
Pacific
Journal of
Mathematics

APPROXIMATION WITH NORMAL OPERATORS WITH
FINITE SPECTRUM, AND AN ELEMENTARY PROOF OF

A BROWN–DOUGLAS–FILLMORE THEOREM

Peter Friis and Mikael Rørdam

Volume 199 No. 2 June 2001



PACIFIC JOURNAL OF MATHEMATICS
Vol. 199, No. 2, 2001

APPROXIMATION WITH NORMAL OPERATORS WITH
FINITE SPECTRUM, AND AN ELEMENTARY PROOF OF

A BROWN–DOUGLAS–FILLMORE THEOREM

Peter Friis and Mikael Rørdam

We give a short proof of the theorem of Brown, Douglas
and Fillmore that an essentially normal operator on a Hilbert
space is of the form “normal plus compact” if and only if it has
trivial index function. The proof is basically a modification of
our short proof of Lin’s theorem on almost commuting self-
adjoint matrices that takes into account the index.

Using similar methods we obtain new results, generalizing
results of Lin, on approximating normal operators by ones
with finite spectrum.

1. Introduction.

Let H be an infinite-dimensional separable Hilbert space, let K denote the
compact operators on H, and consider the short-exact sequence

0 −−−→ K −−−→ B(H) π−−−→ Q(H) −−−→ 0
where Q(H) is the Calkin algebra B(H)/K. An operator T ∈ B(H) is
essentially normal if T ∗T − TT ∗ ∈ K, or equivalently, if π(T ) is normal.

An operator T ∈ B(H) is Fredholm if π(T ) is invertible in Q(H), and it’s
Fredholm index is denoted by index(T ). The essential spectrum spess(T ) is
the spectrum of π(T ). The index function of T is the map

C \ spess(T ) → Z; λ 7→ index(T − λ·1).

The index function is invariant under compact perturbations. Hence we may
define the index function of an invertible S ∈ Q(H) to be that of any lift
T ∈ B(H) of S.

The index function is continuous and hence constant on each connected
component of its domain. It vanishes on the unbounded connected compo-
nent of its domain. We say that an operator has trivial index function if its
index function is zero everywhere on its domain.

In Section 2 we give a new proof of the following:

Theorem 1.1 ([BDF1, Cor. 11.2]). An essentially normal operator on a
Hilbert space is a compact perturbation of a normal operator if and only if
it has trivial index function.
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The theorem is a special case of the result by Brown-Douglas-Fillmore
([BDF1, Theorem 11.1]) that two essentially normal operators are unitarily
equivalent modulo a compact perturbation if and only if they have the same
essential spectrum and index function. In fact the general theorem is a fairly
straightforward consequence of Theorem 1.1, see [BD, Theorem 5.8] and [D,
Proposition 4.1].

Our proof of Theorem 1.1 has two steps. The first step is to show that an
essentially normal operator with trivial index function is in the closure of the
set of compact perturbations of normal operators on H. We prove this by
showing that a normal element in the Calkin algebra can be approximated
by normal elements with finite spectra if it has trivial index function (see
also Lin [L2]). The methods used here follow closely the methods we used in
[FR]. The main difference is that we here must keep track of the index (or
K1-class) of the invertible operators used in the various approximation steps.
Step two is then to show that the set of compact perturbations of normal
operators is norm closed. This step involves quasidiagonal essentially normal
operators, and its proof is a straightforward consequence of Lin’s Theorem:

Theorem 1.2 (H. Lin, [L2]). For every ε > 0 there is a δ > 0 such that for
every finite dimensional C*-algebra A and every element T ∈ A such that

‖T‖ ≤ 1 and ‖T ∗T − TT ∗‖ < δ

there is a normal element N ∈ A such that ‖T −N‖ < ε.

See also the short proof of Lin’s theorem in [FR].

In Section 3 we consider the general problem of approximating normal
elements of a C*-algebra by normal elements with finite spectra.

We show that a normal element a of a unital C*-algebra A of real rank
zero can be approximated by normal elements with finite spectra if and only
if all its translates, a − λ ·1, λ ∈ C, belong to the closure of GL0(A), the
connected component of the identity in GL(A) (Theorem 3.2). A key step
towards this end is that a normal element a in any unital C*-algebra A can
be approximated by normal elements b ∈ A, with 1-dimensional spectra and
with b − λ ·1 ∈ GL0(A) for all λ not in the spectrum of b, if and only if
all translates a − λ ·1 belong to the closure of GL0(A). To complete the
argument we use a theorem of Lin ([L3, Theorem 5.4]) that every normal
element with 1-dimensional spectrum in a C*-algebra of real rank zero is
the norm-limit of normal elements with finite spectra.

In Corollary 3.12 to Theorem 3.2 it is shown that if A is a unital C*-
algebra of real rank zero and stable rank one, then every normal element
a ∈ A, satisfying π(a)− λ·1 ∈ GL0(A/I) for all proper ideals I of A and for
all λ ∈ C \ sp(π(a)), can be approximated by normal elements with finite
spectra. This result should be compared with the theorem of Lin in [L4]
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which says that in a simple C*-algebra A of real rank zero and with property
(IR) — a property, considered in [FR], which is weaker than stable rank one
— every normal element a, with a− λ·1 ∈ GL0(A) for every λ ∈ C \ sp(a),
is the norm-limit of normal operators with finite spectra.

The first operator theoretic proof of Theorem 1.1 is due to Berg and
Davidson [BD]. In fact, their analysis gives a stronger quantitative version
which, subject to a natural resolvent condition on the operator T , gives a
bound on the norm of the compact perturbation in terms of the norm of the
self-commutator T ∗T − TT ∗.

Also let us mention that Lin has generalized Theorem 1.1 to essentially
normal elements of M(A)/A for certain AF-algebras A (see [L5]).

We thank Larry Brown for several suggestions that helped improve our
results and our exposition.

2. Proof of Theorem 1.1.

The main part of the proof of Theorem 1.1 consists of showing the theorem
below, which — as indicated — has already been proved by Huaxin Lin
(noting that Q(H) is purely infinite and simple). The proof presented here,
we believe is shorter and more direct than Lin’s proof.

Theorem 2.1 (cf. H. Lin, [L3, Theorem 4.4]). Let T be a normal element
in Q(H). Then T is the norm limit of a sequence of normal elements in
Q(H) with finite spectra if and only if T has trivial index function.

