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This note investigates the image of the transfer homomor-
phism for permutation representations of finite groups over
finite fields. One obtains a number of results showing that
the image of the transfer Im(Tr) together with certain Chern
classes generate the ring of invariants as an algebra. By a
careful analysis of orbit sums one finds the surprising fact
that the ideal Im(Tr) is a prime ideal for cyclic p-groups and
determines an upper bound on its height.

1. Introduction.

Let F be a finite field of char(F) = p. Let ρ : G↪→GL(n, F) be a faithful rep-
resentation of a finite group G. The group G acts via ρ on the n-dimensional
vector space V = Fn. This induces an action of G on the ring of polynomial
functions F[x1, . . . , xn] = F[V ], where x1, . . . , xn is the standard dual basis
of V ∗, via

gf(v) := f(ρ(g)−1v) ∀g ∈ G, f ∈ F[x1, . . . , xn].

Denote by F[V ]G the ring of polynomials invariant under the G-action. The
transfer

TrG : F[V ]−→F[V ]G; f 7→
∑
g∈G

gf

is a F[V ]G-module homomorphism. It is surjective if and only if the char-
acteristic of the ground field F does not divide the group order, i.e., in the
nonmodular case, where it provides a tool for constructing the ring of in-
variants F[V ]G. In the modular case very little is known about the image
Im(TrG), see [9] Section 11.5, [3], [5], [7], [8] and [10].

In this note we discuss the transfer for permutation representations. By
a permutation representation ρ : G↪→GL(n, F) we understand a linear
representation together with a basis X = {x1, . . . , xn} for Fn, or its dual,
referred to as the permutation basis, such that G permutes the elements
of X. It turns out that the image of the transfer for cyclic p-groups is a
prime ideal of height at most n − k, where k denotes the number of orbits
of a permutation basis. In the special case of sums of copies of the regular
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representation of cyclic p-groups this upper bound on the height can be
considerably improved. We generalize these results to arbitrary groups G
with appropriate p-Sylow subgroup. This is the contents of Section 2.

In Section 3 we consider sums of copies of the regular representation of
arbitrary p-groups. It transpires that the transfer is surjective exactly in
degrees prime to the characteristic.

This allows us in Section 4 to describe a generating set as an algebra of
the ring of invariants of Z/p in any permutation representation, and also for
the ring of invariants of a group with order 2p in its regular representation:
Both consist of the image of the transfer and certain Chern classes.

This applies to the regular representation of Z/4 over a field of character-
istic two, i.e., to one of Marie-José Bertin’s famous examples and leads to a
description of this ring of invariants, which appears in Section 5.

This work was done during my stay at Université de Toulouse Paul
Sabatier in September 1996 and in February and March 1997. I would
like to thank Claude Hayat-Legrand for the invitation and her hospitality.
I would like to thank Manfred Göbel for many discussions. I am deeply in
debt to Larry Smith for comments and suggestions on preliminary versions
of this paper.

2. Primality of the Image of the Transfer.

In this section we show that the image of the transfer is a prime ideal for
permutation representations. Moreover, one can give an upper bound for
the height. This generalizes results in [12].

Let ρ : G↪→GL(n, F) be a modular permutation representation of a finite
group G permuting a basis x1, . . . , xn for the dual vector space V ∗. Denote
by

xE = xE1
1 · · ·xEn

n ∈ F[x1, . . . , xn]

a monomial, and by [xE ] = {xE′ |∃g ∈ P with gxE = xE′} the set of its orbit
elements. Then the orbit sums of monomials

o(xE) =
∑

xE′∈[xE ]

xE′

form an F-basis for the ring F[V ]P of invariants, [9] Lemma 1.3.3 and Lemma
4.2.1.

If xE is a monomial, then the orbit of xE contains r elements for some
r||G| and one says the orbit [xE ], resp. the orbit sum o(xE), has length
r. The following lemma provides a useful bound on the length of orbits of
products.

Lemma 2.1. Let ρ : P ↪→GL(n, F) be a modular permutation representation
of a cyclic group P of order pt. Let xE and xF be monomials in F[V ] with
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orbit length r, resp. s. Then the orbit length of their product xExF is at
most equal to min(r, s).

