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In this article we introduce a new conformal invariant and
we prove a conformal rigidity theorem which has no restriction
on the size of the codimension. We also prove an isometric
rigidity theorem whose assumptions are less restrictive than
in Allendoerfer’s theorem.

Introduction.

Let f, g : Mn → Rn+d be two immersions of an n-dimensional differen-
tiable manifold into Euclidean space. That g is conformal (isometric) to f
means that the metrics induced on Mn by f and g are conformal (isomet-
ric). We say that f is conformally (isometrically) rigid if given any other
conformal (isometric) immersion g there exists a conformal (isometric) dif-
feomorphism Υ from an open subset of Rn+d to an open subset of Rn+d

such that g = Υ ◦ f. In this case, we say that f and g are conformally
(isometrically) congruent. It is then an interesting problem to determine
conditions on f which imply conformal (isometric) rigidity.

E. Cartan ([Ca1] , see also [Da]) showed that when n ≥ 5 a hyper-
surface f : Mn → Rn+1 is “generically” conformally rigid. To be more
specific, he proved that f is conformally rigid when the maximal dimension
of an umbilical subspace is at most n − 3 at any point. Later, do Carmo
and Dajczer ([C-D]) introduced a conformal invariant for immersions of
arbitrary codimension, namely, the conformal s-nullity νc

s , and generalized
Cartan’s result. More precisely, they showed that conformal rigidity holds
whenever d ≤ 4 , n ≥ 2d + 3 and νc

s ≤ n − 2s − 1 for 1 ≤ s ≤ d. As far
as we know, it is still an open problem whether this result remains true for
any codimension d. In this paper, we introduce a new conformal invariant,
namely, the conformal type number τ c

f , and prove the following result which
has no restriction on the size of the codimension.

Theorem 1.1. Let f : Mn → Rn+d be an immersion. Assume that every-
where τ c

f (p) ≥ 3 and that νc
s(p) ≤ n− 2s− 1 for 1 ≤ s ≤ 3. Suppose further

that n ≥ 2d+ 3 if d = 1, 2. Then f is conformally rigid.
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In relation to the above result see also Theorem 1.3 and Corollary 1.1.
Allendoerfer ([Al]) showed that an isometric immersion with type num-

ber at least 3 everywhere is isometrically rigid. By using the notions of
kth type number τk

f (p), 1 ≤ k ≤ d, and s-nullity νs, we obtain the follow-
ing result whose assumptions are less restrictive (see Remark 2.1) than in
Allendoerfer’s theorem.

Theorem 1.2. Let f : Mn → Rn+d , d ≥ 2, be an immersion. Assume
that everywhere τd−1

f (p) ≥ 3 and νs(p) ≤ n− 2s− 1, 1 ≤ s ≤ 3, then f is
isometrically rigid.

This work is part of my Doctoral Thesis at IMPA. I would like to thank
my research advisor, Professor Marcos Dajczer, for suggesting the problem
and valuable remarks. I also would like to thank Professor Luis A. Florit
and Professor Ruy Tojeiro for a number of helpful comments.

1. Proof of Theorem 1.1.

For a symmetric bilinear form β : V × V → W we denote by S(β) the
subspace of W given by

S(β) = span{β(X,Y ) : X,Y ∈ V },
and by N(β) the nullity space of β defined as

N(β) = {n ∈ V : β(X,n) = 0, ∀ X ∈ V }.

Definition 1.1. Assume that V and W are endowed with positive definite
inner products. We define the kth type number of β, 1 ≤ k ≤ dimW, as
being the largest integer r for which there are k vectors ξ1, . . . , ξk ∈ W
and r vectors X1, . . . , Xr ∈ V necessarily linearly independent such that
the vectors Bξi

Xj , 1 ≤ i ≤ k, 1 ≤ j ≤ r, are linearly independent. Here
Bξi

: V → V is given by 〈Bξi
X,Y 〉 = 〈β(X,Y ), ξi〉. We point out that when

k = dimW the kth type number does not depend on the basis of W.

Now let f : Mn → M̃n+d be an immersion into a Riemannian manifold
with vector valued second fundamental form αf : TM × TM → T⊥f M.

The kth type number τk
f (p), 1 ≤ k ≤ d, of f at p is defined as the kth

type number of αf at p. Observe that τd
f (p) is exactly the type number

introduced by Allendoerfer.

Definition 1.2. We define the conformal type number τ c
f (p) of f at p ∈

Mn as being the integer

τ c
f (p) = max

η∈T⊥
f(p)

M
τd
η

where τd
η denote the dth type number of αf − 〈 , 〉η at p.
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We claim that the conformal type number is a conformal invariant. In
fact, let Υ be a conformal diffeomorphism of M̃n+d with conformal factor ρ,
that is, 〈Υ∗X,Υ∗Y 〉 = ρ2〈X,Y 〉. For h = Υ ◦ f , one easily verifies that

αh = Υ∗αf − 1
2(ρ ◦ f)2

〈 , 〉Υ∗
(
∇ρ2

)⊥
f
,

where ∇ is the gradient operator. Thus the claim follows.
Given an s-dimensional subspaceU s ⊆ T⊥f(p)M , 1 ≤ s ≤ d, consider the

bilinear form
αf

Us : TpM × TpM → U s

defined as αf
Us = P ◦ αf , where P denotes the orthogonal projection of

T⊥f(p)M onto U s. Endow Mn with the induced metric. The conformal
s-nullity νc

s(p) of f at p (see [C-D]) is the integer

νc
s(p) = max

Us⊆T⊥
f(p)

M , η∈Us

{
dimN

(
αf

Us − 〈 , 〉η
)}

.

The following result relate conformal type number and conformal s-nullity.

Proposition 1.1. Let f : Mn → M̃n+d be an isometric immersion. If
τ c
f (p) ≥ r, then νc

s(p) ≤ n− (s− 1)r for 1 ≤ s ≤ d.

Proof. Suppose r ≥ 1 and s ≥ 2. In any other case the result is immediate.
Since τ c

f (p) ≥ r, there exists η ∈ T⊥f(p)M such that αf − 〈 , 〉η has dth type
number at least r. Consequently, for all basis ξ1, . . . , ξd of T⊥f(p)M there
exist r vectors X1, . . . , Xr tangent at p such that the vectors

(Aξi
− 〈η, ξi〉I)Xj , 1 ≤ i ≤ d, 1 ≤ j ≤ r,

are linearly independent. Let U s ⊆ T⊥f(p)M , 2 ≤ s ≤ d, be an s-dimensional
subspace and ξ ∈ U s an arbitrary vector. For the subspace W = U s ∩
(span{η − ξ})⊥ it holds that dimW ≥ s − 1. Take a basis ξ1, . . . , ξd of
T⊥f(p)M such that ξ1, . . . , ξs span U s and ξ1, . . . , ξs−1 are in W. Let L be
the subspace of TpM with dimension (s− 1)r given by

L = span { (Aξi
− 〈η, ξi〉I)Xj , 1 ≤ i ≤ s− 1, 1 ≤ j ≤ r } .

