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In studying residual automorphic representations, we need
to parametrize the image of normalized local intertwining op-
erators. This has been done by Moeglin in the case of the
residual spectrum attached to the trivial character of the torus
for split classical groups. In this paper, we extend her result to
non-trivial characters of the torus. To do this, we use Roche’s
Hecke algebra isomorphisms and Barbasch-Moy’s graded al-
gebra isomorphisms to reduce to the case of the trivial char-
acter. Along the way, we need to show that Roche’s Hecke al-
gebra isomorphisms are compatible with induction in stages,
construct a generalized Iwahori-Matsumoto involution, and
show that the images of intertwining operators behave well
with respect to the Hecke algebra and graded algebra isomor-
phisms. We note that this also gives a parameterization of the
square-integrable and tempered representations supported on
the Borel subgroup.

0. Introduction.

Let G = G(n) be a split classical group Sp(2n, F ), SO(2n + 1, F ), or
O(2n, F ) over a p-adic field F with odd residual characteristic (this con-
dition comes from [R]) and T be a maximal torus. Throughout this paper,
we will drop F in the notation. Let χ be a unitary character of T and
p = (a1, b1, . . . , as, bs, as+1) be a chain (as+1 is only for the cases Sp(2n, F )
and SO(2n+ 1, F ); see Definition 3.1). Then p gives rise to a character
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If we ignore the ordering, p gives rise to a unipotent orbit O in the dual
group G∗ = SO(2n+ 1,C), Sp(2n,C), or O(2n,C). To p, we attach a Weyl
group element wp. In this paper we parametrize the image of the local nor-
malized intertwining operator R(wp, λp, χ)I(λp, χ). We need this result in
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the calculation of the residual spectrum [Ki3]. In addition to the applica-
tion to the residual spectrum, our result has independent interest in that it
parametrizes the square integrable representations which have support on
Borel subgroups, via the generalized Iwahori-Matsumoto involution; actu-
ally it parametrizes tempered representations which have support on Borel
subgroups (see Remark 3.2.4).

In a remarkable paper [M1], Mœglin solved the problem in the case when
χ is trivial and p satisfies a certain condition, that is, p ∈ P (O) (see Sec-
tion 2). She showed that R(wp, λp)I(λp) is semi-simple and its summands
are parametrized by certain characters η of A(O), where A(O) is a finite
abelian group generated by the order two elements σ(a1), σ(b1), . . . , σ(as), σ(bs),
σ(as+1) (we take only distinct ones). If O is a distinguished unipotent orbit
(i.e., ai’s, bj ’s are all distinct), then the characters are those which satisfy
η(σ(ai)) = η(σ(bi)), i = 1, . . . , s and η(σ(as+1)) = 1. We denote by Ā(p)
the set of such characters. Let Unip(p) be the set of direct summands of
R(wp, λp)I(λp). To a unipotent orbit O, she considered a certain set of or-
dered partitions P (O) so that each chain p′ ∈ P (O) gives rise to a certain
character λp′ which is a conjugate of λp. Let Unip(O) be the union of all
Unip(p) as p runs through P (O). She showed that Unip(O) is the set of irre-
ducible constituents of the principal series I(λp) whose Iwahori-Matsumoto
involution is tempered. Then Unip(O) is parametrized by Springer (O),
which is the union of Ā(p) as p runs through P (O); recall that the Springer
correspondence is an injective map from the characters of W , the Weyl
group, into the set of (O, η), where O is a unipotent orbit of G∗ and η is a
character of A(O). Then Springer (O) is the set of characters of A(O) which
are in the image of the Springer correspondence. Thus Mœglin showed that
Unip(O) is the set of the local components of the residual spectrum attached
to the trivial character of the maximal torus.

The basic approach of this paper is to reduce the problem to the trivial
character case. However, there are a number of non-trivial obstacles, which
we now describe.

First, the basic mechanism we use to reduce from the ramified case to the
unramified case is the Hecke algebra isomorphisms of Roche [R]. The first
basic problem we must deal with is that the representations we are interested
in are not, in general, induced off the Borel, but rather are degenerate
principal series. So, in order to implement our approach, we must establish
that these isomorphisms behave well with respect to induction in stages.
Since such results may be of broader use, we do this in the generality of
[R], not just for the particular classical groups we deal with in the rest
of this paper. In addition, we need to generalize the Iwahori-Matsumoto
involution. (While this has been done in general in [Au1], [Au2], [Sc-St],
these results are done in the Grothendieck group setting; we need to know
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that composition series are respected as well.) Such a generalized Iwahori-
Matsumoto involution can easily be defined using Roche’s isomorphism. But
in order to verify some of the properties we need, we have to establish how
it behaves with respect to induction in stages. Again, this comes down to
showing that Roche’s isomorphisms respect induction in stages. These issues
are addressed in Section 1.

Second, we need to deal with non-trivial unramified quadratic characters.
Mœglin depended on Barbasch-Moy’s results [B-Mo1] which use Kazhdan-
Lusztig’s parametrization of unramified representations and the Iwahori-
Matsumoto involution. However, the technique cannot be extended to non-
trivial unramified quadratic characters. In a subsequent work, Barbasch-
Moy [B-Mo2] extended their results to non-trivial unramified quadratic
characters, using graded Hecke algebras. We use their graded Hecke algebra
isomorphisms to reduce to the trivial character case. See Section 3.1. Unfor-
tunately, Barbasch-Moy’s results [B-Mo2] are stated for connected groups
and we need them for the disconnected group O(2n). We have stated this as
Assumption 3.1.1. We have no doubt that it is true. However, we were not
able to verify it. Therefore, our results are complete only for odd orthogonal
groups.

Third, we need to remove a restriction on p (see Remark 3.2) for an arbi-
trary chain when χ is trivial. Note that an arbitrary chain does not belong
to P (O) in general. But it always comes from the global consideration when
χ = χ(µ1, . . . , µ1︸ ︷︷ ︸

r1

, . . . , µk, . . . , µk︸ ︷︷ ︸
rk

, 1, . . . , 1︸ ︷︷ ︸
r0

), where µi’s are non-trivial qua-

dratic grössencharacters such that µiv = 1. (See Remark 3.3.) Mœglin’s
argument by induction shows that R(wp, λp, 1)I(λp) is still semi-simple in
the general case and we denote the set of direct summands still by Unip(p).
However, Moeglin’s argument does not work in this case, since the normal-
ized local intertwining operators could vanish. For this, we use the global
method. By considering the iterated residue of the pseudo-Eisenstein se-
ries as in Mœglin [M1], we can show that Unip(p) is contained in Unip(O),
where O is the unipotent orbit obtained by ignoring the ordering in p. Re-
call that Unip(O) is the union of Unip(p) as p runs through P (O) and this
shows that by considering arbitrary chains, we do not get a new component.

Fourth, we need to show that Hecke algebra isomorphisms of [R] and
the graded Hecke algebra isomorphisms of [B-Mo2] commute with the in-
tertwining operators. That reduces us to the case of the trivial character.
More precisely, let p = (a1, b1, . . . , as, bs, as+1) and χ = χ(µ1, . . . , µ1︸ ︷︷ ︸

r1

, . . . ,

µk, . . . , µk︸ ︷︷ ︸
rk

, 1, . . . , 1︸ ︷︷ ︸
r0

), r0 + · · · + rk = n, r1 ≥ · · · ≥ rk, µi’s are distinct qua-

dratic characters. Here k ≤ 3. (Recall that we are dealing with a p-adic field
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with odd residual characteristic and hence there are only three non-trivial
distinct quadratic characters.) Set µ0 = 1. Let G′ = G′1 × · · · × G′k × G′0,
where, for i = 1, . . . , k,

G′0 = G(r0), G′i =

{
O(2ri), if G = Sp(2n), O(2n)
SO(2ri + 1), if G = SO(2n+ 1).

Here we note that G′ is an endoscopic group of G. Then by the Hecke algebra
isomorphisms of [R] and the graded algebra isomorphisms of [B-Mo2], we
get an equivalence of categories

R(G, τ(λp, χ)) ' R(G′, τ ′(λp, 1)),

where τ(λp, χ) is the infinitesimal character associated to subquotients of
I(λp, χ) and R(G, τ(λp, χ)) is the category of smooth finite-length represen-
tations of G having infinitesimal character τ(λp, χ). We note that λp may
be viewed as a character of the maximal split torus of G′ in the obvious
way: If we write λp = λp1 × · · · ×λpk

×λp0 (corresponding to the decompo-
sition r1 + · · ·+ rk + r0 = n above), then λpi may be viewed as a character
of the maximal split torus of G′i. We show in Section 3.2 that under the
category equivalence, the image R(wp, λp, χ)I(λp, χ) corresponds to the im-
age R(wp1 , λp1 , 1)I(λp1)⊗ · · · ⊗R(wpk

, λpk
, 1)I(λpk

)⊗R(wp0 , λp0 , 1)I(λp0).
This reduces us to the case when χ = 1. Thus, by matching of the images
of intertwining operators, we see that R(wp, λp, χ)I(λp, χ) is semi-simple.
Let Unip(p, χ) be the set of the direct summands. Then under the category
equivalence, Unip(p, χ) is contained in the set Unip(O1)× · · · ×Unip(Ok)×
Unip(O0), where Oi are certain unipotent orbits obtained by ignoring the
ordering in p. In particular, the generalized Iwahori-Matsumoto involution
of the elements in Unip(p, χ) is tempered.

We let χ = 1 and parametrize Unip(p). To each (ai, bi), we can attach
a Weyl group element σ(ai,bi). Then σ(a1,b1) defines a normalized opera-
tor R(σ(a1,b1)). It defines a homomorphism from the group {id, σ(a1,b1)}
into the group of the intertwining operators of R(wp, λp)I(λp). This means
the following: For X ∈ Unip(p), let R(σ(ai,bi))X = ηp

X(σ(ai,bi))X. Then
ηp

X defines a character of A(O) such that ηp
X(σ(ai)) = ηp

X(σ(bi)). Since
Unip(p) ⊂ Unip(O), ηp

X ∈ Springer (O). Therefore we have:

Theorem 0.1 (Theorem 3.4.2). Unip(p) is parametrized by

C(p) = {η ∈ Springer (O) : η(σ(ai)) = η(σ(bi)),

i = 1, . . . , s, η(σ(as+1)) = 1}.

Note that if p satisfies the condition (3.1) (that is, in Mœglin’s situation),
then C(p) = Ā(p) ([M1, Proposition 1.3.3]). In order to apply this theo-
rem to the residual spectrum calculation, let O1, O2 be two distinguished
unipotent orbits in G∗1, G

∗
2, resp. (If G = Sp(2n), then G∗1 = O(2r1,C)
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and G∗2 = SO(2r0 + 1,C). If G = SO(2n + 1), then G∗1 = Sp(2r1,C) and
G∗2 = Sp(2r0,C). If G = O(2n), then G∗1 = O(2r1,C) and G∗2 = O(2r0,C).)
Then we get a unipotent orbit O in G∗ by combining O1 and O2. Further
we have canonical embedding Â(Oi) ⊂ Â(O). For pi ∈ P (Oi), i = 1, 2, we
get a chain p1 × p2 by shuffling the segments in p1 and p2 so that it satis-
fies (3.1), and thus we get Unip(p1 × p2). Let Unip(O1, O2) be the union
of Unip(p1 × p2) as pi runs through P (Oi) for i = 1, 2. It is a subset of
Unip(O). Then we have:

Theorem 0.2 (Theorem 3.4.3). Unip(O1, O2) is parametrized by

C(O1, O2) = {η ∈ Springer (O) : η|A(O1) ∈ Springer (O1),

η|A(O2) ∈ Springer (O2)}.

This can be easily generalized to an arbitrary character. Let us state
the result on the local components of the residual spectrum attached to an
arbitrary character in order to apply it to [Ki3]. Let χ = χ(µ1, . . . , µ1︸ ︷︷ ︸

r1

, . . . ,

µk, . . . , µk︸ ︷︷ ︸
rk

, 1, . . . , 1︸ ︷︷ ︸
r0

), r0 + · · · + rk = n, r1 ≥ · · · ≥ rk ≥ 2, µi’s are distinct

non-trivial quadratic grössencharacters. Let Oi be a distinguished unipotent
orbit in G∗i for i = 0, 1, . . . , k, where, for i = 1, . . . , k,

G∗i =

{
O(2ri,C), if G = Sp(2n), O(2n)
Sp(2ri,C), if G = SO(2n+ 1),

G∗0 =


SO(2r0 + 1,C), if G = Sp(2n)
Sp(2r0,C), if G = SO(2n+ 1)
O(2r0,C), if G = O(2n).

Let pi ∈ P (Oi) for i = 0, . . . , k and p = p1×· · ·×pk×p0. Then we can shuffle
the segments in p so that it satisfies the condition (3.1). We still call it p.
For a non-archimedean place v, let Unip(O1, . . . , Ok, O0, χv) be the set of
union of Unip(p1, . . . , pk, p0, χv) as pi runs through P (Oi) for i = 0, . . . , k.

Theorem 0.3 (Theorem 3.4.10). Πresv = Unip(O1, . . . , Ok, O0, χv) is
parametrized by

C(O1, . . . , Ok, O0, χv) = [Springer (O1)×· · ·×Springer (Ok)×Springer (O0)],

where [ ] is defined as follows: If µ1v = µ2v 6= µiv for i = 0, 3, . . . , k, then
we replace Springer (O1)× Springer (O2) by

C(O1, O2, µ1v) = {η ∈ Springer (O) : η|A(Oi) ∈ Springer (Oi), for i = 1, 2},
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where O is the unipotent orbit of G∗12 obtained by combining O1, O2, where

G∗12 =

{
O(2(r1 + r2),C), if G = Sp(2n), O(2n)
Sp(2(r1 + r2),C), if G = SO(2n+ 1).
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D. Vogan for many helpful correspondences.

1. Hecke algebra isomorphisms and the generalized
Iwahori-Matsumoto involution.

In order to reduce from the case of ramified characters to the case of unram-
ified characters, we use the Hecke algebra isomorphisms of Roche [R]. We
also use these isomorphisms to construct a generalized Iwahori-Matsumoto
involution. (The duality results of Aubert and Schneider-Stuhler are in the
Grothendieck group setting; we need to deal with the composition series
here.) We begin this section by reviewing the Iwahori-Matsumoto involu-
tion and the Hecke algebra isomorphisms of Roche. We then show that these
isomorphisms behave well with respect to induction in stages. This will also
allow us to verify certain properties of the generalized Iwahori-Matsumoto
involution.

For this section, we work in a more general setting. Let G denote the
F -rational points of a split connected reductive group defined over F . In
order to apply Roche’s results, we also assume the residue characteristic of
F satisfies the conditions in [R]. For our applications to Sp(2n), SO(2n +
1), this requires odd residue characteristic. (We note that [Go], or more
generally [Mr], gives similar Hecke algebra isomorphisms which could be
used to extend the results of this section to cover characters of level 0 without
the constraints on the residue characteristic.) Fix a set of positive roots Φ+

and a subset of simple roots Π. Let

B = Borel subgroup of G
I = Iwahori subgroup of G

K = O − points in G (a maximal compact subgroup)

W = Weyl group of G
W = affine Weyl group of G

`(·) = length function on W
T = maximal split torus in B
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δ(·) = modular function on B.

We may view W ⊂ W by identifying W with N(O)/A(O), where N =
NormG(T ). We use BG, IG, etc., if there is more than one group around and
confusion is possible. Set

H(G) = C∞c (G).

It is an algebra under convolution. If (π,G, V ) is a smooth representation,
we define π on H(G) by

π(h)v =
∫

G
h(g)π(g)vdg

for all h ∈ H(G), v ∈ V .
We begin by reviewing the Iwahori-Matsumoto involution. First, let us

normalize Haar measure so that |I| = 1. Set 1I = charI . Let

H(G, 1I) = 1I · H(G) · 1I = {f ∈ H(G)|f(i1gi2) = f(g)

for all i1, i2 ∈ I, g ∈ G}.

The Iwahori-Matsumoto involution is an involution of H(G, 1I). In order to
describe the Iwahori-Matsumoto involution, we must first discuss the struc-
ture of H(G, 1I). The following description is due to Bernstein-Zelevinsky
(cf. [Lu2]); the classical description is due to Iwahori-Matsumoto [I-M]. As
a vector space, H(G, 1I) = H(K, 1I) ⊗ Θ. Now, H(K, 1I) has {Tw}w∈W as
a basis, where Tw denotes the characteristic function of IwI. Further, the
multiplication is governed by

T 2
s = (q − 1)Ts + q for s simple

Tw1Tw2 = Tw1w2 if `(w1) + `(w2) = `(w1w2).

