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Kwang-Wu Chen and Minking Eie

In this paper, we consider the zeta function Z(P, χ, s) as-
sociated with a polynomial P (X) ∈ R[X1, . . . , Xr] and χ =
(χ1, . . . , χr) with χj non-trivial Dirichlet characters, defined
by

Z(P, χ, s) =
∞∑

n1=1

· · ·
∞∑

nr=1

χ1(n1) · · · χr(nr)P (n1, . . . , nr)−s,

which is absolutely convergent for sufficiently large Re s under
some conditions on P (X). We shall prove that the special
value Z(P, χ, −m) is completely determined by P m(X) in a
simple way. As an immediate application, we give a closed
expression for sums of products of any number of generalized
Bernoulli numbers.

1. Introduction and Notation.

As usual, N denotes the set of positive numbers, N0 = N
⋃
{0} and R denotes

the field of real numbers. Let χ be a non-trivial Dirichlet character with
conductor N . The L-series attached to χ is defined by

L(s, χ) =
∞∑

n=1

χ(n)n−s, Re s > 1.

It is well known [14] that L(s, χ) may be continued analytically to the whole
complex s-plane. Furthermore, the special values at non-positive integers
s = −m (m = 0, 1, 2, . . . ) can be expressed by the generalized Bernoulli
numbers Bn

χ (n = 0, 1, 2, . . . ) defined by

N∑
a=1

χ(a)teat

eNt − 1
=

∞∑
n=0

Bn
χtn

n!
, |t| < 2π

N
.

Indeed, L(−m,χ) = −Bm+1
χ

m+1 as given on Page 30 of [14]. The generalized
Bernoulli numbers can be expressed in terms of Bernoulli polynomials as

Bn
χ = Nn−1

N∑
a=1

χ(a)Bn

( a

N

)
41
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where the Bernoulli polynomials Bn(X) are defined by

teXt

et − 1
=

∞∑
n=0

Bn(X)
tn

n!
, |t| < 2π.

Also

Bn(X) =
n∑

k=0

(
n

k

)
Bn−kX

k

where the Bernoulli numbers Bn (n = 0, 1, 2, . . . ) are defined by

t

et − 1
=

∞∑
n=0

Bn
tn

n!
, |t| < 2π.

Consequently, we can express the generalized Bernoulli numbers in terms of
Bernoulli numbers as follows:

Bn
χ =

N∑
a=1

χ(a)
n∑

k=0

(
n

k

)
Bka

n−kNk−1.

Let P (X) = P (X1, . . . , Xr) be a polynomial of r variables with non-negative
real coefficients such that P (n) > 0 for all n ∈ Nr and the series∑

n∈Nr

P (n)−s =
∞∑

n1=1

· · ·
∞∑

nr=1

P (n1, . . . , nr)−s

is absolutely convergent for Re s > σ > 0. χ1, . . . , χr are non-trivial Dirich-
let characters with conductors N1, . . . , Nr, respectively. Consider the zeta
function associated with P and χ = (χ1, . . . , χr) defined by

Z(P, χ, s) =
∞∑

n1=1

· · ·
∞∑

nr=1

χ1(n1) · · ·χr(nr)P (n1, . . . , nr)−s, Re s > σ.

It is the main purpose of this paper to prove the following result.

Theorem. Z(P, χ, s) defined above has a meromorphic analytic continua-
tion to the whole complex s-plane. For any integer m ≥ 0, if

Pm(X) =
mp∑
|α|=0

CαXα1
1 · · ·Xαr

r , p = degP,

then

Z(P, χ,−m) =
mp∑
|α|=0

CαL(−α1, χ1) · · ·L(−αr, χr)

= (−1)r
mp∑
|α|=0

Cα

r∏
j=1

B
αj+1
χj

αj + 1
.
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Another zeta function Z(P, ξ, s) defined by

Z(P, ξ, s) =
∞∑

n1=1

· · ·
∞∑

nr=1

ξn1
1 · · · ξnr

r P (n1, . . . , nr)−s

was considered by P. Cassou-Nouguès in [2]. Her result for the special values
of Z(P, ξ, s) can be restated as

Z(P, ξ,−m) = lim
t→0+

∞∑
n1=1

· · ·
∞∑

nr=1

ξn1
1 · · · ξnr

r Pm(n)e−(n1+···+nr)t.