The lemmas below serve to prove the “if”-part of the theorem.
Define the continuous function fε : R+ → R+ by fε(t) = max{t − ε, 0}.

Let B(λ, r) denote the closed disc in the complex plane with center λ and
radius r. We let D denote the unit disc B(0, 1), and T will be the unit circle.

Lemma 2.2. Let T be a normal element in Q(H), let λ ∈ sp(T ) and let
ε > 0. There exists a normal element S ∈ Q(H) with ‖T − S‖ ≤ 2ε,
λ /∈ sp(S), index(S − λ·1) = 0, and

sp(S) \B(λ, ε) = sp(T ) \B(λ, ε).

Proof. We may without loss of generality assume that λ = 0. Let R ∈
B(H) be any lift of T , and let R = V |R| be the polar decomposition of R.
The operator V fε(|R|) and its adjoint, V ∗fε(|R∗|), have infinite-dimensional
kernels (because π(|R|) = |T | = π(|R∗|) is non-invertible). Let Wfε(|R|)
be the polar decomposition of V fε(|R|). The argument above shows that
1 −WW ∗ and 1 −W ∗W are both infinite-dimensional projections. Hence
W extends to a unitary U ∈ B(H) with V fε(|R|) = Ufε(|R|).

Notice that π(V fε(|R|)) = π(V )fε(|T |) = π(U)fε(|T |) is normal (because
π(V ) commutes with |T |). This implies that π(U) commutes with fε(|T |),
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and therefore S = π(U)(fε(|T |) + ε ·1) is normal. Clearly, S is invertible,
and S lifts to the invertible operator U(fε(|R|) + ε·1), and so index(S) = 0.
The distance between S and T is estimated by

‖T − S‖ ≤ ‖π(V )|T | − π(V )fε(|T |)‖
+ ‖π(U)fε(|T |)− π(U)(fε(|T |) + ε·1)‖

≤ 2ε.

Let E ∈ Q(H)∗∗ be the spectral projection for |T | corresponding to the
interval [0, ε]. Since |S| = fε(|T |) + ε ·1, it follows that E is the spectral
projection of |S| corresponding to {ε} in Q(H)∗∗. Since T and S are normal,
E commutes with T and S (being a Borel function of T and of S). We
therefore have

sp(T ) ∪ {0} = sp(TE) ∪ sp(T (1− E)), and

sp(S) ∪ {0} = sp(SE) ∪ sp(S(1− E)).

To complete the argument, notice that |T |(1−E) = (fε(|T |)+ε·1)(1−E) =
|S|(1 − E), and hence T (1 − E) = S(1 − E). Also, ‖TE‖ = ‖|T |E‖ ≤ ε
and ‖SE‖ = ‖|S|E‖ ≤ ε, which entails that sp(TF ) and sp(SF ) are both
contained in B(0, ε). �

Lemma 2.3. Let F be a finite subset of C. The set of elements S ∈ Q(H),
satisfying sp(S) ∩ F = ∅ and index(S − λ·1) = 0 for all λ ∈ F , is open.

Proof. The set in question is a finite intersection of open sets of the form
GL0(Q(H)) + λ·1. �

Lemma 2.4. Let T ∈ Q(H) be normal with trivial index function, let F
be a finite subset of C, and let ε > 0. Then there exists a normal element
S ∈ Q(H) such that ‖T − S‖ ≤ ε, sp(S) ∩ F = ∅, and

index(S − λ·1) = 0,

for all λ ∈ F .

Proof. For some 0 ≤ k ≤ n we can write F = {λ1, λ2, . . . , λn} so that
F ∩ sp(T ) = {λk+1, λk+2, . . . , λn}. By assumption, index(T − λj ·1) = 0 for
each j ≤ k.

Using Lemmas 2.2 and 2.3 we find successively normal elements Tk = T ,
Tk+1,Tk+2, . . . , Tn in Q(H) satisfying

• ‖Tj − Tj−1‖ ≤ ε/(n− k),
• λ1, λ2, . . . , λj /∈ sp(Tj),
• index(Tj − λi ·1) = 0, for i = 1, 2, . . . , j, and
• λj+1, λj+2, . . . , λn ∈ sp(Tj).

Finally, S = Tn will be as desired. �
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For each ε > 0 consider the ε-grid Γε in C defined by

Γε = {x+ iy ∈ C | x ∈ εZ or y ∈ εZ}.

Lemma 2.5. Let T ∈ Q(H) be normal with trivial index function, and let
ε > 0. Then there exits a normal element S ∈ Q(H) with trivial index
function, sp(S) ⊆ Γε, and such that ‖S − T‖ ≤ ε.

Proof. Choose N ∈ N such that Nε ≥ ‖T‖+ ε/4. Put

Σε = {x+ iy ∈ C | x, y ∈ ε(Z + 1
2)}, X = {a+ ib : |a| ≤ Nε, |b| ≤ Nε}.

Applying Lemma 2.4 to the finite set Σε ∩ X we get a normal operator
S′ ∈ Q(H) satisfying: ‖S′−T‖ ≤ ε/4, sp(S′)∩(Σε∩X) = ∅, and index(S′−
λ·1) = 0 for all λ ∈ Σε ∩X. Note that sp(S′) ⊆ X \ Σε (= Y ).

There is a continuous path t 7→ ft, t ∈ [0, 1], of continuous functions
ft : Y → Y so that

• f0(z) = z for all z ∈ Y ,
• f1(Y ) ⊆ Γε,
• ft(z) = z for all z ∈ Γε ∩X and for all t,
• |f1(z)− z| < (

√
2/2)ε for all z ∈ Y .

Put S = f1(S′). Then S is normal, sp(S) ⊆ Γε ∩ X, and ‖T − S‖ ≤
ε/4 + (

√
2/2)ε ≤ ε.

If λ ∈ C \ sp(S), then λ is in the same connected component of C \ sp(S)
as some λ′ ∈ Σε ∩X, or λ is in the unbounded component of C \ sp(S). In
the latter case, index(S − λ·1) = 0, and in the former case,

index(S − λ·1) = index(S − λ′ ·1) = index(f1(S′)− λ′ ·1)
= index(f0(S′)− λ′ ·1) = index(S′ − λ′ ·1) = 0.

�

The lemma below is a special case of the Alexander Duality theorem from
topology. For a compact subset X of C it says that π1(X) ∼= H1(X; Z) ∼=
H0(C \ X; Z), and the latter is the free Abelian group generated by the
bounded connected components of C \X.