Θ is an abelian subalgebra of H(G, 1I) with basis {θt|t ∈ T/T ∩K}. For t ∈
T , choose t1, t2 ∈ T− = {t ∈ T ||α(t)| ≤ 1 for all simple roots α} such that
t = t1t

−1
2 . Then, θt = δ

1
2 (t)Tt1T

−1
t2

. The multiplication between H(K, 1I)
and Θ is governed by the following: If s = sα, α a simple root,

θtTs = Tsθsts + (q − 1)
θt − θsts

1− θα̌($−1)
,

where α̌ denotes the coroot associated to α. The Iwahori-Matsumoto invo-
lution j : H(G, 1I) −→ H(G, 1I) is defined by

j :Tw 7−→ (−q)`(w)(Tw−1)−1

j :θt 7−→ θ−1
t

for Tw ∈ H(K, 1I), θt ∈ Θ.
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We now discuss Roche’s results [R]. The applications to the representa-
tion theory of G will be discussed later; for now we focus on the results deal-
ing with the structure of Hecke algebras. Fix a character χ : T ∩K −→ C×.
To the character χ, he associates an open compact subgroup J and a char-
acter ρ : J −→ C× with ρ|T∩K = χ. The pair (J, ρ) is a type in the sense of
[Bu-K]. Let eρ be defined by

eρ(g) =

{
1
|J |ρ
−1(g), if g ∈ J

0, if not.

Then, e2ρ = eρ. Let

H(G, ρ) = eρ · H(G) · eρ
= {f ∈ H(G)|f(j1gj2) = ρ−1(j1j2)f(g) for all j1, j2 ∈ J, g ∈ G}.

Roche constructs a split connected reductive group H and a finite abelian
group Cχ, which acts on H, such that

H(G, ρ) ∼= H(H, 1I)⊗̃C[Cχ].

The notation ⊗̃ is used to indicate that multiplication is governed by

(Tw1 ⊗ c1) · (Tw2 ⊗ c2) = Tw1Tc1(w2) ⊗ c1c2
for w1, w2 ∈ H, c1, c2 ∈ Cχ (cf. Section 8 [R]). He also constructs a dis-
connected group H̃, with H the connected component of the identity in H̃,
which has H(H, 1I)⊗̃C[Cχ] ∼= H(H̃, 1IH

). The following example will be of
interest in §3.2.

Example 1.1. Suppose G = SO(2(r0 + r1) + 1, F ) or Sp(2(r0 + r1), F ), F
of odd residual characteristic. Let µ denote a ramified quadratic character
of F× and set χ = χ(µ, . . . , µ︸ ︷︷ ︸

r1

, 1, . . . , 1︸ ︷︷ ︸
r0

). (More precisely, it is χ|T (O) that is

needed in Roche’s construction.) Then Jχ = I, and we have the following:

(1) If G = SO(2(r0 + r1) + 1), then H(G, ρχ) ∼= H(H̃, 1), with H̃ =
SO(2r1 + 1)× SO(2r0 + 1) = H ′1 ×H ′0.

(2) If G = Sp(2(r0 + r1)), then H(G, ρχ) ∼= H(H̃, 1), with H̃ = O(2r1) ×
Sp(2r0) = H ′1 ×H ′0.

Further, if λ is an unramified character of T , write λ = λ1×λ0 (with λ1 the
character of (F×)r1 consisting of the first r1 terms of λ and λ0 the character
of (F×)r0 consisting of the last r0 terms). Then, under the above Hecke alge-
bra isomorphisms, IndG

B(λχ) is identified with
(
IndH′

1
B1

(λ1)
)
⊗

(
IndH′

0
B0

(λ0)
)
.

Remark 1.1. Because of the technical difficulties involved in dealing with
disconnected groups, we will not pursue O(2n) in detail in this paper. How-
ever, in order that we may at least indicate what is expected in that case,
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we briefly discuss how to extend Roche’s isomorphisms to get the analogue
for O(2n) of the example above.

Let us continue to assume F of odd residual characteristic. Let G =
O(2n), G = SO(2n), and µ× · · · × µ︸ ︷︷ ︸

r1

× 1× · · · × 1︸ ︷︷ ︸
r0

, where r0 + r1 = n. Let

H̃ = O(2r1) × O(2r0) and H̃ = S(O(2r1) × O(2r0)). By Roche’s results,
there is a support-preserving isomorphism of Hecke algebras

Ψ : H(G, ρ) −→ H(H̃, 1).

We will use Ψ to construct a support-preserving isomorphism of Hecke al-
gebras

Ψ : H(G, ρ) −→ H(H̃, 1).

To this end, let iG : H(G, ρ) −→ H(G, ρ) and iH : H(H̃) −→ H(H̃, 1) denote
the obvious embeddings. If we let cn denote the nth sign change (an element
of O(2n)\SO(2n)) and C = 〈1, cn〉, then we have H(G, ρ) ∼= H(G, ρ)⊗̃C[C].
Similarly, if we let H = SO(2r1) × SO(2r0) and C ′ = 〈1, cr1 , cn, cr1cn〉,
C ′′ = 〈1, cr1cn〉, thenH(H̃, 1) ∼= H(H, 1)⊗̃C[C ′],H(H̃, 1) ∼= H(H, 1)⊗̃C[C ′′].
We may then define Ψ by

Ψ :h⊗ 1 7−→ iH ◦Ψ ◦ i−1
G (h)⊗ 1

h⊗ ecn 7−→ iH ◦Ψ ◦ i−1
G (h)⊗ e′cn

.

The definition of Ψ ensures that it is a support-preserving linear isomor-
phism. We need to check that it also respects multiplication. For this, it is
enough to show that cn(iH ◦Ψ ◦ i−1

G (Tw)) = iH ◦Ψ ◦ i−1
G (Tcn(w)). Since Ψ is

a support-preserving isomorphism, we may write Ψ(Tw) = awT
′
w. Then,

cn(iH ◦Ψ ◦ i−1
G (Tw)) = awT

′
cn(w)

and
iH ◦Ψ ◦ i−1

G (Tcn(w)) = acn(w)T
′
cn(w).

Therefore, it is enough to show that aw = acn(w). For this, it is enough to
show that aw = acn(w) for w ∈ Wχ = {w ∈ W Ḡ|w · χ = χ} and w = y ∈
Y = Hom(Gm, T ). Now, since cn · Π = Π and cn · Πχ = Πχ (cf. [R, p.
393]), we have `(cn(w)) = `(w) and `χ(cn(w)) = `χ(w) for w ∈ Wχ, where
`χ = `H denotes length taken with respect to Πχ. Since Ψ : q−

1
2
`(w)Tw 7−→

q−
1
2
`χ(w)T ′w, this tells us that aw = acn(w) for w ∈ Wχ. This also tells us

that δ ◦ cn = δ and δH ◦ cn = δH . Therefore, q`(y) = q`(cn(y)) for y ∈ Y + =
{y ∈ Y |〈y, α〉 ≥ 0 for all α ∈ Φ+} (cf. [Ca, Lemma 1.5.1]), and similarly

for `χ = `H . Since Ψ : δ
1
2 (y)Ty 7−→ δ

1
2
H(y)T ′y (cf. proof of Lemma 9.3 [R]),

it follows that ay = acn(y) for y ∈ Y +, as needed.
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The following results describe what happens when χ is replaced by χ−1.
They will be needed below.

Lemma 1.1. In Roche’s construction, if (J, ρ) is the type associated to χ,
then the type associated to χ−1 is (J, ρ−1).

Proof. Write (Jχ, ρχ), (Jχ−1 , ρχ−1) for the types associated to χ, χ−1, re-
spectively. The functions fχ and fχ−1 from Definition 3.3 [R] must be the
same. Therefore, Jχ = Jfχ and Jχ−1 = Jfχ−1 must be the same. It is then
immediate from the definitions that ρχ−1 = (ρχ)−1 (cf. [R, Proposition
3.6]). �

Corollary 1.2. H(G, ρ) ∼= H(G, ρ−1) via a support-preserving isomorphism.
(The isomorphism may also be taken to be ∗-preserving; cf. Section 6 [R].)

Proof. Observe that in the notation of [R], we have Φχ = Φχ−1 , Φχ,af =
Φχ−1,af (cf. [R, Definition 6.1]) and Wχ = Wχ−1 (cf. [R, Theorem 4.14]).
Thus, Cχ = Cχ−1 , and therefore Πχ,af = Πχ−1,af (cf. [R, Section 6]). It then
follows that S0

χ = S0
χ−1 and Ωχ = Ωχ−1 (also [R, Section 6]). The corollary

is now an immediate consequence of [R, Theorem 6.3]. �

We now define an involution j on H(H, 1I)⊗̃C[Cχ]. For h ∈ H(H, 1I),
j(h) is defined as above. For C[Cχ], fix a character σ : Cχ −→ C× with
σ2 = 1. Then, for c ∈ Cχ, set j(ec) = σ(c)ec. This extends to an involution
of C[Cχ] (trivial if σ = 1). We extend j to H(H, 1I)⊗̃C[Cχ] bilinearly.

Proposition 1.3. j is an involution of H(H, 1I)⊗̃C[Cχ].

Proof. We need to check that j respects multiplication. For h1, h2 ∈ H(H, 1I)
and c1, c2 ∈ Cχ, we have

j(h1 ⊗ ec1) · j(h2 ⊗ ec2) = σ(c1c2)[j(h1)c1(j(h2))⊗ ec1c2 ]

and
j((h1 ⊗ ec1) · (h2 ⊗ ec2)) = σ(c1c2)[j(h1)j(c1(h2))⊗ ec1c2 ].

Thus, it suffices to show j(c(h)) = c(j(h)) for h ∈ H(H, 1I), c ∈ Cχ. Since
the action of Cχ on H preserves the set of simple roots of H, hence δH and
`H , we see that

j(c(Tw)) = (−q)`H(w)(Tc(w−1))
−1 = c(j(Tw))

for all w ∈WH . Also, since c(θt) = θc(t), we get

j(c(θt)) = θ−1
c(t) = c(j(θt)),

as needed. �
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We now consider how these restrict to Levi subgroups of standard parabol-
ics. First, if M is a standard Levi of G, we have support-preserving isomor-
phisms

ΨG : H(G, ρ) −→ H(H, 1I)⊗̃C[Cχ] = H(H̃, 1IH
)

ΨM : H(M,ρM ) −→ H(L, 1IL
)⊗̃C[Dχ] = H(L̃, 1IL

)

constructed by Roche. In general, these are not unique. Similarly, let jH ,
resp. jL, denote the Iwahori-Matsumoto involutions for H(H, 1I)⊗̃C[Cχ],
resp. H(L, 1I)⊗̃C[Dχ] constructed above. We note the following:

Lemma 1.4. We have Dχ ⊂ Cχ and may take L to be a standard Levi
subgroup of H.

Proof. First, we check that Dχ ⊂ Cχ. In fact, we claim that Dχ = Cχ∩WM .
Recall that

Dχ = {w ∈WM,χ | w · Φ+
M,χ = Φ+

M,χ}.

Now, it is immediate from the definitions that WM,χ = WM ∩ Wχ and
Φ+

M,χ = ΦM ∩ Φ+
χ . Therefore, if w ∈ Cχ ∩ WM , we have w ∈ WM,χ.

Further, w · Φ+
χ = Φ+

χ (since w ∈ Cχ) and w · ΦM = ΦM (since w ∈ WM ),
implying w · Φ+

M,χ = Φ+
M,χ. Thus, Cχ ∩WM ⊂ Dχ. On the other hand,

suppose d ∈ Dχ. It is automatic that d ∈ WM . To show d ∈ Cχ ∩WM ,
it remains to check that d · Φ+

χ = Φ+
χ . From the definition of Dχ, we have

d · Φ+
M,χ = Φ+

M,χ. Suppose α ∈ Φ+
χ \ Φ+

M,χ. Since Φ+
M,χ = ΦM ∩ Φ+

χ , this
forces α ∈ Φ+\Φ+

M . As WM ·(Φ+\Φ+
M ) = Φ+\Φ+

M , we have d·α ∈ Φ+\Φ+
M .

Thus, d ·α ∈ (Φ+\Φ+
M )∩Φχ ⊂ Φ+

χ , as needed. This tells us Dχ ⊂ Cχ∩WM .
Thus, Dχ = Cχ ∩WM , as claimed.

Now, we identify L as a standard Levi subgroup ofH. First, we claim that
if ΠM,χ denotes the simple roots in ΦM,χ, then ΠM,χ = Πχ∩ΦM,χ. Certainly,
if α ∈ Πχ ∩ ΦM,χ, then α ∈ ΠM,χ (minimal with respect to Φ+

χ implies
minimal with respect to Φ+

M,χ = ΦM ∩Φ+
χ ). In the other direction, suppose

α ∈ ΠM,χ but α 6∈ Πχ ∩ ΦM,χ. Since ΠM,χ ⊂ ΦM,χ, this requires α 6∈ Πχ.
Therefore, we can write α = β + γ with β, γ ∈ Φ+

χ . Write α =
∑
aiαi,

β =
∑
biαi, γ =

∑
ciαi, where αi runs over the simple roots Π of G. Then,

ai = bi + ci for all i. Further, ai, bi, ci ≥ 0 (since α, β, γ ∈ Φ+
χ ⊂ Φ+). Now,

α ∈ ΦM implies ai = 0 for αi 6∈ ΠM . Therefore, bi = ci = 0 for αi 6∈ ΠM .
Thus, β, γ ∈ ΦM . In particular, β, γ ∈ Φ+

χ ∩ ΦM = Φ+
M,χ. However, the

decomposition α = β + γ with β, γ ∈ Φ+
M,χ contradicts the simplicity of α

in Φ+
M,χ. Thus, ΠM,χ = Πχ ∩ ΦM,χ, as claimed. We now let L be the Levi

factor of the standard parabolic subgroup of H associated to the subset of
simple roots ΠM,χ ⊂ Πχ = ΠH . Then, L has the right root data to appear
in the isomorphism H(M,ρM ) ∼= H(L, 1IL

)⊗̃C[Dχ]. �
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The next step is to identify H(M,ρM ) as a subalgebra of H(G, ρ). Let
P = MU be the standard parabolic subgroup with Levi factor M ; U the
unipotent radical opposite U . Set

J` = J ∩ U, JM = J ∩M, Ju = J ∩ U,

which gives J = J`JMJu. Let

I+
M = {w ∈WM | wJuw

−1 ⊂ Ju, w
−1J`w ⊂ J`}.

We set
I+

M,χ = I+
M ∩WM,χ.

If we letH+(M,ρM ) denote the space of functions inH(M,ρM ) with support
contained in JMI+

M,χJM , then there is a support-preserving embedding (of
C-algebras with 1)

H+(M,ρM ) ↪→ H(G, ρ)

([Bu-K, Corollary 6.12]). This may be extended uniquely to an embedding

H(M,ρM ) ↪→ H(G, ρ)

([Bu-K, Theorem 7.2], noting that the existence of ζ as in the hypotheses
of Theorem 7.2 [Bu-K] follows immediately from the support-preserving
isomorphism of Roche and the fact that elements of H(H̃, 1IH

) supported on
a single double-coset are invertible). We fix such embeddings H(M,ρM ) ↪→
H(G, ρ) and H(L̃, 1IL

) ↪→ H(H̃, 1IH
).

Now, we note that WM,χ = WM,χ · Y , where Y = Hom(Gm, T ) (which
may be viewed as a set of representatives for T/T (O)). If we let

Y +
M,χ = I+

M,χ ∩ Y,

we have the following:

Lemma 1.5.
I+

M,χ = WM,χ · Y +
M,χ.

Proof. First, we check thatWM,χ ·Y +
M,χ ⊂ I

+
M,χ. By definition, Y +

M,χ ⊂ I
+
M,χ.

Thus, we need only check that WM,χ ⊂ I+
M,χ. Recall that Roche defines

fχ(α) =

{
[cα/2], for α ∈ Φ+,

[(cα + 1)/2], for α ∈ Φ−,
,

where cα = cond(χ ◦ α̌) (where cond(λ) is defined to be the lowest positive
integer such that 1 + pn ⊂ ker(λ)). Then,

J` =
∏

α∈Φ−\Φ−M

Uα,fχ(α), Ju =
∏

α∈Φ+\Φ+
M

Uα,fχ(α),
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JM =

 ∏
α∈Φ−M

Uα,fχ(α)

 ·A(O) ·

 ∏
α∈Φ+

M

Uα,fχ(α)

 .