Proof. Denote by PxE , resp. PxF the isotropy groups of xE , resp. xF . Since
the orbit length is r, resp. s, the order of these groups is given by

|PxE | =
|P |
r

and |PxF | =
|P |
s

.

The lattice of subgroups of P form a single chain, therefore for r ≥ s

PxExF ⊃ PxE ∩ PxF = PxE .

Hence

|PxExF | ≥ |PxE | =
|P |
r

,

and therefore

|o(xExF )| ≤ |P |
|PxExF |

≤ r,

which was to be shown. �

The following two examples show that the preceding lemma does not
extend to arbitrary cyclic groups nor to noncyclic p-groups.

Example 2.2. Consider the regular representation of the cyclic group of
order six ρ : Z/6↪→GL(6, F) afforded by the matrix

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0

 .

Then the orbit sums

o(x1x3x5) = x1x3x5 + x2x4x6 and o(x1x4) = x1x4 + x2x5 + x3x6

have length 2, resp. 3, but their product

o(x1x3x5)o(x1x4) = o(x2
1x3x4x5) = Tr(x2

1x3x4x5)

has orbit length 6.

Example 2.3. Consider the regular representation ρ : Z/2×Z/2↪→GL(4, F)
of the Klein 4-group afforded by the matrices

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 and


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 .
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Then the orbit sums

o(x1x2) = x1x2 + x3x4 and o(x1x4) = x1x4 + x2x3

have orbit length 2, but their product

o(x1x2)o(x1x4) = o(x2
1x2x4) = Tr(x2

1x2x4)

has orbit length 4.

Theorem 2.4. Let ρ : P ↪→GL(n, F) be a permutation representation of a
cyclic p-group P of order pt. Then the image of the transfer is a prime ideal
in F[V ]P of height at most n−k, where k is the number of orbits of P acting
on the basis x1, . . . , xn for V ∗.

Proof. If xE and xF are monomials, and their orbits [xE ], [xF ] have lengths
pi, pj resp., then the product of their orbit sums o(xE)o(xF ) contains the
monomial xExF = xE+F which has orbit length at most pk = min{pi, pj},
i.e., k = min{i, j}, by Lemma 2.1. The product o(xE)o(xF ) when expressed
as a linear combination of orbit sums contains o(xE+F ) with coefficient 1.
Moreover, if o(xH) is an arbitrary orbit sum occurring in the expression of
o(xE)o(xF ) as an F-linear combination of orbit sums, then the orbit of xH

contains an element xE′
xF ′

where xE′
is in the orbit of xE and xF ′

is in the
orbit of xF . Therefore the orbit length of o(xH) is at most pk = min{pi, pj}
also. Let f ∈ F[V ]P and |P | = pt, then one has

f = f0 + f1 + · · ·+ ft,

where for i = 0, . . . , t, and fi is a linear combination of orbit sums o(xE(i))
of length pi. Note that the elements in the image of the transfer are precisely
the linear combinations of the orbit sums of length pt = |P |. Hence if f 6∈
Im(TrP ) then some fi for i < t must be nonzero. Suppose that f, h ∈ F[V ]P

and f, h 6∈ Im(TrP ). Write

f = fi + · · ·+ ft where fi 6= 0, i < t

h = hj + · · ·+ ht where hj 6= 0, j < t.

We next show fh 6∈ Im(TrP ). Since ht ∈ Im(TrP )

fht ∈ Im(TrP )

also. Hence if f(h − ht) = fh − fht 6∈ Im(TrP ) then fh 6∈ Im(TrP ), so
without loss of generality one may suppose

h = hj + · · ·+ ht−1.

Likewise by symmetry one may suppose

f = fi + · · ·+ ft−1.

The analysis of products of orbit sums of monomials above shows that frhs

can always be expressed as a linear combination of orbit sums of length at
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most pmin{r, s} = min{pr, ps}. In particular, fh itself is a linear combination
of orbit sums whose length is at most pt−1. Since F[V ]P is a domain, fh 6= 0,
and therefore at least one of these orbit sums has a nonzero coefficient.
Im(TrP ) is, however, the F-linear span of the orbit sums of length pt and
therefore fh 6∈ Im(TrP ) as was to be shown.

