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In this article we introduce a new conformal invariant and
we prove a conformal rigidity theorem which has no restriction
on the size of the codimension. We also prove an isometric
rigidity theorem whose assumptions are less restrictive than
in Allendoerfer’s theorem.

Introduction.

Let f,g: M"™ — R""? be two immersions of an n-dimensional differen-
tiable manifold into Euclidean space. That ¢ is conformal (isometric) to f
means that the metrics induced on M™ by f andg are conformal (isomet-
ric). We say that f is conformally (isometrically) rigid if given any other
conformal (isometric) immersion ¢ there exists a conformal (isometric) dif-
feomorphism Y from an open subset of R"*? to an open subset of R*+¢
such that ¢ = YT o f. In this case, we say that f andg are conformally
(isometrically) congruent. It is then an interesting problem to determine
conditions on f which imply conformal (isometric) rigidity.

E. Cartan ([Cal] , see also [Da]) showed that when n > 5 a hyper-
surface f: M"™ — R is “generically” conformally rigid. To be more
specific, he proved that f is conformally rigid when the maximal dimension
of an umbilical subspace is at most n — 3 at any point. Later, do Carmo
and Dajczer ([C-D]) introduced a conformal invariant for immersions of
arbitrary codimension, namely, the conformal s-nullity v, and generalized
Cartan’s result. More precisely, they showed that conformal rigidity holds
whenever d <4, n>2d+3 and v <n—-2s—1 for 1 <s <d. As far
as we know, it is still an open problem whether this result remains true for
any codimension d. In this paper, we introduce a new conformal invariant,
namely, the conformal type number 2 and prove the following result which
has no restriction on the size of the codimension.

Theorem 1.1. Let f: M™ — R" 4 be an immersion. Assume that every-
where TJ?(p) >3 and that vi(p) <n—2s—1 for 1 <s < 3. Suppose further
that n>2d+3 ifd=1,2. Then f is conformally rigid.
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In relation to the above result see also Theorem 1.3 and Corollary 1.1.

Allendoerfer ([Al]) showed that an isometric immersion with type num-
ber at least 3 everywhere is isometrically rigid. By using the notions of
k" type number lef (p), 1 <k < d, and s-nullity vs, we obtain the follow-
ing result whose assumptions are less restrictive (see Remark 2.1) than in
Allendoerfer’s theorem.

Theorem 1.2. Let f: M" — R*"? d > 2, be an immersion. Assume
that everywhere T?_l(p) >3 and vs(p) <n—2s—1,1<s<3, then f is
1sometrically rigid.

This work is part of my Doctoral Thesis at IMPA. I would like to thank
my research advisor, Professor Marcos Dajczer, for suggesting the problem
and valuable remarks. I also would like to thank Professor Luis A. Florit
and Professor Ruy Tojeiro for a number of helpful comments.

1. Proof of Theorem 1.1.

For a symmetric bilinear form (3: V xV — W we denote by S(3) the
subspace of W given by

S(B) =span{f(X,Y): X, Y € V},
and by N(() the nullity space of  defined as
N(B)={neV:p(X,n)=0,VX eV}

Definition 1.1. Assume that V and W are endowed with positive definite
inner products. We define the k" type number of 3,1 < k < dimW, as
being the largest integer r for which there are k vectors &1,...,& € W
and r vectors Xi,...,X, € V necessarily linearly independent such that
the vectors B¢, X;,1 <i <k, 1 < j < r, are linearly independent. Here
Be,: V — Visgiven by (Bg, X,Y) = (8(X,Y),&). We point out that when
k = dim W the k' type number does not depend on the basis of W.

Now let f: M™ — M"*? be an immersion into a Riemannian manifold
with vector valued second fundamental form of: TM x TM — TfLM .

The k' type number lef(p), 1 <k <d, of fat p is defined as the k"

type number of af at p. Observe that T}i(p) is exactly the type number

introduced by Allendoerfer.

Definition 1.2. We define the conformal type number 74(p) of f at p €
M™ as being the integer

c d
T¢(p) = 1%1fo L
"€ L)

where 7‘7‘71 denote the d** type number of of — (, )n at p.
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We claim that the conformal type number is a conformal invariant. In
fact, let T be a conformal diffeomorphism of M"™+¢ with conformal factor p,
that is, (Y. X, Y,Y) = p>(X,Y). For h = Y o f, one easily verifies that

1 1
h_ r_ 2
o' =T, 2(pof)2<’>T*(V'O )f’
where V is the gradient operator. Thus the claim follows.

Given an s-dimensional subspace U® C Tjﬂzp)M , 1 < s < d, consider the

bilinear form
alo: T,M x T,M — U

defined as aés = Poaf, where P denotes the orthogonal projection of

T fL(p)M onto U®. Endow M"™ with the induced metric. The conformal

s-nullity vS(p) of f at p (see [C-DJ) is the integer

vei(p) = max {dimN (aés —(, >77>} .
UsC Ty, M, neUs

The following result relate conformal type number and conformal s-nullity.

Proposition 1.1. Let f: M" — M"*% be an isometric immersion. If
76(p) > 7, then vE(p) <n — (s —1)r for 1 <s <d.

Proof. Suppose r > 1 and s > 2. In any other case the result is immediate.
Since 7§(p) > r, there exists 7 € T+ M such that of — (, ) has d** type

f(»)
number at least r. Consequently, for all basis &1,...,&; of TfL(p)M there
exist r vectors Xi,...,X, tangent at p such that the vectors
(A, — (&)X, 1<i<d, 1<j<m

are linearly independent. Let U® C TJﬂzp)M ,2 < s<d,bean s-dimensional

subspace and £ € U?® an arbitrary vector. For the subspace W = U® N
(span{n—{})J‘ it holds that dimW > s — 1. Take a basis &i,...,&z0f

T]%(p)M such that 51) cee 758 Span U? and 51,- . 75571 are in W. Let L be

the subspace of T,M with dimension (s — 1)r given by
L =span{(A¢g — (&) NX;,1<i<s—-1,1<j<r}.