Here, if α ∈ Φ+,

Uα,k = φα

(
1 pk

0 1

)
, U−α,k = φα

(
1 0
pk 1

)
,

with φα : SL2 −→ G as usual. Now, suppose w ∈WM and α ∈ Φ+. Then,

w · Uα,fχ(α) = φw·α

(
1 pfχ(α)

0 1

)
,

suitably interpreted if w ·α < 0. To show that wJuw
−1 ⊂ Ju for w ∈WM,χ,

it is (more than) enough to show that if α ∈ Φ+ \ Φ+
M , then (1) w · α ∈

Φ+ and (2) fχ(w · α) = fχ(α). Of course, (1) follows immediately from
w · (Φ+ \Φ+

M ) = Φ+ \Φ+
M (which holds for any w ∈WM ). (2) follows from

w ·χ = χ: (w−1 ·χ) ◦ α̌ = χ ◦ α̌ implies cw·α = cα, so that fχ(w ·α) = fχ(α),
as needed. The same argument may be used to show w−1J`w ⊂ J`. Thus,
we get WM,χ ⊂ I+

M,χ, as needed. In fact, this shows more: for w ∈ WM,χ,
we have wJuw

−1 = Ju and w−1J`w = J`.
The containment I+

M,χ ⊂WM,χ · Y +
M,χ is now easy. Take

x ∈ I+
M,χ ⊂WM,χ = WM,χ · Y

and write x = wy, w ∈ WM,χ, y ∈ Y . Then, it suffices to show that
y ∈ Y +

M,χ. Calculate:

(wy)Ju(wy)−1 ⊂ Ju =⇒ yJuy
−1 ⊂ w−1Juw = Ju

since w ∈ WM,χ ⊂ I+
M,χ. Similarly, y−1J`y ⊂ J`. Thus, y ∈ Y +

M,χ, as
needed. �

Now, we can prove the following:

Proposition 1.6. (1) We may take ΨM = ΨG|H(M,ρM ) to get a support-
preserving isomorphism

ΨM : H(M,ρM ) −→ H(L, 1IL
)⊗̃C[Dχ].

(2) If we let jH , resp. jL, denote the Iwahori-Matsumoto involutions for
H(H, 1I)⊗̃C[Cχ], resp. H(L, 1IL

)⊗̃C[Dχ], then

jL = jH |H(L,1IL
)⊗̃C[Dχ].

Proof. We first say a few words about what it means for ΨG to be support-
preserving. By construction, Y is associated to both G and H; we use
YG, YH when we wish to distinguish the context. Note that Wχ = Y oWχ.
Also, since ΦH = Φχ, we can identify W

0
H and W

0
χ. This gives rise to



380 CHRIS JANTZEN AND HENRY H. KIM

an identification of Wχ = W
0
χ o Cχ with W

0
H o Cχ. Thus, we have an

identification

ψG : Wχ = Y oWχ ←→ Y o (W 0
H o Cχ) = WH o Cχ.

Then, ΨG : H(G, ρ) −→ H(H, 1I)⊗̃C[Cχ] is support-preserving means that
if T ∈ H(G, ρ) is supported on JwJ , then ΨG(T ) is supported on IHψG(w)IH .

Now, to make matters precise, let tM : H(M,ρM ) ↪→ H(G, ρ) and tL̃ :
H(L̃, 1IL

) ↪→ H(H̃, 1IH
) denote the fixed embeddings. To verify (1), we need

to show that
ΨG(tM (H(M,ρM ))) = tL̃(H(L̃, 1IL

)).
To this end, we first show that

ΨG(tM (H+(M,ρM ))) ⊂ tL̃(H+(L̃, 1IL
)).

Since the restriction of tM to H+(M,ρM ) is support-preserving, and simi-
larly for tL̃, it is enough to show that

ψG(I+
M,χ) ⊂ I+

L̃
= WL ·Dχ · Y +

L .

By Lemma 1.5 and the fact that ψG(WM,χ) = WL ·Dχ, we are reduced to
checking that ψG(Y +

M,χ) ⊂ Y +
L . Now, if y ∈ Y and α ∈ Φ, then yUα,ky

−1 =
Uα,k+α(y). Therefore, y ∈ Y +

M,χ if and only if α(y) ≥ 0 for all α ∈ Φ+ \ Φ+
M

(noting that the corresponding condition for negative roots also reduces to
this). On the other hand, y ∈ Y +

L if and only if α(y) ≥ 0 for all α ∈
Φ+

H \ Φ+
L = Φ+

χ \ Φ+
M,χ ⊂ Φ+ \ Φ+

M , so we see that ψG(Y +
M,χ) ⊂ Y +

L , as
needed.

We now proceed to show that

ΨG(tM (H(M,ρM ))) = tL̃(H(L̃, 1IL
)).

First, choose ζ and φm as in Proposition 7.1 [Bu-K]. Let y0 ∈ Y +
M,χ

be a representative for ζ. Then, (φm)−1 = φ−m ∈ H(M,ρM ). We note
that H+(M,ρM ) and φ−1 are sufficient to generate H(M,ρM ). We already
have ΨG(tM (H+(M,ρM ))) ⊂ tL̃(H+(L̃, 1IL

)). Since y0 ∈ I+
M,χ, we have

ΨG(tM (φ1)) ∈ tL̃(H+(L̃, 1IL
)). Further, since tM |H+(M,ρM ) and ΨG are

support-preserving, ΨG(tM (φ1)) is supported on the double-coset IHy0IH .
Therefore, ΨG(tM (φ1)) = tL̃(φ′1), where φ′1 ∈ H(L̃, 1IL

) is supported on the
double-coset ILy0IL. As a consequence, φ′1 is invertible and ΨG(tM (φ−1

1 )) =
tL̃(φ′1

−1). Since H+(M,ρM ) and φ−1
1 are enough to generate H(M,ρM ), we

have ΨG(tM (H(M,ρM ))) ⊂ tL̃(H(L̃, 1IL
)). On the other hand, we know

that ΨG(tM (H(M,ρM ))) contains the functions {tL̃(Tw)| w ∈ ψG(WM,χ) =
WLDχ}, {tL̃(Ty)| y ∈ Y +

M,χ}, and tL̃(T−1
y0

). As these are enough to generate
tL̃(H(L̃, 1IL

)), we see that

ΨG(tM (H(M,ρM ))) = tL̃(H(L̃, 1IL
)),
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as needed.
We now know that t−1

L̃
◦ ΨG ◦ tM is an isomorphism from H(M,ρM )

to H(L̃, 1IL
). We must show that it is support-preserving. To this end,

observe that since ζ ∈ Z(M), we have α(y0) = 0 for all α ∈ ΦM . Therefore,
viewing y0 as an element of YH , we have α(y0) = 0 for all α ∈ ΦL = ΦM,χ.
In particular, y0Uα,ky

−1
0 = Uα,k+α(y0) = Uα,k for all α ∈ ΦL allows us to

conclude that ILy0 = y0IL. Therefore, in H(L̃, 1IL
), we have that Ty0Tw is

supported on ILy0wIL for any w ∈ WLDχ. In particular, T−1
y0

is supported
on ILy

−1
0 IL. Thus, we have that t−1

L̃
◦ ΨG ◦ tM is support-preserving on

H+(M,ρM ) and φ−1
1 = φ−1. By writing x ∈ WM,χ as y−m

0 w, with w ∈
W+

M,χ ([Bu-K, Lemma 6.14]), one can then check that t−1
L̃
◦ΨG ◦ tM (Tx) is

supported on ILy−m
0 ψG(w)IL, as needed.

It is now straightforward to check the second claim. This follows imme-
diately from the following observations:

(1) Since L is a standard Levi of H, the Iwahori-Matsumoto involution
on H(H, 1I) restricts to give the Iwahori-Matsumoto involution on
H(L, 1IL

).
(2) Since Dχ ⊂ Cχ, we may choose σ|Dχ for the character of order ≤ 2 of

Dχ.

This finishes the proof of the proposition. �

Suppose H1,H2 are Hecke algebras and φ : H1 −→ H2 is an isomorphism.
Suppose π is a representation of H1 with space V . Let φ(π) denote the
corresponding representation of H2 (i.e., H2 acting on V by π ◦ φ−1). We
define induction as in [Bu-K]: If L1 ⊂ H1 is a subalgebra and τ is a
representation of L1, then IndH1

L1
τ has space HomL1(H1, Vτ ) (where H1 is

an L1-module by left multiplication). The action is right translation. We
claim that φ respects induction. In particular, if L2 = φ(L1), we have the
following:

Lemma 1.7.
φ(IndH1

L1
τ) ∼= IndH2

L2
φ(τ).

Proof. Let X ∈ HomL1(H1, Vτ ). Then, it is straightforward to check that
X ◦ φ−1 ∈ HomL2(H2, Vφ(τ)) (noting that as a vector space, Vφ(τ) = Vτ ; it
is written as Vφ(τ) to indicate the representation). In particular, E : X −→
X ◦ φ−1 is a bijective linear map from HomL1(H1, Vτ ) to HomL2(H2, Vφ(τ)).

We claim that E : HomL1(H1, Vτ ) −→ HomL2(H2, Vφ(τ)) gives the desired
equivalence. In particular, if R1 (resp. R2) denotes right translation on
HomL1(H1, Vτ ) (resp. HomL2(H2, Vφ(τ))), this requires

ER1(φ−1(h2))X = R2(h2)EX
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for all X ∈ HomL1(H1, Vτ ), h2 ∈ H2. Now, it is easy to check that

[ER1(φ−1(h2))X](h′2) = X(φ−1(h′2h2)) = [R2(h2)EX](h′2).

The desired equivalence follows. �

We now discuss the implications for the representation theory of G. First,
if (π,G, V ) is a representation of G, let (π,H(G, ρ), V ρ) denote the corre-
sponding Hecke algebra representation, where V ρ = π(eρ)V (the action is
inherited from H(G) acting on V ). Now, fix a character χ̃ extending χ to
T . Let Rχ(G) denote the category of smooth representations having the
property that every irreducible subquotient of π has supercuspidal support
contained in {λ(w · χ̃)|w ∈ W,λ an unramified character of T}. As men-
tioned earlier, (J, χ) is a type. This means, among other things, that the
map (π,G, V ) 7−→ (π,H(G, ρ), V ρ) gives an equivalence of categories be-
tween Rχ(G) and the category of H(G, ρ) modules. This extends the results
of Borel [Bo] and Casselman [Ca] on unramified principal series.

We now discuss the Iwahori-Matsumoto involution on representations.
Let

ΨG,χ : H(G, ρ) −→ H(H, 1I)⊗̃C[Cχ]

ΨG,χ−1 : H(G, ρ−1) −→ H(H, 1I)⊗̃C[Cχ−1 ]

denote the isomorphisms above. Since Cχ = Cχ−1 (which follows easily from
the definition; cf. [R, Section 8]), the Hecke algebras on the right-hand side
are identical. Therefore, we have an isomorphism

φj : Ψ−1
G,χ−1 ◦ j ◦ΨG,χ : H(G, ρ) −→ H(G, ρ−1).

If (γ, Vγ) is a representation of H(G, ρ), we let φj(γ) denote the representa-
tion of H(G, ρ−1) associated to γ by the Hecke algebra isomorphism above.
Now, if M is a standard Levi of G, let

EG,χ : Rχ(G) −→ H(G, ρ)−mod

EM,χ : Rχ(M) −→ H(M,ρM )−mod

denote the functors giving the equivalence of categories. If π ∈ Rχ(G), we
define the Iwahori-Matsumoto involution of π by

j(π) = E−1
G,χ−1 ◦ φj ◦ EG,χ(π).

Similarly, if τ ∈ Rχ(M), then j(τ) = E−1
M,χ−1 ◦ φj ◦ EM,χ(τ) (noting that

φjM = φj |H(L,1L)⊗̃C[Dχ] from above).

Theorem 1.8.
j(IndG

P τ) ∼= IndG
P (j(τ)).
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Proof. First, by Corollary 8.4 of [Bu-K],

EG,χ(IndG
P τ) ∼= IndH(G,ρ)

H(M,ρM )(EM,χ(τ)).

Therefore,

j(IndG
P τ) ∼= E−1

G,χ−1 ◦ φj ◦ EG,χ(IndG
P τ)

∼= E−1
G,χ−1 ◦ φj

(
IndH(G,ρ)
H(M,ρM )(EM,χ(τ))

)
∼= E−1

G,χ−1

(
IndH(G,ρ−1)

H(M,ρ−1
M )
φj(EM,χ(τ))

)
,

by Lemma 1.7 above. By definition, j(τ) = E−1
M,χ−1 ◦ φj ◦ EM,χ(τ), or

EM,χ−1(j(τ)) = φj(EM,χ(τ)). Thus,

j(IndG
P τ) ∼= EG,χ−1

(
IndH(G,ρ−1)

H(M,ρ−1
M )

EM,χ−1j(τ)
)

∼= IndG
P (j(τ)),

again, by Corollary 8.4 of [Bu-K]. �

We close by discussing a special case. First, let G = GL(k) and µ a
unitary character of F×. Consider the character

τ = | · |α+−k+1
2 µ⊗ | · |α+−k+1

2
+1µ⊗ · · · ⊗ | · |α+ k−1

2 µ

of T . By definition,

j(τ) = | · |−α+ k−1
2 µ−1 ⊗ | · |−α+ k−1

2
−1µ−1 ⊗ · · · ⊗ | · |−α+−k+1

2 µ−1.

Since (µ◦detk)|detk |α is the unique irreducible subrepresentation of IndG
Bτ ,

we see that j((µ ◦ detk)|detk |α) must be the unique irreducible subrepre-
sentation of IndG

B(j(τ)), i.e.,

j((µ ◦ detk)|detk|α) = (µ−1 ◦ detk)|detk|−α ⊗ Stk.

With this in hand, we may easily obtain the following:

Corollary 1.9. Let G = SO(2n + 1) (resp., G = Sp(2n)), P = MU a
standard parabolic subgroup with M ∼= GL(k)×SO(2(n−k)+1) (resp., M ∼=
GL(k)×Sp(2(n−k))), µ a unitary character of F×, and π a representation
of SO(2(n− k) + 1) (resp., Sp(2(n− k))). Then,

j(IndG
P ((µ ◦ detk)|detk|α ⊗ π)) ∼= IndG

P ((µ−1 ◦ detk)|detk|−1Stk ⊗ j(π)).
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2. The trivial character case; summary of Mœglin’s result.

We recall Mœglin’s results [M1]. All theorems in this section are due to
Mœglin. Let G(n) = Sp(2n), SO(2n + 1), O(2n). Then the dual group is
G∗(n) = O(2n + 1,C), Sp(2n,C), O(2n,C). Given a unipotent orbit O ∈
O(2n+ 1,C), Sp(2n,C), or O(2n,C), Mœglin formed a set P (O) of ordered
partitions as follows:

p = (p1, . . . , pr; q1, . . . , qs) ∈ P (O) if and only if:
(1) (p1, p1, . . . , pr, pr, q1, . . . , qs) is O if we ignore the ordering.
(2) qi are distinct and odd integers in the case of O2n+1(C) and O2n(C),

even integers in the case of Sp2n(C).
(3) For all 1 ≤ j ≤ [ s+1

2 ], q2j−1 > q2j and there does not exist 1 ≤ k ≤
[ s+1

2 ] such that q2j−1 > q2k−1 > q2j > q2k.
(4) If there exists a 1 ≤ k ≤ s such that q2j−1 > qk > q2j , then k < 2j− 1.

We set qs+1 = 0 if s is odd. We can put an equivalence relation on P (O) as
follows: For p = (p1, . . . , pr; q1, . . . , qs), p′ = (p′1, . . . , p

′
r; q
′
1, . . . , q

′
s) ∈ P (O),

p ' p′ if and only if for all 1 ≤ i ≤ [ s+1
2 ], there exists 1 ≤ j ≤ [ s+1

2 ] such
that q2i−1 = q′2j−1, q2i = q′2j . We note that {p1, . . . , pr} = {p′1, . . . , p′r} as
sets.

Remark 2.1. For a distinguished unipotent orbit, we have r = 0. In that
case, we write p = (; q1, . . . , qs).

Example 2.1. For a unipotent orbit of the form (5, 3, 1) in O9(C), there
are two non-equivalent elements in P (O), namely, (;5,3,1) and (;3,1,5).

Remark 2.2. The conditions (3), (4) in P (O) are such that the condition in
[M1, Cor 0.10.2] is satisfied, and hence implies non-vanishing of normalized
intertwining operators. We use this in Proposition 2.5. In that case, x =
q1−1

2 , q1−3
2 , . . . , q2+1

2 and X is a sub-module of

IndM 1× | |
q3−q4

4 × · · · × | |
q
2[ s+1

2 ]−1
−q

2[ s+1
2 ]

4 ,

where M = GL(q2)×GL( q3+q4

2 )× · · · ×GL
(

q
2[ s+1

2 ]−1
+q

2[ s+1
2 ]

2

)
.

For p = (p1, . . . , pr; q1, . . . , qs), we set, for 2 ≤ i ≤ r, p′i = p1 + · · ·+ pi−1

and p′1 = 0 and for 1 ≤ i ≤ [ s+1
2 ],

T d
i =

r∑
j=1

pj +
∑

1≤l<i

q2l−1 + q2l

2
,

T f
i =

r∑
j=1

pj +
∑

1≤l≤i

q2l−1 + q2l

2
.
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We recall the definition of λp and wp: λp = (λp,1, . . . , λp,n), where

λp,p′i+t =
pi + 1

2
− t, for 1 ≤ i ≤ r and 1 ≤ t ≤ pi,

λp,T d
k +t =

q2k−1 + 1
2

− t, for 1 ≤ k ≤
[
s+ 1

2

]
and 1 ≤ t ≤ q2k1 + q2k

2
.

wp is an element of the Weyl group given by:

wp(p′i + t) = p′i+1 − t+ 1, for 1 ≤ i ≤ r and 1 ≤ t ≤ pi

wp(t) = −t, for 1 ≤ k ≤
[
s+ 1

2

]
and T d

k < t ≤ T d
k +

q2k1 − q2k

2
,

wp

(
T d

k +
q2k−1 − q2k

2
+ t

)
= T f

k − t+ 1,

for 1 ≤ k ≤
[
s+ 1

2

]
and 1 ≤ t ≤ q2k.