For an arbitrary vector v ∈ N
(
αf

Us − 〈 , 〉ξ
)

and 1 ≤ i ≤ s, we obtain that

0 =
〈
αf (v,Xj)− 〈v,Xj〉ξ, ξi

〉
=
〈
αf (v,Xj)− 〈v,Xj〉η + 〈v,Xj〉(η − ξ), ξi

〉
.

Thus, we have that 〈(Aξi
− 〈η, ξi〉I)Xj , v〉 = 0, 1 ≤ i ≤ s − 1, 1 ≤ j ≤ r,

that is, N
(
αf

Us − 〈 , 〉ξ
)
⊆ L⊥. Since U s ⊆ T⊥f(p)M is arbitrary, the proof

follows.
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Before proving Theorem 1.1 we recall some basic facts; from [Da] and
[D-T]. Consider the Lorentz space Ln+d+2, that is, Euclidean space Rn+d+2

endowed with the metric 〈 , 〉 defined by

〈X,X〉 = −x2
1 + x2

2 + · · ·+ x2
n+d+2

for X = (x1, x2, . . . , xn+d+2). The light cone is the degenerate totally um-
bilical hypersurface of Ln+d+2 defined by

Vn+d+1 = {X ∈ Ln+d+2 : 〈X,X〉 = 0, X 6= 0}.
Given ζ ∈ Vn+d+1 consider the hyperplane

Hζ = {X ∈ Ln+d+2 : 〈X, ζ〉 = 1}

and the (n+d)-dimensional submanifold Hζ ∩Vn+d+1. It is easy to see that
the normal space to Hζ∩Vn+d+1 in Ln+d+2 at p is the Lorentzian plane L2

generated by p and ζ. Therefore, the metric induced by Ln+d+2 on Hζ ∩
Vn+d+1 is riemannian. The second fundamental form of this intersection is
given by

α = −〈 , 〉ζ.
Using the Gauss equation, it follows that Hζ ∩Vn+d+1 is an embedded flat
riemannian submanifold of Ln+d+2. Indeed, it can be checked that it is the
image of an isometric embedding Jζ : Rn+d → Vn+d+1 .

The light cone is a very useful tool in the study of conformal immersions.
Given any conformal immersion g : Mn → Rn+d such that 〈g∗X, g∗Y 〉 =
φ2

g〈X,Y 〉, where φg > 0 is the conformal factor of g, we associate to g an
isometric immersion G : Mn → Vn+d+1 ⊂ Ln+d+2 by setting

G =
1
φg
Jζ ◦ g

for an arbitrary ζ ∈ Vn+d+1.
Conversely, any isometric immersion G : Mn → Vn+d+1 arises this way.

In fact, choose ζ ∈ Vn+d+1 such that 〈G, ζ〉 > 0. Define g : Mn → Rn+d

by setting

Jζ ◦ g =
G

〈G, ζ〉
.

It is not difficult to verify that g is a conformal immersion with conformal
factor given by 1/〈G, ζ〉.

Now, let g, f : Mn → Rn+d be conformal immersions and like previously
discussed consider isometric immersions G, F : Mn → Vn+d+1 associated
to them. If there exists an isometry T : Vn+d+1 → Vn+d+1 such that
F = T ◦ G , then T induces a conformal diffeomorphism Υ from an open
subset of Rn+d to an open subset of Rn+d defined by

Jζ ◦Υ =
T ◦ Jζ

〈T ◦ Jζ , ζ〉
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which satisfies f = Υ◦g. In order to obtain such T it suffices to construct a
vector bundle isomorphism T̂ : T⊥GM → T⊥F M preserving metrics, second
fundamental forms and normal connections. Here, T⊥GM and T⊥F M stand
for the normal bundles of G and F , respectively, in Ln+d+2. From the
fundamental theorem for isometric immersions adapted to the Lorentzian
case we conclude that there exists an isometry T : Ln+d+2 → Ln+d+2 such
that F = T ◦G. Then we take T as the restriction of T to Vn+d+1.

Proof of Theorem 1.1. We only have to deal with the case of codimension d ≥
5. If τ c

f (p) ≥ 3 then n ≥ 3d and can be easily deduced from Proposition 1.1
that νc

s(p) ≤ n− 2s− 1 when s ≥ 4. Consequently, under our assumptions
we always have that n ≥ 2d+ 3 and νc

s(p) ≤ n− 2s− 1. Thus, the following
result already reported in the introduction applies for d ≤ 4.

Theorem 1.3 ([C-D]). Let f : Mn → Rn+d be an immersion where d ≤ 4
and n ≥ 2d+ 3. Assume that νc

s(p) ≤ n− 2s− 1 for all p ∈Mn and every
integer s, 1 ≤ s ≤ d. Then f is conformally rigid.

Let g : Mn → Rn+d be any immersion conformal to f and G : Mn →
Vn+d+1 its associated isometric immersion. We may assume that Mn is
endowed with the metric induced by f . Taking the derivative of 〈G,G〉 = 0,
we see that the null vector field G is normal to the immersion G. The normal
field G also satisfies AG

G = −I. The normal bundle of G is given by the
orthogonal direct sum

T⊥GM = T⊥g M ⊕ L2

where T⊥g M is identified with (Jζ)∗T⊥g M and L2 is a Lorentzian plane
bundle which contains G. We can easily see that there exists a unique
orthogonal frame {ξ, η} of L2 with |ξ|2 = −1 such that

G = ξ + η.

Writing αG in terms of this orthogonal frame we obtain

αG = −
〈
αG, ξ

〉
ξ +

〈
αG, η

〉
η +

(
αG
)∗

where
(
αG
)∗ = (1/φg)(Jζ)∗αg is the T⊥g M -component of αG.

Given an m-dimensional real vector space W endowed with a non-dege-
nerate inner product 〈 , 〉 of index r, that is, the maximal dimension of a
subspace of W where 〈 , 〉 is negative definite, we say that W is of type
(r, q) and we write W (r,q) with q = m− r.

At p ∈Mn, let

W = T⊥f(p)M ⊕ span{ξ(p)} ⊕ span{η(p)} ⊕ T⊥g(p)M

be endowed with the natural metric of type (d+ 1, d+ 1) which is negative
definite on T⊥f(p)M ⊕ span{ξ(p)}. We also define a symmetric bilinear form
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β : TM × TM →W setting β = αf + αG , i.e.,

β = αf −
〈
αG, ξ

〉
ξ +

〈
αG, η

〉
η +

(
αG
)∗
.

The Gauss equations for f and G imply that β is flat, i.e.,

〈β(X,Y ), β(Z,U)〉 = 〈β(X,U), β(Y, Z)〉, ∀X,Y, Z, U ∈ TM.

