j=1 j=1 0
Z Z H{“ (3, N,

In particular at t =0, f(t) has an asymptotic expansion of the form

o
> dnt”
n=0
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with the constant term dg given by

_Bﬂ+1

Proof. Note that

X() Y J(NE+ )7 exp{—Q((Nk + j)t, 1)}
k=0

||
.MZ

f(®)

<
Il
—

I
NE

x(7) fi(t)

.
Il
—

So the first assertion follows from Lemma 1 by noting that

/joo h(w, t)da = /OOO W, t)da — /Oj W, t)dz

N 0o N j
(x,t)dr = — () [ h(x,t)dx
S e =310 [

since Z;V: 1 X(7) = 0. Also, from this expression of f(t) we have a power
series expansion of the form

and

o
> dnt”
n=0

with
N 1 N
dO _‘jg:;X( 7 }vf u/n h $ 0
Jj=1 Jj=1
N o) r+1 - i
+ x( Z T+1 (4,0)N
7=1 r=0
Y JﬁJrl - r+1
= x(j)j —*ZX V51 Z Z OGN
Jj=1 r=

Now it remains to compute h(")(4,0). The Leibniz rule for differentiation
yields that

Dih(x,t) = Dy’ exp{—Q(at,t)}]

T

=3 (u> D2 () DL exp{—Q(at, )}.

u=0
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From the above, we see that

| SR .
_{(,f})!]’g "ot r < 5
r=j,t=0 —

Drh(x,t
(@ ?) 0, otherwise.

It follows that

do = ZX(])J - NZX(J)5+ .
7j=1 7j=1
N B
, (=1)p! 5
+ Br NT r
Note that B = —5 and (=1)"Byy1 = —Byy1if r > 1. So
N . N B
1 ]ﬁ+1 3
do = —— — 1 NPT
0 N;X(J)B+1 ;X(J)TO CES i
_Bngl
B+

Our theorem is a direct consequence of the following proposition.

Proposition 4. Let x = (x1,---,Xr), 8= (01,-..,08r), P and Q as given
in Section 2. Suppose that

=3 xalm) - xe(n)n® exp{~Q(nt. 1)},

ni=1 nyr=1

Then fg(t) has an asymptotic expansion of the form

[e.e]

S

n=0
with the constant term dog given by

do = L(_ﬂth) tet (_51"7)(7")
BBJH

St

Proof. We prove the assertion by induction on 7. The case r = 1 was already
proved in the previous proposition. Suppose that r > 2 and the assertion is
true for the case of r—1 variables. Consider the case of r variables. Applying
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the previous proposition to the first summation of fg(t), where n; ranges
over all positive integers, we obtain

ZX1 77 h(j,t) _72)(1 /ﬁlh(%t)dx

DR WA S

r—=

where
h(z,t) Z Z x2(n2) nr)ng2 e
no=1 ny=1
cexp{—Q(zt,nat,... ,n.t,t)},
and
hj(x,t) = (Nyz + )™ Z Z x2(n2) nr)ngz---nfT
no=1 ny=1
. exp{—Q((le + j)tv n2t7 v 7n1”t7 t)}
= (Nl.ZU + j)ﬁlh(Nl.%' + j,t).
Note that

Q(at,nat, ... ,n,t, t) = Pla,ng,... ,nr)tp/, p' = deg P(a, Xo,...,X,)

for any fixed number o > 0. Applying our induction hypothesis to h(j,t),
h(x,t), and hj(x,t), we get the asymptotic expansion of f3(t), and the con-
stant term dj is

do = f5(0)
N, m
= 2 G hGD) = 5 Y G) [/ ot 0
N -
. (=1)"Byt1 ()
—l—;m(]); (r—i—l):r h;(0,0)

To compute iLy) (0,0), we use a trick similar to the one in Proposition 3 for
computing h(")(4,0). The Leibniz rule for differentiation yields that

T

Dihj(a,t) = (Z) DY[(Nyz + §)* DI~ (N1 + 5, 1)].
u=0
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From the above, we see that

GRS TRG0), i < B
v=01=0 0, otherwise.