Here we also have the same formula for the special values of Z(P, χ, s), i.e.,

Z(P, χ,−m) = lim
t→0+

∞∑
n1=1

· · ·
∞∑

nr=1

χ1(n1) · · ·χr(nr)Pm(n)e−(n1+···+nr)t.

However χ(n) =
∏r

j=1 χj(nj) is a multiplicative character while ξn

=
∏r

j=1 ξ
nj

j is an additive character. Hence the treatments are different
in some respect. As shown in Section 4, P. Cassou-Nouguès’ formula for the
special values of Z(P, ξ, s) follows from our formula for the special values
of Z(P, χ, s). In additon we have another explicit expression for the special
values of Z(P, ξ, s).

A well-known relation among the Bernoulli numbers is
n−1∑
k=1

(
2n

2k

)
B2kB2n−2k = −(2n + 1)B2n, for n ≥ 2.

This was found by many authors, including Euler (ref. [5], [8]). Dilcher [5]
generalized the formula for sums of products of any number of both Bernoulli
and Euler numbers. Bernoulli and Euler numbers are special cases of the
generalized Bernoulli numbers Bn

χ belonging to a residue class character
χ. However it is not easy to get the generalized formula for generalized
Bernoulli numbers. At the end of this paper, we give a closed expression for
the case as an immediate application of our main theorem.

2. Some Basic Results.

We need some classical results reproduced in [15].

Proposition 1. Suppose that ϕ(s) =
∑

λ>0 aλλ−s (λ ranges over a se-
quence of positive real numbers tending +∞) is a Dirichlet series converging
for sufficiently large Re s. f(t) =

∑
λ>0 aλe−λt is the corresponding expo-

nential series. Suppose that at t = 0, f(t) has the asymptotic expansion∑
n≥0

Cntn/p

where p is a fixed positive number. Then:
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(1) ϕ(s) has a meromorphic continuation to the whole complex plane.
(2) ϕ(s) has possible simple poles at s = −n/p, where n is not a multiple

of p , with residue Cn/Γ(−n/p), and has no other poles.
(3) ϕ(−n) = (−1)nn!Cnp.

Note that the above proposition is different from Proposition 2 of [15].
However, it follows from

ϕ(s)Γ(s) =
∫ ∞

0
ts−1f(t)dt, Re s > σ

=
∫ δ

0
ts−1

∞∑
n=0

Cntn/pdt +
∫ ∞

δ
ts−1f(t)dt

=
∞∑

n=0

Cn
δ
s+n

p

s + n
p

+
∫ ∞

δ
ts−1f(t)dt,

where δ is a small positive number so that f(t) =
∑∞

n=0 Cntn/p. From the
above, we get our assertions.

A function f(x) is called a rapidly decreasing function if it belongs to
C∞(Rn) and satisfies

lim
|x|→∞

|x|k|Dαf(x)| = 0

for any α and any integer k > 0 (ref. [10], or page 245 in [11]). The
following is a consequence of the Euler-Maclaurin summation formula which
is also reproduced in [15].

Proposition 2. Suppose that f is a rapidly decreasing function on [0,∞)
and at t = 0, f has the power series expansion

f(t) =
∞∑

r=0

f (r)(0)
r!

tr.

Suppose that g(t) =
∑∞

n=1 f(nt). Then at t = 0, g(t) has the asymptotic
expansion

C

t
+

∞∑
r=0

(−1)r Br+1

(r + 1)!
f (r)(0)tr with C =

∫ ∞

0
f(t)dt.

To find the special value at s = −m of the zeta function

Z(P, χ, s) =
∞∑

n1=1

· · ·
∞∑

nr=1

χ1(n1) · · ·χr(nr)P (n)−s,

by Proposition 1, it is equivalent to find the coefficient of tm in the asymp-
totic expansion at t = 0 of the function

∞∑
n1=1

· · ·
∞∑

nr=1

χ1(n1) · · ·χr(nr) exp{−P (n)t}.
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It is also equivalent to find the constant term in the asymptotic expansion
at t = 0 of the function

g(t) =
∞∑

n1=1

· · ·
∞∑

nr=1

χ1(n1) · · ·χr(nr)Pm(n) exp{−P (n)t}.