Lemma 2.6. Let X be a compact subset of Γε for some ε > 0. Every
continuous map f : X → C \ {0} is homotopic to a map of the form

z 7→ (z − λ1)n1(z − λ2)n2 · · · (z − λk)nk ,

for some λi ∈ C \X and some ni ∈ Z.

Proof. Choose n ∈ N such that X ⊆ [−nε, nε]2, and put Y = Γε∩[−nε, nε]2.
Then f extends to a continuous function g : Y → C \ {0}. (Indeed, by
considering only one line-segment of Y at a time, this follows from the
elementary fact that if X0 is a closed subset of the interval [0, 1] and if
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f0 : X0 → C \ {0} is continuous, then f0 extends to a continuous function
g0 : [0, 1] → C \ {0}.)

Let C1, C2, . . . , Ck be the bounded connected components of C \Y . Each
Ci is an open square, k = 4n2, and

[−nε, nε]2 = Y ∪ C1 ∪ C2 ∪ · · · ∪ Ck.

Let γi be the closed curve Ci \ Ci oriented in the positive direction, and
denote by ni the winding number of g around γi.

Choose a yi ∈ Ci for each i. Put

h(z) = (z − λ1)−n1(z − λ2)−n2 · · · (z − λk)−nkg(z), z ∈ Y.
The winding number of h around γi is zero for each i. Therefore h|γi

extends to a continuous function Ci → C \ {0} for each i. This shows
that h extends to a continuous function h̃ : [−nε, nε]2 → C \ {0}. Since
[−nε, nε]2 is contractible, h̃ is homotopic to the constant function 1 in-
side C([−nε, nε]2,C \ {0}). Hence h̃|X = h|X is homotopic to 1 inside
C(X,C \ {0}). The claim of the lemma follows immediately from this. �

Lemma 2.7 is a natural generalization of [FR, Lemma 2.3] and the proof
requires only a simple modification using Lemma 2.6. For the reader’s con-
venience we include the entire proof.

Lemma 2.7. Let T be a normal element in Q(H) with trivial index function
and with sp(T ) ⊆ Γε for some ε > 0. Suppose that I is a relatively open
subset of sp(T ) which is homeomorphic to the open interval (0, 1). Then for
each λ0 ∈ I and for each δ > 0 there is a normal element S in Q(H) with
trivial index function such that ‖S − T‖ ≤ δ, and sp(S) ⊆ sp(T ) \ {λ0}.

Proof. Choose one point in each bounded connected component of C\sp(T ),
and let F be the finite set of all these points. If S ∈ Q(H) satisfies sp(S) ⊆
sp(T ), then S has trivial index function if index(S − λ·1) = 0 for all λ ∈ F .
It follows from Lemma 2.3 that S has these properties if ‖T − S‖ ≤ δ0 for
a sufficiently small δ0 > 0. We may assume that δ ≤ δ0, and the part of the
statement regarding S having trivial index function is then automatically
taken care of.

Let J be a relatively open subset of I satisfying

λ0 ∈ J ⊆ J ⊆ I, diam(J) ≤ ε.

Let f0 : I → T\{−1} be a homeomorphism, and extend f0 to f : sp(T ) → T
by setting f(z) = 1 for all z ∈ sp(T ) \ I. Let V be the unitary element f(T )
of Q(H).

It follows from Lemma 2.6 that f is homotopic, inside C(sp(T ),C \ {0}),
to the function g : sp(T ) → C \ {0} given by

g(z) = (z − µ1)n1(z − µ2)n2 · · · (z − µk)nk ,
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for appropriate µi ∈ C \ sp(T ) and ni ∈ Z. Hence f(T ) ∼h g(T ) inside
GL(Q(H)) and

index(f(T )) = index(g(T )) =
k∑

i=1

ni ·index(T − µi ·1) = 0.

This shows that V = f(T ) lifts to a unitary U in B(H). We may now
proceed exactly as in [FR, Lemma 2.3] (see also [BDF1, Lemma 6.1]).

Let E ∈ B(H) be the spectral projection for U corresponding to the
(relatively open) subset f(J) of sp(U), and put F = π(E). Then F is a
projection in Q(H). We show below that F commutes with T , and that

spFQ(H)F (TF ) ⊆ J, sp(1−F )Q(H)(1−F )(T (1− F )) ⊆ sp(T ) \ J.(♣)

Once this has been established, we can choose any λ1 ∈ J \ {λ0} and set

S = λ1F + (1− F )T.

Then S is normal (because T and F commute),

sp(T ) ⊆ {λ1} ∪ sp(T ) \ J ⊆ sp(T ) \ {λ0},

and ‖S − T‖ = ‖TF − λ1F‖ ≤ diam(J) ≤ ε as desired.
Suppose ϕ : sp(T ) → C is a continuous function which is zero on sp(T )\I.

Then

ϕ̂(z) =
{

(ϕ ◦ (f |I)−1)(z), if z ∈ T \ {−1}
0, if z = −1 ,

defines a continuous function T → C satisfying ϕ = ϕ̂◦f , and hence ϕ(T ) =
ϕ̂(V ). Since E commutes with U , it follows that F commutes with V and
hence with ϕ̂(V ) = ϕ(T ).

If ϕ in addition is constant equal to 1 on J , then ϕ̂ is constant equal to 1
on f(J), which implies that ϕ(T )F = Fϕ(T ) = F . If ϕ instead vanishes on
sp(T ) \ J , then ϕ̂ vanishes on T \ f(J), whence ϕ(T )F = Fϕ(T ) = ϕ(T ).

Let h : sp(T )→ [0, 1] be a continuous function with h|J = 1 and h|sp(T )\I =
0. By the argument above, h(T )F = Fh(T ) = F , and since the function
z 7→ zh(z) vanishes on sp(T ) \ I, we get

TF = Th(T )F = FTh(T ) = Fh(T )T = FT.