In order to establish the upper bound1 for the height, assume that
X = {x1, . . . , xn}, the basis set, consists of k orbits of P , say the orbits of
x1, . . . , xk. Then the k top orbit Chern classes ctop(x1), . . . , ctop(xk) are al-
gebraically independent, hence generate a polynomial subalgebra F[ctop(x1),
. . . , ctop(xk)] of Krull dimension k in the ring of invariants. Since

F[ctop(x1), . . . , ctop(xk)] ∩ Im(TrP ) = 0,

it follows that

F[ctop(x1), . . . , ctop(xk)]↪→F[V ]P /Im(TrP ).

Therefore

dim(F[V ]P /Im(TrP )) ≥ k,

i.e.,

ht(Im(TrP )) ≤ n− k

as claimed. �

The preceding result was generalized to arbitrary cyclic permutation
groups in [8], Corollary 5.2 and Corollary 6.2. However, we have even more:

Corollary 2.5. Let ρ : G↪→GL(n, F) be a faithful representation of a fi-
nite group G with cyclic p-Sylow subgroup Sylp(G). If the restriction of ρ
to Sylp(G) is a permutation representation, then the image of the transfer
Im(TrG) of G is prime of height at most n − k, where k is the number of
orbits of Sylp(G) acting on the basis x1, . . . , xn of V ∗.

Proof. We have just proved that the image of the transfer of the p-Sylow
subgroup is prime of height n− k. By Theorem 5.1 in [8] we have

Im(TrG) = Im(TrSylp(G)) ∩ F[V ]G.

Therefore also Im(TrG) is prime. It has the same height, because

F[V ]G↪→F[V ]Sylp(G)

is an integral extension of integral domains, in particular, we have the going-
down property. �

Theorem 2.4 can be considerably improved if we restrict to regular rep-
resentations. For this we require a lemma.

1This proof is adapted from [7], where this upper bound is shown to hold for arbitrary
representations of p-groups.
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Lemma 2.6. Let ρ : P ↪→GL(n, F) be the regular representation of a p-group
P of order pt, so n = pt. Then the Chern classes cp, . . . , cpt of p-power
degree are not contained in the image of the transfer.

Proof. The Chern class ci is by definition the i-th elementary symmetric
function in the orbit elements x1, . . . , xpt . Consider those of prime power
degree, namely cp, . . . , cpt . Then cpi is the sum of all monomials

xk1 · · ·xkpi
,

where the kj ’s are pairwise distinct. So, these monomials form a single
Σpt-orbit and possibly several P -orbits. The number of these monomials is(pt

pi

)
, which is not divisible2 by the group order pt. At least one of these

orbits contains less than pt elements. Hence cpi can be expressed as a linear
combination of orbit sums where at least one is of length strictly less than
pt = |P |. Hence cpi 6∈ Im(TrP ). �

Remark. If ρ is a direct sum of k copies of the regular representation, i.e.,
n = kpt, one gets analogously

cpi(xj) 6∈ Im(TrP ), for j = 1, . . . , k,

where the set of basis elements X = {x1, . . . , xn} =
⊔k

i=1[xi] is the disjoint
union of the k orbits of x1, . . . , xk.

Corollary 2.7. Let ρ : P ↪→GL(n, F) be the regular representation of a
cyclic p-group P of order pt, so n = pt. Then the image of the transfer
is a prime ideal of height at most n− t = pt − t.

Proof. By Theorem 2.4 the image of the transfer is a prime ideal. Since ρ
is the regular representation, the set of basis elements X = {x1, . . . , xn}
consists of exactly one orbit. By Lemma 2.6 the Chern classes of prime
power degree, cp, . . . , cpt are not contained in the image of the transfer.
Since cp, . . . , cpt are algebraically independent, they generate a polynomial
subalgebra of the ring of invariants, which intersects with Im(TrP ) in the
zero ideal. Hence

ht (Im(TrP )) ≤ n− dim (F[cp, . . . , cpt ]) = n− t = pt − t

as claimed. �

Remark. Under the weaker assumption that ρ is a direct sum of k copies
of the regular representation, i.e., n = kpt, one gets

ht(Im(TrP )) ≤ n− tk = k(pt − t).