For an arbitrary vector v € N (aés —(, )5) and 1 < ¢ < s, we obtain that
0= (of (v, X;) — (v, X;)¢. &)

= (of (0, X;) = (0, X + (0, X;)(n = ),
Thus, we have that ((A¢, — (0, &)1)Xj,v) =0,1 <i<s—-1,1<j5 <,
that is, N (aés —(, >§) C L*. Since U*® C TJ-p)M is arbitrary, the proof

f(
follows.
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Before proving Theorem 1.1 we recall some basic facts; from [Da] and
[D-T]. Consider the Lorentz space L"t9+2 that is, Euclidean space R"+d4+2
endowed with the metric (, ) defined by

(X,X)z—x%—l—x%—i----—i—wiwﬂ

for X = (x1,22,... ,Zntas+2). The light cone is the degenerate totally um-
bilical hypersurface of L"t4+2 defined by

yrrdtl — X e L2 (X X)) =0, X #0}.
Given ¢ € V"4+1 consider the hyperplane
He={X e "™ (X, () =1}

and the (n+ d)-dimensional submanifold H; NV*T@+L Tt is easy to see that
the normal space to H,NV" 41 in 442 at p is the Lorentzian plane L2
generated by p and (. Therefore, the metric induced by L"+%*2 on H:n
Y7+l s riemannian. The second fundamental form of this intersection is
given by
a=—(,)C

Using the Gauss equation, it follows that H: N Y7 td+l is an embedded flat
riemannian submanifold of L"t4+2 Indeed, it can be checked that it is the
image of an isometric embedding J;: R™Hd — yntd+l,

The light cone is a very useful tool in the study of conformal immersions.
Given any conformal immersion g: M"™ — R"*% such that (g.X,g.Y) =
ng(X ,Y), where ¢4 > 0 is the conformal factor of g, we associate to g an
isometric immersion G: M"™ — Yntdtl ¢ Lntd+2 by setting

1
G=-—Jcog
g

for an arbitrary ¢ € V7ta+l,

Conversely, any isometric immersion G: M"™ — V"t4+1 arises this way.
In fact, choose ¢ € V*"+¥+1 such that (G,¢) > 0. Define g: M™ — R+
by setting

G
(G.¢)

It is not difficult to verify that ¢ is a conformal immersion with conformal
factor given by 1/(G,().

Now, let g, f: M™ — R"¢ be conformal immersions and like previously
discussed consider isometric immersions G, F: M" — V"4+1 associated
to them. If there exists an isometry T: V7tdtl o yntd+l guch that
F =To(d, then T induces a conformal diffeomorphism T from an open
subset of Rt to an open subset of Rt defined by

TOJC
(T'o Je¢, Q)

Jeog=

JeoT =
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which satisfies f = T og. In order to obtain such T it suffices to construct a
vector bundle isomorphism 7': Té-M — TP%M preserving metrics, second
fundamental forms and normal connections. Here, Té‘M and TI%M stand
for the normal bundles of G and F, respectively, in L"t4+2 From the
fundamental theorem for isometric immersions adapted to the Lorentzian
case we conclude that there exists an isometry T: L"t4+2 — Lrtd+2 gyuch
that F =T o G. Then we take T as the restriction of T to V7d+l,

Proof of Theorem 1.1. We only have to deal with the case of codimension d >
5. If T]‘z’(p) > 3 then n > 3d and can be easily deduced from Proposition 1.1
that v¢(p) < n —2s—1 when s > 4. Consequently, under our assumptions
we always have that n > 2d+ 3 and v$(p) < n —2s— 1. Thus, the following
result already reported in the introduction applies for d < 4.

Theorem 1.3 ([C-D]). Let f: M"™ — R"?be an immersion where d < 4
and n > 2d+ 3. Assume that vi(p) <n—2s—1 forall p e M™ and every
integer s, 1 < s <d. Then f is conformally rigid.

Let g: M™ — R""? be any immersion conformal to f and G: M" —
Y+l its associated isometric immersion. We may assume that M™ is
endowed with the metric induced by f. Taking the derivative of (G,G) = 0,
we see that the null vector field G is normal to the immersion G. The normal
field G also satisfies A% = —I. The normal bundle of G is given by the
orthogonal direct sum

TeM =T, M & L?
where TgJ-M is identified with (JC)*TQJ-M and L? is a Lorentzian plane

bundle which contains G. We can easily see that there exists a unique
orthogonal frame {£,n} of L2 with |¢]?> = —1 such that

G=¢&+n.

Writing a“ in terms of this orthogonal frame we obtain
*
af = —{a% )¢+ (o n)n+ ()

where (aG)* = (1/¢¢)(J¢)sa? is the TgLM—component of aC.

Given an m-dimensional real vector space W endowed with a non-dege-
nerate inner product (, ) of index r, that is, the maximal dimension of a
subspace of W where (, ) is negative definite, we say that W is of type
(r,q) and we write W9 with ¢ =m —r.

At pe M™, let

W = Tj,,M @& span{&(p)} @ span{n(p)} & T, M

be endowed with the natural metric of type (d+ 1,d+ 1) which is negative
definite on T fl(p)M @ span{{(p)}. We also define a symmetric bilinear form
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B: TM x TM — W setting 8 =af +a%, ie.,
B=al —(a% )¢+ (a%n)n+ (a%)".
The Gauss equations for f and G imply that § is flat, i.e.,
(B(X,Y),B(Z,U)) =(B(X,U),8(Y,2)), VX,Y,Z,UecTM.