To show (♣) it suffices to show that ϕ(TF ) = 0 and ψ(T (1− F )) = 0 for
every pair of continuous functions ϕ,ψ : sp(T ) → C, where ϕ vanishes on J
and ψ vanishes on sp(T ) \ I (and where the continuous functions operate in
the respective corner algebras). We may assume that ϕ is equal to 1 on the
set sp(T ) \ I. From the argument in the previous paragraph we get

ϕ(TF ) = ϕ(T )F = F − (1− ϕ(T ))F = 0, ψ(T (1− F )) = ψ(T )(1− F ) = 0,

as desired. �
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Proof of Theorem 2.1. Assume that Tn is a sequence of normal elements of
Q(H) so that Tn tends to T in norm, and Tn has finite spectrum for each
n. Let λ ∈ C \ sp(T ). Then λ ∈ C \ sp(Tn) for all sufficiently large n, and
index(Tn−λ·1) → index(T−λ·1). But index(Tn−λ·1) = 0 because C\sp(Tn)
is connected, so index(T − λ ·1) = 0. This shows that T has trivial index
function.

Assume now that T is a normal element of Q(H) with trivial index func-
tion, and let ε > 0. By Lemma 2.5 there is a normal element T ′ ∈ Q(H)
with sp(T ′) ⊆ Γε, ‖T −T ′‖ ≤ ε, and such that T ′ has trivial index function.

We show next that there exists a normal element T ′′ ∈ Q(H) such that

‖T ′ − T ′′‖ ≤ ε, sp(T ′′) ⊆ Γε,

and such that sp(T ′′) contains no entire line segment of Γε, where an entire
line segment is a set of the form

{n+ iy | mε < y < (m+ 1)ε} or {x+ im | nε < x < (n+ 1)ε},

for some n,m ∈ Z.
Let {I1, I2, . . . , In} be the set of entire line segments of Γε that are con-

tained in sp(T ′), and choose λj ∈ Ij for each j. Apply Lemma 2.7 suc-
cessively to obtain normal elements R0 = T ′, R1, R2, . . . , Rn in Q(H) such
that

‖Rj+1 −Rj‖ ≤ ε/n, sp(Rj+1) ⊆ sp(Rj) \ {λj+1},

and each with trivial index function. The element T ′′ = Rn then has the
desired property.

It now follows that sp(T ′′) can be partitioned into finitely many clopen
sets C1, C2, . . . , Cm each with diameter less than 2ε. Choose µi ∈ Ci for
each i, and let f : sp(T ′′) → {µ1, µ2, . . . , µm} be the continuous function
which maps Ci to µi. Then |f(z)− z| < 2ε for all z ∈ sp(T ′′). The element
S = f(T ′′) is normal with sp(S) = {µ1, µ2, . . . , µm}, and ‖S − T ′′‖ ≤ 2ε, so
that ‖S − T‖ ≤ 4ε. �

Recall that an operator T is quasidiagonal if there is an increasing se-
quence {En}∞n=1 of finite rank projections converging strongly to 1 such
that limn→∞ ‖TEn − EnT‖ = 0. The set of quasidiagonal operators is in-
variant under compact perturbations and is norm closed. That the set is
norm closed can be seen by using the equivalent “local” definition of T being
quasidiagonal, that for every finite rank projection E ∈ B(H) and for every
ε > 0 there exists a finite rank projection F ∈ B(H) such that E ≤ F and
‖TF − FT‖ ≤ ε.

Every normal element N with finite spectrum is quasidiagonal (write
N =

∑k
j=1 λjPj and put En =

∑k
j=1 F

(j)
n , where {F (j)

n }∞n=1 is an increasing
sequence of finite rank projections converging strongly to Pj). Since every
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normal operator in B(H) can be approximated by normal operators with
finite spectrum, every normal operator is in fact quasidiagonal.

The statements in the proposition below were consequences of Theo-
rem 1.1 in [BDF1]. Here it is used as a step in our proof.

Proposition 2.8 (cf. [BDF1, Cor. 11.4 and Cor. 11.12]). The set of com-
pact perturbations of normal operators on a Hilbert space H is equal to the
set of quasidiagonal essentially normal operators. In particular, the set of
compact perturbations of normal operators operators on H is norm-closed.

Proof. Each compact perturbation of a normal operator is clearly essentially
normal, and — by the remarks above — also quasidiagonal.

It is well-known that every quasidiagonal operator T ∈ B(H) is block-
diagonal plus compact, i.e., there exist S ∈ B(H) and an increasing se-
quence {En}∞n=1 of finite rank projections converging strongly to 1 such
that T − S ∈ K and SEn = EnS for all n. (Indeed, choose {En}∞n=1 such
that

∑∞
n=1 ‖EnT − TEn‖ < ∞. Put E0 = 0, and put S =

∑∞
n=1(En −

En−1)T (En − En−1). Then

T − S =
∞∑

n=1

(En − En−1)T (1− En) +
∞∑

n=1

(En − En−1)TEn−1,

and the right-hand side is compact since the two terms are norm-convergent
sums of compact operators.)

Assume now that T is essentially normal and quasidiagonal. Notice that
S, being a compact perturbation of T is also essentially normal. Put

Sn = (En − En−1)T (En − En−1).

Since S =
∑∞

n=1 Sn, and SS∗ − S∗S is compact, we have

lim
n→∞

‖SnS
∗
n − S∗nSn‖ = 0.

Each Sn lies in the finite dimensional C*-algebra B(Hn), where Hn = (En−
En−1)(H), and so Lin’s theorem (Theorem 1.2) says that there exist normal
operators Rn ∈ B(Hn) with limn→∞ ‖Rn − Sn‖ = 0. Put R =

∑∞
n=1Rn.

Then R is normal, and R− S is compact. This proves that T is a compact
perturbation of a normal operator.

The set of essentially normal operators and the set of quasidiagonal op-
erators are both closed. Hence so is their intersection. �

Proof of Theorem 1.1. A compact perturbation of a normal operator has
trivial index function since this is the case for a normal operator and since
the index function is invariant under compact perturbation.

Assume now that T is essentially normal with trivial index function. Then
π(T ) ∈ Q(H) is normal with trivial index function. Hence, by Theorem 2.1,
there is a sequence {Sn}∞n=1 of normal elements of Q(H) with finite spectra
such that Sn → π(T ) in norm. Lift Sn to Tn ∈ B(H) such that Tn → T in
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norm. Every normal operator in Q(H) with finite spectrum has a lift to a
normal operator in B(H). Hence we can find normal operators Rn ∈ B(H)
with π(Rn) = Sn = π(Tn). It follows that each Tn is a compact perturbation
of a normal operator. By Proposition 2.8 this shows that T itself is a compact
perturbation of a normal operator. �

Corollary 2.9. An essentially normal operator on a Hilbert space has triv-
ial index function if and only if it is quasidiagonal.

