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In this paper, we construct a splitting of the metaplectic
cover of the reductive dual pairs of orthogonal and symplec-
tic groups or the reductive dual pairs of unitary groups over a
nonarchimedean local field with respect to a generalized lat-
tice model of the Weil representation. We also prove a result
concerning the splitting that we construct and the theta di-
chotomy for unitary group. The splitting plays a very crucial
role in the study of theta correspondence for p-adic and finite
reductive dual pairs.

0. Introduction.

Let F be a p-adic field with odd residual characteristic. Let D be F itself or a
quadratic extension of F'. Let Op be the ring of integers, pp be the maximal
ideal in Op, fp be the (finite) residue field and @w be a prime element
in D. Let V (resp. V') be a finite-dimensional nondegenerate e-hermitian
(resp. €’-hermitian) space over D where €,¢" are 1 or —1 and e/ = —1. Let
U(V) (resp. U(V')) denote the group of isometries of V (resp. V'). We can
define a skew-symmetric F-bilinear form on W := )V ®p V'. Then the pair
of two groups (U(V),U(V')) forms a reductive dual pair in the symplectic
group Sp(W). In particular, we have embeddings ¢y : U(V) — Sp(W) and
w: UV') — Sp(W).

Let (M][g],S) be a model of the Weil (projective) representation of Sp(WV)
with respect to a fixed nontrivial character i) of F'. Then there is a two-
cocycle ¢: Sp(W) x Sp(W) — C* associated to (M][g],S) given by

Mlg)o Mlg'] = c(g,9")M|gg'].

This two-cocycle ¢(g, g') determines an extension

P

1— C* — Sp(W) — Sp(W) — 1.

The group Sp(W) is called the metaplectic cover of Sp(W). The projective
representation (M [9],S) of Sp(W) can be lifted as an ordinary representation
Sp(W

(w(g),S) of Sp(W).
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Let (7(\]7) denote the inverse image of 1, (U(V)) in S?(\V/V) under the above
extension. Then U(V) is also called the metaplectic cover of U(V). A map

Byr: U(V) — C* is called a splitting of the metaplectic cover U(V) if it
satisfies

c(tyr(9); v (g) = B (9g") B (9) " B (g) ™

for any g, € U (V) Such a splitting determines a group homomorphism
By U(V) — U(V). Suppose that (1, 52: U(V) — C* are two splittings
of the cocycle C’Lw (V)xey (U(V))- Then it is well-known that the map

ﬁlﬁQ : U(V) — C* is a character of U(V) i.e., two splittings differ by a
character of U(V). A reductive dual pair (U (V) U(V’ )) is called split if

there exist splittings for metaplectic covers U(V) and U (V’ ). It is known
that the dual pair is always split when D is a quadratic extension of F. If
D = F, one of V,V' is a quadratic space and the other is a symplectic space.
It is also known that the reductive dual pair (U(V),U(V')) of a symplectic
group and an orthogonal group is split if and only if the quadratic space is
even-dimensional. Now we suppose that (U(V),U(V')) is a split reductive

dual pair. It is known that U (V) and U(V') commute with each other in
Sp(W). Therefore U(V) U(V’) is a subgroup of Sp(W). By restricting the
representation (w(g),S) to U(V) U(V’) and pulhng back to U(V) x U(V')
by the homomorphisms U(V) X U(V’) — U(V) U(V’) uy) — U(V) and
U(V') — U(V'), there exists a correspondence between irreducible admissi-
ble representations of U(V) and U(V’). This correspondence is called the
local theta correspondence. It is proved by R. Howe and J.-L. Waldspurger

[Wp] that this correspondence is one-to-one. (Note that we always assume
the characteristic of fr is odd.)

It is clear that the local theta correspondence for a split reductive dual
pair depends on the splittings of the metaplectic covers. It is important to
know [y (g) explicitly for a given model (M[g], S) of the Weil representation.
If we choose a maximal totally isotropic subspace Y of W, then we get the
Schrédinger model (My[g], S(Y')). A splitting 33, (g) of the cocycle cy (g, ¢')
with respect to the Schrodinger model (My [g], S(Y')) for a proper chosen Y
is obtained by S. Kudla in [KI1] by using the formula of ¢y (g, ¢') in [RR]. The
main task of this work is to investigate the splittings of the metaplectic covers
with respect to a generalized lattice model. A generalized lattice model is
convenient for the study of the local theta correspondence. For example,
it is the model used by Waldspurger to prove that the correspondence is
one-to-one. It is also used by D. Manderscheid in [Md] to study the local
theta correspondence for some reductive dual pairs.
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To introduce the generalized lattice model we need a few more definitions.
Let L be a good lattice in V i.e., a lattice such that wl* C L C L* where
L* :={veV|h(v,l) € pf foralll € L} and & is an integer which will be
specified in Subsection 3.1. Then the subgroup U(V)[, of elements stabilizing

—~—

L is a maximal open compact subgroup of U(V). Let U(V); denote the

inverse image of 1y (U(V)r) in Sp(W). Let L’ be a good lattice in V'
Define
B:=L*®@L'NnL®L".

Then B is a good lattice in W with respect to conductoral exponent Ar of
1. Then we know that B*/B is a finite symplectic space. We can define the
generalized lattice model (Mplg], S(B)) of the Weil representation of Sp(WV)
where S(B) is the space of locally constant, compactly supported maps from
W to the space of the Weil representation of the finite symplectic group
Sp(B*/B) and satisfies some additional conditions. Let (wg[g], S(B)) be the

~——

Weil representation of Sp(W) lifted from (Mp[g], S(B)). Let Kp denote the

stabilizer of B in Sp(W) and Kp denote the inverse image of Kp in Sp(W).
The advantage of the generalized lattice model is that the restriction of
action Mp[g] to Kp is very simple. In particular, it is known that the cocycle
cg(g,g") with respect to (Mp[g], S(B)) is trivial when restricted to Kpx Kp.
It is clear that vy (U(V)r) € Kp. Therefore, a map ¢: U(V), — C* is a
splitting of the metaplectic cover U(V),; with respect to the generalized
lattice model (Mp[g],S(B)) if and only if ¢ is a (quasi-)character. To take
the full advantage of the generalized lattice model, we need to know for
which character ¢ the splitting ¢: U(V), — C* can be extended to the
whole group U(V). We answer this question as follows:

Let U: S(B) — S(Y) be an isomorphism from a generalized lattice model
to a Schrodinger model. Then we can define a function ayy: U(V) — C* by

My [ty (9)] o W = ayr(g) ¥ o Mp[iyr(g)]
for ¢ € U(V). Then the function ay ﬁg, is a splitting of the cocycle
cg(ty(g),1y7(g')). In general, the whole function ayy ﬂ%,/, is too complicated
to be computed. However, the computation of the restriction ay» 5§‘U(V) .
is more accessible. In fact, knowing the values of ay ﬂ%,/,\U(v) , 1s already ad-
equate to our purpose. We know that an ﬂ%;, lu(vy, is a character of U(V).

Hence ayr ﬁ\l;//|U(V) , factors through the quotient by the commutator sub-
group [U(V)r,U(V)r]. From the result in [Pnl], we know that

UW)L/IlUV)L, UV)L] =UV)L/SUV)L x Q

where @ is a finite group. A more precise statement is in (1.4.b). If we
regard ayr 3% |y (v),, as a character of U(V)/[U(V)L, U(V)L], we see that the
obstruction of any 3}, |71, to be the restriction of a character of U(V) is on
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the component ). After a long computation, we find that ay» 55,\ SUW)L =
Cvrlsu(vy, where (yr is a character of order two when U(V) is a unitary
group and the dimension of V' is odd, and is the trivial character otherwise.
A more precise definition of {» is in Subsection 3.3. Hence aw@’,g;,l is a
character of U(V)r, and factors through the determinant map. Then there
is a character £ of U(V) such that awﬁ},’,g} = ¢ly(v), - Define

Byi(9) = avr(9) B (9)E " (9)
for ¢ € U(V). Hence we obtain the following our first main result of this
paper (cf. Theorem 3.4).

Theorem A. Suppose L is a good lattice in V and the metaplectic cover

(767) splits. There exists a splitting B : U(V) — C* of U(V) such that
ﬂ{ﬂy(y)L is a character of order two when U(V) is a unitary group and the
dimension of V' is odd, and is the trivial character otherwise.

Because the restriction of an irreducible admissible representation to cer-
tain maximal open compact subgroups is an important technique to study
representations of a p-adic reductive group, the splitting of the metaplectic
cover that we consider is expected to play an important role in the explicit
description of the local theta correspondence. In fact, by using the splitting
asserted by Theorem A, we establish in [Pn2] a nice relation of local theta
correspondence of depth zero representations of a p-adic reductive dual pair
and the theta correspondence of some finite reductive dual pairs. The ap-
plication of this relation to the study of theta dichotomy is the motivation
for our second main result (cf. Proposition 10.2).

Theorem B. Let (U(V),U(V'*)) be reductive dual pairs of unitary groups
where V'* are defined by

mi(mi—l)

€n/F <(—1)2det(v/i)> =+1

where m* is the dimension of V'*. Let n be the character of order two of
U(V). Let L (resp. L'}) be a good lattice in V (resp. V'T). Then

ayr (9)851 (9) = 1(g)ay- (9) 8- (9)
forge UV)rL.

By applying Theorem B, in [Pn2] we obtain theta dichotomy for finite
reductive dual pairs of orthogonal and symplectic groups and pairs of unitary
groups from the theta dichotomy of p-adic unitary groups in [HKS]. In fact,
this application is our motivation to study the splittings of the metaplectic
covers with respect to a generalized lattice model.

The contents of this paper are as follows: Section 1 consists of basic
definitions and preliminary results that will be used throughout the paper.
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In particular, we state the result from [Pnl] concerning the structure of
the commutator subgroups of maximal open compact subgroups of p-adic
classical groups. In Section 2, we introduce the Schréodinger model and the
generalized lattice model of the Weil representation. The material in this
section is well-known and can be found in [RR] and [Wp]. In Section 3, we
introduce the splittings of the metaplectic covers and state our main result.
The main task of the remaining part of this paper is to prove Proposition 3.3.
The proof occupies Sections 6-9 according to unitary groups with respect to
an unramified extension, unitary groups with respect to a ramified extension,
orthogonal groups and symplectic groups. Sections 4 and 5 consist of lemmas
that are needed for the proof in the latter sections. In Section 4, we study the
isomorphisms between several models of the Weil representation introduced
in Section 2. In Section 5, we have some computations for the reductive
dual pairs of unitary groups. In this section, an embedding of an anisotropic
unitary group into a unitary group of a split e-hermitian form is modified
from [KIl]. In Section 10, we prove a proposition which concerns a relation
of the splittings and theta dichotomy.

This subject occurs naturally from the study of local theta correspondence
via minimal K-types in the author’s dissertation. The author would like to
thank Professor Dan Barbasch for introducing him to this direction. The
author also want to thank Professors Jeffrey Adams and Professor Stephen
Kudla for their interest in this work. Finally, the author thanks the referee
for several useful suggestions to improve the presentation of this paper.

1. Preliminaries.

1.1. Notation. Let F' be a nonarchimedean local field, O be the ring of

integers of F', pp be the maximal ideal, wp be a prime element, fp := Op/pp

be the (finite) residue field, 77 be the identity automorphism of F. We

assume that the characteristic of fr is odd throughout this paper. Let

q denote the cardinality of fr. Fix a character ¢ of F' with conductoral

exponent A\p i.e., Ap € Z is the smallest integral number such that 1,/)|p)\ P s
F

trivial. We shall use the notation ord (1) to denote the conductoral exponent
of 1. Let 1y be the character of F' defined by vy (t) := ¥ (t/2) for t € F.

Let E be a quadratic extension of F'; O be the ring of integers of F, wg
be a prime element in O, fg be the residue field of E, 75 be the nontrivial
automorphism of F over F. We make the choice such that wgp = wp if F
is unramified, and 7g(wg) = —wg if E is ramified. Let E® denote the
group of norm one elements in EX i.e., BN := {t € EX | trp(t) = 1}. f E
is an unramified quadratic extension of F', then fg is a quadratic extension
of fr. Similarly, let f S) denote the group of norm one elements in f;. We
fix (D, w,T) to be one of the triples (F,wp,7r) or (E,wg, 7). Let Op be
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the ring of integers of D, fp the residue field of D. Let Ilp,: Op — fp be
the usual quotient map. Let ord be the discrete valuation of D such that
ord(F*) = Z.

If a is a real number, the largest integer not greater than a is denoted by
|a], and the smallest integer not less than a is denoted by [a].

1.2. Classical groups and e-hermitian spaces. Let ¢ be the number 1
or —1. Let V be a (finite-dimensional nondegenerate left) e-hermitian space
over D i.e., there exists a map h(,): V x V — D such that

h(z+vy,z) =h(z,2) + h(y,z), h(zx,y+ 2) =h(x,y) + h(z, 2),

h(az,by) = ah(z, y)7(b), h(z,y) = er(h(y,z))
for any z,y € V and a,b € D, and h(z,V) = 0 implies x = 0. A nontrivial
vector v € V is called isotropic (resp. anisotropic) if h(v,v) = 0 (resp.

h(v,v) # 0). The space V is called isotropic if an isotropic vector exists, and
is called anisotropic otherwise. The space V is called a hyperbolic plane if V
is two-dimensional and isotropic. If V is a hyperbolic plane, a basis {vi,v2}
is called a standard basis of V if it satisfies h(vi,v2) = 1 and h(vy,v1) =
h(vg, UQ) =0.

Let U(V,h) or U(V) denote the group of isometries of (V,h). Let det:
U(V) — D* denote the determinant map. Let SU(V) denote the subgroup
of U(V) consisting of elements of determinant one. The groups U(V) or
SU(V) are called classical groups (over F'). The group U (V) is a symplectic
group if (D, €) = (F,—1), is an orthogonal group if (D,e) = (F,1), and is a
unitary group if D = F.

The definitions above can be applied to a finite field. More precisely,
let f be a finite field of odd characteristic and d be f itself or a quadratic
extension of f. Let 7q denote the usual involution of d over f. Let v be
a finite-dimensional nondegenerate e-hermitian space over d for e = 1 or
—1. Let U(v) denote the group of isometries of v and SU(v) denote the
subgroup of elements of determinant one. The groups U(v) or SU(v) are
called finite classical groups.

1.3. Good lattices in an e-hermitian space. Let L be a lattice in V,
that is, a free Op-module whose rank is equal to the dimension of V. Fix
an integer . Define

(1.3.a) L*:={veV|h(v,)ep)foralleL}.
Therefore L* depends on the integer k. Right now we allow & to be arbitrary,

but we will impose some condition on k in Subsection 3.1. It is clear that
L* is also a lattice in V. The lattice L is called a good lattice if

(1.3.b) wl* CLCL*
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Let L be a good lattice in V. Then 1* := L*/L and 1 := L/wL* are vector
spaces over fp. We can define nondegenerate sesquilinear forms h(, )<, h(, )
on 1" and 1 respectively by
(M (w), s ()1 = Toy, ((w, w')a' "),
(g (v), M (v)h = o, ((v,v' ) ")
where w,w’ € L*, v,v' € L. Note that the forms (, )}« and (,); are non-

degenerate and depend on the choice of a prime element w. The following
table is from [Wp], Lemme 1.2.

h(, )i~ h(, )i
D=F e-symmetric over fp e-symmetric over fp
D = E, unramified e-hermitian over fg e-hermitian over fg
D = E, ramified | (—1)**e-symmetric over f5 (—1)"e-symmetric over fr

Define (V) := dim(V') — 2r(V') where V is V, 1 or I* and (V') denotes the
Witt index of V. It is straight forward to check that £(V) = ¢(1) = ¢(I*) =0
if V is a symplectic space; ¢(1) = ¢(1*) = 2 if (V) = 4 and V quadratic; one
of £(1),¢(1*) is one and the other is two if (V) = 3 and V quadratic; either
0(1) = £(1*) = 1, or one of ¢(1),£(1*) is zero and the other is two if (V) = 2
and V quadratic; one of ¢(1), £(1*) is zero and the other is two if £(V) = 2 and
V hermitian with respect to a ramified extension; ¢(1) = ¢(1*) = 1if £(V) = 2
and V hermitian with respect to an unramified extension. In particular, we
have £(1) + £(1*) = £(V) for any cases.

Let L be a good lattice in V. A decomposition V = @, V; of subspaces is
called L-admissible if L = .(LNV;). A basis {v;} of V is called L-admissible
if the decomposition V = €, Dv; is L-admissible. A nondegenerate subspace
Vi of V is called L-admissible if the decomposition V = V; @ Vi is L-
admissible where Vi~ denotes the orthogonal complement of Vi in V. It is
clear that we have an L-admissible decomposition

(1.3.¢) V=V1dVs

such that LNV = L*NV; and LN Ve = w(L* NV,). Then it is clear that
dim(1) = dim(V;) and dim(1*) = dim(Vs).

Lemma. (i) An anisotropic space V has a unique good lattice.

(ii) Suppose thatV = Duvy @ Dvy is a hyperbolic plane with a standard basis
{v1,v2} and k =0. Let Ly := Opvy + Opvy and Le := Opv1 + ppoa.
Then any good lattice in the hyperplane V is of the form g.L; for some
geUV)andi=1 or2.



170 SHU-YEN PAN

(iii) For general e-hermitian space V over D and a good lattice L in V,
there is an L-admissible decomposition V = @, V; as direct sum of
nondegenerate subspaces such that each V; is either one-dimensional
or two-dimensional isotropic.

Proof. First suppose that V is anisotropic. Then we have a decomposition
V = @, Dv; such that h(v;,v;) = 0 for i # j. Clearly each subspace
Dv; has a unique good lattice L; and the lattice @Z L; is a good lattice in
the anisotropic space V. In particular, the decomposition V = @, Dv; is
L-admissible. It is not difficult to derive from Bruhat-Tits result in [BT]
that there is a realization of the building of U (V) such that a vertex of the
building corresponds to a good lattice in V. Hence the assertion that @, L;
is the only good lattice in V follows from the fact that the building of U (V)
is a single point.

A proof of (ii) and (iii) can be found in [Pn3] Lemma 4.2. O

From the description in this subsection and the previous lemma we see
that a good lattice in a 2n-dimensional symplectic space W with k = 0 is
equivalent to one of the following

Li:=prx1+prpae+ - +ppz; + Opzipr + -
+ Opxy + Oryn + Opyn—1+ -+ Ory1

where ¢ = 0,...,n and {z1,... ,Zp,y1...,Yn} is a self-dual basis of W.
Note that Ljj = Lo and L} = wp'L,.