Observe also that (X, X) # 0 for all X # 0, because A§G+?7 =1
Lemma 1.1. The bilinear form [ is null, that is,

(B(X,Y),B(Z.U)) =0, VX.,Y,Z,UeTM.
Proof. Fixed p € M", set V: = T,M and for each X € V define the
linear map

B(X):V—-W

by setting ((X)(v) = B(X,v) for all v € V. For simplicity of notation, we

omit the p. The kernel and image of F(X) are denoted by ker 3(X) and
B(X, V), respectively. We say that X is a regular element of [ if

dim (X, V) = I}g}/_{dimﬂ(Z, V).
The set of regular elements of 3 is denoted by RE((3). For each X € V, set
U(X)=B(X,V)NB(X,V)* and define
RE*(B) ={Y € RE(B) : dimU(Y) = dp}
where dyp = min{dimU(Y') : Y € RE(()}.
We will need the following from [Dal].
Sublemma 1.1. The set RE*(/3) is open and dense in V' and
Blker 5(X),V) CU(X), VX € RE(Q).
Now recall that a vector subspace L of W is said to be degenerate when
satisfies L N L+ # {0} and dsotropic if (L, L) = 0. We also have that
(1.1) dimL +dim L+ = dimW and Lt =L.

It follows easily from (1.1), dim W = 2d 4 2 and the definition of U(X)
that dg < d+ 1. We separate the proof in two cases, namely, dg = d+1 and
doy < d.

Case 1. dy = d+ 1. In this case, dimU(X) =d+ 1 for all X € RE*(3).
Then, U(X) = B(X,V) = B(X,V)+ due to (1.1). Using the density of
RE*(B), we get

(B(X,Y),B(X,2))=0, VX,Y,Z€YV,
and the bilinearity of § yields the claim.
Case II. dy < d. To deal with this case we need several facts.

Assertion 1. dim S(8) N S(B)*t >d — 2.
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Since 7§(p) > 3, there exists € Tﬁp)M such that of — (, )n has type

number at least 3. Fix a basis &1,... ,&4 of Tﬁp)M and vectors X1, Xo, X3 €

V so that the Ag"/X; = (AL + ND)Xj, \i=(n,&), 1<i<d, 1<j<3,
are linearly independent. Define

L= (Span{Ag’fXj 1<i<d 1<j gs})L.
We have that dim L =n — 3d and that Z € L if and only if
(o (X}, 2),6) + M (X;, 2) =0, ¥ij
By definition of [ we have for Z € ker 3(X;) that
ozf(Xj,Z) =0 and <aG(Xj,Z),£> = <ozG(Xj,Z),n> =0.
Since ATC;:H =—1, we get (X;,7Z)=— <aG(Xj,Z),77 + &) = 0. Hence,

3
(1.2) () ker 3(X5) € L.
h=1

We can assume that X, X9, X3 € RE*() by Sublemma 1.1. Unless oth-
erwise stated, from now on the indexes i,j,k € {1,2,3} are all distinct.
Moreover, for simplicity of notation we denote the map 3(X;) and its im-
age B(X;,V) by B; and Im f3;, respectively. Take the maps

Ig: ker ;N kerﬂj — U(XZ) N U(X])
as being the restriction of 3; to ker 3; Nker 3; and
Fijl kerﬁj — U(X])

as the restriction of 3; to ker 3;. By Sublemma 1.1 the maps I'y and I';
are well defined. Setting U; = U(X;) and U;; = U; N Uj, we have that

(1.3) ImTy C Ikaj - Uj and ImTI'y C Uz’j - Uj, Vi, g ke {1,2,3}.
Define

(1.4) p=dim(ImB;)* —dy and 6’ =dy— dimImT};.
A simple calculation shows that

(1.5) dimkerfij:n—Zd—2—|—p—|—9g.

Setting

(1.6) Y = dop — dimIm Iy,

and using that kerI';; = ker 8; N ker 8, we obtain that

dimkerTy =n —2d — dog — 2+ p+ 6/ + .
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Since
3
ker 'y = () ker 3,
h=1
the last equality shows that the sums 05 +, are independent of the indexes.
This and (1.2) imply that n —3d >n—2d—dy— 2+ p+ Gg + . Hence
(1.7) d—do—2+ (p+6 +) <0.

Since the integers p, 9{ and v are nonnegative, it follows that dg > d — 2.
We have to analyze three possibilities for d.

II.(a). do = d —2. In this case p = 9{ = v, = 0 by (1.7). Observe that
vk = 0 and (1.3) yield that

We show that ImT'; C S(3)NS(B)*. An arbitrary element in ImT'; is given

by B(X;, Xo) with Xy € kerI'j;. Since 8(Xo,Y) € Uji by Sublemma 1.1,
we get using (1.8) that

We conclude that dim S(3) N S(B)* >dy=d — 2.

II.(b). dy = d — 1. In this case p + 93 + v < 1. We have to consider two
sub-cases.

(b).1. There exist indexes such that U;; = Uy;. Like in II.(a) we conclude
that ImT; C S(8) N S(F)* and dimS(8)N S(B)- >d - 2.

(b).2. Suppose that U;; # Uy; for all 4, j, k. This implies that U; # U; for
all 4, 7. It follows from (1.3) that 7% = 1. In particular,

(1.9) dimImIT'y =d—-2 and ImTIy = Uj;.
Being 95 = 0, then (1.3) gives

(1.10) Uj =ImTy; C Im G;.

Dueto p=0 and Img; C Uf, we deduce that

(1.11) Im 3; = U;-.