Proof. Combine Theorem 1.1 with Proposition 2.8. �

3. Approximating normal elements with normal elements with
finite spectra.

In this section we prove various generalizations of Theorem 2.1 using more
or less the same methods as in Section 2.

We first consider an obstruction — analogous to the index-obstruction in
Theorem 2.1 — for a normal element of a C*-algebra to be a norm-limit of
normal elements with finite spectra. The natural generalization of the index
function of an element of Q(H) to an element a of a unital C*-algebra A is
the map

C \ sp(a) → K1(A); λ 7→ [a− λ·1]1.

Proposition 3.1 below shows that we must also take into account the index
function of a in every quotient of A. For each proper ideal I of A (proper
ideal meaning I 6= A) we must consider the maps

C \ sp(πI(a)) → K1(A/I); λ 7→ [πI(a)− λ·1]1,

where πI denotes the quotient mapping A→ A/I. This additional obstruc-
tion was hidden in the case of the simple C*-algebra Q(H).

Proposition 3.1. Let A be a unital C*-algebra and let a ∈ A be a normal
element. If a is the norm limit of normal elements in A with finite spectra,
then

πI(a)− λ·1 ∈ GL0(A/I)(♦)

for every proper ideal I of A and every λ ∈ C \ sp(πI(a)).

Lin showed in [L3] that the natural map GL(A)/GL0(A) → K1(A) is
injective if RR(A) = 0. Since the property real rank zero passes to quotients,
this shows that (♦) could be replaced by

[πI(a)− λ·1]1 = 0 in K1(A/I)(♥)

if RR(A) = 0.
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Proof. Suppose that πI(a) − λ·1 /∈ GL0(A/I) for some proper ideal I of A
and some λ ∈ C \ sp(πI(a)). Then a belongs to the open set

{b ∈ A | πI(b)− λ·1 ∈ GL(A/I) \GL0(A/I)}.
This set can contain no element with finite spectrum, because if b was such an
element, πI(b) ∈ A/I would have finite spectrum and then either πI(b)−λ·1
is not invertible or belongs to GL0(A/I) since C\sp(πI(b)) is connected. �

Next, we investigate to what extent the converse of Proposition 3.1 holds.
Recall the definition of the ε-grid Γε given above Lemma 2.5.

Theorem 3.2. Let A be a unital C*-algebra and let a be a normal element
in A. The following conditions are equivalent:

(i) a− λ·1 lies in the closure of GL0(A) for every λ ∈ C,
(ii) for every ε > 0 there exists a normal element b ∈ A such that

sp(b) ⊆ Γε, ‖a− b‖ ≤ 2ε, b− λ·1 ∈ GL0(A)

for all λ ∈ C \ sp(b).
If the real rank of A is zero, then (i) and (ii) are equivalent to
(iii) for every ε > 0 there exists a normal element b ∈ A with finite spectrum

and with ‖a− b‖ ≤ ε.

The implication (ii) ⇒ (iii) of Theorem 3.2 is contained in a theorem of
H. Lin, [L3, Theorem 5.4]. It also follows from [ELP, Theorem 3.1] af-
ter realizing that the conditions on a in (i) and (ii) imply that the map
K1(C∗(a, 1)) → K1(A), induced by the inclusion map, is zero. The impli-
cation (ii) ⇒ (i) follows easily from the fact that C \ Γε is dense in C. The
implication (iii) ⇒ (i) is also easy — see also the proof of Proposition 3.1
above.

One could alternatively prove (ii) ⇒ (iii) by mimicking the proof of
Lemma 2.7. One would for this approach need Lin’s result, [L1], that if
A is a unital C*-algebra of real rank zero, then every unitary u ∈ U0(A)
can be approximated by unitaries with finite spectra. To follow the proof
of Lemma 2.7 we would need actual spectral projections for u. They will
in general not be available. Instead we can find projections, that approxi-
mately commute with u and that approximately divide the spectrum of u
into two disjoint subsets. With some care, one can complete the proof of
Lemma 2.7 in this fashion.

The proof of (i) ⇒ (ii) is contained in the three lemmas below:

Lemma 3.3 (cf. [Rø1, Theorem 2.2]). Let A be a unital C*-algebra and
let a be an element in the closure of GL0(A). Let a = v|a| be the polar
decomposition of a, with v a partial isometry in A∗∗. For each continuous
function f : R+ → R+, such that f |[0,ε] ≡ 0 for some ε > 0, there exists a
unitary u ∈ U0(A) such that vf(|a|) = uf(|a|).
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Proof. This follows from [Rø1, Theorem 2.2] except for the part about the
unitary u lying in the connected component of the identity (and the as-
sumption that a lies in the closure of GL0(A) rather than in the closure of
GL(A)). As we shall indicate below, the proof of [Rø1, Theorem 2.2] —
with obvious modifications — yields the claimed lemma.

We shift to the notation of [Rø1], and denote our C*-algebra by A, and
the element a ∈ A will be denoted by T (so that α(T ) = 0 — the dis-
tance from T to the invertibles of A is zero), and T = V |T | is the polar
decomposition of T .

In the proof of [Rø1, Theorem 2.1] choose the invertible element A to lie
in GL0(A) (which is possible by the assumption that T lies in the closure of
GL0(A)). Then the element S produced in that theorem will lie in GL0(A).
The element S0 constructed in [Rø1, Lemma 2.3] is homotopic to S, and will
therefore also lie in GL0(A). To see this, go into the proof of [Rø1, Lemma
2.3], put Dt = S − tg(|T ∗|)S + tSg(|T |) and put Et = S−1 − tg(|T |)S−1 +
tS−1g(|T ∗|). Then, following the proof, one finds that DtEt = EtDt = 1,
D0 = S, and D1 = S0. Finally, the unitary U found in [Rø1, Theorem
2.2], which satisfies Uf(|T |) = V f(|T |), is equal to S0|S0|−1, and so U is
homotopic to S0 in GL0(A), and hence U ∈ U0(A). �

The next lemma is an improvement of Lemma 2.2. Recall the definition
of the functions fε : R+ → R+ from above Lemma 2.2. If f : R+ → R+

is a continuous function with f(0) = 0, then define a continuous function
f̃ : C → C by f̃(reiθ) = f(r)eiθ.