Observe also that β(X,X) 6= 0 for all X 6= 0, because AG
ξ+η = −I.

Lemma 1.1. The bilinear form β is null, that is,

〈β(X,Y ), β(Z,U)〉 = 0, ∀X,Y, Z, U ∈ TM.

Proof. Fixed p ∈ Mn, set V : = TpM and for each X ∈ V define the
linear map

β(X) : V →W

by setting β(X)(v) = β(X, v) for all v ∈ V. For simplicity of notation, we
omit the p. The kernel and image of β(X) are denoted by kerβ(X) and
β(X,V ), respectively. We say that X is a regular element of β if

dimβ(X,V ) = max
Z∈V

dimβ(Z, V ).

The set of regular elements of β is denoted by RE(β). For each X ∈ V, set
U(X) = β(X,V ) ∩ β(X,V )⊥ and define

RE∗(β) = {Y ∈ RE(β) : dimU(Y ) = d0}
where d0 = min{dimU(Y ) : Y ∈ RE(β)}.

We will need the following from [Da].

Sublemma 1.1. The set RE∗(β) is open and dense in V and

β(kerβ(X), V ) ⊆ U(X), ∀X ∈ RE(β).

Now recall that a vector subspace L of W is said to be degenerate when
satisfies L ∩ L⊥ 6= {0} and isotropic if 〈L,L〉 = 0. We also have that

dimL+ dimL⊥ = dimW and L⊥⊥ = L.(1.1)

It follows easily from (1.1), dimW = 2d + 2 and the definition of U(X)
that d0 ≤ d+1. We separate the proof in two cases, namely, d0 = d+1 and
d0 ≤ d.

Case I. d0 = d + 1. In this case, dimU(X) = d + 1 for all X ∈ RE∗(β).
Then, U(X) = β(X,V ) = β(X,V )⊥ due to (1.1). Using the density of
RE∗(β), we get

〈β(X,Y ), β(X,Z)〉 = 0, ∀X,Y, Z ∈ V,
and the bilinearity of β yields the claim.

Case II. d0 ≤ d. To deal with this case we need several facts.

Assertion 1. dimS(β) ∩ S(β)⊥ ≥ d− 2.
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Since τ c
f (p) ≥ 3, there exists η ∈ T⊥f(p)M such that αf − 〈 , 〉η has type

number at least 3. Fix a basis ξ1, . . . , ξd of T⊥f(p)M and vectors X1, X2, X3 ∈
V so that the Aλi, f

ξi
Xj = (Af

ξi
+ λiI)Xj , λi = 〈η, ξi〉, 1 ≤ i ≤ d, 1 ≤ j ≤ 3,

are linearly independent. Define

L̃ =
(
span

{
Aλi, f

ξi
Xj : 1 ≤ i ≤ d, 1 ≤ j ≤ 3

})⊥
.

We have that dim L̃ = n− 3d and that Z ∈ L̃ if and only if〈
αf (Xj , Z), ξi

〉
+ λi 〈Xj , Z〉 = 0, ∀ i, j.

By definition of β we have for Z ∈ kerβ(Xj) that

αf (Xj , Z) = 0 and
〈
αG(Xj , Z), ξ

〉
=
〈
αG(Xj , Z), η

〉
= 0.

Since AG
η+ξ = −I, we get 〈Xj , Z〉 = −

〈
αG(Xj , Z), η + ξ

〉
= 0. Hence,

3⋂
h=1

kerβ(Xh) ⊆ L̃.(1.2)

We can assume that X1, X2, X3 ∈ RE∗(β) by Sublemma 1.1. Unless oth-
erwise stated, from now on the indexes i, j, k ∈ {1, 2, 3} are all distinct.
Moreover, for simplicity of notation we denote the map β(Xi) and its im-
age β(Xi, V ) by βi and Imβi, respectively. Take the maps

Γk : kerβi ∩ kerβj → U(Xi) ∩ U(Xj)

as being the restriction of βk to kerβi ∩ kerβj and

Γij : kerβj → U(Xj)

as the restriction of βi to kerβj . By Sublemma 1.1 the maps Γk and Γij

are well defined. Setting Uj = U(Xj) and Uij = Ui ∩ Uj , we have that

Im Γk ⊆ Im Γkj ⊆ Uj and Im Γk ⊆ Uij ⊆ Uj , ∀ i, j, k ∈ {1, 2, 3}.(1.3)

Define

ρ = dim ( Imβi )⊥ − d0 and θj
i = d0 − dim Im Γij .(1.4)

A simple calculation shows that

dim ker Γij = n− 2d− 2 + ρ+ θj
i .(1.5)

Setting

γk = d0 − dim Im Γk(1.6)

and using that ker Γij = kerβi ∩ kerβj , we obtain that

dim ker Γk = n− 2d− d0 − 2 + ρ+ θj
i + γk.
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Since

ker Γk =
3⋂

h=1

kerβh,

the last equality shows that the sums θj
i +γk are independent of the indexes.

This and (1.2) imply that n− 3d ≥ n− 2d− d0 − 2 + ρ+ θj
i + γk. Hence

d− d0 − 2 + (ρ+ θj
i + γk) ≤ 0.(1.7)

Since the integers ρ, θj
i and γk are nonnegative, it follows that d0 ≥ d− 2 .

We have to analyze three possibilities for d0.

II.(a). d0 = d − 2. In this case ρ = θj
i = γk = 0 by (1.7). Observe that

γk = 0 and (1.3) yield that

Im Γk = Uj = Ui.(1.8)

We show that Im Γi ⊆ S(β)∩S(β)⊥. An arbitrary element in Im Γi is given
by β(Xi, X0) with X0 ∈ ker Γjk. Since β(X0, Y ) ∈ Ujk by Sublemma 1.1,
we get using (1.8) that

〈β(Xi, X0), β(Y, Z)〉 = 〈β(Xi, Z), β(X0, Y )〉 = 0, ∀Y, Z ∈ V.
We conclude that dimS(β) ∩ S(β)⊥ ≥ d0 = d− 2.

II.(b). d0 = d − 1. In this case ρ + θj
i + γk ≤ 1. We have to consider two

sub-cases.

(b).1. There exist indexes such that Uij = Ukj . Like in II.(a) we conclude
that Im Γi ⊆ S(β) ∩ S(β)⊥ and dimS(β) ∩ S(β)⊥ ≥ d− 2.