For the given polynomial

P (X) =
p∑

|α|=0

AαXα, p = degP,

we let

Q(X, Y ) =
p∑

|α|=0

AαXαY p−|α|

be the corresponding homogeneous polynomial in r+1 variables. Obviously,
Q(nt, t) = P (n)tp and so

g(tp) =
∑
n∈Nr

χ1(n1) · · ·χr(nr)Pm(n) exp{−P (n)tp}

=
∑
n∈Nr

χ1(n1) · · ·χr(nr)Pm(n) exp{−Q(nt, t)}

=
mp∑
|α|=0

Cα

∑
n∈Nr

χ1(n1) · · ·χr(nr)nα exp{−Q(nt, t)}

where

Pm(X) =
mp∑
|α|=0

CαXα and nα = nα1
1 · · ·nαr

r .

In the next section, we shall compute the asymptotic expansion at t = 0 of
the function

fβ(t) =
∑
n∈Nr

χ1(n1) · · ·χr(nr)nβ exp{−Q(nt, t)}.

3. The Proof of the Theorem.

First we shall prove the case r = 1. Indeed this special case plays an
important role in our proof of the theorem.

Lemma 1. Let P be a polynomial with real coefficients such that P (n) > 0
for all n ∈ N and Q be the corresponding polynomial defined above. Let
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h(x, t) = xβ exp{−Q(xt, t)}, N a positive integer and 1 ≤ j ≤ N . Further-
more, denote

fj(t) =
∞∑

k=0

h(kN + j, t)

=
∞∑

k=0

(kN + j)β exp{−Q((kN + j)t, t)}.

Then

fj(t) = h(j, t) +
1
N

∫ ∞

j
h(x, t)dx +

∞∑
r=0

(−1)rBr+1

(r + 1)!
h(r)(j, t)N r

where h(r)(x, t) is the r-th partial derivative with respect to x.

Proof. It follows from the Euler-Maclaurin summation formula that
∞∑

k=1

h(kN + j, t) =
∫ ∞

0
(Nx + j)β exp{−Q((Nx + j)t, t)}dx

+
∞∑

r=0

(−1)rBr+1

(r + 1)!
h(r)(j, t)N r

=
1
N

∫ ∞

j
h(x, t)dx +

∞∑
r=0

(−1)rBr+1

(r + 1)!
h(r)(j, t)N r.

�

Proposition 3. Let χ be a non-trivial character with conductor N . Let
β ≥ 0 be an integer, and P , Q polynomials as given in the previous lemma.
Suppose that

f(t) =
∞∑

n=1

χ(n)nβ exp{−Q(nt, t)}.

Then

f(t) =
N∑

j=1

χ(j)h(j, t)− 1
N

N∑
j=1

χ(j)
∫ j

0
h(x, t)dx

+
N∑

j=1

χ(j)
∞∑

r=0

(−1)rBr+1

(r + 1)!
h(r)(j, t)N r.

In particular at t = 0, f(t) has an asymptotic expansion of the form
∞∑

n=0

dntn
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with the constant term d0 given by

d0 = −Bβ+1
χ

β + 1
= L(−β, χ).

Proof. Note that

f(t) =
N∑

j=1

χ(j)
∞∑

k=0

(Nk + j)β exp{−Q((Nk + j)t, t)}

=
N∑

j=1

χ(j)fj(t).

So the first assertion follows from Lemma 1 by noting that∫ ∞

j
h(x, t)dx =

∫ ∞

0
h(x, t)dx−

∫ j

0
h(x, t)dx

and
N∑

j=1

χ(j)
∫ ∞

j
h(x, t)dx = −

N∑
j=1

χ(j)
∫ j

0
h(x, t)dx

since
∑N

j=1 χ(j) = 0. Also, from this expression of f(t) we have a power
series expansion of the form

∞∑
n=0

dntn

with

d0 =
N∑

j=1

χ(j)h(j, 0)− 1
N

N∑
j=1

χ(j)
∫ j

0
h(x, 0)dx

+
N∑

j=1

χ(j)
∞∑

r=0

(−1)rBr+1

(r + 1)!
h(r)(j, 0)N r

=
N∑

j=1

χ(j)jβ − 1
N

N∑
j=1

χ(j)
jβ+1

β + 1
+

N∑
j=1

χ(j)
∞∑

r=0

(−1)rBr+1

(r + 1)!
h(r)(j, 0)N r.