Lemma 3.4. Let A be a unital C*-algebra, let a be a normal element in A,
and let a = v|a| be a polar decomposition of a, where v ∈ A∗∗ is a partial
isometry and |a| = (a∗a)1/2.

(i) If f : R+ → R+ is continuous with f(0) = 0, then vf(|a|) = f̃(a).
(ii) If vfε(|a|) = ufε(|a|) for some unitary u ∈ A, and if b = u(fε(|a|) +

ε·1), then b is normal and invertible, and ‖a − b‖ ≤ 2ε. Moreover, if
g : C → C is a continuous function which is constant on B(0, ε), then
g(a) = g(b), and

sp(b) \ εT = sp(a) \B(0, ε).

Proof. (i). This follows easily by approximating f with functions f0 of the
form f0(r) = rh(r), where h : R+ → R+ is continuous (not necessarily with
h(0) = 0).

(ii). That b is normal, and ‖a − b‖ ≤ 2ε can be seen as in the proof of
Lemma 2.2. Notice that |b| = fε(|a|)+ε·1. This shows that |b| — and hence
b — are invertible, and that the spectrum of b does not intersect the open
ball with center 0 and radius ε.
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We shall apply the Borel function calculus inside the von Neumann alge-
bra A∗∗. Denoting the indicator function of the (Borel) set E by 1E , set eε =
1[0,ε](|a|) = 1[0,ε](|b|) = 1{ε}(|b|). Put ϕ(t) = t·1(ε,∞)(t) = (fε(t)+ε)·1(ε,∞)(t)
for t ∈ R+.

|a|(1− eε) = ϕ(|a|) = |b|(1− eε).

Since eε commutes with |b|,

a(1− eε) = v|a|(1− eε) = v(1− eε)|b| = u(1− eε)|b| = b(1− eε).

Now using that eε commutes with a and with b, we get

g(a)(1− eε) = g(a(1− eε)) = g(b(1− eε)) = g(b)(1− eε)

for every continuous function g : C → C.
Assume that g is constant on B(0, ε). Put ψ(z) = g(z)1[0,ε](|z|) =

g(0)1[0,ε](|z|). Then

g(a)eε = ψ(a) = g(0)eε = ψ(b) = g(b)eε.

In conclusion, we have shown that g(a) = g(b). The claim about the spectra
follows from the previous statement. �

We now show an analogue of Lemma 2.4.

Lemma 3.5. Let A be a unital C*-algebra, let a be a normal element in A,
and let F be a finite subset of C. If a−λ·1 lies in the closure of GL0(A) for
all λ ∈ F , then for every ε > 0 there exists a normal element b in A with
‖a− b‖ ≤ ε and b− λ·1 ∈ GL0(A) for every λ ∈ F .

Proof. Write F = {λ1, λ2, . . . , λn}. We find successively normal elements
a0 = a, a1, a2, . . . , an in A satisfying

• ‖aj+1 − aj‖ ≤ ε/n,
• aj − λi ·1 ∈ GL0(A) for i = 1, 2, . . . , j,
• aj − λi ·1 lie in the closure of GL0(A) for i = j + 1, j + 2, . . . , n.

The element b = an will then be as desired.
Assume aj−1 has been found and that 1 ≤ j ≤ n. Choose δ > 0 such that
• δ < ε/2n,
• for every c ∈ A with ‖c − aj−1‖ ≤ δ, we have c − λi ·1 ∈ GL0(A) for
i = 1, 2, . . . , j − 1.

• |λi − λj | > δ for i = j + 1, j + 2, . . . , n,
Write aj−1 − λj ·1 = v|aj−1 − λj ·1|, with v a partial isometry in A∗∗, and

use Lemma 3.3 to find a unitary u ∈ U0(A) so that vfδ(|aj−1 − λj ·1|) =
ufδ(|aj−1 − λj ·1|). Put

aj = u(fδ(|aj−1 − λj ·1|) + δ ·1) + λj ·1.
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It then follows from Lemma 3.4 (ii) that aj is normal, that aj−λj·1 ∈ GL0(A),
and that ‖aj − aj−1‖ ≤ 2δ < ε/n. By the choice of δ this implies that
aj − λi ·1 ∈ GL0(A) for i = 1, 2, . . . , j.

Let i ∈ {j + 1, j + 2, . . . , n}. We show that aj − λi ·1 is in the closure of
GL0(A). By the choice of δ, we have that λi /∈ B(λj , δ). We can therefore
find continuous functions f, g : C → C such that

• f(z)g(z) = z − λi for all z ∈ C,
• f |B(λj ,δ) is constant,
• g(z) = exp(h(z)) for some continuous function h : C → C.

The property of g entails that g(b) ∈ GL0(A) for every normal element
b ∈ A. From Lemma 3.4 (ii) we conclude that f(aj−1) = f(aj). Hence

aj − λi ·1 = f(aj)g(aj) = f(aj−1)g(aj) = (aj−1 − λi ·1)g(aj−1)−1g(aj).

By assumption, aj−1 − λi ·1 lies in the closure of GL0(A), and this shows
that aj − λi ·1 lies in the closure of GL0(A). �

Proof of (i) ⇒ (ii) in Theorem 3.2. Copy the proof of Lemma 2.5 using
Lemma 3.5 instead of Lemma 2.4. �

Recall from [FR] that a unital C*-algebra A is said to have property
(IN) if every normal element belongs to the closure of GL(A). A non-unital
C*-algebra A has property (IN) if its unitization Ã has property (IN).

Definition 3.6. We say that a unital C*-algebra A has property (IN0) if
every normal element that has 0 as an interior point of its spectrum lies in
the closure of GL0(A).

A non-unital C*-algebra A is said to have property (IN0) if Ã has property
(IN0).

It is clear that property (IN0) implies property (IN). Property (IN) does
not imply (IN0), not even for C*-algebras of real rank zero and stable rank
one as Example 3.7 below shows.

Examples of C*-algebras satisfying (IN0) are given in Proposition 3.8. The
reader may prefer to consider the slightly more restrictive condition (IN00)
of a unital C*-algebra A, defined by requiring all normal non-invertible
elements of A to belong to the closure of GL0(A). Trivially, (IN00) implies
(IN0), but Example 3.9 gives a C*-algebra of real rank zero for which the
reverse implication does not hold.