D;hj(x,t)

It follows that

ZXI )77 (3,0 ZXI / 2” h(z,0)dz

, —1)" By B1INT P
+ZX1(J)Z( VBt INGT 2 5 )
j=1 r=0

(r+ DB —1)!

Since the constant term in the asymptotic expansion of h(j,t) or h(z,t) is

Bﬁ]+1

7“ 1Hﬁ

we have

Bﬁﬂ-1 M ]/314-1

= Tlnﬂ ZXI —fZle

D G praa

(r+ DB —7)!
ﬁ +1 +1
_ 7" 1 H B j _Bgi
5 i+ fr+1
Bi+1
iEs
- B+ 1
This proves our assertions.
Corollary. Suppose that
Z x1(n1) - X (ng ) P™(n)e~ (Mt tne)t, t>0

neN”
then
Z(P,x,—m) = lim F(t).

t—0t

Proof. From the notation in our main theorem it follows that

= > CsFy()

18]=0
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with
t) - Z Xl (nl) te XT(nr)nﬁe_(”l'f‘“'-i-n,.)t
neN”
r 00
=11 [Z Xj(n)nﬁje"t] .
j=1 Ln=1
From

S e = 303 wape
n=1

kOal

_Zl—e Njt
_Z‘Bn

and differentiating term-by-term ﬁj times with respect to t, we get

)n—l

0 ) —Bn,(—t)n_ﬁj_l
. Bj —nt _ X]
xi(n)nie "™ = .
; i(1) Z n-(n—g;—1)!

’I’L:ﬁj +1

Consequently we have

lim Fp(t) = L
i, Falt H( @H)

and hence our assertion follows. O

4. A Consequence.

Let P(X) € R[Xy,...,X,] be a polynomial as given before and §{ = (&1, ... ,
&) € C" such that |§;| =1 and & # 1 for all j. In 1982, P. Cassou-Nogues
considered the zeta function

Z(Pagas) = Z énp(n)—s

neN”
(e.) (e.0)
= E g 6?1 :‘T‘P<n>757 ]‘:{es>0'7
ni=1 ne=1

and she proved that
Z(P7§7 _m) = R(Pm)(g)

T)= > P™(n)T"

neN”

where
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which is a power series and can be realized as a rational function in 7.
Here we change the dummy variable n and reformulate the above result
so that we can use our theorem to give a new proof.

Theorem (P. Cassou-Nogues). Suppose that

Z(P,¢&,s) Z Zf . P(ny,...,n,)"% Res>o.

ni=1 ny=1

Then Z(P,£,s) has a meromorphic continuation to the whole complex s-
plane and for any integer m > 0,
Z(P,&,—m) = i nPm(p)e (Mt At
(P& —m) = lim 3 &"P"(n)e
neN”

Proof. Recall that in the proof of our result, we use only the following two
properties of the Dirichlet characters xi,... , Xr-

(1) x; is a periodic function, x;(n + N;) = x;(n) for all n € N.

(2) x; is non-trivial and Zivil x;j(a) = 0.
Thus, in particular, it works for the case x;(n) = e2mn/Nj or in general
x;j(n) = e2minm; n; is a positive rational number such that 0 <n; < 1.

Now we suppose that £ = (£1,...,&) = (e*™1, ..., *™) with 0 < ¢; <
1. Let np = (nik), . ,n,(,k)) be a sequence of r-tuples of rational numbers
such that

1 o<n <lforalll<j<rk>1,
Consider the sequence of zeta functions {Zk} defined by

Zi(P,mg, S) Z neP(n)~°, Res > o.
neN”

On the half-plane Re s > o, we have
lim Zk;(Pa Mk S) = Z(P,é, S)‘
k—o0

Also all the zeta function Zg(P,ng,s) and Z(P,&, s) have analytic continu-
ation to the whole complex s-plane. So that

lim Zy(P,ng, —m) = Z(P, &, —m).
k—o0
By our result

2 (P, —m) = lim S g P (n)e (mettnn

it follows that
Z(P.&—m) = lim 3 €Pr(n)e bt
(P& —m) = lim 3 &P (n)e
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The special values Z(P, £, —m) can be expressed in terms of special values
of the L-series