Now it remains to compute h(r)(j, 0). The Leibniz rule for differentiation
yields that

Dr
xh(x, t) = Dr

x[xβ exp{−Q(xt, t)}]

=
r∑

u=0

(
r

u

)
Du

x(xβ)Dr−u
x exp{−Q(xt, t)}.
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From the above, we see that

Dr
xh(x, t)

∣∣∣∣∣x=j,t=0 =

{
β!

(β−r)!j
β−r, if r ≤ β;

0, otherwise.

It follows that

d0 =
N∑

j=1

χ(j)jβ − 1
N

N∑
j=1

χ(j)
jβ+1

β + 1

+
N∑

j=1

χ(j)
β∑

r=0

(−1)rβ!
(r + 1)!(β − r)!

Br+1N
rjβ−r.

Note that B1 = −1
2 and (−1)rBr+1 = −Br+1 if r ≥ 1. So

d0 = − 1
N

N∑
j=1

χ(j)
jβ+1

β + 1
−

N∑
j=1

χ(j)
β∑

r=0

β!
(r + 1)!(β − r)!

Br+1N
rjβ−r

= −Bβ+1
χ

β + 1
.

�

Our theorem is a direct consequence of the following proposition.

Proposition 4. Let χ = (χ1, . . . , χr), β = (β1, . . . , βr), P and Q as given
in Section 2. Suppose that

fβ(t) =
∞∑

n1=1

· · ·
∞∑

nr=1

χ1(n1) · · ·χr(nr)nβ exp{−Q(nt, t)}.

Then fβ(t) has an asymptotic expansion of the form
∞∑

n=0

dntn

with the constant term d0 given by

d0 = L(−β1, χ1) · · ·L(−βr, χr)

= (−1)r
r∏

j=1

B
βj+1
χj

βj + 1
.

Proof. We prove the assertion by induction on r. The case r = 1 was already
proved in the previous proposition. Suppose that r ≥ 2 and the assertion is
true for the case of r−1 variables. Consider the case of r variables. Applying
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the previous proposition to the first summation of fβ(t), where n1 ranges
over all positive integers, we obtain

fβ(t) =
N1∑
j=1

χ1(j)jβ1h(j, t)− 1
N1

N1∑
j=1

χ1(j)
∫ j

0
xβ1h(x, t)dx

+
N1∑
j=1

χ1(j)
∞∑

r=0

(−1)rBr+1

(r + 1)!
h̃

(r)
j (0, t)

where

h(x, t) =
∞∑

n2=1

· · ·
∞∑

nr=1

χ2(n2) · · ·χr(nr)n
β2
2 · · ·nβr

r

· exp{−Q(xt, n2t, . . . , nrt, t)},

and

h̃j(x, t) = (N1x + j)β1

∞∑
n2=1

· · ·
∞∑

nr=1

χ2(n2) · · ·χr(nr)n
β2
2 · · ·nβr

r

· exp{−Q((N1x + j)t, n2t, . . . , nrt, t)}

= (N1x + j)β1h(N1x + j, t).

Note that

Q(αt, n2t, . . . , nrt, t) = P (α, n2, . . . , nr)tp
′
, p′ = degP (α, X2, . . . , Xr)

for any fixed number α > 0. Applying our induction hypothesis to h(j, t),
h(x, t), and h̃j(x, t), we get the asymptotic expansion of fβ(t), and the con-
stant term d0 is

d0 = fβ(0)

=
N1∑
j=1

χ1(j)jβ1h(j, 0)− 1
N1

N1∑
j=1

χ1(j)
∫ j

0
xβ1h(x, 0)dx

+
N1∑
j=1

χ1(j)
∞∑

r=0

(−1)rBr+1

(r + 1)!
h̃

(r)
j (0, 0).