(b).2. Suppose that Uij 6= Ukj for all i, j, k. This implies that Ui 6= Uj for
all i, j. It follows from (1.3) that γk = 1. In particular,

dim Im Γk = d− 2 and Im Γk = Uij .(1.9)

Being θj
i = 0, then (1.3) gives

Uj = Im Γij ⊂ Imβi.(1.10)

Due to ρ = 0 and Imβi ⊆ U⊥i , we deduce that

Imβi = U⊥i .(1.11)

The assumption in (b).2 jointly to (1.9) and (1.11) imply that

Uki 6⊂ Ukj and Imβi 6⊂ Imβj .(1.12)

It is not difficult to see that Uj = Uij +Ukj ⊆ Ui +Uk due to the assumption
in (b).2, (1.9) and dimUj = d− 1. For all i and j, the subspace Ui +Uj has
dimension d by the formula

dim (L1 + L2 ) = dimL1 + dimL2 − dimL1 ∩ L2.(1.13)
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Therefore,

Ui + Uj = Ui + Uk(1.14)

and, consequently,

Imβi ∩ Imβj = Imβi ∩ Imβk(1.15)

by (1.11) and the formula (∑
h

Lh

)⊥
=
⋂
h

L⊥h ,(1.16)

valid for any arbitrary finite number of subspaces. If v ∈ V and w ∈ kerβj ,
then

〈β(Xk, v), β(Xi, w)〉 = 〈β(Xk, Xi), β(v, w)〉 = 0
since β(Xk, Xi) ∈ Imβj by (1.15) and β(v, w) ∈ Uj by Sublemma 1.1. The
last equality, (1.10) and (1.11) imply that Imβk ⊂ (Im Γij)

⊥ = U⊥j = Imβj

which is in contradiction to (1.12).

II.(c). d0 = d. It follows from (1.7) that ρ+ θj
i + γk ≤ 2. Like in II.(b), we

consider two sub-cases.

(c).1. There exist indexes such that Uij = Ukj . Proceeding analogous to
II.(a) gives dimS(β) ∩ S(β)⊥ ≥ d− 2.

(c).2. Suppose that Uij 6= Ukj for all i, j, k. This implies that Ui 6= Uj for
all i, j. It follows from (1.3) that 1 ≤ γk ≤ 2, then ρ+ θj

i ≤ 1. From (1.6),
we conclude that d−2 ≤ dim Im Γk ≤ dimUij ≤ d−1. If there exist indexes
i and j such that dimUij = d − 2, then γk = 2, ρ = 0 and θj

i = θi
j = 0.

Thus, Uj = Im Γij ⊂ Imβi and Ui = Im Γji ⊂ Imβj by (1.3). We have that
dim (Ui+Uj ) = d+2 by (1.13). Here the subspace Ui+Uj is isotropic since
Ui and Uj are isotropic and Uj , being a subset of Imβi, is orthogonal to
Ui. But this is not possible due to (1.1). Then we can assume dimUij = d−1
for all i and j. In this case, dim (Ui + Uj) = d+ 1 and (1.14) holds.

(c).2.1. First suppose there exists k with γk = 2. Thus, θj
i = ρ = 0. Being

ρ = 0, (1.11) holds. From (1.14) and (1.16), we have that (1.15) also holds.
Like in (b).2, we obtain a contradiction.

(c).2.2. Consider γk = 1 for all k. In this case the θj
i ’s are independent

from the indexes. There are three possibilities:

(c).2.2.1. Suppose that ρ = θj
i = 0. Similar to (b).2 we have a contradiction.

(c).2.2.2. Suppose that ρ = 0 and θj
i = 1. Being ρ = 0, then (1.11), (1.12)

and (1.15) hold. Further,

dim ker Γij = n− 2d− 1(1.17)
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by (1.5) and

dim Imβi = d+ 2, hence dim kerβi = n− d− 2.(1.18)

It holds that Im Γkj = Im Γk = Uij from the assumption in (c).2, γk =
θj
k = 1 and (1.3). We claim that Ui ⊂ Imβj . Otherwise, we have that
Uij = Ui ∩ Imβj since d − 1 = dimUij ≤ dim (Ui ∩ Imβj) ≤ d − 1. Using
(1.15), we conclude that

Uij = Ui∩ Imβj = Ui∩ Imβi∩ Imβj = Ui∩ Imβi∩ Imβk = Ui∩ Imβk = Uik

contradicting (c).2, and the claim follows. From (1.13), (1.17) and (1.18),
we deduce that

dim (kerβi + kerβj) = n− 3.(1.19)

The vector Xi satisfies that Xi /∈ (kerβi + kerβj). Otherwise, using Sub-
lemma 1.1, we obtain the following contradiction due to dimensions:

Imβi ⊂ β(kerβi + kerβj , V ) ⊆ Ui + Uj .

The vector Xj /∈ span{Xi} ⊕ (kerβi + kerβj). Otherwise,

Imβj ⊂ β(span{Xi} ⊕ (kerβi + kerβj), V ) ⊆ Imβi + Ui + Uj = Imβi

which is in contradiction with (1.12). It hold that

Imβi + Imβj = U⊥ij and Imβi ∩ Imβj = (Ui + Uj)⊥(1.20)

by (1.11) and (1.16). We assert that

Imβk 6⊂ Imβi + Imβj .(1.21)

On the contrary, Imβk + Imβj ⊆ Imβi + Imβj and, since both spaces have
dimension d+3, then the equality holds. But this jointly to (1.20) contradicts
the hypothesis in (c).2. Also Xk /∈ span{Xi, Xj} ⊕ (kerβi + kerβj) due to
(1.21). It follows from (1.19) that

V = span{X1, X2, X3} ⊕ (kerβi + kerβj).

The above equality gives that S(β) =
∑3

h=1 Imβh. This fact, together with
(1.11), (1.16) and (

⋂3
h=1 Uh ) ⊆ S(β) prove that S(β)∩S(β)⊥ = (

⋂3
h=1 Uh ).

Therefore, dimS(β) ∩ S(β)⊥ = dim(
⋂3

h=1 Uh ) = d− 2.

(c).2.2.3. Finally, suppose that ρ = 1 and θj
i = 0. Then dim ( Imβi )⊥ =

d + 1 by (1.4). Thus, dim Imβi = d + 1 by (1.1). From (1.3), we have
Uj = Im Γij ⊂ Imβi since θj

i = 0. These facts and Ui 6= Uj imply that
Ui + Uj = Imβi. Arguing as in (c).2 we obtain that Ui + Uj is isotropic. So
Ui = Imβi∩( Imβi )⊥ = Imβi, and we get a contradiction due to dimensions.
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Assertion 2. There exist an orthogonal decomposition

W = W
(`,`)
1 ⊕W

(d−`+1, d−`+1)
2 , ` ≥ d− 2,

and symmetric bilinear forms ωj : V × V →Wj , 1 ≤ j ≤ 2, satisfying

β = ω1 ⊕ ω2

such that:
i) ω1 is nonzero and null with respect to 〈 , 〉 and
ii) ω2 is flat with dimN(ω2) ≥ n− dimW2.