The proof works analogously.

2This may be verified by induction on i.
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Like Theorem 2.4 also Corollary 2.7 has a generalization to groups with
appropriate p-Sylow subgroup.

Corollary 2.8. Let ρ : G↪→GL(n, F) be a faithful representation of a finite
group G with cyclic p-Sylow subgroup Sylp(G) of order pt(= n). If the re-
striction of ρ to Sylp(G) is the regular representation, then the image of the
transfer Im(TrG) of G is prime of height at most n− t.

3. p-Regular Representations.

Definition. A representation G↪→GL(n, F) of a finite group G over a field
of characteristic p is called p-regular if the restriction to a p-Sylow subgroup
of G, Sylp(G), is a direct sum of copies of the regular representation of
Sylp(G).

The main result of this section follows from a simple lemma.

Lemma 3.1. Let ρ : G↪→GL(n, F) be the regular representation of a finite
group G. Then for all subgroups H < G the restriction

ρ|H : H↪→GL(n, F)

is the direct sum of |G : H| copies of the regular representation of H.

Proof. If ρ is the regular representation of G then the set X = {x1, . . . , xn}
of basis element of V ∗ is a finite G-set with G acting freely. Hence for any
subgroup H < G the set X is the disjoint union of |G : H| H-sets with H
acting freely on each copy. �

Remark. The above lemma remains true under the weaker assumption that
ρ is a direct sum of copies of the regular representation. The proof works
unchanged.

Theorem 3.2. Let P ↪→GL(n, F) be the regular representation of a p-group
of order pt. Then the transfer is surjective in degree ` if and only if ` is
prime to p = char(F).

Proof. Since ρ is the regular representation, it is in particular a permutation
representation. Hence any invariant polynomial f is a sum of orbit sums
o(xE) of monomials xE = xe1

1 · · ·xen
n ∈ F[x1, . . . , xn]. Let f =

∑
α o(xEα) ∈

F[V ]P , f 6∈ Im(TrP ). Then at least one monomial xEα has orbit length less
than the order of P , |o(xEα)| < |P |. This means that the isotropy group of
xEα is nontrivial, hence there exists an element g ∈ P such that

gxEα = xEα .

Denote by 〈g〉 ⊂ P the cyclic subgroup generated by g. Then xEα is a
product of top orbit Chern classes of the subgroup 〈g〉

xEα =
n∏

j=1

c
〈g〉
top(xj)βj ,
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and its degree is

deg(xEα) =
n∑

j=1

(
deg

(
c
〈g〉
top(xj)

))
βj .

By Lemma 3.1 〈g〉 acts on the standard basis x1, . . . , xn without fixed points.
Therefore, p divides every summand on the right side, and hence deg(xEα).

In order to prove the reverse conclusion consider the p-th Chern class
cp ∈ F[V ]P of x1. By Lemma 2.6 cp is not in the image of the transfer.
The same argument shows that no power of the p-th Chern class can be
in the image of the transfer: An arbitrary power of the p-th Chern class,
ckps

p = (ck
p)

ps
, where p does not divide k, is a sum of( pt!

p!(pt−p)! + k − 1
k

)
=

(
pt!

p!(pt−p)! + k − 1
)
!

k!
(

pt!
p!(pt−p)! − 1

)
!

monomials. Since this is not divisible by the group order pt, which may be
verified by induction on k, ckps

p can be expressed as a linear combination of
orbit sums where at least one is of length strictly less than pt = |P |. Hence
ckps

p 6∈ Im(TrP ). Therefore in any degree ` which is divisible by p the transfer
is not surjective, since it does not contain the appropriate power of cp. �

Remark. The above theorem remains true under the weaker assumption
that ρ is a direct sum of copies of the regular representation. Apart from a
more cumbersome notation the proof works unchanged.

Corollary 3.3. Let ρ : G↪→GL(n, F) be a p-regular representation of a fi-
nite group G. Then the transfer TrG is surjective in degrees prime to the
characteristic.