1.4. Commutator subgroups of maximal open compact subgroups.
Let L be a good lattice in V. Define

(14.a) UV)L:={9gecUV)|g.L=L}.

It is known that U(V)r is a maximal open compact subgroup of U(V).
Moreover it is also known that every maximal open compact subgroup of
U(V) is equal to U(V)y, for some good lattice L in V (cf. [Hj]). Define
SUWV)L :=U0UV)LNnSUV).

If G is a group, let [G, G| denote the commutator subgroup of G. From
[Pnl] Theorem 3.1, we have the following isomorphism

(1.4.b)
UO)L/UV)5, UW)L) = (UV)/SUW);)

% (SWM) x UE)/SUW) x SU))

x (SUM/[UM,UM)]) x (SUE)/[0),v)

where S(U (1) x U(1*)) denotes the subgroup of U(1) x U(1*) consisting of ele-
ments (g1, g2) such that det(g1)det(g2) =1. It is obvious that U(V)/SU (V)L
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is trivial if U(V) is a symplectic group, is Z/2Z if U(V) is an orthog-
onal group, is E( if U(V) is a unitary group. It is also obvious that
S(UQ) xU1*))/(SUQ) x SU(I*)) is trivial if one of 1,1* is trivial or a sym-
plectic space, is Z/2Z if both U(1), U(1*) are orthogonal groups, and is fg)
if both U(1),U(1*) are unitary groups.

The structure of commutator subgroups of finite classical groups is well-
known and can be described as follows. Let U(v) be a classical group over
a finite field £ with odd characteristic. Then

(1.4.c) SU~)/[U),U(v)]

L, if (19,€) = (id, —1), ¢ > 3 or dim(v) > 4;

Z/3Z, if (t4,¢) = (id, 1), ¢ = 3 and dim(v)=2;
~ <1, if (7q4,€) = (id, 1) and dim(v) = 1;

Z/2Z, if (1q,€) = (id, 1) and dim(v) > 2;

1, if 74 # id.

\

This result can be found, for example, in [HO] Theorem 6.4.26 and §6.4G.

By (1.4.b) and (1.4.c), the quotient SU(V)./[U(V)L,U(V)r] is well un-
derstood. The set of representatives of [U(V)r,U(V)r]-cosets in SU(V)L
can be described as follows. These descriptions are important for the results
in Sections 6-9.

(i) Suppose that V is a symplectic space. We know that SU(V)./[U(V)L,
U(V)r] is nontrivial only if ¢ = 3. So we assume that ¢ = 3. From
(1.4.c), SU1)/[U1),U(1)] is not trivial if and only if V; is two-dimen-
sional. In this case, let {vy,v2} be a standard basis of V;. If L =

o 1] i ST,
U(V)r] generates SU(1)/[U(1),U(1)]. We have a similar description
when 1* is two-dimensional.

(ii) Suppose that V is a quadratic space. Let V =V @ Vs be the decom-
position in (1.3.c).

(ii.1) We know that S(U(1) x U(1*))/(SU(1) x SU(1*)) is nontrivial if and
only if both Vi, Vs are nontrivial. Assume that we are in this case.
For i = 1 or 2, if V; is isotropic, choose an L-admissible hyper-

2 ’0“} e UOVY) C UV)

for some k € F* such that g; € U(V)r. If V; is anisotropic,

choose an L-admissible one-dimensional nondegenerate subspace

VY of V; and let g; := —1 € U(V?) C U(V). Therefore g; belongs

U(V)r and g := g1g92 belongs to SU(V)r. Moreover the image of

Opv1 + Opvg, the image of the element {

bolic plane VZ-O in V; and let g; = {
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g in SUWV)L/[UV)L, UV)L] generates S(U(1) x U(1*))/(SU(1) x
SU(1%)).

(ii.2) We know that SU(1)/[U(1),U(1)] is nontrivial if and only if the

(iii)

dimension of V; is greater than 1. Assume that we are in this case.
If V is isotropic, choose an L-admissible hyperbolic plane V? in
V; and let g := Vg k(_)l} e UVY) CU(V) for k € F* such that
ord(k) = 0 and k is not a square. If V) is anisotropic, then V;
must be two-dimensional and V; has two L-admissible subspaces
Fuvy, Fuy such that h(vy,vy)h(vg,v2) is not a square. Let g; be
the element such that g;|p,, = —1 and gi|(Fvi)J- = 1. Therefore
we know that g := g1g2 belongs to SU(V)r and the image of g in
SUWV)L/[UV)L,U(V)L] generates SU(1)/[U(1),U(1)]. We have a
similar description for SU(1*)/[U(1*)U(1*)].
Suppose that V is an e-hermitian space over an unramified quadratic
extension F of F'. The quotient SU(V)/[U(V)L,U(V)L] is nontrivial if
and only if both V;, Vs are nontrivial. Assume that we are in this case.
If V; is isotropic, choose an L-admissible hyperbolic plane VZQ CV; and
gi(k) == [T(Om kgl} e U(VY) CU(V) for some k € OF —pr. IfV;
is anisotropic, choose an L-admissible one-dimensional nondegenerate
subspace VY of V; and let g;(k) := 7(k)k™1 € UV?) C U(V) for
k given as above. Then the element g := g1(k)g2(k~!) belongs to
SU(V)r, and its image in SU(V)/[U(V)r,U(V)L] generates S(U(1) x
U1*))/(SU(Q) x SU(1*)) for a proper chosen k.
Suppose that V is an e-hermitian space over a ramified quadratic exten-
sion F of F. Write E = F(v/A) for some non-square element A € F*.
Without loss of generality, we assume that 1is a quadratic space and
I* is a symplectic space. Assume that the dimension of 1 is greater
than 1. If V; is isotropic, choose an L-admissible hyperbolic plane
T(Ok) kgl} cUWY) CU(V) for k € F* such that
ord(k) = 0 and k is not a square. If V; is anisotropic, then V; must
be two-dimensional and V; has two L-admissible subspaces Fvi, Evs
such that (A, h(vy,v1)h(ve,v2))r = —1 where (, ) denotes the Hilbert
symbol. Let g; be the element such that ¢;|g,, = —1 and gi‘(Evi)J_ =1.
Therefore, we know that g := g1g2 belongs to SU(V)r, and the image
of gin SUWV)L/[UV)rL,U(V)L] generates SU(1)/[U(1),U(1)]. If g =3
and dim(1*) = 2, then SU(I*)/[U(1*), U(1*)] is nontrivial. We have an
analogous description of the element g as in (i) such that the image of
gin SUWV)L/[UV)L,U(V)L] generates SU(1*)/[U(1*), U(1%)].

in V; and let g := [
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1.5. Weil index of a character of second degree. In this subsection,
we state some well-known facts on the Weil index of a character of second
degree which will be used in latter sections. For a € 5, define

(1.5.a) (i) _ 1, ifais E? square;
fr —1, otherwise.

For a € F*, write a = wlofd(a)u such that u is a unit of Op. Let a denote
the element Ilp, (u) € f5. Suppose that 1 is a character of F. Let 1 be

the nontrivial character of fr defined by Yo, (1) = w(twoprdw)fl). We
should notice that a and ¢ depends on the choice of the prime element wp.
Define ord(v) the parity of ord(¢) i.e.,

—— ] 0, iford(z) is even;
(1.5.0) ord(v) = {1, if ord(s) is odd.

Define ord(a) similarly. For a € F*, let vp (1), vr(a, ), vep (), ve (@, 1) be
as defined in [RR] appendix. The following properties are well-known:

1) 9 (0) = (7).

e (@, ) = (%) for a € F*,

(6 '}’F((l77/1) _ ((%)’YfF (ﬁ))ord(a) (%)ord(w) (%Fl)ord(a)ord(i,/)) for a € F*.
The reference is the appendix of [RR]. Note that the formula for vr(a, )
in [RR] Proposition A.11 is not correct. We note here that the right hand
sides of (3) and (6) do not depend on the choice of the prime element wp
although the terms @ and ¢ do.

2. Several models of the Weil representation.

In this section, we introduce two special realizations of the Weil represen-
tation, namely the Schrédinger model and the generalized lattice model.
These realizations are well-known. They can be found in [MVW], [RR] or
[Wp].

2.1. Weil representations and the metaplectic covers. Let (W, (, )))
be a symplectic space over F. Define the Heisenberg group H(WW) (asso-
ciated to W, {(,)))) to be the group with underlying set W x F and with
multiplication given by

(2.1.&) (wl,tl) . (wz,tg) = (w1 + wo,t1 + 12 + %((wl,wg») ,

where wi,wy € W and t1,ta € F. The center of HW) is {0} x F, which
will be identified with F'.
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Fix a nontrivial character ¢ of F.. By the Stone-Von Neumann theorem,
there is a unique (up to equivalence) irreducible representation (py,S) of
H(W) with central character 1. The symplectic group Sp(W) acts on H(W)

P

by g.(w,t) := (g.w,t). Define the metaplectic cover Sp(W) of Sp(W) to be
the topological subgroup of Sp(W) x Aut(S) consisting of the pairs (g, M|g])
where M |g] satisfies

(2.1.b) Mlg] o py(h) = py(g-h) o M|g]
for g € Sp(W), M|g| € Aut(‘g)‘\aimgd h € HOWWV). It is clear that (g, M[g]) €

Sp(W) implies (g,2M]|g]) € Sp(W) for any z € C*. There is a short exact
sequence of group homomorphisms

(2.1.c) 1— C* -2 SpW) 2 Spw) — 1

where «a: z +— (1,21) and (3: (g, M[g]) — g. The metaplectic group Sp(W)
comes equipped with a representation wy on § given by

(2.1.d) wy(g, Mlg]) := Mg].

P

The representation (wy(g),S) of Sp(W) or the projective representation
(Mlg],S) of Sp(W) is called the Weil representation or the oscillator repre-
sentation.

Let (py,S) be an irreducible admissible representation of the Heisenberg
group H(W) with the central character 1. Suppose that a special choice
of M|g] satisfying (2.1.b) is given for each g € Sp(W). By the Stone-Von
Neumann theorem, the map M|g] o M[¢'] is a constant multiple of Mg¢/|
for g,¢' € Sp(W). Then the function c¢: Sp(W) x Sp(W) — C* defined by

(2.1.¢) Mg} o M[g'] = c(g, 9') M[gg]
is a two-cocycle of Sp(W).

2.2. Schriédinger model and Ranga-Rao cocycle. Let W = X+Y bea
complete polarization i.e., both X, Y are totally isotropic and are orthogonal
complements of each other. Let S(Y) be the space of complex valued, locally
constant, compactly supported functions on Y. For (z+y,t) € H(W), define
a homomorphism P?;: HOW) — S(Y) by

(2.2.2) (o5 (z +9,0.5) (W) =0 ((§ + ¥ 2) + ) fly +Y)
for any f € S(Y), z € X, t € F, and y,y € Y. For g € Sp(W), write

g = {CCL Z} according to the complete polarization W = X + Y, where

a € Hom(X, X), b € Hom(Y, X), ¢ € Hom(X,Y), d € Hom(Y,Y). Let a*,
b*, ¢*, d* denote the dual maps of a, b, ¢, d respectively i.e., a* € Hom(Y,Y),
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b* € Hom(Y, X), ¢* € Hom(X,Y), d* € Hom(X, X) are the unique maps
such that

(a.z,y) = (=,a"y), (. dy) = {(d".z,y),
oy, y") = (v, -0"), (&, ca’) = (~c"2,2")

for any z,2/ € X and any v,y € Y. Then we can check d*a — b*c = 1,
a*d — c¢*b = 1, d*b = b*d, a*b = b*a, a*c = c*a, d*c = ¢*d, and ¢~! =
[_dc* ;{Z } For each g € Sp(W), a measure p, on the space X/Ker(c)
is given in [RR] where Ker(c) denotes the kernel of the homomorphism
c: X — Y. Then define My[g] € Aut(S(Y)) (cf. [RR] Lemma 3.2) by

(2.2.b) (My[g]-f)(y)
N / b(g(a*y, =b"y) + {c"x, b"y)
X /Ker(c)
+ 3=z, d* 2)) f(—c" .2 + a” y) dpg ()

for f € S(Y). One can check that pi(h) and My [g] satisfy (2.1.b) for
any ¢ € Sp(W) and h € HW) (cf. [MVW] p. 40). The realization
(Mylg],S(Y)) is called a Schrédinger model of the Weil representation of
Sp(W). This cocycle cy(g,g’) defined with respect to My [g] is called the
Ranga-Rao cocycle and it is computed explicitly in [RR] Theorem 4.1.

2.3. Generalized lattice model. The Schrodinger model is also defined
for a finite symplectic group. We know that the metaplectic cover of a
finite symplectic group splits. Therefore the Weil representation of a finite
symplectic group is an ordinary representation.

Let B be a good lattice in W (with respect to the integer A\r) and b* be
the quotient B*/B and IIg~ be the quotient map B* — b*. We know that
b* is a vector space over fr with a skew-symmetric form (, )p- on b* by

(2.3.a) (Mg (w), Mp (@) )b = Moy ((w, w')wy )

for w,w’ € B*. Let H(b*) := b* x fr be the Heisenberg group associated to
the finite symplectic space (b*, {(, )p+). Let 1) denote the character of fr as
defined in Subsection 1.5. Let (&, S) be a Schrédinger model of the Weil
representation of the finite symplectic groups Sp(b*) associated to the data
(b*, (, )b+, ¥). Let pj denote the representation of H(b*) with the central
character ¢ on the space S by the Stone-Von Neumann theorem. Define
H(B*) := B* x p}F_l. It is easy to check that H(B*) is a subgroup of H(W).
There is a homomorphism

Myy(pe: H(B) — H(b*) by (b,t) = (g (b), Ho, (twoy 7).
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Let Kp be the stabilizer of B in Sp(W), and
(2.3.b) Ky:={geKgp|(g—1).B*CB}.

It is clear that K; is a normal subgroup of Kp and Kp/KJ; is isomorphic to
Sp(b*). Let py denote the representation of H(B*) inflated from pyj by the
projection Ily(p«), and w, denote the representation of Kp inflated from
wy by the projection Kp — Kp/K}. Let S(B) denote the space of locally
constant, compactly supported maps f: W — S such that

(2.3.¢) Fb+w) =1 (5(w, b))y (b).(f(w))

for w € W, and b € B*. For h := (w,t) € H(W), define pg(h) € Aut(S(B))
by

(2.3.d) (pg (w, ). ) () == (g {w', w)) +t) f(w +w)

for f € S(B). For g € Sp(W), we define Mp[g] € Aut(S(B)) by

(Mglgl.f)(w) := w@« w))pp(™1).flg™ (b +w)) db

where g € Sp(W), f € S( ), w € W and db is a Haar measure on B*.
It is not difficult to check that pﬁ(h) and Mp[g] satisfy (2.1.b). We can

normalize the measure such that
(23.) (MplK].f)(w) = By (k). (k" w)

for k € Kp and f € S(B). This realization of the Weil representation is
known as a generalized lattice model. The cocycle determined by the choice
of the operators Mp[g] is denoted by ¢p(g,q).

2.4. Lattice model. If B happens to be self-dual i.e., B* = B, then
(Mglg],S(B)) is called a lattice model. This model is well-known. We
briefly recall the basic facts as follows. Let A be a self-dual lattice in W.
Then S(A) is the space of locally constant, compactly supported functions
f+ W — C such that

(2.4.2) fla+w) =(z{w,a))f(w)

for a € A, w € W. Fix a Haar measure p of W such that u(A) = 1. Then
we know

@Mwﬂfﬂ’) (Ll w) + 1) fw + o)
(M /w;aw 1 (a +w)) dy(a)

where g € Sp(W), v’ € W, and (w,t) € HW).
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3. Admissible splittings of metaplectic covers.

In Subsection 3.1, we review the basic concept of reductive dual pairs. In
Subsection 3.2, the doubling procedure from [K]] is recalled. Then we in-
troduce a splitting of the metaplectic cover with respect to the generalized
lattice model. The main result is Theorem 3.4.

3.1. Reductive dual pairs and admissible splittings. Let (V, h) (resp.
(V',1')) be an e-hermitian (resp. ¢’-hermitian) space over D such that ee’ =
—1. Define W := V®p)’, which will be denoted by V®V’ later for simplicity.
Define a skew-symmetric F-bilinear from (, )) on W by

(3.1.a) () ::kTrdD/F(h(,) ®Toh'(,))

where k:=1if D=F, k= % if D = FE, and Trdp,r denotes the reduced
trace from D to F'. Recall that 1 is a character of F' of conductoral exponent
Ap. Define A := Ap if D is F' or an unramified quadratic extension of F,
A :=2\p —1if D is a ramified quadratic extension of F. Let x (resp. ') be
the integer to define the dual lattices in V (resp. V') as in (1.3.a). We make
the following assumption

(3.1.b) k+K =X

throughout the paper.

The pair (U(V),U(V')) is called a reductive dual pair in Sp(W). Let
tyr denote the embedding U(V) — Sp(W), and U(V) denote the inverse
image of vy (U(V)) in Sp(W). The group U(V) is called a metaplectic
cover of U(V). Let U(V) be the two-fold cover of U(V) in U(V). We
know that U(V) is a totally disconnected group. A representation (mw, V')
of U(V) is called admissible if m|cx (z) is multiplication by z and W\U(V)
an admissible representation of a totally disconnected group. Restrict the
Weil representatlon of Sp(W) to U(V) - U(V’) and pull it back via the map

U (V) xUV)—-U (V) U (V’ ), then we establish a correspondence between

—_—

some irreducible admissible representations of U(V) and U()V’). It is proved
by R. Howe and J.-L. Waldspurger [Wp] that the correspondence is one-to-
one if the residue characteristic of F' is odd. This correspondence is called
the local theta correspondence.

A function fy: U(V) — C* is called a splitting of the cocycle
C|Lv,(U(V))XLV,( 518%)) if it satisfies

(3.1.c) c(w(9),0r(9') = B (99')Bvr(9)~ B (g) ™
for any g, g eUvUV). It the extension U(V) — U(V) has a splitting By, then
the map Byr: U(V) — U(V) by g — (1r(9), Byr(9) Mty (g)]) is a group
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homomorphism. A splitting Gy is called admissible if 7 o BV’ is an ad-
missible representation of U()) whenever 7 is an admissible representation

e

of U(V). It is known that most of the metaplectic covers split. If we fix

P e

an admissible splitting [y (resp. fBy) of U(V) (resp. U(V')), we establish
a one-to-one correspondence between some irreducible admissible represen-
tations of U(V) and U(V’). Of course, the correspondence depends on the
choices of the splittings. If both 31, 52 are admissible splittings of a cocycle
c(tyr(g),1(g')), then it is obvious and well-known that 3,35 * is a character

of U(V).