Remark 2.3. All λp are conjugates and w2
p = 1. Let λO be the conjugate

of λp which is in the closure of the positive Weyl chamber.

We also define σpi for 1 ≤ i ≤ r and σk for 1 ≤ k ≤ [ s
2 ] and let Stab(λp, ↑

p) be the subgroup of Stab(λp) generated by these elements:

σpi(j) = j, if j /∈ [p′i + 1, p′i+1],

σpi(p
′
i + t) = −(p′i+1 − t+ 1), if t ∈ [1, pi],

σk(j) = j, if j /∈
[
T d

k +
q2k−1 − q2k

2
+ 1, T f

k

]
,

σk

(
T d

k +
q2k−1 − q2k

2
+ t

)
= −(T f

k − t+ 1), if t ∈ [1, q2k].

Let A(O) be a finite abelian group generated by the order two elements
σ(p1), . . . , σ(pr), σ(q1), . . . , σ(qs). (We take only the distinct ones.) Let
Ā(p) = A(O)/Kp, where Kp is generated by σ(q2i−1)σ(q2i)−1 for all 1 ≤ i ≤
[ s+1

2 ]. We set σ(qs+1) = 1 if s is odd.

Lemma 2.1. (1) |Ā(p)| = 2[ s
2
].

(2) Ā(p) is isomorphic to the quotient of Stab (λp, ↑ p) by the subgroup
generated by σ(pi)σ(pj)−1 for pi = pj and σ(pi)σ−1

k for pi = q2k−1

or pi = q2k. The homomorphism Stab (λp, ↑ p) 7−→ Ā(p) is given by
σ(pi) 7−→ σ(pi)Kp for i = 1, . . . , r and σk 7−→ σ(q2k−1)Kp.

Let Springer (O) is the set of characters of A(O) which is in the image of
the Springer correspondence. We recall that the Springer correspondence is
a one to one map from the set of characters of W , the Weyl group of G∗

into the set of pairs (O, η), where O is a unipotent orbit in G∗ and η is a
character of A(O). Then:
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Theorem 2.2. Springer (O) ' ∪p∈P (O)
̂̄A(p), where ̂̄A(p) is the character

group of Ā(p).

2.1. Local theory. Let I(λp) = IndG
B exp(〈λp,HB()〉) (normalized induc-

tion). The normalized intertwining operator R(wp, λ) is not holomorphic at
λp in general. Mœglin defined R(wp, λp) as composition of several operators.
(See [M1] or Section 3) Then we have:

Theorem 2.3. (1) R(wp, λp)I(λp) is a direct sum of |Ā(p)| irreducible
representations with multiplicity 1. Let Unip(p) be the set of the ir-
reducible direct summands and Unip(O) = ∪p∈P (O)Unip(p). Then the
Iwahori-Matsumoto involution of elements in Unip(O) is tempered.

(2) Unip(O) is exactly the set of irreducible representations of G(n) whose
infinitesimal character is λO and whose Iwahori-Matsumoto involution
is tempered.

(3) If r = 0, i.e., O is a distinguished unipotent orbit, then the Iwahori-
Matsumoto involution of elements in Unip(O) is square integrable.

Mœglin proves Theorem 2.3 by induction: Let p = (p1, . . . , pr; q1, . . . , qs).
Suppose r 6= 0. Set p′ = (p2, . . . , pr; q1, . . . , qs). We have

R(wp, λp)I(λp) = IndGL(p1)×G(n−p1)1×R(wp′ , λp′)I(λp′).

We denote by j the Iwahori-Matsumoto involution. Then

jR(wp, λp)I(λp) = IndGL(p1)×G(n−p1)St(p1)× jR(wp′ , λp′)I(λp′),

where St(p1) is the Steinberg representation of GL(p1). By induction,
jR(wp′ , λp′)I(λp′) is a semi-simple tempered representation of length |Ā(p′)|.
Let X ′ ∈ Unip(p′).

Proposition 2.4. The induced representation

IndGL(p1)×G(n−p1)St(p1)× jX ′,

i.e., IndGL(p1)×G(n−p1)1 ×X ′ is irreducible if and only if p1 = pj or qk for
some j = 2, . . . , r or k = 1, . . . , s. If it is reducible, then it is a sum of two
irreducible representations.

For x small, the normalized intertwining operator associated to σp1 is

IndGL(1)×···×GL(1)×G(n−p1)| |
p1−1

2
+x × · · · × | |−

p1−1
2

+x ×X ′

−→ IndGL(1)×···×GL(1)×G(n−p1)| |−
p1−1

2
−x × · · · × | |

p1−1
2
−x ×X ′.

This operator is a product of the operator

IndGL(1)×···×GL(1)×G(n−p1)| |
p1−1

2
+x × · · · × | |−

p1−1
2

+x ×X ′

−→ IndGL(p1)×G(n−p1)|det |x ×X ′,
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and the operator, RX′(σp1 , x):

IndGL(p1)×G(n−p1)|det |x ×X ′ 7−→ IndGL(p1)×G(n−p1)|det |−x ×X ′.

Proposition 2.5. RX′(σp1 , x) is holomorphic at x = 0. Let RX′(σp1 , 0) =
RX′(σp1). Then RX′(σp1)

2 = id and RX′(σp1) is the identity if and only if
IndGL(p1)×G(n−p1)1 × X ′ is irreducible. Let R(σp1) be the sum of RX′(σp1)
as X ′ runs through Unip(p′). Then it defines an intertwining operator for
R(wp, λp)I(λp).

In a similar way, we can define R(σpi).

Suppose r = 0. From [M1, 676] or Section 3, we know that

R(wp, λp)I(λp) ⊂ Ind
GL(

q1+q2
2

)×G(n−T d
2 )
|det |−

q1−q2
4 ×R(wp, λp≥3

)I(λp≥3
).

We use induction: Let Y ∈ Unip(p≥3) and consider

WY = Ind
GL(

q1+q2
2

)×G(n−T d
2 )
|det |

q1−q2
4 × Y.

Let W ∗Y = Ind
GL(

q1+q2
2

)×G(n−T d
2 )
|det |−

q1−q2
4 × Y . Then we have

jW ∗Y = Ind
GL(

q1+q2
2

)×G(n−T d
2 )
St

(
q1 + q2

2

)
⊗ |det |

q1−q2
4 × jY.

Proposition 2.6. jW ∗Y is reducible and its subrepresentations are tempered.

Consider the following commutative diagram:

ZY = Ind
GL(1)×···×GL(1)×GL(q2)×G(n− q1+q2

2
)
| |

q1−1
2

×| |
q1−3

2 × · · · × | |
q2+1

2 × 1× Y
−−−→ WY

R′
Y

y y
Z∗Y = Ind

GL(1)×···×GL(1)×GL(q1)×G(n− q1+q2
2

)
| |−

q1−1
2

×| |−
q1−3

2 × · · · × | |−
q2+1

2 × 1× Y
←−−−
←↩

W ∗Y

where R′Y is the normalized intertwining operator. Its image is
R(wp, λp)I(λp)∩Z∗Y . By Proposition 2.4, Ind

GL(q2)×G(n− q1+q2
2

)
1×Y is semi-

simple with length 2.

Proposition 2.7. The image of R′Y is semi-simple with length ≤ 2.

Proof. Let X be a subrepresentation of Z∗Y . Let ξ = | |−
q1−1

2 × | |−
q1−3

2 ×
· · · × | |−

q2+1
2 . Consider the subrepresentation of the Jacquet module of X

with respect to M = GL(1)× · · · ×GL(1)︸ ︷︷ ︸
q1−q2

2

×G(n− q1−q2

2 ) such that the q1−q2

2
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copies of GL(1) acts, after semi-simplification, according to ξ, i.e., the space
of generalized weight ξ. We denote the space by Jacξ X. Then we have

Jacξ X ⊂ Jacξ Z
∗
Y = ξ × Ind

GL(q2)×G(n− q1+q2
2

)
1× Y.

Therefore our assertion follows. �

Let Ind
GL(q2)×G(n− q1+q2

2
)
1 × Y = X1 + X2. Then by [M1, Cor. 0.10.2],

the normalized intertwining operators

Ind
GL(1)×···×GL(1)×G(n− q1−q2

2
)
| |

q1−1
2 × | |

q1−3
2 × · · · × | |

q2+1
2 ×Xi

−→ Ind
GL(1)×···×GL(1)×G(n− q1−q2

2
)
| |−

q1−1
2 × | |−

q1−3
2 × · · · × | |−

q2+1
2 ×Xi

are non-vanishing. Therefore:

Proposition 2.8. The image of R′Y is a sum of two irreducible representa-
tions.

Proposition 2.9. Let RY (σ1, x) be the operator:

Ind
GL(q2)×G(n− q1+q2

2
)
|det |x × Y −→ Ind

GL(q2)×G(n− q1+q2
2

)
|det |−x × Y.

RY (σ1, x) is holomorphic at x = 0 and let RY (σ1, 0) = RY (σ1). Then
RY (σ1)2 = id and RY (σ1) is not the identity since Ind

GL(q2)×G(n− q1+q2
2

)
1×Y

is reducible. Let R(σ1) be the sum of RY (σ1) as Y runs through Unip(p≥2).
Then it defines an intertwining operator for R(wp, λp)I(λp).

In the same way, we can define R(σk). For each σ ∈ Stab(λp, ↑ p), we
define R(σ) in a canonical way ([M1, 686]): If σ = σp1 · · ·σprσ1 · · ·σk,
then R(σ) = R(σp1) · · ·R(σpr)R(σ1) · · ·R(σk). We note that R(σwp, λp) =
R(σ)R(wp, λp) for σ ∈ Stab(λp, ↑ p).

Theorem 2.10.
(1) σ 7−→ R(σ) is a homomorphism of the group Stab (λp, ↑ p) into the

group of the intertwining operators of R(wp, λp)I(λp).
(2) For X ∈ Unip(p), let R(σ)X = ηp

X(σ)X. Then ηp
X defines a character

of Stab (λp, ↑ p).
(3) If pi = pj, then ηp

X(σ(pi)) = ηp
X(σ(pj)). If pi = q2k−1 or pi = q2k,

then ηp
X(σ(pi)) = ηp

X(σk). Recall in Proposition 2.4 that these happen
precisely when IndGL(pi)×G(m)1 ×X ′ is irreducible for an appropriate
m. Therefore by Lemma 2.1, ηp

X defines a character of Ā(p).
(4) By Proposition 2.5 and 2.9, passing to quotient, X 7−→ ηp

X gives rise

to an isomorphism Unip(p) ' ̂̄A(p) which is extended canonically to

Unip(O) ' Springer (O),
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by X 7−→ ηX in the sense that |Unip(p) ∩ Unip(p′)| = | ̂̄A(p) ∩ ̂̄A(p′)|
and for X ∈ Unip(p) ∩Unip(p′), ηp

X = ηp′

X .

(5) If p ' p′, then Unip(p) ' ̂̄A(p) = ̂̄A(p′) ' Unip(p′). In other words,
up to isomorphism, Unip(p) depends only on the equivalence class of
p.

Especially, if p = (; q1, . . . , qs) ∈ P (O), O a distinguished unipotent orbit,
then we have:

Corollary 2.11. (1) Ā(p) is isomorphic to Stab(λp, ↑ p).
(2) σ 7−→ R(σ) is an isomorphism of the group Stab (λp, ↑ p) onto the

group of the intertwining operators of R(wp, λp)I(λp).

We think of η ∈ ̂̄A(p) as an element of Â(O) such that η|Kp = 1.
2.2. Global Theory. Let O be a unipotent orbit and p = (p1, . . . , pr;
q1, q2, . . . , qs) ∈ P (O). Let Sp be the set of positive roots defined as follows:

ej − ej+1, for
∑k

i=1 pi < j <
∑k+1

i=1 pi,

ej − ej+1, for T d
i < j ≤ T f

i − 1 and
e
T d

i +
q2i−q2i−1

2

+ e
T f

i
, where 1 ≤ i ≤ [ s

2 ],

ej − ej+1, for T d
s+1
2

< j < n

2en, if G = Sp(2n), s is odd and qs > 1;
en, if G = SO(2n+ 1), s is odd.

We note that Sp ⊂ {α > 0|wpα < 0, 〈λp, α
∨〉 = 1} and Sp has exactly n− r

elements. We will take the iterated residue of the Eisenstein series along the
n singular hyperplanes 〈λp, α

∨〉 = 1 for α ∈ Sp.

Definition 2.2.1. For p = (p1, . . . , pr; q1, q2, . . . , qs) ∈ P (O), we define

Mp = GL(p1)× · · · ×GL(pr)×G(n− T d
1 ),

M ′p = GL(p1)× · · · ×GL(pr)×GL
(
q1 + q2

2

)
× · · ·

×GL
(q2[ s+1

2
]−1 + q2[ s+1

2
]

2

)
.

If s is odd, we put the convention that
q
2[ s+1

2 ]−1
+q

2[ s+1
2 ]

2 is qs−1
2 if G = Sp(2n),

and qs

2 if G = SO(2n+ 1).

Definition 2.2.2. Let V (p) (resp. V ′(p)) be the set of elements of the
form λp + η, where η is a character of Mp(A) (resp. M ′p(A)). Note that if
r = 0, V (p) = {λp}. We note that V ′(p) is the intersection of the singular
hyperplanes 〈λ, α∨〉 = 1, where α ∈ {ej − ej+1 for

∑k
i=1 pi < j <

∑k+1
i=1 pi,

T d
i < j ≤ T f

i − 1, i = 1, . . . , [ s
2 ] and T f

s < j < n}.
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We denote the element in V ′(p) as

λp(x1, . . . , xr, z1, . . . , z[ s+1
2

])

= λp + (x1, . . . , x1︸ ︷︷ ︸
p1

, . . . , xr, . . . , xr︸ ︷︷ ︸
pr

, z1, . . . , z1︸ ︷︷ ︸
q1+q2

2

, . . . , z[ s+1
2

], . . . , z[ s+1
2

]︸ ︷︷ ︸
q
2[ s+1

2 ]−1
+q

2[ s+1
2 ]

2

).

Definition 2.2.3. For 1 ≤ k ≤ [ s+1
2 ], we define

V ′k(p) = {λp(x1, . . . , xr, z1, . . . , z[ s+1
2

]) ∈ V
′(p),

such that zi = 0 for all i > k}.

In particular, V ′0(p) = V (p) and V ′
[ s+1

2
]
= V ′(p).

Definition 2.2.4. We define W (↑, p) to be the set of the Weyl group ele-
ments which send the positive roots of M ′p to the positive roots of M ′p.

Let
d(p, λ) =

∏
α∈Sp

(〈λp, α
∨〉 − 1).

Let Unip be the submodule of ⊗′vRv(wp, λp)Iv(λp) which is the sum of irre-
ducible subrepresentations of type ⊗′vXv, where Xv ∈ Unip(p) for all v and
there does not exist p′ > p and Xv ∈ Unip(p′) for all v.

Let proj[p] be the G(A)-projection ⊗′vRv(wp, λp)Iv(λp) 7−→ Unip. For
φ ∈ PW , the set of Paley-Wiener type functions, let

lp(φ, λ) =
∑

w∈W

r(w,−λ)R(wpw
−1, wλ)φ(wλ).

Then we have:

(1) r(wp, λ)d(p, λ) is holomorphic at λ = λp and its value is non-zero.
(2) The poles of lp(φ, λ) in a neighborhood of λp are contained in the local

intertwining operators.
(3) r(w,−λ) is identically zero on V ′(p) if w /∈W (↑, p). So the restriction

of lp(φ, λ) to V ′(p) is given by

lp(φ, λ) =
∑

w∈W (↑,p)

r(w,−λ)R(wpw
−1, wλ)φ(wλ).

(4) lp(φ, λ)V (p) can be defined inductively by restricting it to V ′k(p) from
k = [ s+1

2 ]− 1 to k = 0.
(5) lp(φ, λ)V (p) is holomorphic at λp and lp(φ, λp) ∈ ⊗′vRv(wp, λp)Iv(λp).

This depends only on φ and the equivalence class of p. Let l[p](φ, λp) =
proj[p](φ, λp).
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(6) Let 〈, 〉 be the inner product in L2(G(F )\G(A)). Then

〈θφ′ , θφ〉 = lim
T→∞

∑
O⊂G∗(n)

∑
p∈P (O)

cp

∫
λ∈V (p),Re λ=λp,||Im λ||2≤T

〈〈l′[p](φ
′, λ̄), l[p](φ, λ)〉〉V (p)(r(wp, λ)d(p, λ))V (p),

whereO runs through the unipotent orbits inG∗(n) and p runs through
the set of representatives in each equivalence classes in P (O).