To compute h̃
(r)
j (0, 0), we use a trick similar to the one in Proposition 3 for

computing h(r)(j, 0). The Leibniz rule for differentiation yields that

Dr
xh̃j(x, t) =

r∑
u=0

(
r

u

)
Du

x [(N1x + j)β1 ]Dr−u
x [h(N1x + j, t)].
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From the above, we see that

Dr
xh̃j(x, t)

∣∣∣∣∣x=0,t=0 =

{
β1!Nr

1
(β1−r)!j

β1−rh(j, 0), if r ≤ β1;

0, otherwise.

It follows that

d0 =
N1∑
j=1

χ1(j)jβ1h(j, 0)− 1
N1

N1∑
j=1

χ1(j)
∫ j

0
xβ1h(x, 0)dx

+
N1∑
j=1

χ1(j)
β1∑

r=0

(−1)rBr+1β1!N r
1 jβ1−r

(r + 1)!(β1 − r)!
h(j, 0).

Since the constant term in the asymptotic expansion of h(j, t) or h(x, t) is

(−1)r−1
r∏

j=2

B
βj+1
χj

βj + 1
,

we have

d0 = (−1)r−1
r∏

j=2

B
βj+1
χj

βj + 1

 N1∑
j=1

χ1(j)jβ1 − 1
N1

N1∑
j=1

χ1(j)
jβ1+1

β1 + 1

+
N1∑
j=1

χ1(j)
β1∑

r=0

(−1)rβ1!
(r + 1)!(β1 − r)!

Br+1N
rjβ1−r


= (−1)r−1

r∏
j=2

B
βj+1
χj

βj + 1
·

(
−Bβ1+1

χ1

β1 + 1

)

= (−1)r
r∏

j=1

B
βj+1
χj

βj + 1
.

This proves our assertions. �

Corollary. Suppose that

F (t) =
∑
n∈Nr

χ1(n1) · · ·χr(nr)Pm(n)e−(n1+···+nr)t, t > 0

then
Z(P, χ,−m) = lim

t→0+
F (t).

Proof. From the notation in our main theorem it follows that

F (t) =
mp∑
|β|=0

CβFβ(t)
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with

Fβ(t) =
∑
n∈Nr

χ1(n1) · · ·χr(nr)nβe−(n1+···+nr)t

=
r∏

j=1

[ ∞∑
n=1

χj(n)nβje−nt

]
.

From
∞∑

n=1

χj(n)e−nt =
∞∑

k=0

Nj∑
a=1

χj(a)e−(a+kNj)t

=
Nj∑
a=1

χj(a)e−at

1− e−Njt

=
∞∑

n=1

−Bn
χj

(−t)n−1

n!

and differentiating term-by-term βj times with respect to t, we get
∞∑

n=1

χj(n)nβje−nt =
∞∑

n=βj+1

−Bn
χj

(−t)n−βj−1

n · (n− βj − 1)!
.

Consequently we have

lim
t→0+

Fβ(t) =
r∏

j=1

(
−

B
βj+1
χj

βj + 1

)
and hence our assertion follows. �

4. A Consequence.

Let P (X) ∈ R[X1, . . . , Xr] be a polynomial as given before and ξ = (ξ1, . . . ,
ξr) ∈ Cr such that |ξj | = 1 and ξj 6= 1 for all j. In 1982, P. Cassou-Noguès
considered the zeta function

Z(P, ξ, s) =
∑
n∈Nr

ξnP (n)−s

=
∞∑

n1=1

· · ·
∞∑

nr=1

ξn1
1 · · · ξnr

r P (n)−s, Re s > σ,

and she proved that
Z(P, ξ,−m) = R(Pm)(ξ)

where
R(Pm)(T ) =

∑
n∈Nr

Pm(n)Tn
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which is a power series and can be realized as a rational function in T .
Here we change the dummy variable n and reformulate the above result

so that we can use our theorem to give a new proof.

Theorem (P. Cassou-Noguès). Suppose that

Z(P, ξ, s) =
∞∑

n1=1

· · ·
∞∑

nr=1

ξn1
1 · · · ξnr

r P (n1, . . . , nr)−s, Re s > σ.