3.2. A doubling procedure. Let (U(V),U()V’)) be a reductive dual pair.

An explicit admissible splitting (when it exists) of U(V) with respect to a
Schrodinger model is given by S. Kudla. Here we briefly recall his result.
First suppose that the space V is a direct sum of hyperbolic planes. So we
have a complete polarization V = X° +Y°. Define X := X°® )V and Y :=
Y°®V'. Then W = X +Y is a complete polarization. Let (Myg],S(Y))
be the Schrédinger model with respect to Y and a fixed character ¢ of F.
Then an explicit splitting, denoted by ﬁ?;, (g) in this paper, is given in [KI]
Theorem 3.1.

If the space V is not a direct sum of hyperbolic planes, a doubling procedure
is required to obtained the splitting as follows (cf. [KI] Section 4). Let V
denote the space V with the form h(,) := —h(,). Then the space V + V
is a direct sum of hyperbolic planes. Let W : =V ® )V and W =V ® V.
We will identify U(V) with the subgroup U(V) x {1} of UV + V). We
use the same notation ¢y to denote the inclusions U(V) — Sp(W) and
UV +YV) — Sp(W +W). Then we have the following maps

UYV) = UW) xUYV) — UV +V) 25 SpW + W).
Define
(3.2.a) X ={(v,—v) |[veV}ICV+V,
Yo :={(v,v) |[veV}IcCV+V.
Then it is clear that the decomposition V +V = X° +Y° is a complete
polarization. Define Y := Y° ® V' and X := X°® V. Then W+ W =

X +4Y is a complete polarization. Then we can define the Schrodinger model
(My[g],S(Y)) of the Weil representation of Sp(WW + W). We know that
there exists the Weil representation (M'[g],S") (resp. (M '[g],S)) of Sp(W)
(resp. Sp(W)) such that S(Y) ~ &' ® S’ and My|g,g] ~ M'[g] ® M [g] for
(9,9) € Sp(W) x Sp(W) C Sp(W+W). Let ¢ denote the cocycle associated
to (M'[g],S’). Then it is clear that

(3'2'b) CY((ga 1)7 (.g,a 1)) = Cl(g7g/>
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for g,g' € Sp(W). Define ), (g) := Bh(g,1) for g € U(V) C UV + V)
where 3%,(g,1) is obtained by the previous paragraph. Then %, (g) is an
admissible splitting of (M’[g],S’).
Let L (resp. L) be a good lattice in V (resp. V). Define

(3.2.c) B(L,L'):=L*®L'NL®L"

Let Ar be the integer k to define the dual lattices in W as in (1.3.a). It is
easy to check that B(L,L') is a good lattice in W, that is, wpB(L, L')* C
B(L,L'") € B(L,L")* by the assumption (3.1.b). It is also easy to verify
that vy (U(V)) € Kp. Let L be the corresponding good lattice in V.
Clearly B(L,L') 4+ B(L,L') = B(L + L, L') is a good lattice in W +W. Let
By := B(L,L"), By := B(L,L') and B3 := B(L+ L,L’). Tt is also clear
that we have S(Bs) ~ S(B;1) ® S(B2) and Mp,[g,9] = Mp,[g] ® Mp,[qg] for

g € Sp(W) and g € Sp(W). In particular,

(3.2.d) cB;((9,1), (¢, 1)) = ¢B,(9,9)
for g, € Sp(W).

3.3. A key proposition. Keep the notation in Subsection 3.2. Let W’
be the space W or W + W and B := B(L,L’) or B(L + L,L’') depending
on whether V is a direct sum of hyperbolic planes or not. Now we want
to compare the actions of My [g] and Mp[g]. Let ¥: S(B) — S(Y) be an
isomorphism between pg and pi ie., pi(h) =T lo pg(h) o ¥ for any
h € H(W'). Because My |g] o pi(h) = pi(g.h) o Myg], we have

WoMyl[glowto pg(h) = pg(g.h) oWo Mylg]o¥™t,

By the Stone-Von Neumann theorem, ¥~ o My [g] o ¥ is a nonzero multiple
of Mp[g]. Hence we define the function ayr: U(V) — C* by

(3.3.2) My [ (g)] o ¥ = ay(g) ¥ o Mp[ty(g)]

for g € U(V). Since V is unique up to a constant multiple, we see that
ay does not depend on the choice of W. Let cy(1y(g), 0 (g)) (resp.
cs(ty(g),1y7(g"))) denote the cocycle on U (V) with respect to the Schrodin-
ger model (My[g],S(Y)) (resp. the generalized lattice model (Mg[g],S(B)))
of the Weil representation of Sp(W’). Then it is clear that

(3:3b) ey (w(9), v (9) = avi(g)av(g)av (99") " ep (i (g), v (g'))

for any g,¢g' € U(V). Therefore an(g)3) (g) is a splitting of the cocycle
cB(ty(9),t(g')). And it is also clear that ay(g)B)(g) is an admissible
splitting since 3}, (g) is admissible. From (2.3.e), we know that cg(g,¢') = 1
if both g,¢ € Kp. Therefore ayxﬂ\};\U(v) is a character of U(V), because
LV/(U(V)L) - KB.

Now we define a character (y» of U(V)r, as follows.

L
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(i) If D = F, let {y» be the trivial character of U(V)y.

(ii) Suppose that D is an unramified extension of F. If one of 1, 1* is
trivial, let {,» be the trivial character of U(V)r. Now suppose that
both 1 and 1* are not trivial. Then S(U(1) x U(1*))/(SU(1) x SU(1*))
is a finite cyclic group order ¢ + 1. Let (y be the unique character
of S(U(l) x U(1*))/(SU(1) x SU(I*)) of order two. Let (,» be the
character of U (V) lifted from the character of U(V)/[UV)L,U(V)L]
extended trivially from (g by (1.4.a) if V' is odd-dimensional; let ()
be the trivial character of U(V)y, if V' is even-dimensional.

(iii) Suppose that D is a ramified extension of F. Then one of 1,1* is a
quadratic space, and the other is a symplectic space. Let 1’ denote
the quadratic space. If the dimension of 1 is zero or one, let (yr
be the trivial character of U(V)r. If the dimension of I’ is greater
than one, then we know that SU(Y)/[U(Y),U(Y)] ~ Z/2Z and let (
be the nontrivial character of SU(1")/[U(1),U(l')]. Then {y can be
extended trivially via (1.4.a) to be a character (still denoted by (p)
of UWV)L/[UWV)L,UV)L]. If V' is odd-dimensional, let ¢,» be the
character of U (V) lifted from ¢y of the group U(V)/[U(V),U(V)L];
if V' is even-dimensional, let (y» be the trivial character of U(V)p.

Although the notation of the character () suggests that it depends on V',
in fact it only depends on the parity of the dimension of V'.

Proposition. Keep the notation as above. Then the restrictions to SU(V)p,
of Oéy/ﬁg/ and (yr are equal.

Since both ayv3), and (v are characters of U(V)y, the restrictions
OCV’B%)//’[U(V)L,U(V)L} and (yr|[pv),,u(v),) are trivial. So to prove this propo-
sition we only need to check ay/(g)8% (9) = ((g9) where g runs over a
set of representatives of [U(V)r,U(V)r]-cosets in SU(V)r. So the result in
Subsection 1.4 plays a role in the proof of this proposition. We also remark
here that [35, depends on a choice of a character y of E* if U(V) is a uni-
tary group. For different y, B%;, may be different by a character ¢ of U(V)
(or U(V +V)). Such a character ¢ must factor through the determinant
map. Therefore we only need to prove the proposition for a proper chosen
character x if U(V) is a unitary group. The remaining computation for the
proposition is postponed to Sections 6-9.

3.4. A nice splitting with respect to a generalized lattice model.
The following theorem is our first main result.

—_~

Theorem. Suppose that the extension U(V) — U(V) splits. Let L be
a good lattice in V and L' be a good lattice in V'. Let B be the lattice
B(L, L") or B(L+L, L") depending on whetherV is a direct sum of hyperbolic
planes or not. Let (y be the character of U(V)y, defined in Subsection 3.3.
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Then there exists an admissible splitting 55,: U(V) — C* of the cocycle
ce(t(9), 0vr(g') such that B5(g) = C(g) for any g € U(V)r. Moreover
the splitting ﬁﬁ, is unique except the following two cases: (1) U(V) is an
isotropic orthogonal group, or (2) E is a ramified quadratic extension and
the orthogonal space in 1,1* is trivial. For the exceptional cases, there are
two such splittings.

Proof. Define

{1}, if U(V) is a symplectic group;
K = {#1}, if U(V) is an orthogonal group;
EM | if U(V) is a unitary group.

Let det: U(V) — K be the determinant map. By Proposition 3.3, the char-
acter ay/ﬂ]lj,@/ = avxﬂ}j,gg,l is trivial when restricted to SU(V)r. There-
fore, the character a3}, ¢y of U(V), factors through the determinant map
Le., ay Bl =& o (det|y(y),) for some character & of det(U(V)r). It is
obvious that either det(U(V)r) = K or det(U(V)r) is a subgroup of index
two of K. In both cases, it is clear that a character of det(U(V)r) is the
restriction of a character of K. So we may assume that ¢’ is a character of
K = det(U(V)). Hence ayr ﬁ%,/, Cyr is the restriction of the character £ o det
of U(V) ie., oy B¢y = (¢ o det)|7(vy, - Let £ denote the character £’ o det
of U(V). Define

(3.4.a) Bi(g) = &(g) o (9) B (9)

for any g € U(V). Since ayr(g)B3(g) is an admissible splitting of cp(1(g),
1w (g')), so is AL (g). And it is clear that ﬁﬁ,|U(V)L is equal to (yr.

Next we want to prove that the admissible splitting satisfying the condi-
tion in Theorem 3.4 is almost unique. Suppose that § is another admissible
splitting of cp(1y(g), 1w (9')) and Blyny, = ¢v. Then B71BL, is a charac-
ter of U(V) whose restriction to U(V)y, is trivial. If V is anisotropic, then
U(V)=U(V)r. So 8713k is the trivial character of U(V). Hence 3 = B5,.
Next suppose that V is isotropic and U(V) is not an orthogonal group. It
is known that [U(V),U(V)] = SU(V). So B718L, = ¢ o det for some char-
acter ¢ of K. If we also assume that we are not in case (2) of the theorem,
then we know that det(U(V)r) = K, so ¢ must be trivial. So 37185, is
a trivial character of U(V) i.e., 8 = Bf,. If we are in case (2) of the the-
orem, then det(U(V)r) is a subgroup of K of index 2 i.e., det(U(V)r) are
the numbers t € EM) such that ¢t = 1 mod pg. There are two characters of
K whose restriction to det(U(V)r) is trivial, namely, the trivial character
and the unique character of order two. So we have two splittings in this
case. Now we consider the remaining case i.e., V is an isotropic quadratic
space. In this case, it is well-known that U(V)/[U(V),U(V)] ~ (Z/27Z)3.
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Suppose that {g1, 92,93} is a set of representatives of the cosets which gen-
erate U(V)/[U(V),U(V)]. It is easy to see from Subsection 1.4 that we can
choose the set {g1, g2, g3} such that two of the elements in the set are also in
U (V). Hence there are exactly two characters of U()V) whose restrictions to
U(V) are trivial. So there are two admissible splittings of cg(ty/(g), ty/(g'))
whose restrictions to U (V) are equal to (yr. O

—~

3.5. Remark. From Theorem 3.4, we see that the map 56,: Uuwy)—Uu)
defined by

(3.5.2) B (9) = (vr(9), B (9) Bl (9)])
is a group homomorphism. Regard (wy,S(B)) as a representation of U (V)
via ﬁﬁ,. Then by (2.3.e) and the fact ﬁ]%/|U(V)L = (yr, we see that

(3.5.b) (wy (v (k))-f)(w) = Cur (k)@y (1 (K))-f (1 (k) ™ aw)

for w e W, k € UV)r and f € S(B). Note that (y» is either trivial or
of order two. Hence (3.5.b) is very convenient to study local theta corre-
spondence via the theory of minimal K-types. In fact, it is a fundamental
ingredient of the study of the relation between the theta correspondence of a
p-adic reductive dual pair and the theta correspondence of a finite reductive
dual pair. More details can be found in [Pn2].

Although the lattice B depends on the choice of the lattice L’ of V’,
it turns out that the splitting 55/ does not at least if we exclude the two
exceptional cases in Theorem 3.4. This justifies the use of our notation “ﬂ{j,”
instead of “3y;”.

3.6. Tensor product of the Weil representations. Suppose that W =
@D, W; where W; are nondegenerate symplectic subspaces of WW. Suppose
that a maximal totally isotropic subspace Y is compatible with the decom-
position ie., Y = @,Y; where Y; := Y NW,. Then it is obvious that
S(Y) ~ Q;S(Y;) and My [g] ~ @; My, [g;] where g :=][; gi € [[; Sp(Wi) €
Sp(W) and (My;[gi], S(Y3)) is a Schrodinger model of the Weil representa-
tion of Sp(W;). Similarly, if a good lattice B in W is compatible with the
decomposition W = @, W; ie., B = @, B; where B; := B N W;, then
S(B) ~ Q, S(B;) and Mplg] = Q, Mp,[gi] where (Mp,[g:], S(B;)) is a gen-
eralized lattice model of the Weil representation of Sp(W;).

Suppose that V = €, V; is an L-admissible decomposition of nonde-
generate subspaces and Y° is an maximal totally isotropic of ¥V such that
Ve =,Y where Y :=Y°NV;. Let Y; :=Y?®V', L; := LNV, and

B; = B(L;,L"). If g :=[1,9: € [[; U(Vs) C U(V), then it is clear from the
previous paragraph that

(3.6.2) Bolo) = [T A0(g)  and  av(g) =[] evi(a0).



SPLITTINGS OF THE METAPLECTIC COVERS 183

Suppose that V' = @, V! is a decomposition of nondegenerate subspaces.
Let Y; :=Y° ® V/. Then it is clear that

(3.6.b) ey (r(g), (g Hcy (tvr(9),1v1(9))

for g,¢' e U(V). IfU(V) is an orthogonal group or a symplectic group, it is
clear that

(36.0) B0 =TI

If U(V) is a unitary group, the definition of BV/ (g) depends on a choice of
a character x of E* such that x|px = € p Where m = dim(V') and e/ p

denotes the quadratic character of F'* with respect to the extension E of F'.
If we choose characters x; of E* such that x;|px = eTE”;  where m; = dim();)

and let x := @), xi, then clearly x|px = €/ p- Therefore (3.6.c) is also true
for unitary groups if we define ﬁgﬁ (resp. ﬂ?;/) with respect to the character

xi (resp. x). If we also assume that the decomposition V' = @, V/ is L'-
admissible, then clearly

(3.6.d) CB(LV/( LV' H CB; Lv’ LV’ (g ))

where B; := B(L, L,) and L, := L'N Vi. Moreover, it is clear that ay(g) =
[1; ey (g). Hence,

(3.6.6) ayl ﬁvl H avl ﬁV’

4. Isomorphisms between various models.

In this section, we discuss isomorphisms between various models of the Weil
representation introduced in Section 2. These isomorphisms will be used in
Sections 6-9.

4.1. Schrodinger models and lattice models. Let VW be a symplectic
space over F' and W = X 4+ Y be a complete polarization. Let Lx be a
lattice in X. Let Ly be the dual lattice of Lx in Y. Then A := Lx +
Ly is a self-dual lattice in W. Let (pWS( )) (resp. (pq‘Z‘,S(A))) be the
Schrodinger model (resp. lattice model) of the irreducible representation of
the Heisenberg group H(W) with respect to a given nontrivial character 1
of F. Choose a Haar measure ux on X. For f € S(A), define a function
=Z.f:Y - Chby

(4.1.0) EHW) = /X (L u)) £ (& + ) dyx (2).
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Since f is compactly supported, =.f is well-defined. Clearly =.f is locally
constant because f is. It is also not difficult to check that Z.f is compactly
supported. Hence Z.f € S(Y).

Lemma. The map = is an isomorphism of vector spaces and the following
diagram

(4.1.b) la e la
SY) ——— S(Y)

commutes for any h € HOW).

Proof. We may only consider h :=x +y € W where x € X, y € Y. Let
f€S(A). Then

(ph(z+y)(EN)W)
=5 +9.2)) ENy+Y)

=((4+¢,z) /X P54 y+y))F@ +y+y)dux ().
On the other hand,
Elpp(x+9)-£)) W)
- /X (34, y)) (M@ + 1) F) (& + ) dux ()

= /X V(e NG + v+ y)) fle+y+ 2’ +y) dux (o)

N[ —

=4+, 2)) /X (34’ +z,y+y) f@ +z+y+y)dux ().

Hence, the diagram commutes. Because the representations p}Z and p;2 are
irreducible and clearly = is not trivial, = must be an isomorphism of vector
spaces. O

4.2. Two models of the Weil representation of a finite symplectic
group. Let (w, {,}))) be a symplectic space over a finite field f and ¢ a
nontrivial character of f. Let 1o be the character of f defined by 1(t) =

Y(t/2) for t € f. Let w = x +y be a complete polarization. Let S1(y) be
the space of complex valued functions on y. For g € Sp(w), let x(g) and
j(g) be as defined in [RR] and M;[g] € Aut(Si(y)) be the My [g] defined in
Subsection 2.2. Here the measure p4 on the space x/Ker(c) is chosen such
that 11,(x/Ker(c)) = ¢?(9/2 where q = #(f). Let

(4.2.a) m(g) := e ((g), Yo) e (o) 7Y



SPLITTINGS OF THE METAPLECTIC COVERS 185

be as defined in [RR] p. 360. It is known that the map g — m(g)M;[g] is an
ordinary representation of the finite group Sp(w) from [RR] Corollary 5.7.

We want to introduce another realization of the Weil representation of
the finite symplectic group Sp(w). Let S2(y) be the space of functions
f: w — C such that

fla+w) =¥ (5(w,a)) f(w)
for w € w, a € x. Let ux be the Haar measure in x such that ux(x) = 1.
Define

(4.2.b) (Ma[g].f)(w) := / Y (3(a.w)) flg™" (a +w)) dux(a).

Let T: Sa(y) — Si(y) be the isomorphism of vector spaces by

(4.2.c) Y.f:=fly
for f € Sa(y).