(7) For φ ∈ PW , suppose l[p](φ, λp) generates an irreducible representa-
tion. Then for all v finite places, let Xv be the local representation of
Gv generated by l[p](φ, λp). Then Xv ∈ Unip(p) and

∏
v ηXv = 1.

(8) Conversely, suppose p = (p1, . . . , pr; q1, . . . , qs) ∈ P (O) such that
pi 6= pj for i, j ∈ [1, r] and π = ⊗′vXv is an irreducible automor-
phic representation which satisfies the following: (a) Xv ∈ Unip(p)
for all v, (b) Xv is spherical almost everywhere and at archimedean
places, and (c)

∏
v ηXv = 1. Then there exists φ ∈ PW such that the

representation generated by l[p](φ, λp) is isomorphic to π.
(9) In fact, for an appropriate φ ∈ PW ,

lp(φ, λp) =
∑

τ∈Stab (λp,↑p)

R(τ−1)R(wp, λp)φ(λp).

3. Arbitrary character case.

By conjugation, we can assume χ = χ(µ1, . . . , µ1︸ ︷︷ ︸
r1

, . . . , µk, . . . , µk︸ ︷︷ ︸
rk

, 1, . . . , 1︸ ︷︷ ︸
r0

),

r0 + · · ·+ rk = n, r1 ≥ · · · ≥ rk, µi’s are distinct local quadratic characters.
Here k ≤ 3 (Recall that we are dealing with a p-adic field with odd residual
characteristic and hence there are only three non-trivial distinct quadratic
characters.) Set µ0 = 1. We use the following notation throughout this
section:

(1) If G = Sp(2n), G′ = G′1 × · · · × G′k × G′0, where G′i = O(2ri) for
i = 1, . . . , k, G′0 = Sp(2r0). Also we denote G∗i = O(2ri,C) for i =
1, . . . , k, G∗0 = O(2r0 + 1,C).

(2) If G = SO(2n+ 1), G′ = G′1× · · · ×G′k ×G′0, where G′i = SO(2ri + 1)
for i = 1, . . . , k, G′0 = SO(2r0 + 1). Also we denote G∗i = Sp(2ri,C)
for i = 1, . . . , k, G∗0 = Sp(2r0,C).

(3) If G = O(2n), G′ = G′1 × · · · × G′k × G′0, where G′i = O(2ri) for
i = 1, . . . , k, G′0 = O(2r0). Also we denote G∗i = O(2ri,C) for i =
1, . . . , k, G∗0 = O(2r0,C).

We need to first generalize Mœglin’s results to an arbitrary chain.
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Definition 3.1. By a segment attached to (a, b), we mean a descending
sequence of characters

λ(a,b) = | |λ1 × | |λ2 × · · · × | |λn ,

where λt = a+1
2 −t, n = a+b

2 . We sometimes write it as λ(a,b) = (λ1, . . . , λn).
We put the convention that a > b > 0 (a, b are odd in the case of Sp(2n)
and O(2n), even in the case of SO(2n + 1)). To (a), a ≥ 3, we attach a
segment

λ(a) = | |
a−1
2 × | |

a−3
2 × · · · × | |1.

We write it as λ(a) = (a−1
2 , a−3

2 , . . . , 1). By a chain we mean an ordered
union of segments. We put a convention that the segment attached to (a)
appears at the end. It can appear only in the case of Sp(2n) and SO(2n+1).
A chain is denoted by p = (a1, b1, a2, b2, . . . , as, bs, as+1), where (ai, bi) is a
segment and λp = λ(a1,b1) · · ·λ(as,bs)λ(as+1) with an obvious meaning.

Remark 3.1. We note that λ(a,b) is the intersection of the n singular hy-
perplanes e1 − e2 = 1, e2 − e3 = 1, . . . ,en−1 − en = 1, ea−b

2
+ en = 1.

Remark 3.2. Suppose we ignore the ordering in p. Then it corresponds to
a unipotent orbit O in G∗(n). When O is a distinguished orbit, Mœglin’s
case is that ai, bi are all distinct and satisfy two additional conditions:

(1) there does not exist 1 ≤ k ≤ s such that ai > ak > bi > bk.
(2) if there exists ak or bk such that aj > ak > bj or aj > bk > bj , then

k < j.

Let p = (a1, b1, . . . , as, bs, as+1). If {ai, bi} ∩ {ai+1, bi+1} 6= ∅, then we
could permute (ai, bi) and (ai+1, bi+1) by [M1, Proposition 0.9.1]. But if
{ai, bi} ∩ {ai+1, bi+1} = ∅, then we cannot permute {ai, bi} and {ai+1, bi+1}
in general. From now on we assume that in a chain p,

if {ai, bi} ∩ {aj , bj} = ∅ for i < j, it does not happen that ai > aj > bj > bi,
(3.1)

in order to use [M1, Cor. 0.10.2] on non-vanishing of normalized intertwining
operators. We note that the condition (3.1) is just a rephrasing of the
condition (2) in Remark 3.2.

Remark 3.3. Let O be a unipotent orbit obtained by ignoring the ordering
in a chain p = (a1, b1, . . . , as, bs, as+1). Suppose either O is not distinguished
or p does not satisfy condition (1) in Remark 3.2. Then p can be written as
p = p1 × · · · pk × p0, where pi ∈ P (Oi) and Oi is a distinguished unipotent
orbit in G∗i for i = 0, 1, . . . , k. It means that it comes from global considera-
tion when χ = χ(µ1, . . . , µ1︸ ︷︷ ︸

r1

, . . . , µk, . . . , µk︸ ︷︷ ︸
rk

, 1, . . . , 1︸ ︷︷ ︸
r0

), where µi, i = 1, . . . , k

are non-trivial quadratic grössencharacters such that µiv = 1 for i = 1, . . . , k
for a given non-archimedean place v.
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For a segment (a, b), we define the Weyl group elements w(a,b), σ(a,b) as
follows (see [M1, p. 660]):

w(a,b)(t) = −t, if 1 ≤ t ≤ a− b
2

,

w(a,b)

(
t+

a− b
2

)
=
a+ b

2
+ 1− t, if 1 ≤ t ≤ b,

σ(a,b)(t) = t, if 1 ≤ t ≤ a− b
2

,

σ(a,b)

(
t+

a− b
2

)
= −

(
a+ b

2
+ 1− t

)
, if 1 ≤ t ≤ b.

We note that
(1) σ(a,b)w(a,b) = w(a,b)σ(a,b) is the longest element w0 of the Weyl group

of Sp2n, n = a+b
2 , i.e., w0 = c1c2 · · · cn, where ci’s are sign changes.

(2) σ(a,b)λ(a,b) = λ(a,b).
(3) l(σ(a,b)w(a,b)) = l(w(a,b)) + l(σ(a,b)).
(4) If q = 1, σ(a,1) = cn and w(a,1) = c1 · · · cn−1.
For a segment attached to (a), we define w(a) = c1c2 · · · ca−1

2
and σ(a) = 1.

λ(a) is the intersection of the a−1
2 singular hyperplanes e1−e2 = 1, e2−e3 = 1,

. . . ,ea−3
2
− ea−1

2
= 1.

For a chain p = (a1, b1, . . . , as, bs, as+1), we define wp as wp =
w(a1,b1) · · ·w(as,bs)w(as+1) with an obvious meaning and Stab(λp, ↑ p) as the
group generated by σ(ai,bi) for i = 1, . . . , s.

In order to apply induction, we define p≥i = (ai, bi, . . . , as, bs, as+1). Let,
for 1 ≤ i ≤ s, T d

i =
∑i−1

k=1
ak+bk

2 and T f
i =

∑i
k=1

ak+bk
2 .

Definition 3.2. For a chain p = (a1, b1, . . . , as, bs, as+1), we define a Levi
subgroup M ′p = GL(a1+b1

2 ) × · · · ×GL(as+bs
2 ) ×GL([as+1

2 ]) and degenerate
principal series

Ī(λp, χ) = IndM ′
p
χ̄⊗ |det |

a1−b1
4 × · · · × |det |

as−bs
4 × |det |

1
2
[
as+1+1

2
],

Ī(−λp, χ) = IndM ′
p
χ̄⊗ |det |−

a1−b1
4 × · · · × |det |−

as−bs
4 × |det |−

1
2
[
as+1+1

2
],

where χ̄ is the character of M ′p induced by χ.

If we set w′p to be the longest Weyl group element of M ′p, then Ī(λp, χ)
is the image of the normalized intertwining operator R(w′p, λp, χ).

The normalized intertwining operator R(wp, λ, χ) is not holomorphic at
λp. In order to define R(wp, λp, χ), we need:

Proposition 3.1. For each segment (ai, bi), R(w(ai,bi), λ(a1,b1) · · ·λ(ai,bi), χ)
defines a holomorphic intertwining operator from

Ind
GL(1)×···×GL(1)×G(n−T f

i )
χ(a1,b1)λ(a1,b1) · · ·χ(ai,bi)λ(ai,bi) × Ī(−λp≥i+1

, χ),
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into

Ind
GL(1)×···×GL(1)×G(n−T f

i )
χ(a1,b1)λ(a1,b1) · · ·χ(ai−1,bi−1)λ(ai−1,bi−1)

× w(ai,bi)χ(ai,bi)λ(ai,bi) × Ī(−λp≥i+1
, χ).

Its image is included in

Ind
GL(1)×···×GL(1)×G(n−T f

i+1)
χ(a1,b1)λ(a1,b1) · · ·

χ(ai−1,bi−1)λ(ai−1,bi−1) × Ī(−λp≥i
, χ).

Proof. The argument is like that in [M1, 0.13]; the introduction of quadratic
characters does not create any new complications. �

We define the normalized intertwining operator R(wp, λp, χ) as the com-
position of the above operators. Then

R(wp, λp, χ) ⊂ Ī(−λp, χ)

R(wp, λp, χ) ⊂ Ind
GL(

a1+b1
2

)×G(n−T f
1 )
µ1|det |−

a1−b1
4

×R(wp≥2
, λp≥2

, χ)I(λp≥2
, χ).

Here χ in R(wp≥2
, λp≥2

, χ)I(λp≥2
, χ) should be interpreted appropriately.

Lemma 3.2. The normalized intertwining operator R(wp, λp, χ) does not
vanish identically.

Proof. Let λO be the conjugate of λp which is in the closure of the positive
Weyl chamber. Let w1 be a Weyl group element such that λp = w1λO.
Consider the following commutative diagram.

I(λO, w
−1
1 χ)

R(wO,λO,w−1
1 χ)

−−−−−−−−−−→ I(−λO, w
−1
1 χ)yR(w1,λO,w−1

1 χ)

xR(w−1
1 ,−λp,χ)

I(λp, χ)
R(wp,λp,χ)−−−−−−−→ I(−λp, χ).

Here R(wO, λO, w
−1
1 χ) is the intertwining operator on IndG

P λO⊗IndM
B w−1

1 χ,
where P = MN is the parabolic subgroup such that λO is in the positive
Weyl chamber with respect to P . Then it is non-vanishing. Note that all the
normalized intertwining operators are holomorphic. Therefore, R(wp, λp, χ)
is non-vanishing. �

We first reduce to the case χ = 1.
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3.1. Review of the results of Barbasch-Moy [B-Mo2]. We now con-
sider the case when χ is unramified. The following discussion is based on
[B-Mo2].

Let G = SO(2n+1), θ = | |a1µ×· · ·×| |an1µ×| |b1×· · ·×| |bn0 , a character
of T ⊂ G (n0 + n1 = n), where µ is the non-trivial unramified quadratic
character and a1, . . . , an1 , b1, . . . , bn0 ∈ R. Let H ′ = H ′1 × H ′0, with H ′1 =
SO(2n1 +1), H ′0 = SO(2n0 +1). Set θ′ = θ′1×θ′0 with θ′1 = | |a1×· · ·×| |an1 ,
θ′0 = | |b1 × · · · × | |bn0 characters of T ′1 ⊂ H ′1, T

′
0 ⊂ H ′0. If τ (resp. τ ′, τ ′1,

τ ′0) denotes the infinitesimal character associated to subquotients of IndG
B θ

(resp. IndH′
B′ θ′, IndH′

1

B′
1
θ′1, IndH′

0

B′
0
θ′0), then the results of [B-Mo2] tell us

that there is an equivalence of categories

R(G, τ) ' R(H ′, τ ′) ' R(H ′1 ×H ′0, τ ′1 × τ ′0),
where R(G, τ) denotes the category of smooth finite-length representations
of G with infinitesimal character τ .

Suppose G = Sp(2n). Then the same discussion as above applies, except
that in this case H ′1 = O(2n1) and H ′0 = Sp(2n0).

Ultimately, we are going to apply the results of [B-Mo2] to those of [R] to
deal with representations of Sp(2n) and SO(2n+1). Therefore, we also need
to discuss [B-Mo2] for O(2n) (cf. Example 1.1). Unfortunately, the results
of [B-Mo2] do not apply to disconnected groups, nor does there appear
to be any obvious way to extend the results of [B-Mo2] from SO(2n) to
O(2n). Thus, we are forced to assume the results of [B-Mo2] hold for O(2n)
as well (cf. Assumption 3.1.1 below). The above discussion then applies to
G = O(2n) as well. In this case, H ′1 = O(2n1) and H ′0 = O(2n0).

Assumption 3.1.1. The results in Sections 1-6 of [B-Mo2] hold for O(2n).

Next, we note that this equivalence respects induction, in a suitable sense.
Let G be one of the groups above (SO(2n+1), Sp(2n), O(2n)) andM a stan-
dard Levi subgroup of G. Let M ′,H ′ be the groups corresponding to M,G
under [B-Mo2]. Let τM , τ ′M ′ be infinitesimal characters for M,M ′ which
correspond under [B-Mo2], τ, τ ′ the infinitesimal characters for G,H ′ ob-
tained by induction. Then by [B-Mo2, Theorem 6.2], the following diagram
commutes:

R(G, τ) −−−→ R(H ′, τ ′)x⊗-Ind

x⊗-Ind

R(M, τM ) −−−→ R(M ′, τ ′M ′)
where ⊗-Ind denotes induction defined via tensor product at the Hecke
algebra level.

Example 3.1.1. Let α1, . . . , αk ∈ R and

π = IndG
P (|detm1 |α1µ ◦ detm1 × · · ·
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× |detmj |αjµ ◦ detmj × |detmj+1 |αj+1 × · · · × |detmk
|αk)

π′ = IndH′
P ′ (|detm1 |α1 × · · · × |detmj |αj × |detmj+1 |αj+1 × · · · × |detmk

|αk),

where P, P ′ are standard parabolics of G,H ′ whose Levi factors both have
the form GL(m1)× · · ·×GL(mk). Observe that by [Ja1, Proposition 2.1.2]
(which may be extended to cover O(2n); we may choose w0 = c1c2 · · · cn,
and similarly for smaller rank orthogonal groups appearing in standard Levi
subgroups), we have

π ∼= ⊗− IndG
P (|detm1 |−α1µ ◦ detm1 × · · ·

× |detmj |−αjµ ◦ detmj × |detmj+1 |−αj+1 × · · · × |detmk
|−αk)

π′ ∼= ⊗− IndH′
P ′ (|detm1 |−α1 × · · ·

× |detmj |−αj × |detmj+1 |−αj+1 × · · · × |detmk
|−αk).

Since the inducing representation for π is the unique irreducible subrepre-
sentation of

IndM
BM

( (
| |α1+

−m1+1
2 µ× · · · × | |α1+

m1−1
2 µ

)
× · · ·

×
(
| |αj+

−mj+1

2 µ× · · · × | |αj+
mj−1

2 µ

)
×

(
| |αj+1+

−mj+1+1

2 × · · · × | |αj+1+
mj+1−1

2

)
× · · ·

×
(
| |αk+

−mk+1

2 × · · · × | |αk+
mk−1

2

) )
,

and similarly for π′, we see that the inducing representations correspond
under R(M, τM ) ' R(M ′, τ ′M ′). By the discussion above, this means that π
and π′ correspond under R(G, τ) ' R(H ′, τ ′).

3.2. Matching of images of intertwining operators under Hecke al-
gebra isomorphisms. Let χ = χ(µ1, . . . , µ1︸ ︷︷ ︸

r1

, . . . , µk, . . . , µk︸ ︷︷ ︸
rk

, 1, . . . , 1︸ ︷︷ ︸
r0

), where

r0 + · · · + rk = n, r1 ≥ · · · ≥ rk, and the µi’s are distinct local qua-
dratic characters. Let G′ = G′1 × · · · × G′k × G′0. Combining the Hecke
algebra isomorphisms of Roche and the graded algebra isomorphisms of
Barbasch-Moy, we get an equivalence of categories, which gives rise to a cor-
respondence between subquotients of the induced representation IG(λ, χ)
and subquotients of the induced representation IG′

(λ, 1) (cf. Example 1.1
and previous section). Note that if we write λ = λ1 × · · · × λk × λ0

with λ1 = | |a1 × · · · × | |ar , a1, . . . , ar ∈ R, etc. we have IG′
(λ, 1) ∼=

IG′
1(λ1, 1) × · · · × IG′

k(λk, 1) × IG′
0(λ0, 1). The correspondence preserves

temperedness, square-integrability, etc. The correspondence behaves well
with respect to intertwining operators:
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Proposition 3.2.1. The above correspondence behaves well with respect to
intertwining operators, i.e., R(wp, λp, χ)I(λp, χ) corresponds to

R(wp1 , λp1)I
G′

1(λp1)× · · · ×R(wpk
, λpk

)IG′
k(λpk

)×R(wp0 , λp0)I
G′

0(λp0),

where wp = wp1 × · · · × wpk
× wp0 and λp = λp1 × · · · × λpk

× λp0.