Let υ1, . . . , υ` a basis of S(β) ∩ S(β)⊥. There exists (see [Da], p. 83)
a pseudo-orthonormal basis υ1, . . . , υ`, υ̂1, . . . , υ̂`, θ1, . . . , θ2(d−`+1) of W
satisfying that 〈υi, υj〉 = 〈υ̂i, υ̂j〉 = 〈θi, υj〉 = 〈θi, υ̂j〉 = 0, 〈υi, υ̂j〉 = δij and
that 〈θi, θj〉 = ±δij . Defining

W1 = span{υ1, . . . , υ`, υ̂1, . . . , υ̂`}, W2 = span{θ1, . . . , θ2(d−`+1)}
and

β =
∑̀
i=1

φiυi +
∑̀
i=1

ψiυ̂i +
2(d−`+1)∑

i=1

κiθi,

we have that ψi = 〈β, υi〉 = 0. Set

ω1 =
∑̀
i=1

φiυi and ω2 =
2(d−`+1)∑

i=1

κiθi.

Since ` = dimS(β) ∩ S(β)⊥ ≥ d− 2 ≥ 3, then ω1 is nonzero. It is easy to
verify that ω1, ω2 are symmetric bilinear forms such that ω1 is null and ω2

is flat. In order to see that S(ω2) is non-degenerate, let
∑

i ω2(Xi, Yi) ∈W2

be an arbitrary element in S(ω2) ∩ S(ω2)⊥. For all v, w ∈ V, we get〈∑
i

ω2(Xi, Yi), β(v, w)

〉
=

〈∑
i

ω2(Xi, Yi), ω2(v, w)

〉
= 0.

Therefore,
∑

i ω2(Xi, Yi) ∈ S(β)∩S(β)⊥. Hence,
∑

i ω2(Xi, Yi) ∈W1. Thus,∑
i

ω2(Xi, Yi) ∈W1 ∩W2 = {0}.

Since the subspace S(ω2) is non-degenerate and d−`+1 ≤ 3, the inequality
dimN(ω2) ≥ n−dimW2 is a consequence of the following result whose proof
is part of the arguments for the Main Lemma 2.2 in ([C-D], pp. 968-974).

Sublemma 1.2. Let σ : V1 × V1 → W (r,r) be a nonzero flat symmetric
bilinear form. Assume r ≤ 5 and dimN(σ) < dimV1 − 2r. Then S(σ) is
degenerate.

Now Lemma 1.1 is a consequence of the following fact.
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Assertion 3. The bilinear form ω2 is zero.

Suppose on the contrary that ` ≤ d. Set υi = γi +biξ+ciη+δi, 1 ≤ i ≤ `,
where γi ∈ T⊥f M and δi ∈ T⊥g M. Let L̂ be the orthogonal complement in
T⊥f(p)M of the subspace L = span{ γi : 1 ≤ i ≤ ` }. If the vectors γi are

linearly dependent, then dim L̂ ≥ d− `+ 1 ≥ 1. For any n ∈ N(ω2), v ∈ V
and u ∈ L̂, it holds that〈

αf (n, v), u
〉

= 〈β(n, v), u〉 = 〈ω1(n, v), u〉 = 0.

Hence,

νc
dim L̂

≥ dimN
(
αf

L̂

)
≥ dimN(ω2) ≥ n− 2 (d− `+ 1) ≥ n− 2 dim L̂,

which is in contradiction with the hypothesis on the conformal (dim L̂)-
nullity when 1 ≤ dim L̂ ≤ 3 and with the Proposition 1.1 when dim L̂ ≥ 4.

Now, since the vectors γi are linearly independent, then dim L̂ = d − `.
The definition of β gives

〈
αG(n, v), η

〉
= 〈β(n, v), η〉 = 〈ω1(n, v), η〉 =

∑̀
i=1

ciφi

and 〈
αG(n, v), ξ

〉
= 〈β(n, v), ξ〉 = 〈ω1(n, v), ξ〉 = −

∑̀
i=1

biφi.

Therefore,

−〈n, v〉 =
〈
n,AG

η+ξv
〉

=
∑̀
i=1

(ci − bi)φi.(1.22)

Fix j ∈ {1, . . . , `} and consider the hyperplane Lj ⊂ L given by

Lj = span{γ1, . . . , γj−1, γj+1, . . . , γ`}.

Let µj be the orthogonal projection of γj onto the orthogonal complement
of Lj in L. Observing that 〈µi, γj〉 = δij |µi|2, it is not difficult to see that
the vectors µ1, . . . , µ` are linearly independent. Let γ ∈ L ⊂ T⊥f(p)M be
defined as

γ =
∑̀
i=1

ci − bi
|µi|2

µi.

Then (1.22) yields that γ 6= 0. Set Ud−`+1 = span{γ} ⊕ L̂. It holds that〈
αf (n, v) +

γ

|γ|2
〈n, v〉, γ

〉
= 0 and

〈
αf (n, v) +

γ

|γ|2
〈n, v〉, u

〉
= 0
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for all n ∈ N(ω2), v ∈ V and u ∈ L̂. Then,

νc
d−`+1 ≥ dimN

(
αf

Ud−`+1 +
γ

|γ|2
〈 , 〉

)
≥ dimN(ω2) ≥ n− 2 (d− `+ 1).

This is in contradiction with the hypothesis on the conformal (d − ` + 1)-
nullity.

Assertion 4. There exists an orthonormal basis γ1, . . . , γd of T⊥f(p)M and
a pseudo-orthonormal basis G, µ1, . . . , µd+1 of T⊥G(p)M, with 〈G,µ1〉 =
1, 〈µ1, µ1〉 = 0, such that

αG = −〈 , 〉µ1 +
d∑

j=1

〈
αf , γj

〉
µj+1.(1.23)

Define
β̃ = αf −

〈
αG, ξ

〉
ξ, β̄ =

〈
αG, η

〉
η +

(
αG
)∗
.

Since β is null, we conclude that

〈β̃(X,Y ), β̃(Z,U)〉 = 〈β̄(X,Y ), β̄(Z,U)〉, ∀X,Y, Z, U ∈ TpM ,

where we have changed the sign of the metric in T⊥f(p)M ⊕ span{ξ}. It
follows that there exists an orthogonal map

T̃ : T⊥f(p)M ⊕ span{ξ} → span{η} ⊕ T⊥g(p)M

such that T̃ β̃ = β̄. Set

T̃ ξ = η cosϕ+ δ1 sinϕ,

where δ1 ∈ span{η, T̃ ξ} satisfies |δ1| = 1 and 〈δ1, η〉 = 0. Let γ1 ∈ T⊥f(p)M

be chosen so that
T̃ γ1 = −η sinϕ+ δ1 cosϕ.