Then Z(P, ξ, s) has a meromorphic continuation to the whole complex s-
plane and for any integer m ≥ 0,

Z(P, ξ,−m) = lim
t→0+

∑
n∈Nr

ξnPm(n)e−(n1+···+nr)t.

Proof. Recall that in the proof of our result, we use only the following two
properties of the Dirichlet characters χ1, . . . , χr.

(1) χj is a periodic function, χj(n + Nj) = χj(n) for all n ∈ N.
(2) χj is non-trivial and

∑Nj

a=1 χj(a) = 0.
Thus, in particular, it works for the case χj(n) = e2πin/Nj or in general
χj(n) = e2πinηj , ηj is a positive rational number such that 0 < ηj < 1.

Now we suppose that ξ = (ξ1, . . . , ξr) = (e2πiq1 , . . . , e2πiqr) with 0 < qj <

1. Let ηk = (η(k)
1 , . . . , η

(k)
r ) be a sequence of r-tuples of rational numbers

such that
(1) 0 < η

(k)
j < 1 for all 1 ≤ j ≤ r, k ≥ 1,

(2) limk→∞ ηk = ξ.
Consider the sequence of zeta functions {Zk} defined by

Zk(P, ηk, s) =
∑
n∈Nr

ηn
k P (n)−s, Re s > σ.

On the half-plane Re s > σ, we have

lim
k→∞

Zk(P, ηk, s) = Z(P, ξ, s).

Also all the zeta function Zk(P, ηk, s) and Z(P, ξ, s) have analytic continu-
ation to the whole complex s-plane. So that

lim
k→∞

Zk(P, ηk,−m) = Z(P, ξ,−m).

By our result

Zk(P, ηk,−m) = lim
t→0+

∑
n∈Nr

ηn
k Pm(n)e−(n1+···+nr)t,

it follows that

Z(P, ξ,−m) = lim
t→0+

∑
n∈Nr

ξnPm(n)e−(n1+···+nr)t.

�
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The special values Z(P, ξ,−m) can be expressed in terms of special values
of the L-series

Lq(s) =
∞∑

n=1

e2πinqn−s, Re s > 1, 0 < q < 1.

From

Lq(s)Γ(s) =
∞∑

n=1

e2πinq

∫ ∞

0
ts−1e−ntdt

=
∫ ∞

0

e2πiqts−1

et − e2πiq
dt , Re s > 1,

we conclude that

Lq(−m) = (−1)mm!×
{

the coefficient of tm in the power series

expansion at t = 0 of
e2πiq

et − e2πiq

}
.

In other words,
∞∑

n=1

e2πinqe−nt =
e2πiq

et − e2πiq
=

∞∑
m=0

(−1)mLq(−m)tm

m!
, |t| < 2πq.

Differentiating the above equality β times with respect to t, we obtain
∞∑

n=1

e2πinqnβe−nt =
∞∑

m=β

Lq(−m)(−t)m−β

(m− β)!
.

Proposition 5. Suppose that

Pm(X) =
mp∑
|α|=0

CαXα.

Then

Z(P, ξ,−m) =
mp∑
|α|=0

CαLq1(−α1) · · ·Lqr(−αr).

Proof. Note that∑
n∈Nr

ξnPm(n)e−(n1+···+nr)t =
mp∑
|α|=0

Cα

∑
n∈Nr

ξnnαe−(n1+···+nr)t

=
mp∑
|α|=0

Cα

r∏
j=1

{ ∞∑
n=1

e2πinqjnαje−nt

}
.
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From

lim
t→0+

∞∑
n=1

e2πinqjnαje−nt = Lqj (−αj),

we get our assertion by the previous theorem. �

Now we give expressions for Lq(−m). From the power series expansion

e2πiq

et − e2πiq
=

∞∑
n=0

(−t)nεn(e2πiq)
n!(1− e2πiq)n+1

, |t| < 2πq,

where εn(p) =
∑n

k=1 An,kp
k is the Eulerian polynomials, the coefficients

An,k are the Eulerian numbers which are the numbers of permutations of
the chain {1 < 2 < · · · < n} with precisely k− 1 descents (see, e.g., [4]), we
have

Lq(−m) =
εm(e2πiq)

(1− e2πiq)m+1
.