Lemma. The following diagram
¢?9D/2 My q]
—_—

Sa(y) Sa(y)
(4.2.d) lf - l‘f
Si(y) - Si(y)

commutes for any g € Sp(w).

Proof.  We can define the representations p; (resp. p2) of H(w) on the
space S1(y) (resp. So(y)) and check that the map T intertwines these two
representations. By the Stone-Von Neumann theorem, we know that there
exists a function a: Sp(w) — C* such that

Mgl oY =T o a(g) Ms[g]

for g € Sp(w). So we just need to compute a(g). Let fi € Si(y) be the
characteristic function of {0} and fo € S2(y) be the characteristic function
of x. It is clear that Y.fy = f1. We have

(Y o M2[g]£2)(0) = ( z[g]fa)(o)=/¢(<<a70>>)f2(91(a+0))dﬂx(a)

= ix(gxNx) = ¢ 779,
On the other hand, we have

(nlg)- 10 = [ ey P ) ) iy )

= ug({0}) = 9/ (qj(g))*l
_ i
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Hence, a(g) = ¢/(9)/2. O
Therefore, (m(g)q?9/2Ms|g], So(y)) is an ordinary representation of the
finite symplectic group Sp(w).

4.3. Generalized lattice model revisited. Let B be a good lattice in W
and A be a self-dual lattice such that B C A C B*. Let b* := B*/B and
IIg+ denote the map B* — b*. We know that b* is a symplectic space over
fr and IIg«(A) is a maximal totally isotropic subspace of b*. Let Kp and
K'; be as defined in Subsection 2.3. We know that Kp/K'; ~ Sp(b*). Let
S(B*) be the space of locally constant, functions f: B* — C such that

(4.3.a) fla+b) =p(3(b,a))f(b)

for a € A and b € B*. For g € Kp, let g denote its image in Sp(b*). Let
M 4[g] be the M[g] defined in [ MVW] p. 42. If g € Kp and f € S(B*), then
clearly Malg].f € S(B*). Moreover, M 4[g] acts trivially on S(B*) if g € K.
Let w := b* and y := IIp-(A). Hence, y is a maximal totally isotropic
subspace of w. Clearly, we have an isomorphism Y: S(B*) — Sa(y) such
that the diagram

S(f*) e S(f*)
(4.3.b) T ) T
Saly) —2 . Sy(y)

commutes for g € Kp and g denotes the image of g in Kp/K/;. Therefore,
from Subsection 4.2, we know that (m(g)¢?9/2M4[g], S(B*)) is the repre-
sentation of Kp lifted from the Weil representation of the finite symplectic
group Kp/Kj.

Now we can have a more precise realization of the generalized lattice
model. Let S(B) be the space of locally constant, compactly supported
maps f from W to the space of complex valued functions on B* such that

(i) f(w)(a+b) =vp(3(b,a))f(w)() for w e W, b€ B*, a € A, and

(ii) f(w)(b) = ¢ (5{b,w))f(b+w)(0) for b, € B*, w € W.
For f € S(B), define Q.f: W — C by
(13.0) (0.F)(w) = F(w)(0).
By (ii), we have (Q.f)(a + w) = f(a + w)(0) = @b(%((m,a}})f(w)(a) for
a € AC B* and w € W. Then by (i), we have

(5w, a)) f(w)(a) = ¥(5(w, a)) v (5(a, 0) f(w)(0)
=¥ (5(w, a))(Q. f)( )-

Therefore, ) is a map from S(B) to S(A).

P(:
2
P(:
2
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Lemma. The map € is an isomorphism of vector spaces and the following
diagram

sy —2M sy
(4.3.d) Q N Q
S(lA) AW st

commutes for any h € H(W).

Proof.  We only need to check for h =w € W. Let f € S(B) and w’ be an
element in WW. Then

(05 () () (W) = (5 {w', w)) (Qf) (W' +w)
= ¥ (3{w', w)) (' + ) (0)
= (P (w).f) (w')(0)
= (Qpg (w)-)) (W)
Hence, the diagram commutes and 2 is an isomorphism. O

The conclusion of this subsection is that the following diagram
sy MY 5B
(4.3.¢) lﬂ o Q
s(4) mOTICMA sy

commutes for any g € Kp.

4.4. The main identity. To prove Proposition 3.3, we need to compute
BY,(g) and ayr(g) for g in a set of representatives of [U(V)r, U(V)L]-cosets
in SU(V)r. The computation for 8}, (g) will be straight forward from the
formula in [K1] Theorem 3.1. Now we describe the method for computation
for ayr(g). Realize the generalized lattice model (Mp,S(B)) as described
in Subsection 4.3. We shall properly choose a self-dual lattice A in W (or
W + W) such that B C A C B*. Let Q: S(B) — S(A) be the isomorphism
defined in Subsection 4.3. Then we have

(4.4.2) Qo Mp[iv(9)] = m(1r(9))d? > D2 M [11(9)] 0 ©

where g € U(V), and 1y (g) is the image of v/ (g) in Kp/K';. Let Z: S(A) —
S(Y) be the isomorphism defined in Subsection 4.1. Since oy (g) is indepen-
dent of the choice of ¥, we may let ¥ := Z0Q: S(B) — S(Y). Therefore,
by substituting (4.4.a) into (3.3.a), we get

(4.4.b) My [ (9)] 0 Z = ayr (g)m (i (9)) ¢ @ OV/2E o Ma[y(g)]

for g € U(V)r. The identity (4.4.b) can be applied on any function in S(A).
In particular, we shall choose the characteristic function f4 € S(A) and
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find the value of the identity at 0. That is, we shall compute ay»(g) by the
following identity
(4.4.c)

(My [ty (9)] 0 Z.£4)(0) = ayr(g)m (v (9)g” Y OV/X(Z 0 Mafiyr (9))- £a)(0).
5. Several lemmas for unitary groups.

In this section, we introduce a few lemmas which will be used in the com-
putation for unitary groups in Sections 6 and 7.

5.1. . The following lemma is somewhat well-known. Recall that ¥ is a
character of F' with conductoral exponent ord(i)) = Ap and vy is the char-
acter of F' defined by vo(t) := ¢ (t/2). It is obvious that ord (1) = ord(ty).

Lemma. Let a be an element in (9;. Then

Z w(cflw;‘fﬁ) = qord(a)/Q’YF(QCL*lW}\wFa Yo)vr (o).

teOp /pord(a)

Proof.  Let ¢/ be the character of F' defined by ¢'(t) := w(aflw;‘,ft) =
¢0(2a_1w}\ft) for t € F. Then it is clear that ord(¢’) = ord(a). It is
well-known that

Z W) = {q‘”fd(“‘)/2 i if ord(a) is even;

¢ NI/ 24 ("), if ord(a) is odd.

teOp /pord(a)

This can be found, for example, in [Mn] p. 366 and p. 372. From (3) in
Subsection 1.5, we conclude that

S (7)) = ¢ Pyp () = ¢ P yp(2a @R o) ve (o).
tGOF/p(;-\rd(a)
0

5.2. An embedding. The setting of the remaining of Section 5 will be as
follows. Let (U(V),U(V')) be the reductive dual pairs of unitary groups
such that both V, V' are one-dimensional over E := F(§) where A := §2 is
a nonsquare element in F'*. We assume that ord(A) = 0 or 1. Let h, h’
denote the forms on V, V' respectively.

Now we want to embed U()) into an isotropic unitary group in two vari-
ables. The material in this subsection is from [KIl] Section 4 although our
choice of the basis is slightly different. Let V be the  space Y with the form
h := —h. Let v be a nonzero element in V and ¥ be the element in V
corresponding to v. Let v/ be a nonzero element in V'. Let r := h(v,v)
and ' := h'(v/;v"). We know that r’ € dF*. Let ¢ be the element in
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F such that do := rr’. We will choose v,v" such that ord(gp) = 0 or 1.
Define W := V@V and W := V@ V. Let w; := —(2A0) (v —9) ® v/,
wa := (2A0)716(v —0) @V, w3 1= (v +0) @V, wy := (v+0) V. Let {,)
denote the skew-symmetric form on W + W. It is easy to check that
1, if (4,7) = (1,3) or (2,4);
(wi,wy) = § =1, if (4, 5) = (3,1) or (4,2);
0, otherwise.

The set {w1, ws, w3, ws} is our choice of a basis of W+ W. Let X (resp. Y)
be the F-space spanned by {w,ws} (resp. {ws, ws}). Then WH+W = X +Y
is a complete polarization.

Let g be an element in U(V). Then g can be written as x + dy for some
x,y € F such that 2 — Ay? = 1. Under our assumption of the element A,
we know x,y € Op. Then we have

(5.2.a)
r+1 —Ay —2A%y  —2Ap(z —1)
1| —y z+1 2Ap(z—1) 2Apy —
vi(9) =5 _ﬁ§ N z+1 y p( )

with respect to the basis given above. Write t)r(g) = [Z Z] according to
the complete polarization W 4+ W = X + Y. Then

. 1 -y x—1 d—l x+1 y
4N |—(x—1) Ay |’ T2l Ay x+1|°

We know that ¢* is just the transpose of ¢ under the basis. Therefore

1 Yy r—1 1[Z 0
2. - = — —d.ct == | Qe )
(5:2.5) ‘ 4Ag[—<m—-n -—Ay}’ e = [0 ~4
Note that det(c) = A™2p7%(1 —z) and det(d) = %, We know that g = 1

if and only if x = 1. Therefore, Ker(c) = {0} if g # 1 and ¢ =0 if g = 1.
Hence, we conclude that

(5.2.0) J(v(9)) = {0’ fg=1,

2, ifg#1.

5.3. . Let L (resp. L') be the unique good lattice in V (resp. V'). Let L be
the corresponding good lattice in V. Then L + L is a good lattice in V + V.
Define B

B:=B(L+L,L)
as in Subsection 3.2. Then B is a good lattice in W + W.
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Lemma. The decomposition X +Y of the space W + W is B-admissible.

Proof. Let X\ be the number given in Subsection 3.1 and v, v, v, w1, ... ,wy
be the vectors defined in Subsection 5.2. Then it is straight forward to check
that

(5.3.a)

p(/\/z]v v + pp\m’\@ v', if E is unramified and ord(p) = 0;
B =9 D /2] -
pp v v +pE U@, otherwise.
We know that p% = p% + 6]:1’}“7 if £ is unramified and p’ﬁ; = pl[f’,m + 6}3}5/%
if F is ramified. Therefore we have the following. If F is unramified and
ord(g) =0, then A = Ap and
ppF/ﬂv ®v +ppF/2]6v ®v +pIQ‘F/21@\® v +ppF/2W5ﬁ®v’.
If E is unramified and ord(g) = 1, then A = A\p and

B=p2" My +p s @ o +p M5 @0 +p 55 @0,
If ' is ramified and Ag is odd, then A = 2Arp — 1 and

N pmp D255 6 o
=p0r V@0 4 pRr T s o + 0T P 0 o

+ pg‘F V255w o

2,y GO/, e O,

If F is ramified and Ag is even, then A = 2 \p — 1 and
B — pl[_g)\F_l)/z],U ® ,U/ + p%)‘F_l)/zj 6,0 ® ,U/ + p[()‘F 1)/2“’\ ® ,U

p’\F/2v®v P v +py P ey + )P v e
—p;\pF/QJ’_l +p>\p/ W +p>\p/2 1 +p>\p/

So it is clear that the basis {w1, wa, w3, w4} is B-admissible. X = Fwj+ Fws
and Y = Fws + Fwy. Hence the decomposition X + Y is B-admissible. [

5.4. . Define Ly := BNY, which is a lattice in Y. Let Lx be the dual
lattice of Ly in X. Therefore, the lattice

(54&) A = LX + Ly

is a self-dual lattice in W+ W. It is clear that BC A C B* and BNY =
ANY = Ly.
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Lemma. Let g be an element in U(V). Then

(ty(9) A+ A)NX = Ly.
Proof. Let ¢’ := 1y/(g) € Sp(W + W). Since now V is anisotropic, we have
i (UWV)) = 1w (U(V)L) € Kp. So ¢ stabilizes the lattice B. Therefore,
BC g AnA C A But we know that BNY = ANY = Ly. Hence,
(. ANA)NY = Ly. Note that ¢ A+ A = (¢ A)* + A* = (J. AN A)*.
Therefore (¢. A+ A)N X = L. O

5.5. .
Lemma. Let g be an element in U(V). Then

(20 Malty(9)]-fa)(0) = px (Lx)u(n(g)- AN A)

where Z is the map defined in Subsection 4.1 and fy € S(A) is the charac-
teristic function on A.

Proof. Let ¢’ :=1y/(g) € Sp(W) and Iy := (20 Malg'].f4)(0). Then

I = /X (Malg')-f2) () dpx ()

from (4.1.a). It is clear that the support of the function Ma[¢'].fa is con-
tained in ¢".A + A. By Lemma 5.4, we know that (¢’.A + A)N X = Ly.
Therefore
o= [ (Malg£2) @) dex (@)
= [ [ vtaad) iald~ o+ ) dula) dux(a).
Lx
If z € Ly, then @’ := a + x is in A. Therefore
= [ [ 0~ ) fale™ ) dula) dx (o)
X
= [ @) (@) = (Lt A0 )
Lx ’AmA
U

5.6. .

Lemma. Let = be the map defined in (4.1.a) and fy € S(A) (resp. fy €
S(Y)) be the characteristic function of A (resp.Y'). Then Z.fa=pux(Lx)fy.

Proof. For y € Y, by the definition we have

EL0)) = /X B3z )) Fale + ) dux (2).
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From the definition, f4(z+y) is not zero if and only if z+y € A. Now z € X,
yeY, sox+ye Aifand only if x € Lx, y € Ly. Therefore if x +y € A,
we have (3 (z,y)) fa(z +y) = 1. Hence we have (Z.fa)(y) = ux(Lx) if
y € Ly and (E.fa)(y) =0if y ¢ Ly. O

5.7. The normalized Haar measure. The action My [g] defined in (2.2.b)
depends on normalization of the Haar measure p, on the space X/Ker(c).
The measure p, is given explicitly in [RR] Theorem 3.5. We describe the
normalization in our situation. Let g be an element in U (V). Write vy (g) =

[a 2} € Sp(W + W) with respect to the decomposition X +Y of W+ W.
From the computation in Subsection 5.4, we know that Lx = p}\;wl +p}? Wo
and Ly = p}Fﬁ)‘lwg + p}Fﬁ)‘szl where

Ny i |Ar/2], if E is unramified, ord(o) = 0 and Ap is odd,;
2 [Ar/2], otherwise,

Ao+ 1, if E is ramified and Ap is even;
Al = )
Mg, otherwise.

Following [RR], we normalize a Haar measure px on the additive group X
by

(5.7.a) px(Lx) =q

where Ao := A1 + A2 — Ap. Let pgg denote the measure of {0} such that
pg0y({0}) = 1. Then from [RR], we have

}det(a)‘l/z,u,{o}, if ¢ =0;
|det(c)[?px, i Ker(c) = {0}

where | - | denotes the normalized multiplicative valuation of F, i.e., |0 =0
and |t| = ¢7°"4®) for t € F*. Formula (5.7.a) looks different from the
formula in [RR]. This is because we use the left action of Sp(WW + W) on
W + W instead of right action used in [RR].

(57b) Hepi(g) = {

5.8. .For g:=x+dy € U(V) and g # 1, define
(5.8.a) Lx[g] ={ze X |—-c"x €Ly}

where —c* is as given in (5.2.b). It is clear that Lx[g] is a lattice in X since
—c* is an isomorphism of vector spaces.

Lemma. Suppose that g # 1. If x # 1 mod pp, then Lx[g] C Lx. If
x =1 mod pp, then Lx C Lx|[g].
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Proof. First, we suppose that g = —1. Hence, y = 0. From (5.2.a), we see
that Ly € B*NY =ty (g9).(B*NX) = —c*.Lx. So Lx[g] C Lx in this
case.

For the remaining of the proof, we assume that y # 0. Hence we have
ord(y) = 0 if x # 1 mod pp, and ord(l — x) = 2ord(y) + ord(A) if
r = 1 mod pp because 22> — Ay? = 1. From (5.2.b) and the result in
Subsection 5.7, it is clear that

Ar—A1+ord(Ap/y)
_)br

AF—A2+ord(9/y)w2
Lx[g] = Ar—A1+ord(Ap)
Pr

w1+ P
wy +p2F—A2+ord(Ag)w

(1) Suppose that F is unramified, ord(g) = 0 and Ap is odd. Then A\; =
Ao = ’\FQ_l. Since now ord(y) > 0 if x = 1 mod pr and ord(y) = 0 if
x % 1 mod pp. The lemma is clear in this case.

(2) Suppose that E is ramified and Ap is even. Then \; = ATF + 1 and
Ao = /\TF We also have ord(g) = 0 under our assumption. Again, the
lemma is obvious in this case.

(3) Suppose we are in the situation other than the previous two cases.
Then Ay = Ay = V‘TF} It is straight to check that the lemma is true
in this case.

if z =1 mod pp;
2, if x #1 mod pp.

O

5.9. .

Lemma. Suppose that g := x+yo is an element of U(V) for some xz,y € F
and g # 1. Then

(My [ty (g)]- fy)(0)
B q—j(Lv’(g))/27 ifx %1 mod pr;
Yr (=2, 10) (A, 290)p (1), if & =1 mod pp.

Proof. Let g’ :=1y(g) = [CCL Z} € Sp(W + W). From (2.2.b), we have

(Mylg)f)O0) = [ (b d o)) fy (") diay (o)

X/Ker(c)

= / (3 (—d.c* .z, 2) fy (—c*.2) dug ().
X/Ker(c)

[\

From our assumption that g # 1, we know that Ker(c) = {0}. Then

G:90)  OKAI0 = [ w(d(-dea.m)) dugo)

Lx|[g]
where Lx|[g] is defined in (5.8.a). It is clear that —d.c*.Lx[g] C Ly.
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Suppose that z # 1 mod pr. So Lx[g] € Lx by Lemma 5.8. Then
Y(3(—d.c*.z,x)) =1 for x € Lx[g]. Therefore,

(5.9.b)
(Mylg'].fv)(0) = / dpg () = pg (Lx[g]) = |det(c)["? ux (Lx [g))-
Lx|g]

Clearly, |det(c)[/? = ¢°¥(29) and pux(Lx|g]) = px(Lx)q" where
l=X—Ar—A+ord(Ag))+ X2 — (A\r — A2 +ord(Ap)) = 2(Ag —ord(Ap)).