We extend γ1 to an orthonormal basis γ1, . . . , γd of T⊥f(p)M and define

δj = T̃ γj , j ≥ 2. If T̃ ξ = − η, then we take γ1, . . . , γd as being any or-
thonormal basis in T⊥f(p)M and δj = T̃ γj . If T̃ ξ = η, then the equality

T̃ β̃ = β̄ yields that
〈
αG, η

〉
= −

〈
αG, ξ

〉
which is in contradiction with〈

αG, η + ξ
〉

= − 〈 , 〉 . We write

β̃ = −
〈
αG, ξ

〉
ξ +

〈
αf , γ1

〉
γ1 +

d∑
j=2

〈
αf , γj

〉
γj

and

β̄ =
〈
αG, η

〉
η +

〈(
αG
)∗
, δ1

〉
δ1 +

d∑
j=2

〈(
αG
)∗
, δj

〉
δj .
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Thus, T̃ β̃ = β̄ implies that〈
αG, η

〉
= −

〈
αG, ξ

〉
cosϕ−

〈
αf , γ1

〉
sinϕ〈(

αG
)∗
, δ1

〉
= −

〈
αG, ξ

〉
sinϕ+

〈
αf , γ1

〉
cosϕ〈(

αG
)∗
, δj

〉
=
〈
αf , γj

〉
, ∀ j ≥ 2.

From the first equation, we get

−
〈
αG, ξ

〉
cosϕ−

〈
αf , γ1

〉
sinϕ =

〈
αG, η

〉
=
〈
αG, η + ξ

〉
−
〈
αG, ξ

〉
= −〈 , 〉 −

〈
αG, ξ

〉
.

Hence 〈
αG, ξ

〉
=

1
cosϕ− 1

(
〈 , 〉 −

〈
αf , γ1

〉
sinϕ

)
.

Furthermore,〈(
αG
)∗
, δ1

〉
= −

〈
αf , γ1

〉
+

1
1− cosϕ

sinϕ〈 , 〉.

We conclude that (1.23) holds for

µ1 = − 1
1− cosϕ

(ξ + η cosϕ+ δ1 sinϕ),

µ2 =
− sinϕ

1− cosϕ
(ξ + η)− δ1 and µj+1 = δj , j ≥ 2.

Now let F : Mn → Vn+d+1 be defined by F = Jζ ◦ f , where ζ ∈ Vn+d+1

is arbitrary. The second fundamental form of F in Ln+d+2 is given by

αF = αf − 〈 , 〉ζ.(1.24)

As previously discussed, the proof of Theorem 1.1 will be completed once
we show the following fact.

Assertion 5. There exists a smooth vector bundle isometry T̂ : T⊥GM →
T⊥F M which preserves the second fundamental forms and normal connec-
tions.

Set ξ1 = ζ , ξj+1 = γj , 1 ≤ j ≤ d, and define

T̂ (µj) = ξj , 1 ≤ j ≤ d+ 1, T̂ (G) = F.

Clearly, T̂ is isometric. We have that T̂αG(X,Y ) = αF (X,Y ) by (1.23) and
(1.24). We claim that dimS(αF ) = d + 1. In fact, let L be the orthogonal
complement of S(αF ) in T⊥F M = T⊥f(p)M ⊕ span{ζ, F}. Due to the fact
that the inner product in T⊥F M is non-degenerate, it holds that dimS(αF )+
dimL = dimT⊥F M = d + 2. Take Γ = γ + aζ + bF an arbitrary vector in
L with γ ∈ T⊥f(p)M . Since

〈
αF ,Γ

〉
= 0 and 〈ζ, F 〉 = 1 we conclude that
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αf , γ

〉
− b〈 , 〉 = 0. If γ 6= 0, then we obtain that Af

γ is umbilical and this
contradicts the hypothesis on the conformal 1-nullity of f. Then γ = 0 and,
consequently, b = 0. Hence L = span{ζ} and the claim follows. By a similar
argument, we also deduce that dimS(αG) = d + 1 due to (1.23). Thus, we
have

T⊥GM = S(αG)⊕ span{G} and T⊥F M = S(αF )⊕ span{F}.

These facts easily imply that T̂ is smooth. In particular, the vector field µ1

is smooth, because T̂ (µ1) = ζ . It remains to be shown that T̂ preserves the
normal connections. For any vector field ξ ∈ T⊥GM, define Φξ : TM → T⊥F M

by setting Φξ(X) = T̂
(
5⊥

Xξ
)
−5⊥

X T̂ (ξ). It follows easily from the Codazzi
equations for F and G that〈

αF (Z, Y ),Φξ(X)
〉

=
〈
αF (Z,X),Φξ(Y )

〉
, ∀X,Y, Z ∈ TpM .(1.25)

In particular, for ξ = µ1 this yields that〈
αf (Z, Y ),Φµ1(X)

〉
=
〈
αf (Z,X),Φµ1(Y )

〉
, ∀X,Y, Z ∈ TpM ,

because 〈Φµ1(X), ζ〉 =
〈
5⊥

Xµ1, µ1

〉
−
〈
5⊥

Xζ, ζ
〉

= 0.
We claim that Φµ1 = 0, that is, µ1 is parallel in the normal connection.

Suppose otherwise that dim (Im Φµ1) = r ≥ 1. In this case, we have that

〈αf (Z,X),Φµ1(Y )〉 = 0, ∀X ∈ ker Φµ1 , Y, Z ∈ TpM .

Hence,
νc

r(p) ≥ dim kerΦµ1 = n− r.

But this is in contradiction with the hypothesis on the conformal 1-nullity
of f when r = 1 and with the Proposition 1.1 when r ≥ 2.

Now, we obtain that 〈Φξ(X), ζ〉 =
〈
5⊥

Xξ, µ1

〉
−
〈
5⊥

X T̂ (ξ), ζ
〉

= 0 for any

vector ξ ∈ T⊥GM. Hence, (1.24) and (1.25) imply that〈
αf (Z, Y ),Φξ(X)

〉
=
〈
αf (Z,X),Φξ(Y )

〉
, ∀X,Y, Z ∈ TpM .

Arguing as before we conclude that Φξ = 0. According to observations made
previously, Theorem 1.1 has been proved. �

Corollary 1.1. Theorem 1.3 holds for d = 5.

Proof. The form β defined on p. 976 in [C-D] always satisfies β(Z,Z) 6= 0
for all 0 6= Z ∈ TM.Given X ∈ RE(β), since n > 2d+2, there exists Z 6= 0
such that Z ∈ kerβ(X). Since β is flat, β(Z, Y ) ∈ U(X) for all Y and
U(X) is isotropic, we deduce that β(Z,Z) ∈ S(β)∩S(β)⊥. Thus β admits
a decomposition as in the Main Lemma 2.2, p. 967. The inequality on
the dimension of N(β2) follows from Sublemma 1.2 in this paper because
dimW2 ≤ 10 for d = 5. The remainder of the proof is identical.
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Remark 1.1. In Theorem 1.1, the hypothesis τ c
f (p) ≥ 3 implies that n ≥

3d. For d = 1 and n < 2d + 3, we have that either n = 3 or n = 4. An
immersion of M3 into R4 always satisfies νc

1 ≥ 1. Cartan ([Ca2]) gave
examples of immersions M4 into R5 which have four distinct principal
curvatures at each point, hence τ c

f = 4 and νc
1 = 1, which are not conformally

rigid. For d = 2 and n < 2d+ 3, we have that n = 6 and it is not known
whether an immersion of M6 into R8 with τ c

f = 3, νc
1 ≤ 3, and νc

2 ≤ 1 is
conformally rigid.