We prove this in this section. The arguments used in this section are
based largely on [Ca], [Ca2], [Re2] (with their presentation also influenced
by [Re1]).

Since we are assuming F has odd residual characteristic here, we have
that F admits three non-trivial quadratic characters. Let µ, resp. µnr, de-
note a ramified, resp. unramified, non-trivial quadratic character (so that
µ, µnr, µµnr are the three non-trivial quadratic characters). If we fix a uni-
formizer $, we may assume µ is the ramified quadratic character satisfying
µ($) = 1. For convenience, assume χ (cf. Section 1) has the form

χ = µ× · · · × µ︸ ︷︷ ︸
n1

× 1× · · · × 1︸ ︷︷ ︸
n0

.

(As in Example 1.1, it is actually χ|T (O) that is needed in Roche’s construc-
tion.) Then we have Jχ = I = Iwahori subgroup and

H(G, ρ) ' H(H̃, 1IH
).

Here ρ = ρχ as in Section 1. It will be convenient to write H ′ (resp.,
I ′, B′) for H̃ (resp., IH , BH). Recall the decomposition H ′ = H ′1 ×H ′0 from
Example 1.1.

Now, H(G, ρ) has linear basis {Tw}w∈Wχ , where Tw is supported on
IwI. If we identify Wχ with representatives in G chosen as in the proof
of Lemma 9.3 [R] (which in turn is based on [Mr]), we can normalize Tw

so that it is 1 at w. Also, observe that Wχ = W
′, which may be identified

with W (H ′1) ×W (H ′0). We let w0 denote the longest element of W , and
note that w0 ∈Wχ.

If π = IndG
B (λχ) with λ unramified, then V I,χ

π has as basis {fw}w∈W χ
,

where

fw(g) =

{
δ

1
2 (t)λ(t)χ(t)χ(i), if g = (tu)wi ∈ BwI

0, if not.

Similarly, if π′ = IndH′
B′ λ, then V I′

π′ has basis {f ′w}w∈W ′ , where

f ′w(g′) =

{
δ′

1
2 (t′)λ(t′), if g′ = (t′u′)wi′ ∈ B′wI ′

0, if not.

If we let T ′w, w ∈ W ′, denote the characteristic function of I ′wI ′, we have
the following:
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Lemma 3.2.2. Let s ∈W ′ be the reflection associated to the χ-simple root
α ∈ Πχ. For w ∈W ′, we have

π′(T ′s)f
′
w =

{
f ′ws, if wα > 0,
qf ′ws + (q − 1)f ′w, if wα < 0.

Further, for c ∈ Cχ,
π′(Tc)f ′w = f ′wc−1 .

Proof. Since it is well-known how to do such calculations (and straightfor-
ward), we omit the details. �

Corollary 3.2.3. Let H(K, ρ) ⊂ H(G, ρ) denote the subalgebra consisting
of functions supported on K. Then, fw0 generates V I,χ

π under the action of
H(K, ρ).

Proof. Observe that the corresponding result for π′ is straightforward: From
the preceding lemma, f ′w = π′(T ′w−1)f ′1. Therefore, f ′1 = π′(T ′

w−1
0

−1)f ′w0
.

Thus, f ′w = π′(T ′w−1)π′(T ′w−1
0

−1)f ′w0
. To extend this to cover π, observe

that f ′w|K′ = T ′w and fw|K = Tw. Therefore, for w1, w2 ∈ Wχ, if T ′w2
∗

T ′
w−1

1

=
∑
cwT

′
w, then π′(T ′w1

)f ′w2
=

∑
cwf

′
w, and similarly for π. Suppose

Ψ : Tw 7→ awT
′
w. If T ′

w−1
1

∗ T ′w2
=

∑
cwT

′
w, one can then conclude that

π(Tw1)fw2 =
∑
cwaw1aw2a

−1
w fw. The corollary follows. �

If B = TU is the Levi factorization of B, we use πU to denote the (un-
normalized) Jacquet module of π with respect to U . It has

space: (Vπ)U = Vπ/Vπ(U),

where Vπ(U) = span {π(u)v − v| u ∈ U, v ∈ Vπ},
action: πU (t)(v + Vπ(U)) = π(t)v + Vπ(U).

We have the following:

Lemma 3.2.4. The restriction of the quotient map Vπ −→ (Vπ)U to V I,ρ
π

gives rise to an isomorphism V I,ρ
π ' (Vπ)T0,χ

U as vector spaces.

Proof. The proof is essentially the same as that done by Casselman for
unramified principal series, so we just give a sketch here.

First, one checks that if v ∈ V U−
1 T0,χ

π , then v−π(eρ)v ∈ Vπ(U) (note that

eρ = T1). Consequently, (V I,ρ
π )U = (V U−

1 T0,χ
π )U . Next, we choose a finite-

dimensional subspace X ⊂ V T0,χ
π which maps onto (V T0,χ

π )U . If we take a
compact subgroup U−k ⊂ U

− which acts trivially on X and t ∈ T such that

t−1U−1 t ⊂ U
−
k , we get π(t)X ⊂ V T0U−

1 ,χ
π . Therefore, (V T0,χ

π )U = πU (t)XU ⊂
(V T0U−

1 ,χ
π )U = (V I,ρ

π )U , giving surjectivity. Injectivity then follows from a
comparison of dimensions. �
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Lemma 3.2.5. For t ∈ T−, π(Tt)fw0 = δ−
1
2 (t)(w0λ)(t)(w0χ)(t)fw0. (This

result also holds when G = O(2n) and w0 = c1c2 · · · cn.)

Proof. Recall that we have a B-stable filtration Vπ =
⋃

w∈W̄ (Vπ)w, where

(Vπ)w =
{
f ∈ Vπ

∣∣∣∣ supp f ⊂
⋃

x≥w

BxB

}
,

(where ≥ denotes the Bruhat order). This gives rise to a T -filtration (Vπ)U =⋃
w∈W̄ ((Vπ)w)U . By Lemma 6.3.5 [Ca] (also, see the proof of Lemma 2.12

[B-Z]), T acts on ((Vπ)w0)U by the character δ
1
2w0(λχ). Since Bw0I ⊂

Bw0B, we see that fw0 is a basis for V I,ρ
π ∩ (Vπ)w0 . Thus, by Lemma 3.2.4,

fw0 + Vπ(U) is a basis for ((Vπ)w0)U . In particular,

π(t)(fw0 + Vπ(U)) = δ
1
2 (t)(w0λ)(t)(w0χ)(t)fw0 + Vπ(U).

Next, the same basic argument used in [Ca2, Proposition 2.5] tells us that
|ItI|−1π(Tt)fw0 and π(t)fw0 have the same image in (Vπ)U . Since |ItI| =
δ−1(t) ([Ca, Lemma 1.5.1]), we see that

π(Tt)fw0 + Vπ(U) = δ−1(t)π(t)fw0 + Vπ(U)

= δ−
1
2 (t)(w0λ)(t)(w0χ)(t)fw0 + Vπ(U).

Finally, if one writes π(Tt)fw0 =
∑

w∈W χ
cwfw, taking Jacquet modules gives

π(Tt)fw0+Vπ(U) =
∑

w∈W χ
cwfw+Vπ(U). It is now immediate from the pre-

ceding lemma and the equality above that cw0 = δ−
1
2 (t)(w0λ)(t)(w0χ)(t)fw0

and cw = 0 for w 6= w0.
For G = O(2n), let λ, χ be as above and w0 = c1c2 · · · cn. Let G = SO(2n)

and w̄0 ∈ W (G) of maximal length. The preceding argument then tells us
that for π̄ = IndG

Bλχ, π̄(Tt)fw̄0 = δ−
1
2 (t)(w̄0λ)(t)(w̄0χ)(t)fw̄0 when t ∈ T−.

If w̄0 = w0 (n even), the O(2n) result is immediate. If w̄0 = w0cn (n odd),
it follows easily from the fact that π(ecn)fw̄0 = fw0 and δ ◦ cn = δ. �

For λ, χ as above, let π = IndG
B(λχ) and π′ = IndH′

B′ (λ). If λ = | |x1×· · ·×
| |xn1×| |y1×· · ·×| |yn0 , we set λ1 = | |x1×· · ·×| |xn1 and λ0 = | |y1×· · ·×| |yn0

(so that λ = λ1 × λ0). We note that π′ ' π′1 ⊗ π′0, where π′1 = IndH′
1

B′
1
λ1

and π′0 = IndH′
0

B′
0
λ0. We define a map M : V I,χ

π 7−→ V I′
π′ as follows: Let

M : fw0 7−→ f ′w0
. (Note that under the identification Wχ = W

′ = W (H ′1)×
W (H ′0), w0 corresponds to w0,1·w0,0, with w0,i ∈W (H ′i) consisting of all sign
changes. Under the identification π′ ' π′1⊗π′0, we have f ′w0

7−→ f ′w0,1
⊗f ′w0,0

.)
Then by Corollary 3.2.3, we can extend M to get a linear isomorphism
satisfying π′(Ψ(h))(Mf) = M(π(h)f) for all h ∈ H(K, ρ), f ∈ V I,χ

π . We
claim that the equivalence of categories Rχ(G) ' R1(H ′) comes from the
map M. More precisely, we have the following:
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Proposition 3.2.6. The pair (H(G, ρ), π) is equivalent to (H(H ′, 1), π′)
under (Ψ,M). In particular,

π′(Ψ(h))(Mf) = M(π(h)f)

for all h ∈ H(G, ρ), f ∈ V I,χ
π .

Proof. By definition, π′(Ψ(h))(Mf) = M(π(h)f) holds for h ∈ H(K, ρ).
Take y ∈ Y +. Then Ψ : δ

1
2 (y)Ty 7−→ δ′

1
2 (y)T ′y (cf. proof of Lemma 9.3 [R]).

We note that by definition, Ty = Ty(w̃). Since the extension of χ from T (O)
to T satisfies χ(y(w̃)) = 1 for all y ∈ Y , it follows from Lemma 3.2.5 that
π′(Ψ(Ty))(Mfw0) = M(π(Ty)fw0) for y ∈ Y +. Therefore, π′(Ψ(Ty))(Mf) =
M(π(Ty)f) for all y ∈ Y, f ∈ V I,χ

π . The proposition follows. �

We now give a technical lemma which we will need below. In the lemma,
we use lG to denote length for W (G), lH̃ for length for W (H̃).

Lemma 3.2.7. Let G,χ be as above, M the Levi factor of a standard par-
abolic subgroup of G. Then, there exists a set W TM

χ ⊂ Wχ such that the
following all hold:

(1) W TM
χ is a set of representatives for Wχ(M)\Wχ.

(2) For x ∈Wχ(M), w ∈W TM
χ , we have lG(xw) = lG(x) + lG(w).

(3) For x ∈Wχ(M), w ∈W TM
χ , we have lH̃(xw) = lH̃(x) + lH̃(w).

Proof. For explicitness, let G = Sp(2n). Write χ = µ× · · · × µ︸ ︷︷ ︸
n1

× 1× · · · × 1︸ ︷︷ ︸
n0

and M ' GL(m1) × · · · × GL(ml) × Sp(2m0), with n0 + n1 = m0 +m1 +
· · · + ml = n. Observe that H̃ = H o Cχ with Cχ = {1, cn1}, where cn1

denotes the n1th sign change. Let L̃ be the subgroup of H̃ corresponding
to M (cf. Lemma 1.4). We define

W
TL(H) = {w ∈W (H)|w−1α > 0 for all α ∈ Φ+

L}

W
TL(H̃) = {w ∈W (H̃)|w−1α > 0 for all α ∈ Φ+

L}.

It is known that if x ∈W (L), w ∈W TL(H), then lH̃(xw) = lH̃(x) + lH̃(w);
since lH̃(cn1) = 0, this result clearly extends to w ∈ W TL(H̃). We consider
two cases.

Case 1: n1 ≤ m1 + · · ·+ml.
In this case, L̃ = L is connected. Set W TM

χ = W
TL(H̃). Since Wχ(M) =

W (L), property (3) is immediate. The first property follows easily from
the fact that W

TL(H) is a set of representatives for W (L)\W (H) and
W

TL(H̃) = W
TL(H) ∪W TL(H)cn1 .
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Finally, for the second property, one can directly check that there is a
standard Levi M ′ of G such that Φ+

M,χ = Φ+
L = Φ+

M ′ (if n0 = m1 + · · ·+mi

for some i, M ′ = M ; otherwise, M ′ < M). Then Wχ(M) = W (M ′) and

W
TM
χ = W

TL(H̃) ⊂W TM ′
. The result follows.

Case 2: n1 > m1 + · · ·+ml.
In this case, L̃ = L o Cχ is disconnected. Set W TM

χ = W
TM ∩Wχ =

{w ∈ Wχ|w−1α > 0 for all α ∈ Φ+
M}. As a first step, we check that

W
TL(H̃) = W

TM
χ ∪ cn1W

TM
χ . It follows easily from the definitions that

W
TM
χ ∪ cn1W

TM
χ ⊂ W

TL(H̃). For the reverse containment, observe that

w ∈ W
TL(H̃) has w ∈ Wχ. Further, w−1Φ+

M,χ = w−1Φ+
L ⊂ Φ+

H = Φ+
χ .

Now, the only simple root in ΠM which is not in Φ+
M,χ is

αn1 =

{
en1 − en1+1, if n1 < n

2en, if n1 = n.

There are two possibilities: w−1αn1 > 0 or w−1αn1 < 0. If w−1αn1 > 0,
then w−1ΠM ⊂ Φ+, implying w ∈ W

TM , as needed. If w−1αn1 < 0, we
claim w−1cn1αn1 > 0. (This is clear for n1 = n. Suppose n1 < n. Observe
that w ∈ Wχ implies wen1 = ±ej with j ≤ n1 and wen1+1 = ±ek with
k > n1. Further, since w ∈ W

TL, w(2en1+1) > 0, so wen1+1 = ek. The
claim follows.) Also cn1(ΠM − {αn1}) ⊂ cn1Φ

+
M,χ ⊂ Φ+

M,χ (noting that

cn1 ∈ W (L̃) = Wχ(M)). Thus, w−1cn1ΠM ⊂ Φ+, implying cn1w ∈ W
TM ,

as needed. Therefore, W TL(H̃) = W
TM
χ ∪ cn1W

TM
χ .

Since |W TM
χ | = |W (H̃)|/|W (L̃)|, the first property is equivalent to

W (L̃)W TM
χ = W (H̃). We calculate:

W (L̃)W TM
χ = (W (L) ∪W (L)cn1)W

TM
χ

= W (L)(W TM
χ ∪ cn1W

TM
χ )

= W (L)W TL(H̃).

That W (L)W TL(H̃) = W (H̃) follows easily from W (L)W TL(H) = W (H).
The second property follows immediately from Wχ(M) ⊂ W (M) and

W
TM
χ ⊂W TM .
To check the third property, write x = xHcx, w = cwwH with cx, cw ∈ Cχ

and xH , wH ∈ W (H). Then since lH̃(cn1) = 0, we have lH̃(x) = lH̃(xH),
lH̃(w) = lH̃(wH). Set x′H = (cxcw)−1xH(cxcw). Then lH̃(x′H) = lH̃(x).
Since xH ∈ W (L) and wH ∈ W

TL(H), we have lH̃(x′H) + lH̃(wH) =
lH̃(x′HwH) = lH̃(cxcwx′HwH) = lH̃(xw). The result follows.
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The case of G = SO(2n + 1) is much easier; since H = H̃ is connected,
the argument is just that of Case 1 above. �

Lemma 3.2.8. Suppose M is a standard Levi for G, L̃ the corresponding
subgroup of H̃. If ν ↪→ IndM

BM
λχ has space V IM ,ρM

ν ⊂ V IM ,ρM

IndM
BM

λχ
, let V I′L

ν′ ⊂

V
I′L

IndL̃
BL

λ
be its image under MM (with ν ′ denoting the restriction of IndL̃

BL
λ

to V I′L
ν′ ). Then the image of V I,ρ

IndG
PM

ν
⊂ V I,ρ

π under M is V I′

IndH̃
P

L̃
ν′
⊂ V I′

π′ .

Remark 3.2.1. Certainly, the restriction of π′ to MV I,ρ

IndG
PM

ν
is equivalent

to IndH̃
PL̃
ν ′. But for our purposes, it is necessary to know that the subspaces

actually match up.