Recall that pux(Ly) = ¢~*0. Therefore (My[g'].fy)(0) = gro—ordAe) Tt
is known that —j(uy(g)) is equal to —2 if Ap + ord(p) is odd and E is an
unramified extension, equal to 0 otherwise. Hence it is straight forward to
check that A\g — ord(Ap) is really equal to —j(ty(g))/2.

Suppose that x = 1 mod pr. So Lx C Lx[g] by Lemma 5.8. We know
that Lx[g] = p];}wl + p’l?wg where k1 = A\p — Ay + ord(Ap/y), ks = Ap —
X2 +ord(o/y). Define L'y [g] := plFIH’“w +p12+k2w2 where Iy := —2k; + Ap —

ord(y/Ap) and la := —2ks + Ap —ord(y/p). Then by (5.9.a) and (5.2.b), we
have

(My [g)-fv)(0) = [det(c)|Pux (Lxlg) Y. (3(—d.c”.z,x))
z€Lx|[g]/L'y 9]
= |det(c)|"?ux (L' [g) 1 2

where
Y Y ok
I = = —wn 't
1 kzl ) G <<<16Agt1w3’t1w1>>> Z l (G <16AQWF 1>7
trepyt /pE T t1€0F /p p
- _ Y ks ,2
Iy = Z P <<< 16 t2w4,t2w2>>> = Z P (meth2> .
k2/ lo+ko tge(’)F/p?

By the results in Subsections 1.5 and 5.1, we have
Iy = ¢"?yp(—2yAo, ho)yr(o)  and
I = ¢"*/*yp(2y0, ¥o)vr (o).
So
(Myg'].fv)(0)
= [det(c) | px (Lx [9) g™ T 2yp (=29 Ao, o) vr (250, o) vr (1)

Clearly, [det(c)[V/2 = q~ordW*/2¢)/2 and px(Ly[g)g+2)/? = ux(Lx)q!
where

L+ ord(y?/Ao?)

=X M4+X—l—lb—k — =AM+A— A+ 5
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Recall that px(Lx) := ¢~ and Ao := A\; + Ay — Ap. Therefore,
(My[g']- fv)(0) = vp(—2yAo, v0)vr(2y0, o) vr (¥o)?.

We know that ’}/F(wO)Q — (%pl)m(%) and

YE(—2yA0,%0)vr(2y0, %o) = Yr(—A,10)(—2yAo, 2yo) F
= 7r (=A%) (A, 2y0)F

from Subsection 1.5. Hence, the lemma is proved. O

6. Proof of Proposition 3.3 for unitary groups: Part I.

In this section, we assume that D = FE is an unramified quadratic extension
of F. We assume that E := F(§) where 62 := A is a nonsquare element
in F* such that ord(A) = 0. As usual, fix a nontrivial character ¢ of F’
with conductoral exponent A\p. We compute ﬁg, (9) and ayr(g) for several
cases in Subsection 6.1-6.6 and prove Proposition 3.3 for unitary group U (V)
with respect to an unramified extension in Subsection 6.7. As usual, let L
(resp. L') be a good lattice in V (resp. V').

6.1. . In this subsection, we keep the notation and the assumption in Sub-
section 95.2.

Lemma. Suppose that both V,V' are one-dimensional, g is an element in
UV) and g # 1. Let ﬁ]’;, be defined with respect to a character x of E*

such that x|px = eg/p. Write g =t = x + 6y for some t € EW and some
x,y € F. Let ¢ be as defined in Subsection 5.2. Then

5Y/(g) _ x((t —1)9), if ord(vp) + ord(p) is even;
% —x((t = 1)d), if ord(¢p) + ord(p) is odd,

L if © # 1 mod pp and
ord(vg) + ord(p) is even;
ay(g) = (2?;2)7 if x 21 mod pr and

ord(eg) + ord(p) is odd;
YE(=A, o) (A, 2yQ)F(%F1)Ord(wO), if £ =1 mod pp.

Proof.  Let v,r be as given in Subsection 5.2. Let vy := (2r)~ (v — D),
v := v + 0 be two elements in V + V. Then the set {v1,v2} is a standard
E-basis of the e-hermitian space V +V and

1 t+1 2r(t — 1) .

(6.1.a) 9=5 @) tt-1) t+1 ceUV+YV)
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with respect to the basis {v1,va}. Therefore j(g) = 1 because we assume
that g # 1. Suppose that € = 1. From [KIl] Theorem 3.1 and the facts that
j(g) =1 and V' is one-dimensional, we have
Brr(9) = x(@(9))x(8)(A, det 0)8) i (= A, o) ~ (=1, th0)
= X(2(9))x(O) (A, 7'8) pyr (A, v0) (1, =A)p

where the second equality follows from (4) in Subsection 1.5. From the
definition in [KI1] p. 371, we know that x(g) = (4r)~!(t — 1). Because F is
an unramified quadratic extension, we have (—1,—A)p = (-1,-1)p = 1,

and vr (A, o) = (& )Ord(wo) by (6) in Subsection 1.5. Therefore,

B5(9) = x((t = 1)) (A, r1/8) p (£) ).

Since A is not a square element, we have (%) = —1. We know r1'6 = pA
and (A, A)r = 1. Therefore,
(6.1.b) Br(g) = X((t = DE)(A, o) p(—1)*" W),

If ord(vo) +ord(e) is even, then either both ord(¢), ord(g) are even or both
are odd. Therefore, (A, ) r(—1)°"4%0) = 1. If ord(z) + ord(p) is odd, then

it is clear that (A, Q)F(—l)ﬁ(wo) = —1. If e = —1, by the same computation
it is not difficult to see that (6.1.b) is also true.

Next, we want to compute ayr(g). Now L is the unique good lattice in V.
Let L the good lattice in V corresponding to L. Define B := B(L + L, L').
Let A be the self-dual lattice in W+ W defined in Subsection 5.4. We know
that B C A C B*. Suppose that  Z 1 mod pp. It is clear that u(cy(g).AN

A)=q77 (tv(9)) . Combining Lemmas 5.5, 5.6 and 5.9, we conclude that
px (Lx)g 7 O2 =y (g)m(ipr (9)a” ™ D (L) oy (9).A 0 A)
from (4.4.c). Hence,

(6.1.c) oy (g)m (1 (g)) = 1.

Now we have the following two cases.

(i) First suppose that ord(v¢yg) + ord(g) is even. It is easy to see that
B = A by the computation in Subsection 5.3. Therefore m(1y(g)) = 1
and j(1y/(g)) = 0. Hence oy (g) = 1 by (6.1.c).

(ii) Suppose that ord (1) + ord(p) is odd. Then it is easy to see that A/B
is two-dimensional. So B*/B is four-dimensional. Clearly, we have
§(1p(g)) = 2 from (5.2.a) because g # 1. Hence g, () (v (9) =

(;1)_1 = ($2) by (1) in Subsection 1.5. We also know that

fr fr
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e (2(v(9)),%0) = (M) by (2) of Subsection 1.5. Therefore,
m(i(g)) = (JJ(L\E;(Q))) (%Fl) _ <—z(?Fg/(9))) )
a b}

Write 1ty (g) = [(Z Z} as in Subsection 5.2. Then ¢ (g) = [E al

We have Ker(¢) = {0}. In this case z(1y/(g)) = det(¢). From Subsec-
tion 5.2, we know det(¢) = 87 1(Ap)~2(1 — x). Therefore,

_— Q—I(AN—2(r1) 555 ==\ 1
m(w () = (S0 = (52) = (322)
Hence, we conclude ayr(g) = (2“”3 2) by (6.1.c).

Now we assume that g # 1 and = 1 mod pp. In this case, it is clear
that 1y (g) = 1. So m(1y(g)) = 1 and j(1y»(g)) = 0. By the computation in
Lemma 5.5, 5.6 and 5.9, we conclude that

(6.1.d) o (g) = vr(=A, o) (A, 2y0) F ( >ord(¢0)

Hence the lemma is obtained. O

6.2. . In this subsection, we assume that V is one-dimensional and V' two-
dimensional isotropic. Let v, v and r be as given in Subsection 5.2.

Lemma. Suppose that V is one-dimensional and V' two-dimensional iso-
tropic. Suppose that g :==t € ED is an element in UV) and g # 1. Let ﬁ;/,
be defined with respect to a character x of E* such that x|px = e%E/F. Then

B (g) = x((t — 1)d),
ayr(g) =1.

Proof. We will assume that ¢ = 1 in the proof. The case for e = —1 is
analogous. Similar to the computation in Subsection 6.1, we have

Bin(9) = x(x(9))x(8) (A, det (V') A) pye (=4, o) “>yr (=1, 40)?
= x(2(9)3)(A, det(V') A) pyr (A, 4h) 2
We have (A, det(V)A)r = (A, —1)p =1 and yp(A,90) 72 = (A, A)p =

because E is an unramified extension. Therefore,

Byi(g) = x(x(g)8) = x(r~ ' (t = 1)) = x((t — D&)A, r)p = x((t — 1)),

Suppose that e = 1. Hence, V' is a skew-hermitian space. Let {v],v5} be a
basis of V' such that h’(vl, vy) = h’(vQ, vh) =0 and h'(v],v}) = h’(vQ, vp) =
§. Define wy := —(2A7) (v — 0) ® v], wy : (2Ar) L5(v —0) @ v), wy :=
—(2A7) (v — 0) @ vh, wy == (2Ar)"L5(v — D) ® v, w5 = 6(v + V) ® vh,
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we := (V4 0) @ vh, wy := §(v+0) ® v}, and wg := (v+ V) ® v]. Then it is
clear that t)/(g) is equal to

(z+1 —Ay 0 0 0 0 —2A%ry —2Ar(z — 1)]
-y x+1 0 0 0 0 2Ar(z —1) 2Ary
0 0 x+1 —-Ay —2A%y —2Ar(z-—1) 0 0
1 0 0 —y x+12Ar(z—-1) 2Ary 0 0
21 0 0 —3h; =L a+1 y 0 0
z— 7

I S S S
= 0 0 A f

L 2Ar 2r Y r+1 J

with respect to the basis {wq,...,wg} of W 4+ W. Then we know that
X (resp. Y) is the F-space spanned by {wi,... ,ws} (resp. {ws, ..., wg}).
We know that B*/B = (1+1) @ I + 1I* + 1) ® I where 1 := L/wpL
and 1" := L" /L. Therefore, it is clear that B*/B is either trivial or eight-
dimensional over fr. Suppose that  Z 1 mod pr. We have the following
two situations.

(i) Suppose that B* = B. Obviously, we have m(t,»(g)) = 1 and j(t\(g))
= 0. It is clear that Lemmas 5.5, 5.6, 5.9 can be extended to the case
for V' is two-dimensional i.e., (6.1.c) is also true for this case. Hence,
we can conclude that ayr(g) = 1.

(ii) Suppose that B*/B is eight-dimensional. Since g # 1, we know that
j(tyr(g)) = 4 from the above matrix. Then it is clear that x(ty(g)) is
a square. So from (4.2.a), we see that m(u(g)) = 1. Similar to the
computation in Subsection 6.1, we conclude that ayr(g) = 1 again.

Now we assume that x = 1 mod pr and g # 1. In this case, it is clear
that 1y (g) = 1. So m(vy(g)) = 1 and j(ty7(g)) = 0. Now we know that
0
0

0 —y z—1
1 0 —(zx—1) Ay
= IAr —y z—1 0 0 |’
—(x—1) Ay 0 0
x+1 y 0 0
d—l Ay z+1 0 0
2] 0 0 z+1 y
0 0 Ay zx+1
Therefore,
0 0 wy O
» 1 10 0 0 —-Ay
2. —d.ct = ——
(6.2.b) = ly 0 0 o0
0 —Ay 0 0
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Now the self-dual lattice A in W + W is of the form Ly + Ly where Ly :=
Z?Zl p;‘;wi and Ly := Z§:5 p}\;F_)‘i"‘wi for some Aq,..., s € Z. Again fix
a Haar measure pux on Ly such that ux(Ly) = ¢~ where A\g = —2\r +
Z?‘Zl Ai. For x € X, write x = Z?_l t;w;. Then

zp(%«—d.c*.x, a:))) = 1/}(4Ar( t1t3 + At2t4)) 1/)(4Art1t3)¢(%t2t4)

from (6.2.b). Let Lx[g] := i, pFiwi for some k; € Z be as defined in
(5.8.a). As in Subsection 5.9, we have

(My [ty (9)]-£v)(0)

Sl uxtn) X X%

trepl /ot taeph? /p2 taepts /py3

Z U (qartits)y (ftata).

t4EPI;*4/P>\4
For a fixed t3, @ZJ( —L t1t3) is a character of the additive group p / e
Ztlepkl/p/\l ¢(4Art1t3) is not zero if and only if 1/1(4Art1t3) is the tr1V1al
character of p /p . Hence,

(My [1vr(9)]-f)(0) = |det(e)[ux (Lx) > L

k A k A
tiep g /pyt taEp? /p3?

It is easy to check that [det(c)|'/2q~rogM—Figr2=F2 — 1. Hence,
(My [y (9)]-f¥)(0) = 1. Because now m(uy(g)) = 1 and j(nr(g)) = 0,
we conclude that ay(g) = O

6.3. . In this subsection, we assume that ) is one-dimensional and V' is two-
dimensional anisotropic. We know that }’ has an L’-admissible orthogonal
decomposition V| @& Vj of nondegenerate one-dimensional subspaces. Let
h' be the form on V', h} := h'ly; and hj := h'[y;. Let v; be a nonzero
element in V/. Define r; := h (vl,vz) Since V' is anisotropic, we have
(A, —riry)p = —1.

Lemma. Suppose that V is one-dimensional and V' is two-dimensional
anisotropic. Suppose that g ==t = x + oy for t € EY and z,y € Op
is an element in U(V) and g # 1. Let ﬁ?;, be defined with respect to a
character x of E* such that x|px = 62E/F. Then

By(g) = —x((t —1)d),

avr(g) = (?), if x £ 1 mod pp;
V9= -1, ift =1 mod pp.
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Proof.  We know that x(g) = (4r)71(t — 1) and j(g) = 1. If e = —1, then
we have
(6.3.2) B (9) = x(x(9)) (A, rirh) (A, A) p = —x((t — 1)5)
as in Subsection 6.2. If € = 1, it is easy to check that (6.3.a) is also true.
It is clear that ayr(g) = ayr(g)ay,(g). Let o; be the o in Subsection 5.2

for the pair (U(V),U(V])). It is clear that ord(p;) and ord(p2) have dif-

ferent parities since V' is anisotropic and F is unramified. Therefore, by
Lemma 6.1, we get ayr(g) = (M) ifz 2 1mod pp. If z =1 mod pp, then

fr

avr(g) = (=2, 10)*(A, 2y01) r (A, 2y02) ((F?l)ﬁ(m))?
= (A, -1)(A, 0102) = — 1.

O

6.4. . In this subsection, we assume that V is two-dimensional isotropic
and V' is one-dimensional. Let {v1,v2} be a standard E-basis of V. Define
X =Fvyu@V andY :=FEvn,®V.
Lemma. Suppose that V is two-dimensional isotropic and V' is one-dimen-
(k) O
0 k!

of U(V). Let BY, be defined with respect to x, and B := B(L,L') is a good
lattice in W. Then

Brr = x(7(k)),

(@) 1, if B*/B is trivial;

ay(g) =
Vg (kT(k)), if B*/B is four-dimensional.

fr

stonal. Suppose that g :== [ ] for some k € OF —py, is an element

Proof. From the assumption of k, we know that g € U(V). It is clear
that g stabilizes Evi. So j(g) = 0 and z(g) = 7(k). By [Kl] Theorem 3.1,
it is clear that

(6.4.a) By (9) = x(@(9)) = x(7(k))-
Let v' be a nonzero element in V' and 7’ := h/(¢v/,v"). We will choose
v" such that ord(r’) = 0 or 1. Define w; := 6_71,1)1 RV, wy = %vl ® v,

wg := 0ve @V, wy := vo ®v'. Then the set {wq,ws,ws, wys} is a standard F-
basis of W. Then X = Fw;+ Fws and Y = Fws+ Fws. Write k = zo+ dyo
for xg,yo € Op. It is easy to check that

o Yo 0 0
Ayo ) 0 0
(6.4.b) w(g) = 0 0 zo —Ayo | € Sp(W)

kr(k)  kt(k)

0 0 k;?(/g) kf(ok)
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with respect to the basis {wy,... ,ws}. Then (2.2.b) for f = fy and y =0
becomes

(My [ovr(9)]-fy)(0) = |2 — Ayg|' 2 fy (0).

We know that |23 — Ay2| = 1 because we assume that k € O — pj. Hence
we have

(6.4.c) (My [ty (9)]-f)(0) =1

Now V has two good lattices (up to equivalence), namely Ogv, + Opvy and
Ogvy + pgpvy. There is only one good lattice in V', namely Ogv’. First,
suppose that L = Ogvy + Ogvs. Then,

B:=B(L,L') = Opv; @ V' + Opgvs @'
= Opv1 @V + Opdv; @V + Opvy @ V' + Opdvy @ V.
Next, suppose that L = Ogvi + prve. Then,
B=0gv @V +ppvs @0
= Opv1 @V + Opdv, @V + prvg @V + préve @ V.

Let Lx := Opwi + Opws, Ly := Opws + Opwy, and A := Lx + Ly. Then,
A is a self-dual lattice in W and B C A C B*. It is easy to see that B*/B
is either trivial or four-dimensional. Analogous to Lemma 5.5, we can show
that

(E 0 Ma[w(9)]-£a)(0) = px (Lx) (v (g).-AN A).

Because we assume that k € Op — pg, we know that 1y (g) stabilizes the
lattice A. So we get

(6.4.d) (B0 Ma[ty(9)]-£4)(0) = px (Lx).

Analogous to Lemma 5.6, we can show that =.f4 = ux(Lx)fy. Hence from
(4.4.c), (6.4.c) and (6.4.d), we have

(6.4.¢) oy (g)m(ty(g)) = 1.

Now we have the following two possibilities. If B* = B, then it is clear
that m(ty(g)) = 1 and j(ty7(g)) = 0. Therefore, we have ayr(g) = 1. If

B*/B is four-dimensional, by (6.4.b) we have j(ty7(g)) = 0 and m(wy(g)) =
T (Lyr ro—A kT (k) kt(k
() = (F2) = (50). Honee, (o) = () .

6.5. . In this subsection, we assume that both V and V' are two-dimensional
and isotropic. Let {v1,va} (resp. {v],v5}) be a standard basis of V (resp. V').
As in Subsection 6.4, let X := Evy @ V' and Y := Evy @ V.