The assumption in (b).2 jointly to (1.9) and (1.11) imply that
(1.12) Ui € Ur; and Img; ¢ Im 3.

It is not difficult to see that U; = U;; +Uy; C U; + Uy, due to the assumption
in (b).2, (1.9) and dimU; = d — 1. For all 7 and j, the subspace U; + U; has
dimension d by the formula

(113) d1m(L1 + LQ) =dim L 4+ dim Ly — dim Ly N Lo.
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Therefore,

(1.14) Ui+ U; =U; + Uy

and, consequently,

(1.15) ImB;NIm B; =Im B; NIm Gy

by (1.11) and the formula

1
(1.16) (Z Lh) = () L,
h h

valid for any arbitrary finite number of subspaces. If v € V and w € ker ;,
then

(B(Xk,v), B(Xi,w)) = (B(Xg, X5), B(v,w)) =0
since B(Xy, X;) € Im g; by (1.15) and (v, w) € U; by Sublemma 1.1. The
last equality, (1.10) and (1.11) imply that Im 8 C (Im Fij)L = Ujl = Im 3;
which is in contradiction to (1.12).

II.(c). dop =d. It follows from (1.7) that p—l—ﬁg + v, < 2. Like in II.(b), we
consider two sub-cases.

(c).1. There exist indexes such that U;; = Uy;. Proceeding analogous to
I1.(a) gives dim S(B8) N S(B)*+ > d — 2.

(c).2. Suppose that U;; # Uy; for all i, j, k. This implies that U; # U; for
all 4, j. It follows from (1.3) that 1 <, < 2, then p+ 927 < 1. From (1.6),
we conclude that d —2 < dimIm Iy < dimU;; < d— 1. If there exist indexes
i and j such that dimUy;; = d — 2, then v, = 2, p = 0 and ¢/ = 0% = 0.
Thus, U; = ImT'; C Im 3; and U; = ImT'j; C Im 3; by (1.3). We have that
dim (U;+U; ) = d+2 by (1.13). Here the subspace U;+Uj is isotropic since
U; and U;j are isotropic and Uj, being a subset of Im f3;, is orthogonal to

U;. But this is not possible due to (1.1). Then we can assume dim U;; = d—1
for all 4 and j. In this case, dim (U; + U;) = d + 1 and (1.14) holds.

(c).2.1. First suppose there exists k with ~; = 2. Thus, Hg = p = 0. Being
p =0, (1.11) holds. From (1.14) and (1.16), we have that (1.15) also holds.
Like in (b).2, we obtain a contradiction.

(c).2.2. Consider 7, =1 for all k. In this case the Hg ’s are independent
from the indexes. There are three possibilities:

(c).2.2.1. Suppose that p = 0{ = 0. Similar to (b).2 we have a contradiction.

(c).2.2.2. Suppose that p =0 and Hg = 1. Being p =0, then (1.11), (1.12)
and (1.15) hold. Further,

(1.17) dimkerI';; =n —2d — 1
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by (1.5) and
(1.18) dimImf3; =d+2, hence dimker; =n—d—2.

It holds that ImI'y; = ImI'y = U;; from the assumption in (c).2, v, =

9{; = 1 and (1.3). We claim that U; C Im ;. Otherwise, we have that
Uij =U; N Imﬁj since d — 1 = dim Uij < dim (Uz N Imﬂ]) < d— 1. Using
(1.15), we conclude that

Uij = U,ﬂlmﬁj = Uiﬂlmﬁiﬂlmﬁj =U;NImG;NIm B, = U; NIm G, = Uy

contradicting (c).2, and the claim follows. From (1.13), (1.17) and (1.18),
we deduce that

(1.19) dim (ker 8; + ker 8;) = n — 3.

The vector X; satisfies that X; ¢ (ker 8; + ker 3;). Otherwise, using Sub-
lemma 1.1, we obtain the following contradiction due to dimensions:

Im 3; C B(ker B; + ker 8;,V) C U; + Uj.
The vector X; ¢ span{X;} @ (ker 8; + ker 3;). Otherwise,
Im 3; C B(span{X;} @ (ker B; +ker 3;),V) CImp; + U; + U; = Im 3;
which is in contradiction with (1.12). It hold that

(1.20) ImpB; +ImB; =U;; and ImB;NImB; = (U; + U;)*
by (1.11) and (1.16). We assert that
(1.21) Im Gy ¢ Im 3; + Imﬂj.

On the contrary, Im 8, +Im 3; C Im 3; +Im 3; and, since both spaces have
dimension d+3, then the equality holds. But this jointly to (1.20) contradicts
the hypothesis in (c).2. Also X}, ¢ span{X;, X;} @ (ker §; + ker 3;) due to
(1.21). It follows from (1.19) that

V= span{Xl,XQ,Xg} D (kerﬂi + kerﬁj).

The above equality gives that S(f3) = 22:1 Im By. This fact, together with
(1.11), (1.16) and (();_, Un) € S(B) prove that S(B)NS(B)* = (N} _, Un)-
Therefore, dim S(8) N S(B)* = dim((y_, Up) = d — 2.

(c).2.2.3. Finally, suppose that p =1 and Qf = 0. Then dim (Im 3; )+ =
d+1 by (1.4). Thus, dimImpB; = d+ 1 by (1.1). From (1.3), we have
Uj = ImI';; C Imf; since 95 = 0. These facts and U; # U; imply that
Ui + U; = Im f3;. Arguing as in (c).2 we obtain that U; + Uj is isotropic. So
U; = Im 3;N(Im 3; )+ = Im G;, and we get a contradiction due to dimensions.
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Assertion 2. There exist an orthogonal decomposition
W= W) @ Wl thaD s g g
and symmetric bilinear forms w;: V xV — W;, 1 < j <2, satisfying
B = w1 ®wy

such that:

i) wi is nonzero and null with respect to (, ) and
ii) wy is flat with dim N(wz) > n — dim Whs.