Remark 1.2. The beginning of the argument to prove that the form β2

is zero in Assertion 3.3 of [C-D] says that there exist orthonormal bases
of T⊥f(p)M and T⊥g(p)M with some special properties which, in fact, may
not be satisfied under the conditions there. The argument in Assertion 3 to
prove that the form ω2 is zero corrects the one in [C-D].

To finish this section, we point out that in Theorem 1.1 the requirement
on νc

s(p) can not be dropped. First, we prove that any product of spheres
is conformally deformable. Fix positive integers d ≥ 2 and ki, 1 ≤ i ≤
d, and arbitrary positive real numbers λi, 1 ≤ i ≤ d. Denote by Ski

λi
the

ki-dimensional sphere centered in the origin and radius λi. Let Mn, n =∑d
i=1 ki, be the riemannian product with factors Ski

λi
, 1 ≤ i ≤ d. Define

the product immersion f : Mn → Rn+d by setting f = I1 × I2 × · · · × Id
where Ii : Ski

λi
→ Rki+1 is the inclusion. We have that f(M) ⊂ Sn+d−1

λ

where λ =
√∑d

i=1 λ
2
i . The immersion f is conformally deformable, that is,

it is not conformally rigid. In fact, the induced metric on M by f is the
same one induced by Sn+d−1

λ , namely, the natural product metric. Identify
Rn+d−1 with the hyperplane of Rn+d whose points x = (x1, x2, . . . , xn+d)
satisfy xn+d = 0. Let Π: Sn+d−1

λ − {pλ} → Rn+d−1 be the stereographic
projection raised from the point pλ = (0, . . . , 0, λ) which is given by

Π(p) = pλ +
λ

λ− pn+d
(p− pλ) where p = (p1, p2, . . . , pn+d).

The map Π is a conformal diffeomorphism with conformal factor λ
λ−pn+d

,

that is,

| (Π∗)p v|
2 =

λ2

(λ− pn+d)2
|v|2

for any p ∈ Sn+d−1
λ − {pλ} and v ∈ Tp

(
Sn+d−1

λ − {pλ}
)
. Observe also that

pλ /∈ Mn since d ≥ 2. Let ϕ : Mn → Rn+d−1 ⊂ Rn+d be the restric-
tion of Π to Mn. Consider also the isometric immersion φ : Rn+d−1 →
S1

1 × Rn+d−2 ⊂ Rn+d defined by

φ(x1, x2, . . . , xn+d−1, 0) = (cos x1, sin x1, x2, . . . , xn+d−1).
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Define g : Mn → Rn+d as g = φ ◦ ϕ. It follows easily that f and g are
conformal. Recall that the inversion with respect to the unit sphere centered
at po is the conformal transformation Ipo(q) = po +

[
(q − po)/|q − po|2

]
,

q ∈ Rn+d − {po}, an isometry of Rn+d is a map = such that =(q) = O(q)+w,
where O is an orthogonal map of Rn+d and w is a fixed vector in Rn+d, and
a dilatation Dα is a transformation of Rn+d such that Dα(q) = α q for
some positive real constant α. Recall further that by Liouville’s theorem
(see [dC]) every conformal diffeomorphism Υ from an open subset U of
Rn+d to an open subset V of Rn+d is the restriction to U of a composition
of inversions, dilatations and isometries, at most one of each. We claim that
there is not a such conformal diffeomorphism Υ satisfying g = Υ ◦ f. In
fact, it is not difficult to see that there exist one inversion Ipo , one dilatation
Dα and one isometry = such that Υ is the restriction to U either of the
composition = ◦ Dα ◦ Ipo or the composition = ◦ Dα. Now suppose on the
contrary that g = Υ ◦ f for some conformal diffeomorphism Υ. We have to
analyze two cases.

Case i). The conformal map Υ is the restriction to U of the composition
= ◦ Dα ◦ Ipo . In this case, extending Υ if necessary we can assume that
U = Rn+d − {po}. The conformal factor β of Υ is β(q) = α/|q − po|2. Since
g = Υ ◦ f on Mn we have that

(φ∗)ϕ(p)(ϕ∗)pv = (g∗)pv = (Υ∗)pv

and, consequently,

λ2

(λ− pn+d)2
|v|2 = |(g∗)pv|2 = |(Υ∗)pv|2 = β(p)2|v|2

for all v ∈ TpM . This yields that

λ

λ− pn+d
= β(p) =

α

|p− po|2
(1.26)

for all p ∈Mn. Therefore,

λ |γ(t)− po|2 = α (λ− γn+d(t))

for any curve γ(t) in Mn with γ(t) = (γ1(t), . . . , γn+d(t)). Taking derivatives
in the last equality, we have that

2λ 〈γ′(t), γ(t)− po〉 = −αγ′n+d(t).(1.27)

The vector γ(t) is orthogonal to γ
′
(t) since γ(t) ∈ Sn+d−1

λ for all t. Then, we
obtain that

〈γ′(t), 2λpo − α en+d〉 = 0

from (1.27) where en+d = (0, . . . , 0, 1). So the vector γ
′
(t) belongs to the

hyperplane through the origin and orthogonal to the vector 2λpo − α en+d,
for any curve γ(t) in Mn. Since the vectors tangent to Mn span Rn+d we
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have that 2λpo − α en+d = 0. Thus, poi = 0, 1 ≤ i ≤ n + d − 1, and
α = 2λpo(n+d). At a point such that pn+d = 0 we deduce that α = 2λ2 from
(1.26). Consequently, po = pλ. Hence,

Υ(q) = (= ◦Dα ◦ Ipo) (q) = 2λ2O(pλ) +
2λ2

| q − pλ |2
O(q − pλ) + w

for all q ∈ Rn+d − {pλ}. The equality Υ(p)−Υ(−p) = g(p)− g(−p) on Mn

implies that
2O(p) = φ(p)− φ(−p)

at a point such that pn+d = 0 since the restriction to Mn∩Rn+d−1 of ϕ is the
identity. Taking length in the last equality, we conclude that sin2 p1 = p2

1 if
p = (p1, . . . , pn+d−1, 0). Choosing a point such that p1 6= 0 we have obtained
a contradiction.

Case ii). The conformal map Υ is the restriction to U of =◦Dα. In this case,
we obtain that λ/(λ − pn+d) = α for all p ∈ Mn by (1.26). Consequently,
pn+d is constant through Mn. But this is a contradiction.