202 SHU-YEN PAN

Lemma. Suppose that both V and V' are two-dimensional and isotropic.
Let 3, be defined with respect to x, and g := [T(Ok) k(_)l} e U(V) for some
ke Of —pg. Then

8%

/

(9) = ( (k)),

avr(g) =

Proof. It is clear that x(g) = 7(k) and j( ) = 0. Similar to the computation
in Subsection 6.4, we have 8, (g) = x(z(g)).

Suppose that e = 1. Define w; := v @], wg := —%m@vi, w3 1= —v1 QUY,
Wy = %vl ®vh, w5 := vy @ Vb, we := OV RV, w7 1= V2 RV}, Wwg := dvg R V].
Then the set {w1, ... ,wg} is a standard basis of W. Write k = ¢ + dyo for
g, yo € F. Then it is clear that

(6.5.a)
fx9g yo O 0 0 0 0 0 T
Ay zp 0 0 0 0 0 0
0 0 z9 v O 0 0 0
0 0 Ay =z O 0 0 0
— x —A
wi@=0 0 0 0 ’”5’3) 0 0 | €Sp(W)
i o
0 0 0 0 kt(k) kt(k) 0 Aoy
T 0
0 0 0 0 0 0 kT(Ok) kT(k)
L 0 0 0 0 0 0 kTZ(JI?:) kT(k)_

with respect to the basis {wi,...,ws} of W. Then X (resp. Y) is the F-
space spanned by {wy, ... ,ws} (resp. {ws,... ,ws}). We can see that B*/B
is either trivial or eight-dimensional. From (6.4.b), it is clear that j(ty/(g)) =
0 and x(ty(g)) is a square in fr for both cases. Hence, m(1y(g)) = 1 from
(4.2.a). We can also show that (6.4.e) is also true for this case. Therefore,
we have oy (g) = 1.

It is clear that by the same argument, we can prove that ay»(g) = 1 when
e=—1. U

6.6. . In this subsection, we assume that V is two-dimensional isotropic and

V' is two-dimensional anisotropic. Let V!, r be as defined in Subsection 6.3.

Lemma. Suppose that V is two-dimensional isotropic and V' is two-dimen-
T(k) 0 }

stonal anisotropic. Let ﬂ%;, be defined with respect to x, and g := [ 0 k-1

e U(V) for some k € Of —py,. Then

Byi(g) = x(7(k)),

avi(g) = (F12).
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Proof. The computation for ﬂ%,/, (g) is as in Subsection 6.5. As in Subsec-
tion 6.3, ay/(g9) = ayr (g9)ay; (g). Define Lj := L'NV] and B; := B(L, L;). It
is clear that one of BY /B, B3 /Bs is trivial and the other is four-dimensional.

Hence by Lemma 6.4, we get ayr(g) = (lmf_—l(f)) O
6.7. Proof of Proposition 3.3 for V e-hermitian and E unramified.
Let g be a representative of a nontrivial [U(V)r,U(V)r]-coset in SU(V)r.
As in Subsection 1.3, we have an L’-admissible decomposition V' = @, V!
of nondegenerate subspaces such that each V; is either one-dimensional or a
hyperbolic plane. Let Y; := Y° ® V/. Then as explained in Subsection 3.6,
we have

(6.7.a) ayr (g ﬁv, Havf ﬁv,

if we choose characters x; and y properly. Therefore, we reduce the prob-
lem to the computation of each ayy(g) and ﬁg’_} (g). As described in Subsec-
tion 1.3, we also have an L-admissible decompz)sition YV =V ® Vs of nonde-
generate subspaces such that LNV, = L* NV, and LNV, = wr(L* NVs).
We should note here that V;, Vs can not have two-dimensional anisotropic
subspace. We know that the quotient SU(V)/[U(V)r,U(V)r] is nontrivial
if and only if both 1,1* are nontrivial. We know that dim(l) = dim(V;) and
dim(1*) = dim(V2). So we just need to consider the case that both Vi, Vs
are nontrivial.

Suppose that both Vi, Vs are even-dimensional. Then, V;, Vs are direct
sum of hyperbolic planes. Choose L-admissible hyperbolic planes V? ,Vg

in Vi, Vs respectively. Let g1 := [T(k) 0 } e U(VY)) CUOMV) CUWV)

0 k!
-1
and go := [T(kg 2} e UVY) CU(V) CU(V) for some k € OF — pjp.
Then g := g192 is an element in SU(V)y, and the set {g1g92 | k € Of —p5}
contains a set of representatives of [U(V)r,U(V)r]-cosets in SU (V). From
Lemmas 6.4 and 6.5, we see that

(6.7.b) B3 (9B (92) = xa(r (k) xa(r(k) ™) = 1.

Let L; := LN V]Q, L := L'nV,, and B;; := B(Lj,L;). If V! is one-
dimensional, then it is easy to check that one of By ;/ B, B3 ;/Ba,; is trivial
and the other is four-dimensional. If V! is a hyperbolic plane, then one of
Biz’/BLi: Bék’i/Bgﬂ; is trivial and the other is eight-dimensional. Therefore,
by Lemmas 6.4 and 6.5, we get

(5

1, if V! is a hyperbolic plane.

), if V! is one-dimensional;

(6.7.¢) ayr(g1)ayy (g2) = {
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Hence from (6.7.b) and (6.7.c), we have

avy(9)Byy (9) = vy (g1) o (92) By (91) 8y (92)

B (k"f-—l(f)), if V! is one-dimensional;
1, if V! is a hyperbolic plane.

If V' is odd-dimensional, then only one of these V] is one-dimensional and the
others are hyperbolic planes. If V' is even-dimensional, then there are either
two or none of these V! are one-dimensional and all others are hyperbolic
planes. Therefore, we have

k)Y if V' is odd-dimensional;
(6.7.d) ayr(9) By (g) = {( ) ’

1, if V' is even-dimensional.

Suppose that one of Vi,Vs is odd-dimensional and the other is even-
dimensional. Without loss of generality, we may assume that V; is odd-
dimensional and Vs is even-dimensional. Let V? be an L-admissible one
dimensional nondegenerate subspace of V;. Let V§ be an L-admissible hy-
perbolic plane of V,. Define g1 = k7(k)~! € U(VY)) C UOMV1) C U(V)
T(Ok) k(_)l} € UNVY) C UMVy) C U(V). We assume that
k € Op —pg and kr(k™') # 1. Therefore, g := g1g2 € SU(V) is a repre-
sentative of a nontrivial [U(V)r,U(V)r]-coset in SU(V). Let L; := LOVJQ,
L; = L'n Vl{, Bl,i = B(Ll —I—Zl,L;), and Bgﬂ' = B(LQ,L;). Write
k := x9 + 6yo and kr(k)™' := x + dy for zg,y0,2,y € Op. Because
kr(k)™" = (zo0 + dyo)(xo — dyo) " = (2 + Ayg + 2xoy06) (25 — Ayg) ™,
we have z = (22 + Ayd) (23 — Ayd)~!. Since we assume that k7(k)~! # 1,
we have yg # 0. We shall only consider the case that x Z 1 mod pg, so we
assume that ord(yp) = 0. By Lemmas 6.1, 6.2, 6.4, 6.5, we have

and go = {

xi((kT(k)~! —1)6), if dim(V}) =1 and
- dim(B7 ;/B1;:) = 0;
aw(gl)g}g(gl) = —(Z2) (k7 (k)™ = 1)8), if dim(V}) =1 and
dim(Bj;/B1,) = 4;
xi((kT(k)~! = 1)6), if dim(V/) = 2.
Xi(T(k)), if dim(V}) =1 and

dlm(Bg’Z/BQJ) = 0;

avy(92)By)(92) = § (FF2) xi(r(k)),  if dim(V}) = 1 and
dlm(B§7l/Bg7l) = 4;

Xi(T(k)), if dim(V}) = 2.
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We have
55—9 2 2Y (72 _Ag2)—1_
(6.7.e) - (2115;2) = _ <2($0+Ay0)(?2 Ayg)—t-2
 (g@aa ) (4 (752
T\ & )T \w) T )
Because A is not a square in F', we have (%) = —1. Therefore,

() = () = (%9).

If V! is one-dimensional, we know that one of Bii/Bl,h B;yi/BQ,/L' is trivial
and the other is four-dimensional. Therefore, we get

av(9)Byi(9)
_ (k%l(f))xi((kﬁ(k)_l —1)8)x(7(k)), if V! is one-dimensional;
xi((kT(k)~t — 1)&)x(7(k)), if V! is a hyperbolic plane.
We know

Xi((k7 (k)™ = 1)8)x(7 (k) = xa((k — 7(k))d) = xi(2y02) = (A, 2y0A) p = 1
because F is an unramified quadratic extension and ord(yg) = 0. If V' is
even-dimensional, then there are either two or none of V! are one-dimensional
and all others are hyperbolic planes. If V' is odd-dimensional, then exactly
one of V! is one-dimensional and the others are hyperbolic planes. Therefore,
we have

(6.7.f) av (9)8%(g) = {(kék)), if V' is odd-dimensional;
- / V! =

1, if V' is even-dimensional.

Suppose that both Vi, V5 are odd-dimensional. Let V? (resp. VS) be an
L-admissible one dimensional nondegenerate subspace of V; (resp. Va). Let
gi=t=x+dy e UWV) CUWV) CcUDV) and g0 :=t 1 € UMY C
U(Vy) € U(V) for some t € EM and t ¢ 1+ pp. Define g := (g1,90) €
UWVy) xU(Vy) C U(V). Hence, g belongs to SU (V) and is a representative
of a nontrivial [U(V)r,U(V)r]-coset in SU(V)r. Since t7(t) = 1, we know
that t71 = 7(t) = 2 — dy. Let L; := LN VJQ, L) .= L'NV/, and Bj; =
B(L; + Lj, L}). Therefore, by Lemmas 6.1, 6.2, 6.4, 6.5, we have

xi((t —1)9), if dim(V)) =1 and
dim(B;,/B1;) = 0;
avr(9) (1) = § ~(F2)xl(t - Do), it dim(V) = 1 and
dim(Bii/BLi) = 4;
xi((t —1)9), if dim(V)) = 2.




206 SHU-YEN PAN

If V! is one-dimensional, we know that one of Bii /B, B;i /Ba; is trivial and
the other is four-dimensional. It is easy to check that x;((t—1)(t~1—1)§?) =
Xi((2—=22)A) = (A, (2—22)A)p = 1 because E is an unramified quadratic
extension. Therefore

(g) = {—(21_2)7 if V! is one-dimensional;
=11

Y; fr
oy ;
Vi (g)ﬁvi if V! is a hyperbolic plane.
If V' is even-dimensional, then there are either two or none of V, are one-
dimensional and all others are hyperbolic planes. If V' is odd-dimensional,
then only one of V! is one-dimensional and the others are hyperbolic planes.
We can write t = k7(k)~! for some k. Therefore, we have

(6.7.) o ()3 (g) = {(ka;k)), if V' is odd-dimensional;
o V! A\ -

1, if V' is even-dimensional.

Finally from (6.7.d), (6.7.f) and (6.7.g), we conclude that

(k;(k)), if V' is odd-dimensional;
F

6.7.h v (9)8Y(g) =

( ) v(9)(9) {1, if V' is even-dimensional

for g in a set of representatives of nontrivial [U(V)r,U(V)r]-cosets in
SU(V)r. It is easy to check that the left-hand side of (6.7.h) is exactly the
character ¢y defined in Subsection 3.3. Hence, we conclude ayr(g) ﬂ%;, (9) =
Cyr(g) for any g € SU(V) .

7. Proof of Proposition 3.3 for unitary groups: Part II.

In this section, we assume that D = FE is a ramified quadratic extension
of F. Let E := F(§) where 62 = A is a nonsquare element in F* such
that ord(A) = 1. Without loss of generality, we assume that A := wpg. As
usual, fix a nontrivial character 1) of F'. Subsections 7.1-7.6 are parallel to
Subsections 6.1-6.6. So these subsections will be sketchy in many places. In
Subsections 7.7, 7.8 and 7.10, we also assume that #(fr) = 3.

7.1. . In this subsection, we keep the same assumption in Subsection 6.1
except that we assume that F is a ramified extension.

Lemma. Suppose that both V and V' are one-dimensional. Let g € U(V).
Write g =t = 2+ 0y for t € EY and z,y € F. Let o be as defined in
Subsection 5.2. Then

ﬁ))//’(g) = X((t - 1>6)(A7 Q)FFYF(Av ¢0)_17

» {1, if o 2 1 mod pp;
[0AYY = I
Y VF(—A,@ZJO)(A,?yQ)F(%;)Ord(wO), if £ =1 mod pp.
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Proof.  Like the computation in Subsection 6.1, we have j(g) = 1. Hence,
ife=1,

Byr(g) = x((t = )r Hx(6)(A,7'6) (=1, =A) pyr (A, tho) !
= x((t = 1)0)(A, ) pyr(A, o) "
If e = —1, we have
Byr(g) = x((t = Dr (A7) p(=1, =A) pyp(A, o) ™
X((t=1)8)(A, (rd) ') p(=1, —=A) pyr(A, o)~
X((t = 1)8)(A, 0) ryr (A, o)~

Suppose that x # 1 mod ppr. From the result in the proof of Lemma 5.3,
we know that B*/B is trivial. Then obviously m(ty(g)) = 1 and j(vy(g)) =
0. Thus ayr(g) = 1 by (6.1.c). If z = 1 mod pp, the lemma follows from the

same computation in Subsection 6.1. O

7.2. . Keep the assumptions in Subsection 6.2 except that we assume FE is
a ramified extension here.

Lemma. Suppose that V is one-dimensional and V' is two-dimensional
isotropic. Suppose that g is an element in U(V) and g # 1. Write g =t for
t e EW. Then

Byi(g) = x((t — 1)d),
ayr(g) = 1.

Proof. 1If € = 1, like the computation in Subsection 6.2, we know that

B (9) = x(2(9)d) = x(r~'(t = 1)d) = x((t = DO)(A,r)F = x((t — 1)9). If
e = —1, it is easy to check the above is also true.

We can also check that B*/B is either trivial or four-dimensional. Sup-
pose that = # 1 mod pp. If B* = B, obviously we have m(iy(g)) = 1
and j(1y(g9)) = 0. Hence, ayr(g) = 1. If B*/B is four-dimensional, it is
straightforward to check that j(1yr(g)) = 2 and x(1y/(g)) = —y?(2Ar)~2.
So from (4.2.a), we see that m(uy(g)) = (%Fl)’YfF (¢0)~2 = 1. Similar to the
computation in Subsection 6.2, we have ay(g) = 1. Next we assume that
z =1 mod pp. Then we know that 1y/(g) = 1. Hence we have m(1y(g)) = 1
and j(uvy(g)) = 0. By the exactly same computation in Subsection 6.2, we
have ayr(g) = 1. O
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7.3. .1In this subsection, we assume that )V is one-dimensional and V' is

two-dimensional anisotropic. Let V!, be as defined in Subsection 6.3.

Lemma. Suppose that V is one-dimensional and V' is two-dimensional
anisotropic. Suppose that g :=t € EY is an element in UV) and g # 1.
Let 55 be defined with respect to a character x of E* such that x|px = e%/F.
Then

Bin(g) = =x((t — 1)d),
B 1, ifx#1 mod pp;
ayr(g) = { )

, ifr=1mod pp.
Proof. If e = —1, then ﬂ},/, (9) = x(z(@) (A, 7)) p (A, A)p = —x((t —1)J).

If e = —1, this is true again as in Subsection 6.3. By the same argument in
Subsection 6.3, we see that ay(g) = 1 if 2 Z 1 mod pr and ay(g) = —1 if
z=1mod pp. O
7.4. . Let v’ be an element in F* such that v := h'(v/,v') if e = —1;

r'd :=h'(v,v") if e = 1 for some nonzero v’ € V'.

Lemma. Suppose that V is two-dimensional isotropic and V' is one-dimen-

. (k) 0 10 ekt «
stonal. Let g1 = [ 0 k:_l}’ go = |:7'(k) 0 } for some k € E* such

that g1,g2 are in UV and g1 # 1. Write k = xo + dyo for xo,y0 € F.
Then

; o if9=g1;

Bin(g9) =  X(T(k))(A, —T’)FWfF(&o)’l(%;)id(wO), ifg=go and e = —1;
X(T(K)8) (A, ") Fyep (o) 1 (%Fl)ordwo), ifg=go and e =1,

, if g = g1 and B*/B s trivial;

), if g = g1 and B*/B is not trivial;
if g = go and B*/B s trivial;

—2&0#)7& (¢0), if g= g2 and B*/B is not trivial.

ayr(g) =

1
(
1
(

x(7(k)). If B*/B is trivial, it is clear that m(ty(g)) = 1 and j(1y(g)) =
Therefore, we have ay(g) = 1. If B*/B is not trivial, then 1t is tw
dimensional. And we have j(ty/(g)) = 0, m(1y(g)) = Yep (Zo, o) ™t = (;—

Hence, ay(g) = (f—FO)

Proof.  First, suppose that g = g;. We have j(g) = 0. Hence, ﬁv,( )
0

-
)
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Next, suppose that ¢ = g2 and € = —1. Then j(g) = 1. Hence, from [KI|
Theorem 3.1, we have

Byi(g) = X(T (k) (A7) pyr(— A, o) "'y (=1, 40)
= X(T(E) (A, ) pyr (D, 00) 1A, —1)p

= X(T(k)(A, =) Pyt (o) ! (;—Fl)"rd‘%).
If e =1, then
B (9) = x(T(k)O) (A, 7' A) pye (=4, ¢0) e (=1, %0)
= x(r(B)O)(A, ) e, (%0) " (52) .

Let {w1,... ,w4} be the basis of W given in Subsection 6.4. Then

_ 'A A
0 0 S5 o
_ /A !
wig=]0 0 TE w®
T =0 0
oo 0 0

with respect to the basis. If B*/B is trivial, then m(t(g)) = 1 and

j(tyr(g)) = 0. Therefore, we have ay(g) = 1. If B*/B is not trivial, then
it is two-dimensional. And we have j(1/(g)) = 1 and x(1y7(g)) = —xo /1" A.

Hence ay(g) = (%FOT/)’Y&(@ZO)- O

7.5. . Keep the assumptions in Subsection 6.4 except that we assume FE is
a ramified extension here.

Lemma. Suppose that both V and V' are two-dimensional and isotropic.