Let wvi,...,v a basis of S(3) N S(B)*L. There exists (see [Da], p. 83)
a pseudo-orthonormal basis vi,...,vs,01,...,04,01,... ,05q_p41) of W
satisfying that <Ui)vj> = <1A1“7.A}]> = <9i,Uj> = <91,@]> = 0, <Ui,@j> = 0ij and
that (6;,0;) = £6;j. Defining
Wl = Span{vla <o Uy @17 s 508}’ W2 = Spa’n{ela s 792(d—5+1)}

and
2(d—0+1

¢ ¢ )
B=> owi+ Y b+ > kb
i=1 i=1 i=1

we have that ¢; = (5,v;) = 0. Set

Y4 2(d—24+1)
w1 = Z gbivi and Wy = Z /45191
i=1 =1

Since ¢ = dim S(3) N S(B)* > d — 2 > 3, then w; is nonzero. It is easy to
verify that wi,ws are symmetric bilinear forms such that w; is null and wo
is flat. In order to see that S(w2) is non-degenerate, let Y . wo(X;,Y;) € Wa
be an arbitrary element in S(ws) N S(wa)*. For all v,w € V, we get

<ZWQ(X1‘,}/¢),,B(’U,U))> = <ZWQ(XZ',YZ‘),WQ(’U,U))> =0.
Therefore, >, w2(X;,Y;) € S(B)NS(B)*. Hence, >, wa(X;,Y;) € Wi. Thus,
ZWQ(XZ‘,E) eWinNnWy = {0}

Since the subspace S(ws) is non-degenerate and d—/¢+1 < 3, the inequality
dim N (wg) > n—dim Ws is a consequence of the following result whose proof
is part of the arguments for the Main Lemma 2.2 in ([C-D], pp. 968-974).

Sublemma 1.2. Let o: Vi x V3 — W) be a nonzero flat symmetric
bilinear form. Assume r < 5 and dim N(0) < dimVj — 2r. Then S(o) is
degenerate.

Now Lemma 1.1 is a consequence of the following fact.
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Assertion 3. The bilinear form ws is zero.

Suppose on the contrary that ¢ < d. Set v; = v +bé+cem+d;, 1 <@ < ¥,
where ; € TflM and §; € TgLM . Let L be the orthogonal complement in
T]f-(p)M of the subspace L = span{~; : 1 <i¢ < ¢}. If the vectors ~; are
linearly dependent, then dimL >d—¢+1>1. For any n € N(ws9),v eV
and u € L, it holds that

<ozf(n, U),u> = (B(n,v),u) = (wi(n,v),u) = 0.
Hence,

Viin i >d1mN< )>d1mN(w2)>n—2(d (+1)>n—2dimL,

which is in contradiction with the hypothesis on the conformal (dim L)-
nullity when 1 < dim L < 3 and with the Proposition 1.1 when dim L > 4.

Now, since the vectors -; are linearly independent, then dimL =d—¢.
The definition of G gives

(a%(n,v),m) = (B(n,v),m) = {wr(n,v) Zcz@

and
(a%(n,v),&) = (B(n,v),£) = (wi(n,v) Zb i,
Therefore,
¢
(1.22) —(n,v) = <”»AnG+£”> = Z(Ci — bi)pi.
i=1

Fix j € {1,...,¢} and consider the hyperplane L; C L given by
Lj = span{y1, ..., Vj—1,Vjt+1,- -+ > Ve}-

Let p; be the orthogonal projection of v; onto the orthogonal complement
of L; in L. Observing that (u;,v;) = d;j|p4]?, it is not difficult to see that
the vectors p1,...,us are linearly independent. Let v € L C T fL(p)M be

defined as
l

vzzc‘l Z2bz

Then (1.22) yields that ~ # 0. Set U%¢+! = span{~y} & L. It holds that

<af(n,v)+h7|2<n,v>,7>:o and <af( )+$(n V), >:o
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for all n € N(wy),v €V and u € L. Then,
Vi1 2 dlmN( g+ |’V|2< >) >dim N(wg) >n—2(d—~4+1).

This is in contradiction with the hypothesis on the conformal (d — ¢+ 1)-
nullity.

Assertion 4. There exists an orthonormal basis v1,... ,7y4 of Tjﬂ‘(p)M and
a pseudo-orthonormal basis G, py, ..., tg+1 of Té(p)M, with (G, pu1) =
1, {u1, 1) = 0, such that

d
(1.23) of = —(ym+ Y (od ) i
j=1

Define )
f=af —(a96)¢ B=(a%mn+ (a°)".
Since [ is null, we conclude that

(B(X,Y),B(2,U)) = (B(X,Y),B(Z,U)), VX,Y,Z,U€ T,M,

where we have changed the sign of the metric in TJﬂEp)M @ span{¢}. It
follows that there exists an orthogonal map

T: TfL(p)M @® span{{} — span{n} @ Tﬁp)M
such that Tﬁ = [3. Set
TE¢ =1ncosp + 01 sin g,
where ) € span{n, T¢} satisfies |6;] = 1 and (61,7) = 0. Let v, € Tjﬂzp)M
be chosen so that
T~ = —nsinp + 61 cos .
We extend <1 to an orthonormal basis ~i,...,7g of Tfl(p)M and define
0 = T’yj, j > 2.If T¢ = —n, then we take 71,...,74 as being any or-
th?normal basis in Tfl(p)M and 6; = Tw;. If T¢ = n, then the equality
TG = f yields that <aG,n> = — <aG,§> which is in contradiction with
(a%m+¢&) =—(,). We write

B=—{(a® 7§>€+< 7’71>’Yl+z< ,’Yg>

and

8= <aG,n>77+ <(04G)* ,(51>51 —i—; <(aG)* ,6j>6j.
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Thus, T3 = 3 implies that
(o) =~ (e ) comi— (o Y sing
<(aG)* 751> =- <04G,§> sin ¢ + <ozf,71> Ccos

<(ozG)*,5j> = <ozf,7j>, Vj>2.