Example 3.7. Property (IN) does not imply property (IN0).
Let B1, B2 be two unital C*-algebras of stable rank one, real rank zero,

so that the unitary group of B1 is disconnected, and (B1 and) B2 are non-
scattered. (One could for example take B1 = B2 to be an irrational rotation
C*-algebra.) Let A be the C*-algebra B1⊕B2. Then A is unital, sr(A) = 1
and RR(A) = 0.
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Choose normal elements b1 ∈ B1 and b2 ∈ B2 with

sp(b1) = {z ∈ C : 1/2 ≤ |z| ≤ 1}, sp(b2) = {z ∈ C : |z| ≤ 1/2},
and with b1 /∈ GL0(B1). Set a = (b1, b2) ∈ A. Then sp(a) = D, the closed
unit disc in the complex plane. Hence a−λ·1 ∈ GL0(A) for every λ ∈ C\sp(a)
(because C \ sp(a) is connected). But a does not belong to the closure of
GL0(A), since b1 does not belong to the closure of GL0(B1).

Hence A does not have property (IN0), but sr(A) = 1 (so A has property
(IN)), and RR(A) = 0.

Proposition 3.8. Every simple unital C*-algebra, which has stable rank
one or is purely infinite, has property (IN0).

Proof. The two classes of C*-algebras in the proposition have in common
that they have property (IN) (see [Rø2, Theorem 4.4]), and if B is a non-zero
hereditary sub-C*-algebra of A, then the natural map U(B̃) → U(A)/U0(A)
is surjective (see [Ri, Theorem 10.10] and [C, Theorem 1.9]).

Let a be a normal non-invertible element of A, and let ε > 0. Let a = v|a|
be the polar decomposition for a, with v ∈ A∗∗, and recall from [Rø1,
Theorem 2.1] that there exists a unitary u ∈ A so that vfε(|a|) = ufε(|a|).
Let g : R+ → R+ be a continuous function that vanishes on [ε,∞), and
with g(0) = 1. Then g(|a|) 6= 0 because a is non-invertible, and we can
therefore find a unitary w ∈ g(|a|)Ag(|a|) + 1 such that uw ∼h 1. Set
b = uw(fε(|a|) + ε·1). Then b ∈ GL0(A) (we are not claiming here that b is
normal), and

‖a− b‖ ≤ ‖a− u(fε(|a|) + ε·1)‖+ ‖w(fε(|a|) + ε·1)− (fε(|a|) + ε·1)‖ ≤ 4ε,

where we have used that wfε(|a|) = fε(|a|).
This argument shows that A actually has property (IN00). �

Villadsen has found an example of a simple C*-algebra with stable rank 2,
showing that a specific normal element of the constructed C*-algebra cannot
be approximated by invertible elements (see [V]). This example is therefore
a simple, stably finite C*-algebra that does not have property (IN), and
hence neither (IN0) nor (IN00).

Example 3.9. Property (IN0) does not imply property (IN00).
Let B be any real rank zero, unital C*-algebra that has property (IN0)

and non-connected group of unitary elements, and set A = B ⊕ C. (Here
B could be an irrational rotation C*-algebra, cf. Proposition 3.8.) If zero is
an interior point of the spectrum of a = (b, λ) ∈ A, then zero is an interior
point of the spectrum of b. Hence b lies in the closure of GL0(B), and from
this we get that a lies in the closure of GL0(A).

The C*-algebra A does not have property (IN00). Indeed, if u ∈ U(B) \
U0(B), and if a = (u, 0) ∈ A, then a is normal and non-invertible, but a is
not in the closure of GL0(A).
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Corollary 3.10. Let A be a unital C*-algebra. The following two condi-
tions are equivalent:

(i) Every normal element a ∈ A, satisfying

a− λ·1 ∈ GL0(A)

for all λ ∈ C \ sp(a), is the norm-limit of normal elements in A with
finite spectrum.

(ii) A has real rank zero and property (IN0).

Proof. (i) ⇒ (ii). Assume that (i) holds. Every self-adjoint element a in A is
normal and satisfies a−λ·1 ∈ GL0(A) for all λ ∈ C\sp(a) (because C\sp(a)
is connected). Hence a can be approximated within any given tolerance by
a normal element b with finite spectrum. It is easily seen, that (b + b∗)/2
is a self-adjoint element with finite spectrum whose distance to a is at most
‖a− b‖. This shows that A has real rank zero.

We proceed to show that A has property (IN0). Let a be a normal element
in A, and assume that there exists an r > 0 such that B(0, r) ⊆ sp(a). Let
a = v|a| be the polar decomposition of a, with v a partial isometry in A∗∗.

Consider the continuous functions f : R+ → R+, g : R+ → R+, given
by f(t) = min{r−1t, 1} and g(t) = max{r, t}, and h = f̃ : C → C (see
above Lemma 3.4). Notice that f(t)g(t) = t, and that vf(|a|) = h(a) (by
Lemma 3.4 (i)).

The element h(a) is therefore normal and sp(h(a)) = h(sp(a)) = D (the
closed unit disc in the complex plane). Consequently, h(a)− λ·1 ∈ GL0(A)
for all λ ∈ C \ sp(h(a)) (because C \ sp(h(a)) is connected). Assuming (i),
we conclude that h(a) can be approximated by normal elements with finite
spectra, and therefore h(a) lies in the closure of GL0(A) (cf. the proof of
Proposition 3.1). Since a = vf(|a|)g(|a|) = h(a)g(|a|), and since g(|a|) ∈
GL0(A), we conclude that a lies in the closure of GL0(A). It has now been
proved that A has property (IN0).

(ii) ⇒ (i). By Theorem 3.2 it suffices to show that a − λ ·1 lies in the
closure of GL0(A) for all λ ∈ C. This is the case by assumption on a if
λ /∈ sp(a). By continuity, a − λ·1 lies in the closure of GL0(A) for all λ in
the closure of C \ sp(a). The remaining points, λ, are the interior points
of the spectrum of a, and there a − λ·1 is in the closure of GL0(A) by the
assumption that A has property (IN0). �

Corollary 3.11. Let A be a unital C*-algebra. Assume that RR(A) = 0,
that A has property (IN), and that

(NT) for every hereditary sub-C*-algebra B of A, the map

U(B̃) → U(Ĩ)/U0(Ĩ),

where I is the ideal of A generated by B, is surjective.
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Then every normal element a ∈ A, satisfying

πI(a)− λ·1 ∈ GL0(A/I)(♦)

for every proper ideal I of A, and for every λ ∈ C \ sp(πI(a)), is a norm
limit of normal elements in A with finite spectra.