(k) 0 70 ekt «
Let g1 := { 0 k‘l}’ go = |:7'(k‘) 0 } for some k € E* such that g1, go

are in UV and g1 # 1. Write k = xo + dyo for zo,yo € F. Then
x(m(k), if g=g1;
B(9) = S x(r(k),  ifg=g2 and e = —1;
x(1(k)d), ifg=g2 ande=1,
ay(g) = 1.

Proof.  Suppose that g = g;. Then j(g) = 0 and ﬂ?j,(g) = x(7(k)). The
proof for ayr(g) =1 is exactly the same as in Subsection 6.5.

Next suppose that g = g2 and ¢ = —1. Then

B (g) = x(T(k) (A, =1) pyr(—A, o) 2vp(—1,¢0)?
= X(7(k)(A, =D r(A, =1)F = x(7(k)).
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If € = 1, the computation is similar. If B*/B is trivial, then m(u(g)) =1
and j(uy(g)) = 0. Therefore we have ay(g) = 1. If B*/B is not trivial,

then it is four-dimensional; and we have j(iy(g)) = 2 and z(tp(g)) = (;—Fl)

Hence, ayi(g) = (5 )ee (¢0)* = 1. O

7.6. . In this subsection, we assume that V is two-dimensional isotropic and
V' is two-dimensional anisotropic. Let V!, r} be as defined in Subsection 6.3.

Lemma. Suppose thatV is two-dimensional isotropic and V' is two-dimen-

(k) 0 }

stonal anisotropic. Let ﬂg, be defined with respect to x. Let gy := [ 0 k1

170 ekt « .
go = [T(k‘) 0 } for some k € E* such that g1,g2 are in U(V)p and

g1 # 1. Write k = xg + dyo for xo,yo € F'. Then

x(r(k),  ifg=g;
Bn(g) = —x(r(k)), if g =gz and e = —1;
—x(1(k)d), ifg=g2 ande=1,
1, if g = g1 is trivial;
ay(g) = 1, if g = g2 and B*/B is trivial;
—1, if g = g2 and B*/B is not trivial.

Proof. 'The proof for ﬁ%,/, (g) is analogous to case in Lemma 7.3.

Next we compute ayr(g). Let By, By be as defined in the proof of Lem-
ma 6.6. Now we notice that either both Bf/Bi, B;/Bs are trivial or both
are two-dimensional. Hence, it is clear that ay/(g) = ayr(g)ay,(g) = 1 if
g = g1. So now suppose that g = ¢g2. If B*/B = B} /B ® B3 /B> is trivial,
it is clear that ay(g) = 1 from Lemma 7.4. If B*/B is four-dimensional,
then ayr(g) = —(%Fl)’YfF (10)? = —1 from Lemma 7.4. U

7.7. .1In this subsection, we assume V two-dimensional isotropic, V' one-
dimensional and ¢ = 3. We shall consider the case that 1 is trivial and
1* is two-dimensional symplectic space. Fix a standard basis {vi,va} of
V. Choose a nonzero element v’ in V' such that ord(p) = 0 or 1 where
o:=h'(v/,v'). Let Y°:= Evgand Y :=Y° ® V'

Lemma. Suppose thatV is two-dimensional isotropic and V' is one-dimen-
: 1
sional. Suppose that g := [O ClL

and g € U(V)r. Then

} € U(V) for some a such that a = eT(a)

Bo(g) =1
ayr(g) =1.
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Proof. 1t is clear that z(g) = 1 and j(g) = 0. By [Kl] Theorem 3.1, we see
that A}, (g) = x(x(9)) = x(1) = 1.

Let wy := %vl RV, wy = ;—‘Z}vl RV, w3 == v9 ®v', and wy = dvy R V.
The the set {wi,ws, w3, ws} is a standard basis of W := V ® V'. Then
Y = Fws + Fwy. We have

1 0 oa 0
101 0 —Apa
(7.7.a) wi(g) = 00 1 0 e Sp(W)
00 O 1
with respect to the basis {wi,ws} of W. It is clear that B*/B is two-
dimensional, j(ty(g)) = 0 and z(1y(g)) = 1. Hence ayr(g) = 1. O

7.8. . In this subsection, we assume that both ¥V and V' two-dimensional
isotropic, and ¢ = 3. We shall consider the case that 1is trivial and 1* is two-
dimensional symplectic space. Fix a standard basis {v1,ve} (resp. {v],v}})
of V (resp. V'). Let Y°:= Fvgand Y :=Y° @V

Lemma. Suppose that both V and V' are two-dimensional isotropic. Let

g:= Ll) Cﬂ e U(V) for some a such that a = er(a) and g € U(V)r,. Then

Bn(g) =1,
ar(g) = 1.
Proof.  As in Subsection 7.7, we have z(g) = 1 and j(g) = 0. Then clearly
By(9) = x(x(9)) = x(1) = 1.
Assume that € = 1. Let wy := v1 @ v}, we = —%ful ® V], w3 := v ® vh,
wy = —u; ® vh. ws = v ® vk, wg = dve ® vh, wr = vy ® v}, and

wg 1= dva@v]. The the set {wy,... ,ws} is a standard basis of W :=V®V".
Then Y is the F-space spanned by {ws,... ,wg}. We have

1000 0 0 0 ¢
0100 0 0 —éa 0
0010 0 % 0 0
0001 —6a 0 0 0
(7.8.2) w@=1o0000 1 0 0 0
0000 0O 1 0 0
0000 0 0O 1 0
0000 0 0 0 1

with respect to the basis {wi, we, w3, ws} of W. It is clear to see that the
space B*/B is either trivial or four dimensional. If B*/B is trivial, then
m(ty(g)) = 1 and j(ty(g)) = 0. Therefore, ay(g) = 1 by (7.8.a). If
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B*/B is four-dimensional, then it is clear from (7.8.a) that j(uvy(g)) = 0
and m(uy(g)) = 1. Therefore, oy (g) = 1. If € = —1, the computation is
similar. U

7.9. Proof of Proposition 3.3 for V e-hermitian and E ramified:
Part (I). Since now E is a ramified quadratic extension of F', we know that
fr = fr, one of 1, 1" is a quadratic space and the other is a symplectic
space. Without loss of generality, we assume that 1 is a quadratic space
and 1* is a symplectic space. In this subsection, we assume that ¢ > 3.
As in Subsection 6.7, we have an L’-admissible decomposition V' = @@, V;
of nondegenerate subspaces such that each V! is either one-dimensional or
a hyperbolic plane, and we have ay(9)3Y%(g9) = I, oy (g)ﬂ& (g) under a

proper choice of x;, x where Y; := Y° ® V/. We also have an L-admissible
decomposition V = V) &Vs such that LNV = L*NV; and LNVy = wr(L*N
Vs). It is obvious that dim(l) = dim(V;) and dim(1*) = dim(V2). Now we
have the following cases. From our assumption that 1* is a symplectic space,
we see that Vs must be even-dimensional. From Subsection 1.4, we know
that SU(V)./[U(V)r,U (V)] is nontrivial if and only if the dimension of V;
is great than one. (Note that we assume that ¢ > 3.) So we assume that
the dimension of Vj is greater than 1.

Suppose that V; is isotropic. Choose L-admissible hyperbolic planes V) in
Vi. Let g := [T(Ok) kgl] e UWVY) CUOV) CU(V) for some k € OF — py
such that k is not a square. Hence g is a representative of the nontrivial
[UV)L,U(V)L]-coset in SU(V),. Consider the dual pairs (U(VY),U(V))).
We have
-1, ifm;=1;
(7(k)) = xi(k) = (A k)5 = ’ ! ’
xi(r (k) = xah) = (A, )} { Do,
where m; is the dimension of V/. Let Lo := LNVY, L} := L' NV; and
B; = B(Lo, L}). From the assumption, we know that L{/Ly is trivial and
Lo/wgL{ is a two-dimensional quadratic space. If V! is one-dimensional,
then the space L*/L, & L/wrL}* must be a one-dimensional quadratic
space. Hence the quotient B} /B; must be trivial. Then from Lemmas 7.4
and 7.5, we see that

—1, if V! is one-dimensional;

av(9)Byi(9) = {

1, if V! is two-dimensional isotropic.

If the dimension of V' is odd, there is exactly one odd-dimensional V]. If
the dimension of V'’ is even, there are either two or none odd-dimensional
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V.. Therefore, we conclude that

—1, if V" is odd-dimensional;

(792)  aw(9)Bh(9) = {

1, if V' is even-dimensional.

Next, suppose that V; is anisotropic. Hence V; is two-dimensional in our
situation. As in (iv) of Subsection 1.4, we have two L-admissible subspaces
Evy, Evy such that (A, h(vi,v1)h(ve,v2))p = —1. Let g; be the element
in U(V) such that gi|gy, = —1 and gi[(g,,)» = 1. Then it is clear that
g192 € SU(V)r and the image of g1g2 in SUV)/[U(V)r,U(V)L] generates
SU(1)/[U(1),U(1)], which is isomorphic to Z/2Z. So we need to compute
oy (glg2)ﬁ1¥, (9192). Since avfﬂ%,/, is a character of U(V), we have

ay(9192) B (g192) = avr (g1) o (92) 3% (91) B (g2)-

Let V' = @, V! be the decomposition in the previous paragraph. If V! is
one-dimensional, let g;; denote the number o in Subsection 7.1 for the pair
(U(Ev;),U(V!)). From the computation in Subsection 7.1, we know that

avl{(glmw(%)ﬁ‘?(gl)ﬁ%(gﬂ = xi((=2)%6%)(A, 01.02.4) FYF (A, 100) 2.
From the assumption, we have (A, 01,02,)r = —1. Therefore,
aviByi(9) = —(A, A)prp(A, ) = 1.

If V! is a hyperbolic plane, from the computation in Subsection 7.2, we know
that

yy (91)55} (91) (92)532& (92) = xi(z(g1)z(g2))x(6)*
= xi((=2*)((A,A)p)* = 1.

If the dimension of V' is odd, there is exactly one odd-dimensional V]. If
the dimension of V' is even, there are either two or none odd-dimensional
V!. Therefore, we conclude that

—1, if the dimensional of V' is odd;

1, if the dimensional of V' is even.

(7.9.b) v (9)B(g) = {

Combining (7.9.a) and (7.9.b), Proposition 3.3 is proved when V is an
e-hermitian space over a ramified extension and ¢ > 3. O

7.10. Proof of Proposition 3.3 for V e-hermitian and E ramified:
Part (II).In this subsection, we assume that ¢ = 3. Let V = V; & WV,
be the L-admissible decomposition as in Subsection 7.9. In addition to the
result proved in Subsection 7.9, we also need to consider the case for Vo
two-dimensional. Fix a standard basis {vs,v4} of Vo. We have to compute
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o (9)B(g) for g == [é Cll] as in Subsection 7.7 or 7.8. Let V' = @, V!

be the L'-admissible decomposition as in Subsection 7.9. From Lemmas 7.7
and 7.8, we see that ayy (g)ﬁ]}f} (g) =1 for each i. Therefore,

(7.10.a) ayr(9)B% (g Hozv/ =1

with respect to the characters x;, x deﬁned in Subsection 3.6. Combining
the result of Subsection 7.9, we have proved Proposition 3.3 when V is an
e-hermitian space over a ramified quadratic extension of F' and ¢ =3. [

8. Proof of Proposition 3.3 for orthogonal groups.

Keep the notation in Subsection 3.3. In this section, we assume that V is
a quadratic space. The computation in this section is similar to but easier
than that in Sections 6 and 7. As usual, fix a nontrivial character 1 of F.

8.1. . In this subsection, we assume that V is one-dimensional and V' is two-
dimensional (isotropic). Now V is anisotropic, so we embed V into V + V),
which is a direct sum of hyperbolic planes as described in Subsection 3.2.

Lemma. Suppose thatV is one-dimensional and V' is two-dimensional. Let
g:=—-1€U(V). Then

Byr(g) =

ayr(g) = 1-
Proof.  From [KI] Theorem 3.1, we know that 8}, (g) = 1.

Next, we compute ay(g). Let v be a nonzero element in V such that
ord(p) = 0 or 1 where p := h(v,v). Let {v],v5} be a standard basis of
V. Let wy = 2%(“ —0) @}, wy = QLQ(U — ) ®@ v, wg = (v+ ) ®1é,
wyq = (v +0) ®v]. The set {wy,wq, w3, wy} is a standard basis of W + W.
Then,

0 0 0 -2

0 0 —-20 O _
o

5—91 0 0 0

with respect to the basis {w1, wa, ws, ws}. We know that X = Fw; + Fws
and Y = Fws + Fwy. Now B := B(L + L, L") where L be the good lat-
tice in V corresponding to L. It is clear that either B*/B is trivial or
four-dimensional. Suppose that B*/B is trivial. Then A = B and ty/(g)
stabilizes A, m(ty(g)) = 1 and j(1(g)) = 0. It is straightforward to
check that (6.1.c) is true in this case. Hence ayr(g) = 1. Next, suppose
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that B*/B is four-dimensional. Clearly j(t)7(g)) = 2 from (8.1.a) and
m(u(g)) = (M) (;—Fl) as in Subsection 4.2. We know that x(ty(g)) =

fr s
—(—=1)%(20)72. Therefore, we see that m(uy(g)) = 1. Hence, ayr(g)
1.

o

8.2. . In this subsection, we assume that both V and V'’ are two-dimensional
and isotropic. Let {v1, v} (resp. {v], vh}) be a standard basis of V (resp. V').
Let Yo :=Fupand Y :=Y° @ V.

Lemma. Suppose that both V and V' are two-dimensional isotropic. Let

g = [k 91} be an element in U(V) with respect to the basis {v1,va} for

0 k
some k € F* such that ord(k) = 0. Then
Bor(g) =1,
ayr(g) =1.

Proof. From [KI| Theorem 3.1, we know that ﬁg, (9)=1.

Let wy := v1 ® v}, wy := v @ vh, wy := vy ® vh, wy := vy @ v}. The set
{w1, we, w3, ws} is a standard self-dual basis of W :=V ® V. We have

E 0 0 0
0 £k O 0

(82&) Ly (g) = 0 0 k1 0 € Sp(W)
00 0 k!

with respect to the basis {wj,ws, w3, ws}. Then we know that the space
B*/B is either trivial or four dimensional. In both case it is easy to see
that j(ty7(g)) = 0 and z(1y(g)) is a square. So m(ty(g)) = 1. Therefore,
ayr(g) =1. O

8.3. . In this subsection, we assume that both V and V'’ are two-dimensional
and isotropic. Let {vy, va} (resp. {v],v5}) be a standard basis of V (resp. V').
Let Yo :=Fuvgand Y :=Y° V.

Lemma. Suppose that both V and V' are two-dimensional isotropic. Let

g = [ 0 k} be an element in U(V) with respect to the basis {v1,ve} for

k0
some k € F* such that g € U(V)r. Then
Bor(g) =1,
ayr(g) =1.

Proof. From [KI| Theorem 3.1, we know that ﬁ]g, (9)=1.
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Let wy := v1 ® v}, we := v1 @ v}, wsg := v9 ® vh, wy := vy ® v]. The set
{w1, wa, w3, wys} is a standard self-dual basis of W :=V ® V'. We have

0 0 0 k
0 0 k 0

(833“) [’V’(g): 0 k*l 0 0 GSP(W)
L0 0 0

with respect to the basis {w1, wa, w3, ws}. Let L’ be a good lattice in V'. The
space B* /B is either trivial or four—dimiensional. In both case it is easy to see
that j(tyr(g)) = 2 and x(1yr(g)) = —k~2. Hence by (1) in Subsection 1.5 and

(4.2.a), we have m(1y(g)) = (7]“_2) (%Fl) = 1. Therefore, ayr(g) = 1. O

fr

8.4. Proof of Proposition 3.3 for V quadratic. Let V be a quadratic
space. So D = F' and both U(l) and U(I*) are finite orthogonal groups. In
this case, we know that

{id}, if one of 1, I* is trivial,

SWO) xTEN/ASTWD > SUI)) = {Z/2Z if both 1, I* are not trivial

7/2Z, if dim(l) > 2
{id},  otherwise

SU)/[U),U(Y)] ~ {

where 1’ is 1 or 1*.

First, suppose that both 1 and 1* are nontrivial. Let V = V; & Vs be
the decomposition in (1.3.c). For ¢ = 1 or 2, if V; is isotropic, choose an
[k?l ]B} cU) <
U(V) for some k; € F*. We can choose k; properly such that g; € U(V)y.
If V; is anisotropic, choose an L-admissible nondegenerate one-dimensional
subspace VY and let g; := —1 € U(V?) C U(V). Therefore, g; € U(V)L
and g := g1g2 belongs to SU(V)r. Moreover, the image of g in S(U(l) x
U*))/(SUQ) x SU(1*)) generates the group. We have an L’-admissible
decomposition V' = @, V! of nondegenerate subspaces such that each V; is
a hyperbolic plane. Let Y; := Y° ® V/. Then, we have

(84&) O[]}/ ﬁvl H O[v/ ﬁvl

L-admissible hyperbolic plane Vlo in V; and let g; :=

We have oy (gj)ﬂg? (9j) = 1for any i, j by Lemmas 8.1 and 8.3. Since ayyy Sy

is a character of U(V), we have ayy(g) By, (9) = avr (91) By, (g1) vy (92) By (92)
= 1. Hence,

(8:4.b) av(9)B(9) = 1
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Next, suppose that the dimension of 1 is greater than 1. We know that
dim(l) = dim()1), so the dimension of V; is greater than 1. If V; is
isotropic, choose an L-admissible hyperbolic plane VZ-O in V; and let g :=
[lg k(_)l} e UWV?) CU(V) for k € F* such that ord(k) = 0 and k is not
a square. If V) is anisotropic, then V; is two-dimensional and has two L-
admissible subspaces F'vi, Fvg such that h(vy,v;)h(vg, v2) is not a square.
Let g; be the element such that g;|py,, = —1 and gi’(F,Ui)i = 1. Define
g = g192. Therefore, we know that g belongs to SU(V)r and the image
of g in SUW)/[lUV)L,U(V)1] generates SU(1)/[UQ1),U(1)] ~ Z/27Z. Let

" = @, V! be the decomposition as in the previous paragraph. If V is
isotropic, then ayy (g)ﬁvlf (9) = 1 by Lemma 8.2. If V; is anisotropic, then
ayr (9)Byr(9) = ayr(91)Byr(91)ay: (92) By (g2) = 1 by Lemma 8.1. Hence, we
obtain

(8.4.c) ay (9) 5% (g Hav, )Byr(g) = 1.