Now we compute νc
s for f = I × I × · · · × I, where I : Sr

1 → Rr+1 is the
inclusion. In this case, M = Sr

1 × Sr
1 × · · · × Sr

1 and M = f(M) ⊂ Sn+d−1√
d

with n = r d. Given p = (p1, p2, . . . , pd) ∈Mn and s, 1 ≤ s ≤ d, consider at
T⊥f(p)M the points

q1 = p, qi = (0, . . . , 0, pi, pi+1, . . . , pd), 2 ≤ i ≤ s,

and U s defined as U s = span{ q1, . . . , qs }. It is not difficult to see that
there exists η ∈ U s such that dimN

(
αf

Us − 〈 , 〉η
)

= n − r(s − 1). Fix

an orthonormal basis Ek
i , 1 ≤ i ≤ r, on the tangent space of Sr

1 at p for
each k, 1 ≤ k ≤ d. The vectors Ei = (E1

i , E
2
i , . . . , E

d
i ), 1 ≤ i ≤ r, in

T⊥f(p)M are linearly independent. The normal space T⊥f(p)M is spanned
by pk, 1 ≤ k ≤ d. The second fundamental form of f satisfies Apk

Ei =
(0, . . . , 0,−Ek

i , 0, . . . , 0), 1 ≤ i ≤ r, 1 ≤ k ≤ d. This show that τ c
f (p) = r.

Consequently, we conclude that νc
s(p) = n − (s − 1)r by Proposition 1.1.

Observe that always νc
1 = n. If we take r = 3 and d ≥ 3, we obtain that

νc
s(p) > n−2s−1, 1 ≤ s ≤ 3. This fact shows that the assumption on νc

s(p)
is necessary.

2. Proof of Theorem 1.2.

First, we recall from [C-D] the following concept.

Definition 2.1. Given s, 1 ≤ s ≤ d, the s-nullity of an isometric immersion
f : Mn → M̃n+d at p ∈Mn is the integer

νs(p) = max
Us⊆T⊥

f(p)
M

{
dimN

(
αf

Us

)}
.
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Lemma 2.1. If τk
f (p) ≥ r, then the dimension of the tangent subspace L(U)

defined as L(U) = span
{
AµX : µ ∈ U `, X ∈ TpM

}
is at least (k+ `−d)r

for any `-dimensional subspace U ` ⊂ T⊥f(p)M , ` ≥ 1.

Proof. Take ξ1, . . . , ξk ∈ T⊥f(p)M and let X1, . . . , Xr ∈ TpM be such that
the vectors Aξi

Xj , 1 ≤ i ≤ k, 1 ≤ j ≤ r, are linearly independent. Recall
that the vectors ξ1, . . . , ξk , X1, . . . , Xr are linearly independent.

We claim that the vectors AγiXj , 1 ≤ i ≤ k
′
, 1 ≤ j ≤ r, are linearly

independent when we take γ1, . . . , γk′ ∈ span{ ξ1, . . . , ξk }, k
′ ≤ k, linearly

independent. In fact, consider a basis γ1, . . . , γk of span{ ξ1, . . . , ξk } which
extends γ1, . . . , γk′ . Define the k × k-matrix B = (bij) by setting ξi =∑k

h=1 bhiγh. It is not difficult to see that

k,r∑
i,j=1

aijAξi
Xj =

k,r∑
i,j=1

cijAγiXj

for arbitrary real numbers aij , 1 ≤ i ≤ k , 1 ≤ j ≤ r, being C = (cij) given
by C = BA with A = (aij). Thus, the vectors Aξi

Xj and AγiXj span the
same subspace and the claim follows.

We can assume that (k+ `−d) ≥ 1. Otherwise, Lemma 2.1 is immediate.
The subspace L = U ∩ span{ ξ1, . . . , ξk } satisfies dimL ≥ (k + ` − d) by
(1.13). If γ1, . . . , γ(k+`−d) are vectors linearly independent in L, then the
(k+ `−d)r vectors AγiXj ∈ L(U),1 ≤ i ≤ (k+ `−d), 1 ≤ j ≤ r, are linearly
independent from the claim. Hence, Lemma 2.1 has been proved.

Proposition 2.1. Let f : Mn → M̃n+d be an isometric immersion. If
τk
f (p) ≥ r, then νs(p) ≤ n− (k + s− d)r for 1 ≤ s ≤ d.

Proof. If k + s − d ≤ 0 then the conclusion is immediate. Assume that
k + s − d ≥ 1. Let U s ⊆ T⊥f(p)M be such that νs(p) = dimN

(
αf

Us

)
. We

have that 〈AµX, v〉 = 0 for all µ ∈ U s, v ∈ N
(
αf

Us

)
and X ∈ TpM , that

is, L(U) ⊆ N
(
αf

Us

)⊥
. Therefore, using Lemma 2.1, we deduce that

n− νs(p) = dimN
(
αf

Us

)⊥
≥ dimL(U) ≥ (k + s− d)r,

and Proposition 2.1 follows.

Proof of Theorem 1.2. We only have to deal with the case of codimension
d ≥ 6 since the proof follows from a result in [C-D] for d ≤ 5. If τd−1

f (p) ≥ 3,
then n ≥ 3d − 3. We can assume that n ≥ 2d + 1. Otherwise, we obtain
that 2 ≤ d ≤ 3. For d = 2 and d = 3, we conclude that n = 3, 4 and
n = 6, respectively. But both cases are not possible because we are assuming
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ν2 ≤ n− 5 and ν3 ≤ n− 7. It follows from Proposition 2.1 for k = d− 1 that
νs(p) ≤ n− 2s− 1 when s ≥ 4. Hence, their result applies for d ≤ 5.

Let g : Mn → Rn+d be another immersion isometric to f. Given p ∈M,
let

W = T⊥f(p)M ⊕ T⊥g(p)M

be endowed with the natural metric of type (d, d) who is negative definite
in T⊥f(p)M , and define the symmetric bilinear form β : TM × TM → W

by

β = αf + αg.

The Gauss equations for f and g imply that β is flat. Since τd−1
f (p) ≥ 3,

we can fix vectors ξ1, . . . , ξd−1 of T⊥f(p)M and X1, X2, X3 ∈ V so that the
vectors Aξi

Xj , 1 ≤ i ≤ d − 1, 1 ≤ j ≤ 3, are linearly independent. To see
that β is null we proceed exactly as in Lemma 1.1 with the (n − 3d + 3)-
dimensional subspace

L̃ = (span {Aξi
Xj , 1 ≤ i ≤ d− 1 , 1 ≤ j ≤ 3 })⊥ ,

with d instead of d+ 1 and Proposition 2.1 instead of Proposition 1.1.
The remainder of the proof is part of the argument for Theorem 1.4 in

[C-D]. �

Remark 2.1. The hypothesis in Theorem 1.2, as mentioned in the intro-
duction, are less restrictive than those in Allendoerfer’s theorem. In fact,
the assumption τd

f (p) ≥ 3 implies that τd−1
f (p) ≥ 3 and that νs(p) ≤ n−3s

for 1 ≤ s ≤ d; c.f. Proposition 4.6 in [Da].
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