o0

Ly(s) = Zezmnqn_s, Res>1, 0<qg<1.
n=1

From

o ) [e'e)
Ly(s)I(s) = E 627””‘1/0 t5= et dt
n=1

00 eQm'qts—l
:/ ~— _dt, Res>1,
0

et — e2migq

we conclude that

Ly(—m) = (—1)"m! x {the coefficient of t"* in the power series

e27riq
expansion at t =0 of ———— 5.
et — e“TuW

In other words,

0 ) 2miq e _1)mL (_m)tm
2ming ,—nt __ € _ ( q
Ze € T et — e2miqg Z m! ) t| < 2mq.
n=1 m=0
Differentiating the above equality § times with respect to ¢, we obtain
o0 o —
Z€2winqn,@e—nt — Z Lq(_m)(_t)m P
_ | ’
— = (m=p)
Proposition 5. Suppose that
mp
PM(X)= Y CaX®
o] =0

Then

mp
Z(P.&,—m) =Y CoLg(—a1)--- Lg.(~ay).
|a|=0

Proof. Note that
mp
Z gnpm(n)e—(n1+~-~+nr)t _ Z Ca Z é-nnae—(nl-l—-n-i—nr)t

neN” |ar|=0 neN”

mp r oo
— § : Ca H 627rmqj naje—nt )
1



54 KWANG-WU CHEN AND MINKING EIE

From
(o ¢]
lim g emMin% e = L, (—ay),
J
t—0t
n=1
we get our assertion by the previous theorem. O

Now we give expressions for L,(—m). From the power series expansion

; o0
627rzq

_ (—t)"en(e*™)
et — e2miq z;) nl(1 — e2miayn+1 |t| < 2mq,

where £,(p) = > j_; Anxp® is the Eulerian polynomials, the coefficients
Ay 1 are the Eulerian numbers which are the numbers of permutations of
the chain {1 < 2 < --- < n} with precisely k — 1 descents (see, e.g., [4]), we
have
6m<e2ﬂ'iq>
Ly(—m) = (1 — e2mia)m+1"
Meanwhile, we have the following
Proposition 6. Suppose that
mp
P(X)= Y CoX®
|ee]=0

then

Z(P,&, 7m) _ Z CaH Eaj(gj)

lo|=0  j=1 (1 - gj)aﬁ_l‘

5. Sums of Products of Generalized Bernoulli Numbers.

A well-known relation among the Bernoulli numbers is
n—1
2n
Z <2]€> BopBoy ok = —(21’L + 1)Bgn, for n > 2.
k=1

This was found by many authors, including Euler (ref. [5], [8]). Dilcher
remarked in [5] that it may be of interest to find formulas of the above
type for sums of products of generalized Bernoulli numbers. In the following
Proposition 7, we give a closed expression for sums of products of generalized
Bernoulli numbers.

Proposition 7. Let r be a positive integer and x; be a non-trivial Dirichlet
character with conductor N;, for i = 1,2,... ,r. Then for any positive
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ot
ot

mteger m,
> ()
p1+-tpr=m Pis---Pr Nfl(pl"i_l) NfT(pr'i‘l)
P1,--pr 20
N1 N, _1
1)
=30 e ey
a1=1 ar=1 (T - 1)‘
S ap s (rorith 2 Bur 40)
) -1) ( )sr,r—j—l—k(S A
JZ;( ! {kZ:O b ( ) m+r =]

where 6 = §-+---+ {F and s(n, k) is the Stirling number of the first kind.

Proof. Consider the zeta function

—S

=D I AN Z I[N n

ni=1 ny=1 i
Substitute n; = a; + N;m; wherea; = 1,... ,N;and m; > 0Ofori=1,...,r
Thus Z,(s) becomes
N1 N 00 o) r -
3303 3 ([wtor om0 (s )
a1=1 ar=1m1=0 m=0 7j=1

Now we let

—S

-3 S (M) |5 (e )

m1=0 m=0 j=1

Then we can represent the zeta function Z,.(s) as

=503 (Tt 200

a1=1 ar=1

From [8] we know that this zeta function Zg(s) has an analytic continuation
to the whole complex plane, and the special values at non-positive integers
s = —m are given by

r | r
=TI~ ) Y T8 (3
o e pil--py! P\ N. )
i=1 p1+tpr=mtr P10 =1 J
P1seeePr 20
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Using the following identity ([5], Theorem 3)