Proof. Let f ∈ F[V ]G have degree not divisible by p. By Theorem 3.2
f ∈ F[V ]Sylp(G) is contained in the image of the transfer TrSylp(G). Hence
there exists a polynomial f ∈ F[V ] such that

TrSylp(G)(f) = f.

Since the index d of a p-Sylow subgroup Sylp(G) in G is prime to p we have

f =
1
d
TrG

Sylp(G)(f) =
1
d
TrG

Sylp(G)TrSylp(G)(f) = TrG
Sylp(G)TrSylp(G)

(
1
d
f

)
,

i.e., f ∈ Im(TrG). �

The following examples show that Theorem 3.2, resp. the remark fol-
lowing it, are not true under the weaker assumption that ρ is an arbitrary
permutation representation.
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Example 3.4. Consider the representation

ρ : Z/4↪→GL(6, F2)

of the cyclic group of order 4 over the field with 2 elements afforded by the
matrix 

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

 .

The orbit sum of the monomial x5 is

o(x5) = x5 + x6,

and hence not in the image of the transfer even though it has degree prime
to the characteristic.

Example 3.5. Consider the representation

ρ : Z/2× Z/2↪→GL(4, F2)

of the Klein 4-group afforded by the matrices
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 and


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

Then orbit sum of the monomial x1 is

o(x1) = x1 + x2,

and hence not in the image of the transfer even though it has degree prime
to the characteristic.

4. The Ring of Invariants of Cyclic and Dihedral Groups.

In this section we see that for the regular representation of groups of order
2p and for arbitrary permutation representations of Z/p the image of the
transfer and certain orbit Chern classes generate the ring of invariants as an
algebra over F.

Theorem 4.1. Let ρ : Z/p↪→GL(n, F) be a permutation representation of
the cyclic group of order p. Then the ring of invariants F[V ]Z/p is generated
as an F-algebra by the top orbit Chern classes ctop(xi), xi ∈ {x1, . . . , xn},
and the image of the transfer.
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Proof. Since ρ is a permutation representation the ring of invariants F[V ]Z/p

is generated by orbit sums of monomials, o(xE) for xE ∈ F[V ] a monomial.
If the orbit length of xE is p, then o(xE) ∈ Im(TrZ/p). If not, it is 1, and
hence a product of top orbit Chern classes. �

Remark. Together with Manfred Göbel’s degree bound for permutation
representation, [6], the lemma above shows that in order to find the alge-
bra generators of the ring of invariants one has to calculate the top orbit
Chern classes (which have degree 1 or p), and the transfer up to degree
max

{
n, n(n−1)

2

}
.

Note that in the following theorem the case p = 2 is not excluded.

Theorem 4.2. Let ρ : G↪→GL(n, F) be the regular representation of a group
of order 2p (= n), G not the Klein 4-group. Then the ring of invariants
F[V ]G is generated by Chern classes of degree divisible by p and the image
of the transfer.

Proof. Again ρ is a permutation representation and therefore F[V ]G is gen-
erated by orbit sums o(xE) of monomials xE ∈ F[V ].

Case |o(xE)| = 2p:
Then o(xE) = TrG(xE), and there is nothing to show.

Case |o(xE)| = 1:
Then o(xE) 6∈ Im(TrG), but the orbit sum o(xE) is a product of top orbit

Chern classes

o(xE) =
n∏

j=1

ctop(xj)αj .

Its degree is divisible by p since ρ is the regular representation.

Case |o(xE)| = p and p 6= 2:
Then

TrG(xE) = 2o(xE),

and hence o(xE) lies in the image of the transfer

o(xE) = TrG

(
1
2
xE

)
.

Case |o(xE)| = 2:
Then xE ∈ F[V ]Z/p for the3 cyclic Z/p < G. Hence xE is a product of

top orbit Chern classes of Z/p

xE =
n∏

j=1

c
Z/p
top (xj)αj .

3It is precisely here, where we need to assume that G is not Z/2 × Z/2; recall Exam-
ple 2.3.



TRENTE ANS APRÈS 131

By Lemma 3.1 the restriction of ρ to Z/p is the direct sum of two copies
of the regular representation of Z/p. Hence the basis {x1, . . . , xn} is the
disjoint union of two nontrivial Z/p-orbits. So, without loss of generality

xE = c
Z/p
top (x1)α1c

Z/p
top (x2)α2 ,

where α1 6= α2 for otherwise xE would be just a power of the top Chern
class of G. Moreover, for α1 > α2

xE = cG
top(x1)c

Z/p
top (x1)α1−α2 .