Meanwhile, we have the following

Proposition 6. Suppose that

Pm(X) =
mp∑
|α|=0

CαXα,

then

Z(P, ξ,−m) =
mp∑
|α|=0

Cα

r∏
j=1

εαj (ξj)
(1− ξj)αj+1 .

5. Sums of Products of Generalized Bernoulli Numbers.

A well-known relation among the Bernoulli numbers is

n−1∑
k=1

(
2n

2k

)
B2kB2n−2k = −(2n + 1)B2n, for n ≥ 2.

This was found by many authors, including Euler (ref. [5], [8]). Dilcher
remarked in [5] that it may be of interest to find formulas of the above
type for sums of products of generalized Bernoulli numbers. In the following
Proposition 7, we give a closed expression for sums of products of generalized
Bernoulli numbers.

Proposition 7. Let r be a positive integer and χi be a non-trivial Dirichlet
character with conductor Ni, for i = 1, 2, . . . , r. Then for any positive
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integer m,

m∑
p1+···+pr=m

p1,... ,pr≥0

(
m

p1, . . . , pr

)
Bp1+1

χ1

Np1
1 (p1 + 1)

· · · Bpr+1
χr

Npr
r (pr + 1)

=
N1∑

a1=1

· · ·
Nr∑

ar=1

χ1(a1) · · ·χr(ar)
(−1)r−1

(r − 1)!

·
r−1∑
j=0

(−1)j

{
j∑

k=0

(
r − 1− j + k

k

)
s(r, r − j + k)δk

}
Bm+r−j(δ)
m + r − j

,

where δ = a1
N1

+ · · ·+ ar
Nr

and s(n, k) is the Stirling number of the first kind.

Proof. Consider the zeta function

Zr(s) =
∞∑

n1=1

· · ·
∞∑

nr=1

χ1(n1) · · ·χr(nr)

 r∑
j=1

 r∏
i=1
i6=j

Ni

nj


−s

.

Substitute ni = ai +Nimi where ai = 1, . . . , Ni and mi ≥ 0 for i = 1, . . . , r.
Thus Zr(s) becomes

N1∑
a1=1

· · ·
Nr∑

ar=1

∞∑
m1=0

· · ·
∞∑

mr=0

(
r∏

i=1

χi(ai + miNi)N−s
i

) r∑
j=1

(
mj +

aj

Nj

)−s

.

Now we let

ZB(s) =
∞∑

m1=0

· · ·
∞∑

mr=0

(
r∏

i=1

Ni

)−s
 r∑

j=1

(
mj +

aj

Nj

)−s

.

Then we can represent the zeta function Zr(s) as

Zr(s) =
N1∑

a1=1

· · ·
Nr∑

ar=1

(
r∏

i=1

χi(ai)

)
ZB(s).

From [8] we know that this zeta function ZB(s) has an analytic continuation
to the whole complex plane, and the special values at non-positive integers
s = −m are given by

ZB(−m) =

(
r∏

i=1

Nm
i

) ∑
p1+···+pr=m+r

p1,... ,pr≥0

m!
p1! · · · pr!

r∏
j=1

Bpj

(
aj

Nj

)
.
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Using the following identity ([5], Theorem 3)∑
j1+···+jr=n
j1,... ,jr≥0

(
n

j1, . . . , jr

)
Bj1(x1) · · ·Bjr(xr) =

(−1)r−1r

(
n

r

) r−1∑
j=0

(−1)j

{
j∑

k=0

(
r − j − 1 + k

k

)
s(r, r − j + k)yk

}
Bn−j(y)
n− j

,

where y = x1 + · · · + xr and s(n, k) are Stirling numbers of the first kind,
and we can rewrite ZB(−m) as

(
∏r

i=1 Nm
i )(−1)r−1

(r − 1)!

r−1∑
j=0

(−1)j

·

{
j∑

k=0

(
r − 1− j + k

k

)
s(r, r − j + k)δk

}
Bm+r−j(δ)
m + r − j

,

where δ = a1
N1

+ · · ·+ ar
Nr

. Now applying our theorem, the special values at
non-positive integers s = −m of the zeta function Zr(s) are

Zr(−m) =
∑

p1+···+pr=m
p1,... ,pr≥0

(
m

p1, . . . , pr

)( r∏
i=1

Nm−pi
i Bpi+1

χi

pi + 1

)
.