If the dimension of 1* is greater than 1, by exactly the same argument in
the previous paragraph with 1 replaced by 1* and V; replaced by Vo we can
prove that

(8.4.d) ay/(g)By(g) =1

for an element g € SU(V)r such that the image of g in SUV)./[U(V)L,
U(V)1] generates SU(1*)/[U(1*), U(1*)].

So by (8.4.b), (8.4.c) and (8.4.d) we conclude that ay(g)3%(g) = 1 for
any g € SU(V)L Since (y» is the trivial character of U(V)[, is this case, we

have ay % sy, = ¢ lsuw) 0

9. Proof of Proposition 3.3 for symplectic groups.

In this section, we assume that V is a symplectic space. In this case, D =
F and both U(l) and U(1*) are finite symplectic groups. Therefore the
quotient group S(U(1) x U(1*))/(SU(1) x SU(1*)) is trivial. The quotient
SU)/[UQ),U(1)] (resp. SU*)/[U1*),U(1*)]) is nontrivial only if ¢ = 3
and the dimension of 1 (resp. I*) is two. As usual, fix a nontrivial character

1 of F.

9.1. . In this subsection, we assume that V is two-dimensional and V' is
two-dimensional anisotropic. Let {vi,v2} be a standard basis of V. Let
Yo:=Fuypand Y :=Y° @V



218 SHU-YEN PAN

1 w%}

Lemma. Suppose that V' is two-dimensional anisotropic and g := [O 1

for some d is an element of U(V)r. Then,
By(g) =1
ayr(g) =1.

Proof. 1t is clear that j(g) = 0 and z(g) = 1. By [KIl] Theorem 3.1, we
know that

(9.1.2) B (9) = (a(g), —det(V)r = L.

)

Next, we want to compute ayr(g). Because V' is anisotropic, we have an
L-admissible basis {v], v4} of V' such that h’(v], v5) = 0. Let g1 := h'(v{,v})
and g := h'(vh,v}). We shall choose v, v} such that ord(p;),ord(ps) are
zero or one. Let wy = Q—llvl ® v, wy = évl ® v, w3 = ve @ V], wy =
vg ® vh. The set {wy,ws, w3, ws} is a standard basis of W :=V ®@V'. Then,
Y = Fws 4+ Fwy. We have

d

10 01 W 0
101 0 ng%
(le) Lvl(g) =10 o 1 0 S Sp(W)
00 0 1

with respect to the basis {wi, w2, w3, ws}. Let L' be a good lattice in V.
Therefore, the space B*/B might be trivial, two-dimensional or four dimen-
sional.

(i) Suppose that B*/B is trivial. Hence, m(ty(g)) = 1 and j(vy(g)) = 0.
Therefore, ay(g) = 1.

(ii) Suppose that B*/B is two-dimensional. Then ¢, (g) can be presented
by a two by two upper triangular matrix with diagonal entries equal
to 1. Hence, j(1y(g)) = 0 and z(1y(g)) = 1. Therefore, m(ty(g)) =1
and ay(g) = 1.

(iii) Suppose that B*/B is four-dimensional. Then from (9.1.a) we see
that ¢)/(g) can be presented as the 4 x 4 upper triangular matrix with
diagonal entries equal to 1. Hence, j(ty7(g)) = 0 and m(uy(g)) = 1.
Therefore, ayr(g) = 1.

O

9.2. . In this subsection, we assume that both V and V'’ are two-dimensional
isotropic. Let {v1,v2} be a standard basis of V. Let Y° := Fug and Y :=
Yo V.
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Lemma. Suppose that V' is two-dimensional isotropic and g := [(1) wlﬁl;}
for some d is an element of U(V)r. Then

Byi(g) =1,

ayr(g) =1.

Proof.  As in Subsection 9.1, we know that z(g) = 1 and j(g) = 0. There-
fore by [KIl] Theorem 3.1, we have
(9-2.2) Byr(g) = (w(g), det(V)r = (1, det(V))p = 1.

Now V' is anisotropic, so V' has a standard self-dual basis {v], v} } which is

an L-admissible. Let wy := v1 @], wa := v1Qv), w3 := v2@vh, Wy 1= vV2@V].
The set {w,ws,ws,wys} is a standard self-dual basis of W :=1V ®V'. Then

10 0 o

101 wd 0
(92b) Lyr (g) =10 o 1 0 S Sp(W)
0 0 O 1

with respect to the basis {wi,we,ws,ws}. Hence, t)7(g) stabilizes X =
Fwy + Fwsy. By the similar argument in Subsection 9.1, we can prove that
ay(g) = 1. O

9.3. Proof of Proposition 3.3 for V symplectic. Now V is a symplectic
space, we have

UOV)/IUV), UV = (SUQ)/[UW),UW)]) x (SUQ)/[Ua),U).
We know that SU(1)/[U(1), U(1)] is nontrivial if and only if 1 is two-dimensi-
onal and ¢ = 3. (Note that we always assume that g # 2.)

First we assume that dim(l) = 2 and ¢ = 3. Let V = V; @V, be the
L-admissible decomposition as in (1.3.c). Therefore V; is two-dimensional.

d
Let {v1,v2} be a standard basis of V; and g := {(1) wlF} e UV CUWV).

We can choose the integer d such that g € SU(V)r, = U(V) and the im-
age of g in SUWV)/[UV)L,U(V)1] generates SU(1)/[U(1),U(1)]. Because
we assume that V' is even-dimensional, we have an L’-admissible decom-
position V' = @, V/ such that each V! is two-dimensional. We know that

avlf(g)ﬁ;/z (9) =1 for each ¢ by Lemmas 9.1 and 9.2. Hence,

(9.3.a) ayr(9) B (g Haw = 1.

If 1* is two-dimensional, by the same argument we can prove that
(9.3.b) ay(9)Bn(g) =1
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for g € SU(V)r, such that the image of g in SU(V)./[U(V)L,U(V)1] gener-
ates the group SU(1*)/[U(1*), U(1%)].

Hence, we conclude that ay(g)3% (g) = 1 for any g € SU(V)r. Since
is trivial in this case, we get Oévfﬁ1§;//|SU(v)L = Qrlsuwy, - O

10. Splitting and theta dichotomy.

In this section, we prove a proposition which concerns the splitting and
theta dichotomy of unitary groups. Therefore, we assume that D = FE
is a quadratic extension of F' throughout the section. The main result is
Proposition 10.2, which will be a crucial ingredient of the results in [Pn2].
First we recall the notation from [HKS].

10.1. “Related” Witt towers. Denote the spaces VT, V'™, so that

mE (mifl) I+
(10.1.a) emp (1) 7 det(VF) ) = +1
where m¥ is the dimension of V'*. Let {V;}r}, {V;;_} be two “related”

+

Witt towers where m; (resp. m; ) denotes the dimension of V;:* (resp. VT';,).

7

Therefore, V', is trivial or a one-dimensional anisotropic €’-hermitian space,
m
0

J— . . . . . . . .
V'™ is a one-dimensional or two-dimensional anisotropic €¢-hermitian space,
m

0
and V:ji is the direct sum of V;ji and 4 copies of hyperbolic planes; so
A 0
mi = mg + 2i; and we know that the dimensions of {VT’;ZF}, {V:;_} are

either all even or all odd.

If a character x of E* such that x|px = e’g/iF is fixed, then a splitting

U(V) — U(V) is determined in [KI]. Because eg,p is a character of order
two, the character x depends only on the parity of m*. Therefore we will
+

Mo

fix x such that x|px = €p/r for the whole tower {Vﬁi

10.2. A character of the unitary group. Let L be a good lattice in V.
We have a homomorphism U (V) — U(l) x U(1*). If E is an unramified ex-
tension of F', then both U(1), U(1*) are finite unitary group. Let n; (resp. 72)
be the character of U(1) (resp. U(1*)) of order two if the group is not trivial,
and the trivial character if the group is trivial. If E' is a ramified extension of
F, then one of U(1), U(1*) is an orthogonal group and the other is a symplec-
tic group. Let n1 (resp. n2) be the character of order two whose restriction
to SU(1) (resp. SU(1*)) is trivial if the group is an orthogonal group, be the
trivial character if the group is a symplectic group. For both cases let 7y,
be the character of U (V) lifted from 177 ® 72 by the above homomorphism.
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It is easy to see that the character ny factors through the determinant map
det: U(V), — EWM. Hence, 7y, is the restriction of a character i of U(V).
In fact, n is uniquely determined by 7y, except the cases that F is a ramified
extension of F' and one of 1,1* is trivial and the trivial one is the quadratic
space. For the exceptional case, n could be the trivial character or the sgn
character, otherwise 7 is the sgn character of U(V).

Proposition. Let iy be the character of U(V)y defined above. Let oy,
ﬂg,i be the avf,ﬂ%,/, defined before for the dual pairs (U(V),U(V'F)). Then

(10.2.a) ayr (9)85 (9) = n(g)ary—(9) 85 (9)
forgeUV)yL.

From Proposition 3.3, we know that there exist characters ¢+ and ¢y— of
U(V)r, such that Oév/iﬂl};,i‘SU(v)L = Q= |su(v), - We know that n[gy(y), is
trivial. We also know that ¢y»+ depends only on the parity of the dimension
of V. Therefore, (y+(g) = (y-(g) for g € U(V)r. Hence, (10.2.a) is
true when g € SU(V)r. So to prove the proposition, we need only to check
(10.2.a) for g runs over a set of representatives of SU(V)-cosets in U(V)[,.
The remaining proof of the proposition will be in the next two subsections.

10.3. Proof of Proposition 10.2 for F unramified. In this subsection,
we assume that F is an unramified quadratic extension of F'. We know that
VY has an L-admissible decomposition V; @ Vo of nondegenerate subspaces
such that LNV, = L* NV, and L NV, = wg(L* N Vs). Without loss of
generality, we may assume that V) is not trivial. If V; is isotropic, let VY
be an L-admissible hyperbolic plane in V. If V; is anisotropic, then V; is
one-dimensional. Let V{ := V; for this case. Define a subgroup H of U(VY)

by
_[r(k) O
H = {g ="y
{glg:=te EW}, if V1 is anisotropic.

It is clear that H C U(VY)y, € U(V), where Ly := L N V). From the
remark after Proposition 10.2, we only need to check that both .+ ﬁg,i

}, ke E*, ord(k) = O} , if V1 is isotropic;

and nroy- ﬂ?;,: agree on H. Now let g be an element in H. Since the case
for g = 1 is always obvious, we assume that g # 1.

First, suppose that V; is isotropic. If V'™, V'~ are both one-dimensional,
we know that one of (B™)*/B™,(B~)*/B~ must be trivial and the other
must be four-dimensional where BT := B(Ly, L'*) and L'* is a good lattice
in V'*. Therefore, by Lemma 6.4, we have

oy (9)BY(9) = (M) av- (9)8Y- (9).

fr
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Clearly the map g — (ka—fmk)) is the character nz|g. If both VT V'~ are

two-dimensional, then VT is isotropic and V'~ is anisotropic. Therefore,
avlfﬁg,: (9) = (k;—l(f))x(T(k:)) by Lemma 6.6. On the other hand, we have

avl+ﬁ§i (9) = x(7(k)) by Lemma 6.5. Hence, the lemma is proved in this
case.

Next, suppose that V; is anisotropic. If V', V'~ are both one-dimensional,
we know that one of ord(p") and ord(o~) must be even and the other must
be odd where o* is the p in Subsection 6.1. From Lemma 6.1, we get

2c—2 v- .
-+ L = ( fr ) ay—(9)By,-(g), if z# 1 mod pr;
ayr+(9) By (9) {Oév’ (g)ﬁ;/,: (9) if z =1 mod pp.

It is straightforward to see that the map g — —(2af’;2) if x Z 1 mod pp

and g — 1 if 2 = 1 mod pp is exactly the character nr|g. If V'* are
two-dimensional, then V' is isotropic and V'~ is anisotropic. Therefore,

- (?) x((t—1)8), if z# 1 mod pp;
x((t —1)9), if =1 mod pp

ay-(9)B-(g) = {

by Lemma 6.3. On the other hand, we have ay+ (g)ﬂ%j,fL (9) = x((t —1)9)
by Lemma 6.2. Therefore, the proposition is proved in this case.

So we have proved the proposition when '+, V'~ are both one-dimensional
or both two-dimensional. Now we want to consider the general situation.
We have an L’-admissible orthogonal decomposition

ES
(10.3.a) VE=Vito PVt
=1

such that each VZ& is two-dimensional isotropic for ¢ > 1 and either both
V(')i are one-dimensional, or V6+ is two-dimensional isotropic and V(')_ is two-
dimensional anisotropic. Since e"bf; o is trivial for 4 > 1. Let x; be characters

of E* with respect to the decomposition (10.3.a) as in Subsection 3.6. We
choose x; to be trivial for ¢ > 1 and xo := x. Therefore, x = &), x;. Thus,

s (9) R (9) = oy (0)B05 (9) [ [ oy (0)8, (9)

+
as in Subsection 3.6. We know that each Qe (g)ﬁ?jfz’i (g) is equal to 1 for

+
i > 1 by Lemma 6.2 and 6.5 because x; is trivial, and it (g)ﬁ:ﬁ (9) =
0

nL(g)oné_ (g)ﬁ:‘}_ (g9) as proved in the previous two paragraphs. Therefore,
0
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Proposition 10.2 is proved when V is over an unramified quadratic extension
of F. O

10.4. Proof of Proposition 10.2 for F ramified. Let V = V; &V, be
the decomposition as in Subsection 10.3. Let L; := L NV;. It is clear that
L; is a good lattice in V; and we have homomorphisms

U(Vl)Ll X U(VQ)L2 — U(V)L — U(l) X U(l*).

Moreover the composition gives rise surjective homomorphisms U Vi), —
U(1) and U(V2)r, — U(1*). Now we know that one of 1,1* is an orthogonal
space and the other is a symplectic space. Without loss of generality, we may
assume that 1 is an orthogonal space and 1* is a symplectic space. Therefore,
Vs is always isotropic. Of course, we assume that V is not trivial. Define a
subgroup H of U(V)y, as follows. If V; is nontrivial and isotropic, let VY be
an L-admissible hyperbolic plane in V; and define

e[ 2 [ %)

k,k' € E*, ord(k) =0, ord(k') = s}

H := {91792

for some integer s such that H C U(V)r. If V; is nontrivial and anisotropic,
let VY be an L-admissible nondegenerate one-dimensional subspace and de-
fine H := U(VY)) C U(V)z. In this case, we will identify H with E()) by a
choice of a basis of V). If V; is trivial, let VY be an L-admissible hyperbolic
plane in V5 and define

H:= {g 'g:— [T(Ok) k(—)l] , ke EX, ord(k) —o} CUW)L.

It is straightforward to check that the map det|g is still surjective to EW if
Vi is not trivial. If V is trivial, then det(H) is a subgroup of E(1) of index
two. Let g be an element of H and g # 1.

First, suppose that V; is isotropic. Consider the dual pairs (U(VY),
UV'#)). If V'*, V'~ are both one-dimensional, it is clear that both (B+)*/B*
and (B~)*/B~ are trivial where B¥ are defined as in Subsection 10.3. Let
h'* denote the form on V'*. Choose a nonzero element v'* € V'*. Define
r'E = hF (W 0'F) if € =1 and '+ 1= 6h'* (v/*,0'F) if € = —1. Tt is clear



224 SHU-YEN PAN

that (A, —r'tr'7)p = —1. By Lemma 7.4, we have

(10.4.a)
ayrs ()35 (9)
x(7(k)), o if g = g13
= XA, =) e (90) " (51) ™, if g =g and e = —1;
X (RO (A, 7 4) prye, (o)~ (£2) ", if g = gp and e = 1.

Therefore, we have

vE, ) o (9)Bh-(g), ifg=g1;
v (9)9) = {—Oév' @ (9). itg=g

Note that det(g;) = 1 mod pgr and det(g2) = —1 mod pg. Hence, the
map g1 — 1 and go — —1 is exactly the character nz|g. If V'* are two-
dimensional, V' is isotropic and V'~ is anisotropic. We should notice that
(B7)*/B~ is trivial. Therefore, by Lemma 7.6, we have

x(r(k), ifg=g1;
—x(7(k")), ifg=geand e =—1;

ay-(9) By (9) = § —x(7(K'))
x(7(k")d), if g=gs and e = 1.

On the other hand, we have

N ) if g = g1;
oy By (9) = (r(k ), ifg=goande=—1;
x(T(K)6), ifg=grande=1

by Lemma 7.5. Hence, the lemma is proved in this case.

Suppose that V; is anisotropic. Write g = ¢ for some ¢ € EM. If V'+ are
one-dimensional, from Lemma 7.1 we know that

(10.4.b)
Qhyrt (g)ﬁgj: (g) = {X((t - 1)5)(A7 Qi)F’YF(AflpO)_l, if x §é 1 mod PFr;

X((t = 1)8)(A, ~2y)r, if 2= 1 mod pr

where p* are defined analogously as Subsection 10.3. We know that
(A, 0M)F, (A, 07)F is 1 and the other is —1, so we have

—ony—(9)B%-(g), if 2 # 1 mod pp;

Y+ _
avl+(9)5yl+ (9) = { ey (g)ﬁ?}i (9) ifx=1modpp.
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It is obvious that the map g — —1 if x # 1 mod pr and g — 1 if
r = 1 mod pp is exactly the character ny|y. Suppose that V'* are two-
dimensional. By Lemma 7.3, we have
: SX((E=1)8), if 2 # 1 mod pp;
ay-(9)By-(9) = L
x((t—=1)0), if z=1mod pp.

On the other hand, we have
oy (9)B% () = X((t — 1))

from Lemma 7.2. Therefore, the proposition is proved in this case.
7(k)

0 k-
the dual pairs (U(V9), U(V'F)). If V'*, V™ are both one-dimensional, then
x(7(k)), if (B¥)*/B¥ is trivial;
(22)x(r(k)), if (B¥)*/B* is not trivial

fr

Suppose that V; is trivial. Hence, g = [ 1} for some k. Consider

(10.4.c) ayp=(g )ﬁyfi() {

by Lemma 7.4. Hence,
+ —
ayr+(9) By (9) = avr-(9) By (9).

If V'*,V'~ are both two-dimensional, then we see that

ayi- (9)B5- (9) = x(7(k)) = ayir (9) 855 (9)

by Lemmas 7.5 and 7.6. We know that 7p|g is trivial in this case. So the
proposition is proved in this case.

The general situation follows the previous three cases by the similar ar-
gument in Subsection 10.3. (]
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