Hence one can assume that α2 = 0. By [6] Theorem 5.8 the ring of invariants
F[V ]G is generated by orbit sums of special monomials. Therefore α1 = 1
and

o(xE) = c
Z/p
top (x1) + c

Z/p
top (x2).

Hence o(xE) = xe1
1 · · ·xen

n is the unique orbit of length two of a special
monomial in degree p with 0 ≤ ei ≤ 1, ∀i = 0, . . . , n. Therefore, since it is
a summand of the p-th Chern class of G

cp = o(xE) + TrG(f)

for some f ∈ F[V ]. It follows that o(xE) is in the subalgebra generated by
the image of the transfer and the p-th Chern class. �

Remark. Again, together with Manfred Göbel’s degree bound for permu-
tation representation, [6], the lemma above shows that in order to find the
algebra generators of the ring of invariants one has to calculate the orbit
Chern classes of degree p and 2p and the transfer up to degree p(2p− 1).

Example 4.3. Consider the dihedral group of order 6

D6 = 〈s, t| |s| = 2, |t| = 3, st = t2s〉.
Take its regular representation over a field of characteristic 3

ρ : D6↪→GL(6, F),

afforded by the matrices

ρ(s) =


0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0
1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0

 and ρ(t) =


0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0

 .

Then the preceding theorem tells us that the ring of invariants if generated
by the two Chern classes of degree divisible by 3, i.e., c3(x1) and c6(x1), and
the image of the transfer map

F[x1, . . . , x6]D6 = F〈c3(x1), c6(x1), Im(TrD6)〉,
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where the 〈−〉-brackets emphasize that this is just the F-algebra generated
by the elements in the brackets, i.e., it is not a polynomial ring.

Example 4.4. Consider the Z/4 representation of Example 3.4. The invari-
ant orbit sum o(x1x3x5) is not in the subalgebra generated by the Chern
classes and the image of the transfer. Hence for arbitrary permutation
groups not even the weaker version (where the restriction to Chern classes
of degree divisible by p is omitted) of Theorem 4.2 is valid.

Example 4.5. Recall the representation of the Klein 4-group from Exam-
ple 3.5. The invariant orbit sum o(x1) = x1 + x2 is not in the subalgebra
generated by the Chern classes of degree divisible by 2 and the image of
the transfer. However, since F[x1, . . . , x4]Z/2×Z/2 = F[x1 + x2, x1x2, x3 +
x4, x3x4], the ring of invariants is still generated by the image of the trans-
fer and orbit Chern classes.

5. Mme Bertin’s Z/4.

In this section we apply Theorem 4.2 to obtain a description of the ring of
invariants of one of Marie-José Bertin’s famous examples, [2].

Consider the regular representation of the cyclic group of order 4 over a
field F of characteristic 2

ρ : Z/4↪→GL(4, F)

afforded by the matrix 
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 .

This example was first studied by Marie-José Bertin. She showed in [2]
that its ring of invariants is factorial but not Cohen-Macaulay, which was
the first example of that type.4

Theorem 5.1. The ring of invariants, F[x1, . . . , x4]Z/4, of the regular rep-
resentation of Z/4 is generated as an algebra by the following eight polyno-
mials

c1 := x1 + x2 + x3 + x4,

c2 := x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4,

c3 := x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4,

c4 := x1x2x3x4,

q := x1x2 + x2x3 + x3x4 + x4x1,

4This example is also minimal, in the sense that for representations of degree ≤ 3 the
ring of invariants is always Cohen-Macaulay, [11], no matter what the ground field is.
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k := x2
1x2 + x2

2x3 + x2
3x4 + x2

4x1,

l := x3
1x2 + x3

2x3 + x3
3x4 + x3

4x1,

m := x3
1x

2
2 + x3

2x
2
3 + x3

3x
2
4 + x3

4x
2
1.