From the first equation, we get
_ <aG,§> cos p — <af,71> sin p = <aG,17> = <aG,n + §> — <ozG,£>
= _<7 >_ <aG7£>'

(0%,6) = —— ()= (ol ) sing ).

Hence

Furthermore,
* 1
<(aG) ’61> = <af7’Yl> + 1— cosg sing(, ).
We conclude that (1.23) holds for

1 = (& +ncosp+ d1singp),

"~ 1—cos ©
—sine .
=—T -0 d pjr1 =9, > 2.
p2 1_COS¢(§+"7) 1 and pjp =965, j =
Now let F: M™ — V"td+l he defined by F = J¢ o f, where ¢ € VHdt!
is arbitrary. The second fundamental form of F in L"*%*2 is given by

(1.24) o' =aof — ()¢

As previously discussed, the proof of Theorem 1.1 will be completed once
we show the following fact.

Assertion 5. There exists a smooth vector bundle isometry 7' TGl M —
T }J,:M which preserves the second fundamental forms and normal connec-
tions.

Set &1 =C(, &+1 =7, 1 <7 <d, and define
T(uj)=¢, 1<j<d+1, T(G)=F.

Clearly, T' is isometric. We have that Ta%(X,Y) = of (X,Y) by (1.23) and
(1.24). We claim that dim S(af") = d + 1. In fact, let L be the orthogonal

complement of S(al’) in THEM = TfL(p)M @ span{(, F'}. Due to the fact

that the inner product in T M is non-degenerate, it holds that dim S(a!") +
dim L = dim TI%M =d+ 2. Take I' = v+ a( + bF an arbitrary vector in
L with v € Tfl(p)M. Since (af',T") = 0 and (¢, F) = 1 we conclude that



RIGIDITY OF SUBMANIFOLDS 241

<ozf,7> —b(, )=0.1If v # 0, then we obtain that A,J; is umbilical and this
contradicts the hypothesis on the conformal 1-nullity of f. Then v = 0 and,
consequently, b = 0. Hence L = span{(} and the claim follows. By a similar
argument, we also deduce that dim S(a®) = d + 1 due to (1.23). Thus, we
have

TAM = S(a%) @ span{G} and T#M = S(al) @ span{F}.

These facts easily imply that T is smooth. In particular, the vector field 1
is smooth, because T'(p1) = ¢ . It remains to be shown that 7" preserves the
normal connections. For any vector field £ € TéM , define ¢: TM — TI%M

by setting ®¢(X) = T (v)lgf) — V)L(T(é) It follows easily from the Codazzi
equations for F' and G that
(1.25)  (a(Z2,Y), ®¢(X)) = (' (Z,X), Qe(Y)), VX,Y,Z € T,M.
In particular, for £ = u; this yields that
<af(Z, Y),<I>m(X)> - <af(Z,X),<I>m(Y)>, VX,Y,Z € T,M,

because (®,,, (X), () = (Vxu, 1) — (Vx¢,¢) = 0.
We claim that ®,, = 0, that is, p; is parallel in the normal connection.
Suppose otherwise that dim (Im ®,,) =r > 1. In this case, we have that

(a!(Z2,X),®,,(Y)) =0, VX €ker®,,,Y,Z € T,M.
Hence,
vy(p) > dimker ®,, =n —r.

But this is in contradiction with the hypothesis on the conformal 1-nullity
of f when r =1 and with the Proposition 1.1 when r > 2.

Now, we obtain that (®¢(X),() = (Vx& ) — <VJXT(§),(> = 0 for any
vector £ € T4 M. Hence, (1.24) and (1.25) imply that

<af(Z,Y),<I>§(X)> - <af(Z,X),<I>§(Y)>, VX,Y,Z € T,M.

Arguing as before we conclude that ®¢ = 0. According to observations made
previously, Theorem 1.1 has been proved. O

Corollary 1.1. Theorem 1.3 holds for d = 5.

Proof. The form [ defined on p. 976 in [C-D] always satisfies 3(Z, Z) # 0
forall 0 # Z € TM. Given X € RE(f3), since n > 2d+2, there exists Z # 0
such that Z € ker B(X). Since (3 is flat, 5(Z,Y) € U(X) for all Y and
U(X) is isotropic, we deduce that 5(Z,Z) € S(3)NS(B)*. Thus B admits
a decomposition as in the Main Lemma 2.2, p. 967. The inequality on
the dimension of N(f2) follows from Sublemma 1.2 in this paper because
dim Wy < 10 for d = 5. The remainder of the proof is identical.



242 SERGIO L. SILVA

Remark 1.1. In Theorem 1.1, the hypothesis 7§(p) > 3 implies that n >
3d. For d =1 and n < 2d + 3, we have that either n =3 or n = 4. An
immersion of M? into R* always satisfies v{ > 1. Cartan ([Ca2]) gave
examples of immersions M? into R® which have four distinct principal
curvatures at each point, hence T]‘i =4 and v{ = 1, which are not conformally
rigid. For d =2 and n < 2d 4 3, we have that n = 6 and it is not known
whether an immersion of M into R® with T]? =3, <3,and v5 < 1is
conformally rigid.