Proof of Lemma 3.2.8. First we need to identify the subspaces for IndG
PM
ν

and IndH̃
PL̃
ν ′. Suppose {fM

i }i=1,... ,k = {
∑

x∈W χ(M) b
i
xf

M
x }i=1,... ,k is a basis

for V IM ,ρM
ν ⊂ V IM ,ρM

IndM
BM

λχ
. Let fi =

∑
x∈W χ(M) b

i
xfx ∈ V I,ρ

π . Then a basis for

V I,ρ

IndG
PM

λ
⊂ V I,ρ

π is

{π(Tw−1)fi} i=1,... ,k

w∈W
TM
χ

=

 ∑
x∈W χ(M)

bixfxw


i=1,... ,k

w∈W
TM
χ

,

with W
TM
χ as in the preceding lemma. The proof of this is essentially the

same as that of [Ja1, Lemma 2.1.4] (noting that W TM
χ is a set of representa-

tives forW (M)\W (G)). Similarly, if {f ′i
L̃}i=1,... ,j = {

∑
x∈W (L) c

i
xf
′
x
L̃}i=1,... ,j

is a basis for V I′L
ν′ ⊂ V

I′L

IndL̃
BL

λ
, then IndH̃

PL̃
ν ′ has basis

{
π′(T ′w−1)f ′i

}
i=1,... ,j

w∈W
TL̃

=

 ∑
x∈W (L)

cixf
′
xw


i=1,... ,j

w∈W
TL̃

.

Here we are taking W T L̃ = W
TM
χ . (By the preceding lemma, W TM

χ has the
properties we need; we change notation only for appearance’s sake.)

We now check how subspaces match up. First observe that M : fw 7−→
π′(Ψ(Tw−1)Ψ(T−1

w−1
0

))f ′w0
. Therefore, if Ψ : Tw 7−→ awT

′
w, we see that Mfw =

m(w)f ′w, where m(w) = aw−1a−1

w−1
0

. Similarly, using Proposition 1.6, we get

MMf
M
w = mM (w)f ′w

L̃ with mM (w) = aw−1a−1

w−1
0,M

(w0,M the longest element
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of Wχ(M)). If {fM
i }i=1,... ,k as above is a basis for V IM ,ρM

ν , then V I,ρ

IndG
PM

λ

has basis
{∑

x∈W χ(M) b
i
xfxw

}
i=1,... ,k

w∈W
TM
χ

. Therefore, MV I,ρ

IndG
PM

λ
has basis (using

Wχ(M) = W (L̃), W TM
χ = W

T L̃) ∑
x∈W (L̃)

bixπ
′(Ψ(Tw−1x−1)Ψ(T−1

w−1
0

))f ′w0


i=1,... ,k

w∈W
TL̃

.

On the other hand, V I′L
ν′ has basis

{
MMf

M
i

}
i=1,... ,k

=

 ∑
x∈W (L̃)

bixmM (x)f ′x
L̃


i=1,... ,k

.

Therefore, V I′

IndH̃
P

L̃
ν′

has basis ∑
x∈W (L̃)

bixmM (x)f ′xw


i=1,... ,k

w∈W
TL̃

.

Finally, by Lemma 3.2.7, for x ∈Wχ(M) and w ∈W TM
χ , we have Tw−1x−1 =

Tw−1Tx−1 and T ′w−1x−1 = T ′w−1T
′
x−1 . From this, one sees that aw−1x−1 =

aw−1ax−1 . Therefore, m(xw) =
(
aw−1

a
w−1

0,M

a
w−1

0

)
mM (x). The conclusion fol-

lows. �

Let R(wp, λp, χ) denote the normalized standard intertwining operator
defined earlier. Since wp ∈ Wχ, we may identify wp ∈ W

′ with wp1 ·
wp0 ∈ W (H ′1) ×W (H ′0) (p1, p0 are ordered partitions for H ′1,H

′
0). If we

use H ′ = H ′1×H ′0 to identify the degenerate principal series IH′(λp, 1) with
IH′

1
(λp1 , 1)⊗ IH′

0
(λp0 , 1), we have

R′(wp, λp, 1) = R′1(wp1 , λp1 , 1)⊗R′0(wp0 , λp0 , 1),

for the corresponding intertwining operators.

Proposition 3.2.9. R(wp, λp, χ) is a non-zero multiple of

M−1 ◦R′1(wp1 , λp1 , 1)⊗R′0(wp0 , λp0 , 1) ◦M.

Proof. We argue as in [Re2]. Let x = (x1, . . . , xs), y = (y1, . . . , yt+1) and
set

λp1 + x = |det |
a1−b1

4
+x1 × · · · × |det |

as−bs
4

+xs
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λp0 + y = |det |
c1−d1

4
+y1 × · · · × |det |

ct−dt
4

+yt × |det |
ct+1

4
+yt+1

and λp +(x, y) = (λp1 +x)× (λp0 +y). Since Ī(λp +(x, y), χ) and Ī ′H′
1
(λp1 +

x, 1), Ī ′H′
0
(λp0 + y, 1) are irreducible representations for (x, y) 6= (0, 0) near

zero, Schur’s lemma for p-adic groups tells us

R(wp, λp + (x, y), χ)(∗)
= c(x, y)M−1 ◦R′1(wp1 , λp1 + x, 1)⊗R′0(wp0 , λp0 + y, 1) ◦M

for such (x, y) (c(x, y) scalar). Now, observe that M is independent of
(x, y). By Proposition 3.1, Lemma 3.2 and [M1], R(wp, λp + (x, y), χ) and
M−1 ◦R′1(wp1 , λp1 +x, 1)⊗R′0(wp0 , λp0 +y, 1)◦M are both holomorphic and
non-zero at (x, y) = (0, 0). By analytic continuation, (∗) holds at (x, y) =
(0, 0). Further, we see that c(x, y) must be holomorphic and non-vanishing
at (x, y) = (0, 0). The proposition follows. �

The results above begin the process of separating the effects of the four
characters of order≤ 2, essentially allowing us to deal with 1, µnr separately
from µ, µµnr (with µ, µnr associated to 1, µnr for H ′1). To finish this pro-
cess, we need to separate the effects of 1 and µnr for both symplectic and
orthogonal groups. To do this, we use an argument similar to that above,
only with [B-Mo2] playing the role that [R] played above. We give the
argument for the symplectic case; the orthogonal case is similar.

Let χ = (µnr, . . . , µnr︸ ︷︷ ︸
n1

, 1, . . . , 1︸ ︷︷ ︸
n0

) and λ = | |x1×· · ·×| |xn1×| |y1×· · ·×| |yn0

with x1, . . . , xn1 , y1, . . . , yn0 ∈ R. Again, set H ′ = H ′1 × H ′0. Let π =
IndG

B (λχ) and π′ = IndH′
B′ (λ) = (IndH′

1

B′
1
λ1) ⊗ (IndH′

0

B′
0
λ0) = π′1 ⊗ π′0 (with

λ1 = | |x1×· · ·× | |xn1 and λ0 = | |y1×· · ·× | |yn0 ). We let τ, τ ′, τ ′1, τ
′
0 denote

the infinitesimal characters of π, π′, π′1, π
′
0, resp.

We define a map Mτ : V I
π −→ V I′

π′ (unlike the situation above, Mτ is
not independent of λ). Let Mτ : fw0 7−→ f ′w0

. If q, q′ denote the quo-
tient maps q : H(G) −→ Hτ (G), q′ : H(H ′) −→ Hτ ′(H ′) (cf. [B-Mo2,
p. 619]), then we certainly have fw0 , f

′
w0

generating V I
π , V

I′
π′ , under the ac-

tion of π(q(H(K))), π′(q′(H(K ′))). Thus, as above, we may extend Mτ to
get a linear isomorphism satisfying π′(Ψτ (h))(Mτf) = Mτ (π(h)f) for all
h ∈ q(H(K)), f ∈ V I

π . Here Ψ : Hτ (G) −→ Hτ ′(H ′) is the isomorphism
of quotient algebras obtained by composing the isomorphisms in [B-Mo2].
With notation as above, we have the following:

Lemma 3.2.10. Mτ has the following properties:

(1) π′(Ψτ (h))(Mτf) = Mτ (π(h)f) for all h ∈ H(G), f ∈ V I
π .

(2) Mτ is real analytic in x1, . . . , xn1 , y1, . . . , yn0.
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Proof. The proof of (1) is similar to Proposition 3.2.6 above. For h ∈
q(H(K)), it holds by definition. For t, t′ corresponding to the same element
of Y , we have that Ψτ : δ

1
2 (t)q(Tt) 7−→ χ(t)δ

1
2 (t′)q′(Tt′) (a consequence of

[B-Mo2, (4.4)] and the construction of Ψτ ). With this observation, the rest
of (1) follows as in the proof of Proposition 3.2.6.

For (2), if w ∈Wχ = W (H ′), we have

Mτ (fw) = π′(Ψτ (q(Tw)))f ′w0
.

It is sufficient to show Ψτ (q(Tw)) is analytic, which follows from [B-Mo2,
Theorem 4.3]. �

Let R(wp, λp, χ) be the normalized standard intertwining operator defined
earlier. As before, we can write wp = wp1wp0 ∈ W (H ′1) ×W (H ′0), and pi

is an ordered partition for H ′i. We decompose λp = λp1 × λp0 as above.
Let R′(wp, λp, 1) = R′(wp1 , λp1 , 1) ⊗ R′(wp0 , λp0 , 1) be the corresponding
intertwining operator for H ′.

Proposition 3.2.11. R(wp, λp, χ) = Mτ ◦R′(wp1 , λp1 , 1)⊗R′(wp0 , λp0 , 1)◦
M−1

τ .

Proof. We again argue as in [Re2]. With notation as in the proof of Propo-
sition 3.2.9, we again have that if (x, y) 6= 0 near 0,

R(wp, λp + (x, y), χ)(∗∗)
= Mτ(x,y) ◦R′(wp1 , λp1 + x, 1)⊗R′(wp0 , λp0 + y, 1) ◦M−1

τ(x,y),

where τ(x, y) is the infinitesimal character associated to IndG
B (λp +(x, y))χ.

In this case, there is no need to introduce a scalar c(x, y)–the action of (∗∗)
on K-fixed vectors tells us we actually have equality. By Proposition 3.1 and
the preceding lemma, both sides of (∗∗) are analytic in (x, y). Therefore by
analytic continuation, (∗∗) holds at (0,0), as needed. �

Remark 3.2.2. Hecke algebras are not available for archimedean places.
Also Roche’s results are not available for the place v, v|2.

Remark 3.2.3. Above, we have used the results of Barbasch-Moy and
Roche to identify IndG

B λχ with IndG′
1

B′
1
λ1⊗ IndG′

2

B′
2
λ2⊗ IndG′

3

B′
3
λ3⊗ IndG′

0

B′
0
λ0,

where χ = (µ, . . . , µ︸ ︷︷ ︸
r1

, µµnr, . . . , µµnr︸ ︷︷ ︸
r2

, µnr, . . . , µnr︸ ︷︷ ︸
r3

, 1, . . . , 1︸ ︷︷ ︸
r0

) and λ = λ1 ×

λ2 × λ3 × λ0. The same isomorphisms allow us to identify IndG′
1

B′
1
λ1 with

IndG1
B1

λ1χ1, where χ1 = (µ, . . . , µ︸ ︷︷ ︸
r1

) and G1 = G(r1) and similarly for G′2, G
′
3.

Thus, we may also identify IndG
B λχ with IndG1

B1
λ1χ1 ⊗ IndG2

B2
λ2χ2 ⊗

IndG3
B3

λ3χ3 ⊗ IndG′
0

B′
0
λ0 (with G0 = G′0). This correspondence is done in
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general in [Ja3]. However, there are two basic obstacles to using [Ja3] here.
The first is that, as with [Au1], [Au2], [Sc-St], the results in [Ja3] are
done in the Grothendieck group setting, hence do not deal with composition
series. The second is that we deal with IndG′

1

B′
1
λ1, etc., by using Mœglin’s

results. To work with IndG1
B1

λ1χ1, etc., we would have to establish the
corresponding results ourselves.

To reduce our problem to that covered by Mœglin’s results, we will also
need the following proposition. (We continue to use j for the Iwahori-
Matsumoto involution.)

Proposition 3.2.12. Suppose π and π′ = π′1 × π′2 × π′3 × π′0 are corre-
sponding irreducible representations. Then, j(π) is tempered (resp., square-
integrable) if and only if j(π′1), j(π

′
2), j(π

′
3), j(π

′
0) are all tempered (resp.,

square-integrable).

Proof. Note that j(π′) is tempered (resp., square-integrable) if and only if
j(π′1), j(π

′
2), j(π

′
3), j(π

′
0) are all tempered (resp., square-integrable).

Let us write θ ∈ Jac(π) if θ appears in the normalized Jacquet module
of π (with respect to the Borel subgroup) with multiplicity at least one.
Observe that by the abelianness of T and Frobenius reciprocity, we have
θ ∈ Jac(π) if and only if π ↪→ IndG

Bθ. Therefore, by Theorem 1.8 and
Frobenius reciprocity, we see that θ ∈ Jac(π) if and only if θ−1 ∈ Jac(j(π)).
Similarly, θi ∈ Jac(π′i) if and only if θ−1

i ∈ Jac(j(π′i)).
For notational convenience, let µ(k) = µ× · · · × µ︸ ︷︷ ︸

k

. Let µ1 = µ, µ2 = µµnr,

µ3 = µnr, µ0 = 1, as above. We claim that λ1µ
(r1)
1 × λ2µ

(r2)
2 × λ3µ

(r3)
3 ×

λ0µ
(r0)
0 ∈ Jac(π) if and only if λi ∈ Jac(π′i) for i = 0, 1, 2, 3. First, let

G′′0 = G(r3 + r0) and

G′′1 =

{
O(2(r1 + r2)), if G = Sp(2n), O(2n)
SO(2(r1 + r2) + 1), if G = SO(2n+ 1).

Suppose that π corresponds to π′′1 × π′′0 under Roche’s isomorphism. We
then argue as follows: (λ1µ

(r1)
1 × λ2µ

(r2)
2 ) × (λ3µ

(r3)
3 × λ0µ

(r0)
0 ) ∈ Jac(π) if

and only if π ↪→ IndG
B((λ1µ

(r1)
1 ×λ2µ

(r2)
2 )× (λ3µ

(r3)
3 ×λ0µ

(r0)
0 )) if and only if

π′′1 ↪→ IndG′′
1

B′′
1
(λ1 × λ2µ

(r2)
nr ) and π′′0 ↪→ IndG′′

0

B′′
0
(λ3µ

(r3)
nr × λ0) (cf. [R, Theorem

9.5]) if and only if λ1×λ2µ
(r2)
nr ∈ Jac(π′′1) and λ3µ

(r3)
nr ×λ0 ∈ Jac(π′′0). We use

the same basic argument in conjunction with the results of Barbasch-Moy,
making a few minor modifications to cover induction via tensor product.
We argue as follows for π′′1 : λ1 × λ2µ

(r2)
nr ∈ Jac(π′′1) if and only if π′′1 ↪→

IndG′′
1

B′′
1
(λ1×λ2µ

(r2)
nr ) if and only if π′′1 ↪→ ⊗-IndG′′

1

B′′
1
(λ−1

1 ×λ
−1
2 µ

(r2)
nr ) if and only
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if π′1 ↪→ ⊗-IndG′
1

B′
1
λ−1

1 and π′2 ↪→ ⊗-IndG′
2

B′
2
λ−1

2 (cf. [B-Mo2, Theorem 6.2]) if
and only if λ1 ∈ Jac(π′1) and λ2 ∈ Jac(π′2). The argument for π′′0 is similar.
This verifies our claim.

Next we claim that any θ ∈ Jac(π) has the form sh(λ1µ
(r1)
1 , λ2µ

(r2)
2 ,

λ3µ
(r3)
3 , λ0µ

(r0)
0 ) for some λ1, λ2, λ3, λ0 with λi ∈ Jac(π′i), i = 0, 1, 2, 3. Here,

sh denotes a shuffle, used in the usual sense (e.g., see [Ja3, Definition 3.1]).
This claim follows immediately from the discussion above and [Ja3, Lemma
5.4].