2 <Jln ,J‘T)Bﬁ(xﬂ“-BjT(:cT) -

J1+tir=n
15+ 5dr =0
r—1 7 .
» —7—1+k B, _;
S Z(—W{Z(’" o )s<r,r—j+k>y’“}nj<j”,
=0 k=0

where y = 1 + -+ + =, and s(n, k) are Stirling numbers of the first kind,
and we can rewrite Zg(—m) as

r my(_1yr—1 7—1 )
NI

J=0

j .
r—1—-j+k o k Bm-i—r—j((s)
{Z( st J+’€>5}m+rj7

k=0

where § = 1‘([—11 4+ -+ X,—: Now applying our theorem, the special values at
non-positive integers s = —m of the zeta function Z,(s) are

o (7))

pr+-tpr=m PLreoe o Pr i=1
P15 >pr >0

On the other hand, using the equality

Ny N, r
Zr(—m) =Y > ] xila) Ze(-m)

a1=1 ar=11=1
and the above values of Z,(—m) and Zg(—m), we get our assertion. (]
Remark. As special cases we state formulas for sums of products of two,
respectively three, generalized Bernoulli numbers.
(1) Let x1, x2 be non-trivial Dirichlet characters with conductors Ny, Na,
respectively. Then for any positive integer m,
m k41 —k+1
> By By,

m
kzzo </~c Nf(k+1) N~k (m — k+1)

N1 N2

=3 > xalar)xa(az)

a1=1as=1

ay | az _ B ay g)
MtN g 1 <a1 a2> o (Nl TN
m

m+1 ~M N m+ 2
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(2) Let x1, x2, x3 be non-trivial Dirichlet characters with conductors Ny,
Ny, N3, respectively. Then for any positive integer m, we have

Z <m> By B! B
p,q,r) N{(p+1) Ny(q+1) Nj(r+1)

ptq+r=m
P,q,m>0

Ny Nz N3

— % Z Z Z x1(a1)xz2(az)xs(as)

a1=1az2=1a3=1
B + (6)
. 2 _ 2m+1\%)

B 12(0) n Bin13(0)

+(3-29) m+2 m+ 3

b
a ag az
where § = w8t N

As a final example we consider the Euler numbers E,, 0 < n < co. We
have Fo,4+1 =0, n > 0, while Fa,, n > 0, is defined by

(o]
o 2 : (_1)nE2n 2n ™
SeCTr = Z Wﬂ? 5 ’CU| < 5

The Euler numbers are special cases of the generalized Bernoulli numbers
B belonging to a residue class character x. In fact we have

2B
E,=- >0
n n + 1 b n — J
where 7 is the primitive character with conductor 4. If we let r = 2 and the
characters y; and y2 in Proposition 7 be the same character n (the primitive
character with conductor 4), then we get an identity which is a special case
of Eq. (4.9) in [5].

Proposition 8. For a mon-negative integer n, we have the following iden-
tity:

n

2n 22n+232 2
FopFoyy o = (22012 _ )2 Z2nd2
Z( ) ok Eon—2k = ( ) 12

Proof. Let r = 2 and x1, x2 as indicated above, i.e., Ny = No = 4. Then

m k+1 pm—k+1
4—m <m> Bx+ Bx i
— (k+1)(m—Fk+1)

o1, (atb)  Bmpa(*)
m+1 "y m+ 2

1
Bm—&-l(%) Bm+2(%) 2Bm+2(1) Bm—l-l(%) Bm+2(%)
2(m+1) m+ 2 m+ 2 2(m+1) m+2
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The left-hand side of the above identity is exactly 4=~ 1> (7};) E.E,,_}.
Using some basic properties of the Bernoulli polynomials:

3 _ 1
0 (2)-amnem(l)

B, <;> =" -1B,,
Bn(1 =) = (=1)"Bu(z),

the right-hand side of the above identity becomes

Byy2
2.1 -1 m+2 2—m—1 L‘i‘
1+ () | D

The result follows by setting m = 2n. O

(1]
2]
(3]

(4]
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(8]
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