On the other hand, using the equality

Zr(−m) =
N1∑

a1=1

· · ·
Nr∑

ar=1

r∏
i=1

χi(ai)ZB(−m)

and the above values of Zr(−m) and ZB(−m), we get our assertion. �

Remark. As special cases we state formulas for sums of products of two,
respectively three, generalized Bernoulli numbers.

(1) Let χ1, χ2 be non-trivial Dirichlet characters with conductors N1, N2,
respectively. Then for any positive integer m,

m∑
k=0

(
m

k

)
Bk+1

χ1

Nk
1 (k + 1)

Bm−k+1
χ2

Nm−k
2 (m− k + 1)

=
N1∑

a1=1

N2∑
a2=1

χ1(a1)χ2(a2)

·

 a1
N1

+ a2
N2

− 1
m + 1

Bm+1

(
a1

N1
+

a2

N2

)
−

Bm+2

(
a1
N1

+ a2
N2

)
m + 2

 .
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(2) Let χ1, χ2, χ3 be non-trivial Dirichlet characters with conductors N1,
N2, N3, respectively. Then for any positive integer m, we have∑

p+q+r=m
p,q,r≥0

(
m

p, q, r

)
Bp+1

χ1

Np
1 (p + 1)

Bq+1
χ2

N q
2 (q + 1)

Br+1
χ3

N r
3 (r + 1)

=
1
2

N1∑
a1=1

N2∑
a2=1

N3∑
a3=1

χ1(a1)χ2(a2)χ3(a3)

·
[
(δ2 − 3δ + 2)

Bm+1(δ)
m + 1

+ (3− 2δ)
Bm+2(δ)
m + 2

+
Bm+3(δ)
m + 3

]
,

where δ = a1
N1

+ a2
N2

+ a3
N3

.

As a final example we consider the Euler numbers En, 0 ≤ n < ∞. We
have E2n+1 = 0, n ≥ 0, while E2n, n ≥ 0, is defined by

sec x =
∞∑

n=0

(−1)nE2n

(2n)!
x2n, |x| < π

2
.

The Euler numbers are special cases of the generalized Bernoulli numbers
Bn

χ belonging to a residue class character χ. In fact we have

En = −
2Bn+1

η

n + 1
, n ≥ 0,

where η is the primitive character with conductor 4. If we let r = 2 and the
characters χ1 and χ2 in Proposition 7 be the same character η (the primitive
character with conductor 4), then we get an identity which is a special case
of Eq. (4.9) in [5].

Proposition 8. For a non-negative integer n, we have the following iden-
tity:

n∑
k=0

(
2n

2k

)
E2kE2n−2k = (22n+2 − 1)

22n+2B2n+2

2n + 2
.

Proof. Let r = 2 and χ1, χ2 as indicated above, i.e., N1 = N2 = 4. Then

4−m
m∑

k=0

(
m

k

)
Bk+1

χ Bm−k+1
χ

(k + 1)(m− k + 1)

=
4∑

a=1

4∑
b=1

χ(ab)

[
a+b
4 − 1
m + 1

Bm+1

(
a + b

4

)
−

Bm+2(a+b
4 )

m + 2

]

= −
Bm+1(1

2)
2(m + 1)

−
Bm+2(1

2)
m + 2

+
2Bm+2(1)

m + 2
+

Bm+1(3
2)

2(m + 1)
−

Bm+2(3
2)

m + 2
.



58 KWANG-WU CHEN AND MINKING EIE

The left-hand side of the above identity is exactly 4−m−1
∑m

k=0

(
m
k

)
EkEm−k.

Using some basic properties of the Bernoulli polynomials:

Bn

(
3
2

)
= 21−n · n + Bn

(
1
2

)
,

Bn

(
1
2

)
= (21−n − 1)Bn ,

Bn(1− x) = (−1)nBn(x),

the right-hand side of the above identity becomes

2 · [1 + (−1)m+2 − 2−m−1]
Bm+2

m + 2
.

The result follows by setting m = 2n. �
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