Proof. By Theorem 3.2 it suffices to show that every normal element a ∈ A,
satisfying

πI(a) ∈ GL(A/I) ⇒ πI(a) ∈ GL0(A/I),
lies in the closure of GL0(A). Let ε > 0. Write a = v|a| with v a partial
isometry in A∗∗. By the assumption that A has property (IN), and by
Lemma 3.3, there is a unitary u ∈ A so that vfε(|a|) = ufε(|a|). We wish to
replace u by another unitary that belongs to U0(A). Since A is of real rank
zero, we can find a projection p in the hereditary subalgebra of A generated
by fε(|a|) so that ‖(1 − p)fε(|a|)‖ ≤ ε. We show that there is a unitary
v ∈ (1 − p)A(1 − p) such that u∗ ∼h p + v in U(A). This will imply that
b = u(p+ v∗)(fε(|a|) + ε·1) ∈ GL0(A), and

‖a− b‖ ≤ ‖a− u(fε(|a|) + ε·1)‖
+ ‖(p+ v∗)(fε(|a|) + ε·1)− (fε(|a|) + ε·1)‖

≤ 2ε+ ‖(v∗ − (1− p))(fε(|a|) + ε·1)‖ ≤ 6ε.

Let I be the closed two-sided ideal in A generated by 1 − p. If I = A,
then (1 − p)A(1 − p) contains a unitary v with u∗ ∼h p + v in U(A) by
the assumption (NT). Assume that I 6= A. Because p lies in the hereditary
subalgebra generated by fε(|a|), we have p|a|p ≥ εp; this entails πI(|a|) ≥ ε·1,
and so πI(a) ∈ GL(A/I), which by the assumption on a implies πI(a) ∈
GL0(A/I). It follows that

πI(u) ∼h πI(ufε(|a|)) ∼h πI(a) ∼h 1

in GL(A/I). We can therefore find w ∈ U0(A) with πI(w) = πI(u). Since
w∗u ∈ U(Ĩ) it follows from the assumption (NT) that there exists a unitary
v in (1−p)A(1−p) with (w∗u)∗ ∼h p+v. This completes the proof, because
w∗u ∼h u. �

Every C*-algebra of stable rank one has property (IN) (for trivial reasons),
and also property (NT) (for less trivial reasons). For the latter one can use
[Ri, Theorem 10.10]. With these observations we get the following corollary
to Corollary 3.11:

Corollary 3.12. Let A be a unital C*-algebra of real rank zero and stable
rank one. Then every normal element a ∈ A, satisfying

πI(a)− λ·1 ∈ GL0(A/I)(♦)

for every proper ideal I of A and every λ ∈ C \ sp(πI(a)), is a norm limit
of normal elements in A with finite spectra.
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Corollary 3.12 can for example be applied to the real rank zero AT-
algebras classified by George Elliott in [E]. (AT-algebras is the class of
C*-algebras obtained from the C*-algebra C(T) with the operations of ten-
soring by Mn(C), taking direct sums, and taking inductive limits.)

It would be interesting to know if one can replace the assumption in Corol-
lary 3.12 that sr(A) = 1 with the weaker assumption that A has property
(IR) (cf. [FR, 3.1] and the main theorem of [L4]). By Corollary 3.11 that
would be the case if property (IR) (together with RR(A) = 0) implies prop-
erty (NT). This is known to be true for simple C*-algebra, because a simple
unital C*-algebra A has property (IR) if and only if either sr(A) = 1 or A
is purely infinite.

Example 3.13. Of the three sufficient conditions in Corollary 3.11, the real
rank zero condition is clearly also necessary (cf. the proof of Corollary 3.10).
It is possible that the condition (NT) always holds for real rank zero C*-
algebras. Larry Brown has informed us that examples of C*-algebras of
real rank zero, which do not have property (IN), exist. Condition (NT)
is necessary in Corollary 3.11, at least when A is simple, as the following
example shows:

Assume that A is a simple unital C*-algebra of real rank zero where
property (NT) of Corollary 3.11 does not hold — if such an example exists.
Since every hereditary sub-C*-algebra of A is the inductive limit of corner
algebras pAp, where p is a projection in A, there is a unitary u ∈ A and
a projection p ∈ A with the property that there is no unitary v ∈ pAp
satisfying u ∼h v+(1−p). Since A is of real rank zero, and since sp(u) = T,
there is a non-zero projection q ∈ A such that ‖quq − q‖ ≤ 1/2. Then
(1− q)u(1− q) is invertible in (1− q)A(1− q), and z = q+ (1− q)u(1− q) is
homotopic to u in GL0(A). Put u0 = z|z|−1. Then u0 ∈ U(A), u ∼h u0 and
qu0 = u0q = q.

Let x be a non-zero element in qAp, and let e be a non-zero projection
in xAx∗. Then e ≤ q and e - p. It follows that eu0e = e and that there
is no unitary v ∈ eAe such that u0 ∼h v + (1 − e). The corner algebra
eAe is non-scattered (because A must be infinite-dimensional), and we can
therefore find a normal element c ∈ eAe with sp(c) = D.

Put a = c + (1 − e)u0(1 − e). Then a is normal and sp(a) = D, and so
a − λ ·1 ∈ GL0(A) for every λ ∈ C \ sp(a). We claim that a is not in the
closure of GL0(A), and this will show that a cannot be approximated by
normal elements with finite spectra, cf. Theorem 3.2. Indeed, assume that
b ∈ GL0(A) and that ‖a− b‖ < 1. Then

‖(1− e)u0(1− e)− (1− e)b(1− e)‖ < 1,

and (1− e)u0(1− e) is unitary in (1− e)A(1− e). Hence (1− e)b(1− e) is
invertible in (1−e)A(1−e) with an inverse we denote by r. As in a standard
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2 × 2 matrix trick,

(1− e)b(1− e) + (ebe− ebrbe) = (1− ebr(1− e))b(1− (1− e)rbe)
∼h b

(♠)

in GL(A). Hence d = ebe − ebrbe ∈ GL(eAe) and so d = v∗|d| for some
unitary v ∈ eAe. By (♠) we also have

(1− e) + v ∼h (1− e) + d−1 ∼h (1− e)b(1− e) + e

∼h (1− e)u0(1− e) + e = u0

in contradiction with the stipulated properties of u0 and e.
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