Note that each of these polynomials except c2, c4 is the transfer of one of
its monomials. Moreover, c1, c2, c3, c4 are the four Chern classes of the only
nontrivial orbit.

Proof. By Theorem 4.2 the ring of invariants is generated by Chern classes
whose degree is divisible by 2 and the image of the transfer. By [6] Corollary
5.9 the ring of invariants is generated by polynomials of degree ≤ 6. Hence
calculating the image of the transfer up to degree 6 leads to the algebra
generators given above. �

Remark. Since

c2 = o(x1x2) + o(x1x3) = TrZ/4(x1x2) + o(x1x3),

resp.

|o(x1x2)| = 4 = |Z/4| and |o(x1x3)| = 2 < |Z/4|,
this example illustrates also Lemma 2.6.

Remark. Marie-José Bertin’s relation, which shows that the ring of invari-
ants is not Cohen-Macaulay reads as follows in this basis

T5 := c1(c2q + c1k + c1c3 + l) + (c2 + q)k + c3c2 = 0.

Hence c1, c2 + q, c3, c4 form a system of parameters, but not a regular se-
quence. Theorem 5.1 shows that the canonical algebra homomorphism

φ : F[c1, c2, c3, c4, q, k, l,m]−→F[x1, . . . , x4]Z/4

is surjective, and its kernel kerφ is the ideal of relations. Consider the
following four polynomials5 in ker(φ):

R1 : c1c3q + c2
1c4 + c1c2c3 + q3 + c2

3 + c2
2q,

R3 : c1c2c3 + k2 + c2
2q + c3

1c3 + c1qk + c2
1q

2 + c2
1c4 + c2

1c2q,

P8 : c2
1k

2 + c1c4k + c2
1c2c4 + l2 + q4 + c2

3q + c3m + c4q
2 + c2c3k,

P10 : c4
1c2c4 + c1c3c4q + c2

1c4l + c3
1c3c4 + c2

2k
2 + m2 + c2c3m + c1c4m

+ c1c3k
2 + c3c4k + c2

3l + c2
3c4 + c2c4q

2 + c2
2c3k

+ c1c2c4k + c2c
2
3q + c1c2c3l.

5The two relations of degree 6, R1, R3, come out of the calculation of the image of
the transfer in degree 6. The remaining ones come from the calculation of the Steenrod
squares of T5, R1 and R3. For an introduction to the Steenrod algebra and its use in
invariant theory see [10].
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Then

F[c1, c2, c3, c4, q, k, l,m] ⊃ (c1, c2, c4, q, R1, R3, P8, P10)

= (c1, c2, c4, q, c
2
3, k

2, l2 + c3m,m2).

Hence these eight polynomials form a system of parameters in F[c1, c2, c3, c4,
q, k, l, m]. By Macaulay’s Theorem, see [4] Theorem 18.7 or [1] Theorem
3.3.2, every system of parameters in a Cohen-Macaulay algebra is a regular
sequence. In particular, the ideal

(R1, R3, P8, P10) ⊂ F[c1, c2, c3, c4, q, k, l,m]

is regular of height 4. By Macaulay’s Unmixedness Theorem, see [4] Corol-
lary 18.14 or [1] Definition 3.3.1, an ideal I in a Cohen-Macaulay alge-
bra, which is generated by ht(I) elements, is height unmixed, i.e., our ideal
(R1, R3, P8, P10) has no embedded prime ideals. Since the ring of invariants
of a cyclic p-group is always a unique factorization domain, [9] Proposition
1.5.7, we have:

Theorem 5.2. The ring of invariants of the regular representation of the
cyclic group of order four in characteristic two is given by

F[x1, x2, x3, x4]Z/4 = F[c1, c2, c3, c4, q, k, m, l]/p

where p an isolated prime ideal of (R1, R3, P8, P10). Moreover p has height
4 and is closed under the action of the Steenrod algebra

Remark. By Corollary 2.7 we know that the height of the image of the
transfer is at most 2

ht
(
Im(TrZ/4)

)
≤ 2.

On the other hand we have that

F[x1, x2, x3, x4]Z/4/Im(TrZ/4) = F[c2, c4]

has Krull dimension 2. Therefore the height of the image of the transfer is
precisely 2.
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