Remark 1.2. The beginning of the argument to prove that the form [
is zero in Assertion 3.3 of [C-D] says that there exist orthonormal bases
of Tfl(p)M and TgL(p)M with some special properties which, in fact, may
not be satisfied under the conditions there. The argument in Assertion 3 to
prove that the form wso is zero corrects the one in [C-D].

To finish this section, we point out that in Theorem 1.1 the requirement
on v¢(p) can not be dropped. First, we prove that any product of spheres
is conformally deformable. Fix positive integers d > 2 and k;,;1 < ¢ <
d, and arbitrary positive real numbers A\;,;1 < ¢ < d. Denote by S’f\z the
k;-dimensional sphere centered in the origin and radius A;. Let M™, n =
Zgzl k;, be the riemannian product with factors SIZ’ 1 < ¢ < d. Define
the product immersion f: M"™ — R*™ by setting f =1 x Iy X --- x I
where I;: SIX — RF*1 s the inclusion. We have that f(M) c SyTd—*

where \ = \/Zle )\?. The immersion f is conformally deformable, that is,
it is not conformally rigid. In fact, the induced metric on M by f is the
same one induced by Si\“rd_l, namely, the natural product metric. Identify
R™9! with the hyperplane of R"*? whose points = (x1,22,... ,Znid)
satisfy x4 = 0. Let II: S’;er_l —{px} — R"4=1 be the stereographic
projection raised from the point py = (0,...,0,A) which is given by

(p) = pr + (p—px) where p= (p1,p2,-- +Pn+d)-

A— Pn+d

The map II is a conformal diffeomorphism with conformal factor %

Pn+d )
that is,
2
>‘72‘U|2
()‘ - pn—f—d)
for any p € Sy — {p\} and v € T}, (Sg\“rd_l - {p)\}> . Observe also that

pyn & M™ since d > 2. Let ¢: M" — R"4=1 c R"* be the restric-
tion of II to M™. Consider also the isometric immersion ¢: R"T4—1 —
St x Rn+d=2 c R+ defined by

| (I, v]* =

¢(x1, 9, ..., Tpyqg—1,0) = (cos x1,sin X1, X2, ... , Tpirg_1)-
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Define g: M"™ — R"? as g = ¢ o . It follows easily that f and g are
conformal. Recall that the inversion with respect to the unit sphere centered
at p, is the conformal transformation I, (¢) = p, + [(q —o)/lq —p0|2] ,
q € R4 — I{p,} an isometry of R"*% is a map S such that S(q) = O(q)+w,
where O is an orthogonal map of R"*% and w is a fixed vector in R"*%, and
a dilatation D, is a transformation of R"*¢ such that D,(q) = aq for
some positive real constant «. Recall further that by Liouville’s theorem
(see [dC]) every conformal diffeomorphism Y from an open subset U of
R to an open subset V of R" is the restriction to U of a composition
of inversions, dilatations and isometries, at most one of each. We claim that
there is not a such conformal diffeomorphism T satisfying ¢ = T o f. In
fact, it is not difficult to see that there exist one inversion I, one dilatation
D,, and one isometry & such that T is the restriction to U either of the
composition I o D, o I, or the composition & o D,. Now suppose on the
contrary that g = T o f for some conformal diffeomorphism Y. We have to
analyze two cases.

Case i). The conformal map T is the restriction to U of the composition
S o Dy o I,,. In this case, extending T if necessary we can assume that
U =R"*4 — {p,}. The conformal factor 3 of Y is 3(q) = a/|q — po|?. Since
g="To f on M"™ we have that
(d’*)tp(p) (‘P*)pv = (9*)}9” = (T*)pv
and, consequently,
z? 2 2 2 20,12
m\”’ = [(g)pv]” = [(Ts)pv|” = B(p)"|v]

for all v € T, M . This yields that

A Q
A= Pn+d B (p)
for all p € M™. Therefore,

A() = pof” = a (A = ygalt))

for any curve y(t) in M"™ with y(t) = (y1(t), ... , Yn+a(t)). Taking derivatives
in the last equality, we have that

(1.27) 20 (7 (), 7(t) = po) = —ap4q(t).

The vector (t) is orthogonal to ~ () since y(t) € S§+d_1 for all ¢. Then, we
obtain that

1.26 =—
( ) ’p *poP

(v (£),2 A\po — @t €piq) =0
from (1.27) where e,4q = (0,...,0,1). So the vector 7' (t) belongs to the
hyperplane through the origin and orthogonal to the vector 2 Ap, — a ey 14,
for any curve () in M™. Since the vectors tangent to M™ span R"*¢ we
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have that 2Ap, — aeyiq = 0. Thus, po; = 0,1 < ¢ < n+d-—1, and
@ = 2 Apy(n+q)- At a point such that p,q = 0 we deduce that o = 2 A2 from
(1.26). Consequently, p, = py. Hence,

2\?

——0(q—py) +w
TENE )

for all ¢ € R"*4 — {py}. The equality Y(p) — T(—p) = g(p) — g(—p) on M"
implies that

T(q) = (SoDyolp,)(q) = 2>\20(p)\) +

20(p) = ¢(p) — ¢(—p)
at a point such that p,;q = 0 since the restriction to M?NR" 41 of © is the
identity. Taking length in the last equality, we conclude that sin’ p; = p? if
p=(p1,--- ,Pntd—1,0). Choosing a point such that p; # 0 we have obtained
a contradiction.

Caseii). The conformal map Y is the restriction to U of SoD,. In this case,
we obtain that A/(A — pp4+q) = « for all p € M™ by (1.26). Consequently,
Dn+q 18 constant through M™. But this is a contradiction.

Now we compute v¢ for f =1 x I x ---x I, where I: S} — R"*! is the
inclusion. In this case, M = S} x S x --- x St and M = f(M) C S’:/Ed_l
with n = rd. Given p = (p1,p2,... ,pq) € M™ and s, 1 < s < d, consider at

Tf-(p)M the points

@1=p,¢=(0,...,0,pi,pit1,... ,pa), 2<i<s,
and U® defined as U® = span{qi,...,qs }. It is not difficult to see that
there exists n € U?® such that dim N (a{JS —(, >17) =n—r(s—1). Fix
an orthonormal basis EF, 1 < i < 7, on the tangent space of S} at p for
each k, 1 < k < d. The vectors E; = (E}, E?,... ,Ezd), 1 <i<r in
T Jﬁ-(p)M are linearly independent. The normal space T Jﬁ-(p)M is spanned
by pr, 1 < k < d. The second fundamental form of f satisfies A, F; =
(0,...,0,—EF.0,...,0), 1 <i<r 1<k<d This show that T6(p) = 7.
Consequently, we conclude that v$(p) = n — (s — 1)r by Proposition 1.1.
Observe that always v{ = n. If we take »r = 3 and d > 3, we obtain that

vé(p) >n—2s—1,1 < s < 3. This fact shows that the assumption on v¢(p)
is necessary.

2. Proof of Theorem 1.2.

First, we recall from [C-D] the following concept.

Definition 2.1. Given s,1 < s < d, the s-nullity of an isometric immersion
f: M™ — M" at p € M"™ is the integer

vs(p) = max {dimN (a{,s>} .
0oL
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Lemma 2.1. If TJ’f (p) > r, then the dimension of the tangent subspace L(U)
defined as L(U) = span{ A, X : p € U, X € T,M } is at least (k+(—d)r
for any (-dimensional subspace U* C Tfl(p)]w7 £>1.

Proof. Take &1,...,& € TfL(p)M and let X1q,..., X, € T,M be such that
the vectors A¢, X;, 1 <1 < k, 1 < j < r, are linearly independent. Recall
that the vectors &;,...,&, X1,...,X, are linearly independent.

We claim that the vectors A, X;, 1 < i < k', 1 < j < r, are linearly
independent when we take ~i,...,v, € span{ &,... & }, k' <k, linearly
independent. In fact, consider a basis 71,... ,v of span{ &i,... ,&; } which
extends 71,...,7,. Define the k x k-matrix B = (b;;) by setting & =

Zizl bpivn- It is not difficult to see that

Z a;jAe, X Z cij Ay X

1,j=1 1,j=1
for arbitrary real numbers a;;, 1 <i <k, 1< j <r, being C = (¢;;) given
by C = BA with A = (a;j). Thus, the vectors A¢, X; and A,,X; span the
same subspace and the claim follows.

We can assume that (k+ ¢ —d) > 1. Otherwise, Lemma 2.1 is immediate.
The subspace L = U Nspan{ £1,...,&;, } satisfies dim L > (k + £ — d) by
(1.13). If y1,... , Y(ktt—a) are vectors linearly independent in L, then the
(k+£—d)r vectors Ay, X; € L(U),1 <i < (k+{¢—d), 1 <j <r, are linearly
independent from the claim. Hence, Lemma 2.1 has been proved.

Proposition 2.1. Let f: M"™ — M™% be an isometric immersion. If
Tf( ) >, then vs(p) <n—(k+s—d)r for1 <s<d.

Proof. If k4+ s —d < 0 then the conclusion is immediate. Assume that

k+s—d>1. Let U C TfL(p)M be such that vs(p) = dim N (aUS> . We

have that (A,X,v) =0forall p € U, v e N <aUs) and X € T,M, that

1L
is, L(U)C N (aés) . Therefore, using Lemma 2.1, we deduce that

1
n —vy(p) = dim N (a[f]) > dim L(U) > (k + s — d)r,
and Proposition 2.1 follows.

Proof of Theorem 1.2. We only have to deal with the case of codimension
d > 6 since the proof follows from a result in [C-D] for d < 5. If 7'}1_103) > 3,
then n > 3d — 3. We can assume that n > 2d + 1. Otherwise, we obtain
that 2 < d < 3. For d = 2 and d = 3, we conclude that n = 3,4 and
n = 6, respectively. But both cases are not possible because we are assuming



246 SERGIO L. SILVA

o <n—>5and vy < n—7. It follows from Proposition 2.1 for k = d — 1 that
vs(p) <n —2s—1 when s > 4. Hence, their result applies for d < 5.

Let g: M™ — R"¢ be another immersion isometric to f. Given p € M,
let

_ 7l 1
W= Tf(p)M o2 Tg(p)M

be endowed with the natural metric of type (d,d) who is negative definite

in T/ﬁ-(p)M , and define the symmetric bilinear form g: TM xTM — W
by

B=al +ad.

The Gauss equations for f and g imply that 3 is flat. Since T;f*l(p) > 3,

we can fix vectors &1,...,&q_1 of TfL(p)M and X1, X2, X3 € V so that the
vectors Ag, X;, 1 <i<d—1,1<j <3, are linearly independent. To see
that (@ is null we proceed exactly as in Lemma 1.1 with the (n — 3d + 3)-
dimensional subspace

L=(span{AgX;,1<i<d-1,1<j<3}*,

with d instead of d 4+ 1 and Proposition 2.1 instead of Proposition 1.1.
The remainder of the proof is part of the argument for Theorem 1.4 in
[C-D]. O

Remark 2.1. The hypothesis in Theorem 1.2, as mentioned in the intro-
duction, are less restrictive than those in Allendoerfer’s theorem. In fact,
the assumption Tjil(p) > 3 implies that T}l_l(p) > 3 and that vs(p) < n—3s
for 1 < s <dj; c.f. Proposition 4.6 in [Dal].
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