Since θ ∈ Jac(π) if and only if θ−1 ∈ Jac(j(π)), the inequalities required
by the Casselman criteria for j(π) to be tempered (resp., square-integrable)
have the same form as those in [M1, Remarque 1.3.5] (π′1, π

′
2, π
′
3, π
′
0 are al-

ready covered by [M1, Remarque 1.3.5]). Further, observe that λ1, λ2, λ3, λ0

each satisfy the inequalities of [M1, Remarque 1.3.5] if and only if
sh(λ1µ

(r1)
1 , λ2µ

(r2)
2 , λ3µ

(r3)
3 , λ0µ

(r0)
0 ) satisfies the inequalities of [M1, Remar-

que 1.3.5] for every shuffle sh. The proof of this is straightforward; essentially
identical to that of [Ja3, Corollary 8.3]. Thus, j(π) is tempered (resp.,
square-integrable) if and only if j(π′1), j(π

′
2), j(π

′
3), j(π

′
0) are all tempered

(resp., square-integrable), as needed. �

Remark 3.2.4. We may also use the above result to classify the square-
integrable (resp., tempered) representations of Sp(2n, F ), SO(2n+1, F ) sup-
ported on the Borel subgroup (at least for F having odd residual character-
istic). By [Ta3, Theorem 6.2], such a square-integrable (resp., tempered)
representation has cuspidal support contained in {| |αµ}α∈R,µ2=1. Now,
to classify such representations, it suffices to classify the representations π
with cuspidal support in {| |αµ}α∈R,µ2=1 such that j(π) is square-integrable
(resp., tempered). By the preceding proposition, it suffices to classify the
corresponding representations π′1, π

′
2, π
′
3, π
′
0 of G′1, G

′
2, G

′
3, G

′
0. This is done

in [M1].
3.3. The definition of Unip(p, χ). We prove:

Proposition 3.3.1.
(1) R(wp, λp, χ)I(λp, χ) is semi-simple and the generalized Iwahori-Matsu-

moto involution of its direct summands is tempered. Let Unip(p, χ) be
the set of direct summands of R(wp, λp, χ)I(λp, χ).

(2) Under the Hecke algebra isomorphism, Unip(p, χ) corresponds to a sub-
set of Unip(O1)× · · · ×Unip(Ok)×Unip(O0).

Proof. By Proposition 3.2.1, it is enough to prove for χ = 1. For simplicity,
we denote Unip(p, 1) = Unip(p). Let O be the unipotent orbit obtained
from p by ignoring the ordering: We will prove Unip(p) ⊂ Unip(O), where
O is a unipotent orbit obtained from p by ignoring the ordering.

If p = (a1, b1, . . . , as, bs, as+1) satisfies the two conditions in Remark 3.2,
then we are in Mœglin’s situation. So it is clear by Mœglin’s result.
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Otherwise, by Remark 3.3, such chain can be written as p = p1×· · ·×pk×
p0, where pi ∈ P (Oi) and Oi is a distinguished unipotent orbit in G∗i for i =
0, 1, . . . , k. Let µi, i = 1, . . . , k be non-trivial quadratic grössencharacters
such that µiv = 1 for i = 1, . . . , k for a given non-archimedean place v. Let
χ = χ(µ1, . . . , µ1︸ ︷︷ ︸

r1

, . . . , µk, . . . , µk︸ ︷︷ ︸
rk

, 1, . . . , 1︸ ︷︷ ︸
r0

).

Consider the pseudo-Eisenstein series attached to χ from [Ki3]:

lp(φ, λ, χ) =
k∏

i=0

∑
wi∈Wi

r(wi,−λi,Φi)R(wpw
−1
k · · ·w

−1
0 , w0 · · ·wkλ, χ)

∑
d∈D

r(dw1 · · ·wkw0,−λ,ΦD)R(d−1, dw1 · · ·wkw0λ, dχ)φ(dw1 · · ·wkw0λ),

where Φi’s are given by:

Φ1 = {ei ± ej , 1 ≤ i < j ≤ r1},
Φ2 = {er1+i ± er1+j , 1 ≤ i < j ≤ r2},

...

Φk = {er1+···+rk−1+i ± er1+···+rk−1+j , 1 ≤ i < j ≤ rk},
Φ0 = {er1+···+rk+i ± er1+···+rk+j ,

1 ≤ i < j ≤ r0, 2er1+···+rk+i, i = 1, . . . , r0},

ΦD = Φ+ −
k⋃

i=0

Φk.

We note that the above is for G = Sp(2n). If G = SO(2n + 1), we need
to add, to Φi, er1+···+ri−1+j , j = 1, . . . , ri, for i = 1, . . . , k and in Φ0,
2er1+···+rk+i should be er1+···+rk+i. If G = O(2n), then Φ0 does not have
the roots 2er1+···+rk+i, i = 1, . . . , r0.

Also D is the set of distinguished coset representatives for θ = ∆ −
{er1 − er1+1, er1+r2 − er1+r2+1, . . . , er1+···+rk

− er1+···+rk+1} ⊂ ∆ = {e1 −
e2, . . . , en−1 − en} and Wi is the Weyl group of G′i for i = 0, 1, . . . , k.
Let λ = λ1 + · · · + λk + λ0, where λi = ar1+···+ri−1+1er1+···+ri−1+1 + · · · +
ar1+···+rier1+···+ri for i = 1, . . . , k and λ0 = ar1+···+rk+1er1+···+rk+1 + · · · +
anen.

Now we substitute χ = 1 and we show that lp(φ, λp, χ = 1) is well-defined.
Mœglin showed that r(wi,−λi,Φi) is identically zero on V ′(pi) if wi /∈W (↑
, pi). Since the local intertwining operators R(wp, λp) are well-defined by
Proposition 3.1, the only thing we need to show is that r(dw1 · · ·wkw0,−λ,
ΦD) is holomorphic at λp for wi ∈ W (↑, pi) even if χ = 1. Recall that for
non-trivial χ, χ ◦ α is non-trivial for α ∈ ΦD and so it is holomorphic.
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For this, we need to show that if for wl ∈ W (↑, pl), wl(er1+···+rl−1+i) < 0
for some i = 1, . . . , rl, then wl(er1+···+rl−1+i) = −er1+···+rl+1−i. Then the
poles and zeros in r(dw1 · · ·wkw0,−λ,ΦD) cancel each other. We show it
for w1 ∈ W (↑, p1). The remaining cases are similar. Suppose w1(ei) = −ej
for 1 ≤ i, j ≤ r1. Recall the definition of W (↑, p1). It is the set of the Weyl
group elements of G′1 which send {ei − ej , 1 ≤ i < j ≤ r1} to itself. Then
consider w1(ep− ei) = w1(ep)+ ej . So w1(ep) = −eq, where q > j. Consider
w1(ei− ep) = −ej +w1(ep). Then w1(ep) = −eq, where q < j. Therefore we
can see that w1(ep) = −er1+1−p.

Since lp(φ, λp, χ = 1) is well-defined, by Mœglin’s inner product for-
mula (Section 2.2), it belongs to the residual spectrum L2(G(F )\G(A))(T,1).
Its local components are precisely the image of intertwining operator
R(wp, λp, χv = 1)I(λp, χv = 1). Even though Proposition 2.8 is no longer
true since the normalized intertwining operators could vanish, we can show
that the image of intertwining operator R(wp, λp, χv = 1)I(λp, χv = 1) is
semi-simple in the same way as in Proposition 2.7. Then by Mœglin [M1,
p. 734], it is included in Unip(O), where O is the unipotent orbit obtained
by ignoring the ordering in p. �

3.4. Parametrization of Unip(p, χ). Next we parametrize Unip(p, χ).

3.4.1. The case χ = 1. Because of Proposition 3.3.1, we can still define
R(σ(ai,bi)) by Proposition 2.9 and the following still holds.

Proposition 3.4.1. σ(ai,bi) 7−→ R(σ(ai,bi)) is a homomorphism of the group
{id, σ(ai,bi)} into the group of the intertwining operators of R(wp, λp)I(λp).

This means the following: For X ∈ Unip(p), let R(σ(ai,bi))X =
ηp

X(σ(ai,bi))X. Then ηp
X defines a character of A(O) such that ηp

X(σ(ai)) =
ηp

X(σ(bi)).
Since Unip(p) ⊂ Unip(O), ηp

X ∈ Springer (O). Therefore we have:

Theorem 3.4.2. Unip(p) is parametrized by

C(p) = {η ∈ Springer (O) : η(σ(ai)) = η(σ(bi)),

i = 1, . . . , s, η(σ(as+1)) = 1}.

Example 3.4.1. Let G = Sp(8) and p = (5, 1, 3). Then λp = (2, 1, 0, 1)
and wp = c1c2c4. O = (5, 3, 1) and Springer (O) has 3 elements, namely,
η ∈ Springer (O) if and only if η(σ(5)) = η(σ(3)), η(σ(1)) = 1 or η(σ(3)) =
η(σ(1)), η(σ(5)) = 1. Therefore, {η ∈ Springer (O) : η(σ(5)) = η(σ(1)),
η(σ(3)) = 1} has only the trivial character.

In order to apply the above theorem to the global situation, let O1, O2

be two distinguished unipotent orbits in G∗1 and G∗2, resp. (If G = Sp(2n),
then G∗1 = O(2r1,C) and G∗2 = O(2r2 + 1,C). If G = SO(2n + 1), then
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G∗1 = Sp(2r1,C) and G∗2 = Sp(2r2,C). If G = O(2n), then G∗1 = O(2r1,C)
and G∗2 = O(2r2,C).) Then we get a unipotent orbit O in G∗ by combining
O1 and O2. Further we have canonical embedding Â(Oi) ⊂ Â(O).

For pi ∈ P (Oi), i = 1, 2, we get a chain p1 × p2 by shuffling the segments
in p1 and p2 so that it satisfies (3.1), and thus we get Unip(p1 × p2). Let
Unip(O1, O2) be the union of Unip(p1 × p2) as pi runs through P (Oi) for
i = 1, 2. It is a subset of Unip(O). Then we have:

Theorem 3.4.3. Unip(O1, O2) is parametrized by

C(O1, O2) = {η ∈ Springer (O) : η|A(O1) ∈ Springer (O1),

η|A(O2) ∈ Springer (O2)}.

This can be generalized easily. Let Oi be distinguished unipotent orbits
in G∗i for i = 0, 1, . . . , k. Let O be the unipotent orbit of G∗, obtained by
combining Oi’s. Then we can define Unip(O1, · · · , Ok, O0) and it is a subset
of Unip(O) and:

Theorem 3.4.4. Unip(O1, · · · , Ok, O0) is parametrized by

C(O1, . . . , Ok, O0) = {η ∈ Springer (O) : η|A(Oi) ∈ Springer (Oi),

for i = 0, . . . , k}.

Corollary 3.4.5. Let G = Sp(2n) and let O1 = (q1, . . . , qs−1, 1), s even, be
a distinguished unipotent orbit of O(2n,C) and O0 = (1). Then Unip(O1, O0)
is parametrized by Springer (O′), where O′ = (q1, . . . , qs−1).

3.4.2. The case χ = χ(µ, . . . , µ), µ non-trivial quadratic. Let p =
(a1, b1, . . . , as, bs). In this case the above theorems for χ = 1 case hold. We
need to use the generalized Iwahori-Matsumoto involution in Section 1. We
can define R(σ(ai,bi), µ) in the similar way as in Proposition 2.9.

Let Unip(p, µ) be the set of components of R(wp, λp, χ)I(λp, χ). Let O
be a unipotent orbit obtained from p by ignoring the ordering. Then:

Theorem 3.4.6. Unip(p, µ) is parametrized by

C(p) = {η ∈ Springer (O) : η(σ(ai)) = η(σ(bi)), i = 1, . . . , s}.

Let Oi be distinguished unipotent orbits in G∗i for i = 1, . . . , k. Let O be
the unipotent orbit of G∗, obtained by combining Oi’s. Then we can define
Unip(O1, · · · , Ok, µ) and:

Theorem 3.4.7. Unip(O1, · · · , Ok, µ) is parametrized by

C(O1, . . . , Ok, µ) = {η ∈ Springer (O) : η|A(Oi) ∈ Springer (Oi),

for i = 1, . . . , k}.
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3.4.3. The general case. It is enough to consider the case, χ =
χ(µ, . . . , µ︸ ︷︷ ︸

r1

, 1, . . . , 1︸ ︷︷ ︸
r0

), where µ is a non-trivial quadratic character. Let pi,

i = 1, 2, be chains in G∗1, G
∗
2, resp, from which we get unipotent orbits O1,

O2, by ignoring the ordering in pi’s. (If G = Sp(2n), then G∗1 = O(2r1,C)
and G∗2 = O(2r0 + 1,C). If G = SO(2n + 1), then G∗1 = Sp(2r1,C) and
G∗2 = Sp(2r0,C). If G = O(2n), then G∗1 = O(2r1,C) and G∗2 = O(2r0,C).)
Let p = p1 × p2.

We obtain R(σi)’s and R(σj , µ)’s. Let Unip(p, χ) be the set of components
of R(wp, λp, χ)I(λp, χv). Then:

Theorem 3.4.8. Unip(p, χ) is parametrized by C(p1)× C(p2).

Let χ = χ(µ1, . . . , µ1︸ ︷︷ ︸
r1

, . . . , µk, . . . , µk︸ ︷︷ ︸
rk

, 1, . . . , 1︸ ︷︷ ︸
r0

), r0 + · · · + rk = n, r1 ≥

· · · ≥ rk, µi’s are distinct non-trivial quadratic characters. Set µ0 = 1. Let
pi, i = 0, 1, . . . , k, be chains in G∗i , from which we get unipotent orbits
O1, . . . , Ok, O0, by ignoring the ordering in pi’s. Let p = p1 × · · · pk × p0.
Then:

Theorem 3.4.9. Unip(p, χ) is parametrized by C(p1)×· · ·×C(pk)×C(p0).

In order to apply the above theorem to the global situation, let χ =
χ(µ1, . . . , µ1︸ ︷︷ ︸

r1

, . . . , µk, . . . , µk︸ ︷︷ ︸
rk

, 1, . . . , 1︸ ︷︷ ︸
r0

), r0 + · · · + rk = n, r1 ≥ · · · ≥ rk ≥

2, µi’s are distinct non-trivial quadratic grössencharacters. Let Oi be a
distinguished unipotent orbit in G∗i for i = 0, 1, . . . , k. Let pi ∈ P (Oi) for
i = 0, . . . , k and p = p1 × · · · × pk × p0. Then we can shuffle the segments
in p so that it satisfies the condition (3.1). We still call it p. For a non-
archimedean place v, let Unip(O1, . . . , Ok, O0, χv) be the set of union of
Unip(p1, . . . , pk, p0, χv) as pi runs through P (Oi) for i = 0, . . . , k.

Theorem 3.4.10. Πresv = Unip(O1, . . . , Ok, O0, χv) is parametrized by

(3.2) C(O1, . . . , Ok, O0, χv) = [Springer (O1)× · · ·
× Springer (Ok)× Springer (O0)],

where [ ] is defined as follows: If µ1v = µ2v 6= µiv for i = 0, 3, . . . , k, then
we replace Springer (O1)× Springer (O2) by

C(O1, O2, µ1v) = {η ∈ Springer (O) : η|A(Oi) ∈ Springer (Oi), for i = 1, 2},

where O is the unipotent orbit of G∗12 obtained by combining O1, O2, where

G∗12 =

{
O(2(r1 + r2),C), if G = Sp(2n), O(2n)
Sp(2(r1 + r2),C), if G = SO(2n+ 1).
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Example 3.4.2. Let G = Sp(28) and χ = χ(µ, . . . , µ︸ ︷︷ ︸
10

, 1, . . . , 1︸ ︷︷ ︸
4

), µ is a

quadratic grössencharacter. Let O1 = (9, 7, 3, 1) be a unipotent orbit in
O20(C) and O2 = (5, 3, 1) a unipotent orbit in O9(C). Then for a non-
archimedean place v, if µv 6= 1, then Πresv is parametrized by Springer (O1)×
Springer (O2). It has 18 elements. Let µv = 1. Let O = (9, 7, 5, 3, 3, 1, 1).
Then A(O) is an abelian group generated by order 2 elements σ(1), σ(3),
σ(5), σ(7), σ(9). Consequently

Springer (O) = {η ∈ Â(O) : η(σ(9)) = η(σ(7)), η(σ(5)) = 1

or η(σ(7)) = η(σ(5)), η(σ(9)) = 1}.
Then C(O1, O2) = {η ∈ Springer (O) : η|A(Oi) ∈ Springer (Oi), i = 1, 2}.
C(O1, O2) has 5 elements.

σ(9) 1 -1 1 1 -1

σ(7) 1 -1 -1 1 -1

σ(5) 1 1 -1 1 1

σ(3) 1 1 -1 -1 -1

σ(1) 1 1 1 -1 -1

Remark 3.4.1. Let λO be the conjugate of λp which is the closure of
the positive Weyl chamber as in Lemma 3.2. Then by inducing in stages,
I(λO, w

−1
1 χv) = IndG

P λO ⊗ IndM
B w−1

1 χv, where P = MN is the parabolic
subgroup such that λO is in the positive Weyl chamber with respect to P .
Then we can consider the Knapp-Stein R-group of IndM

B w−1
1 χv. It is a

subset of (3.2). In fact, the Knapp-Stein R-group is spanned by the or-
der 2 elements cr1+···+ri for µiv 6= 1. Therefore, we can think of (3.2) as a
generalization of the Knapp-Stein R-group.
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classiques déployś, Comp. Math., 77 (1991), 1-54, MR 92d:11054, Zbl 809.11030.

[M3] , Une conjecture sur le spectre résiduel des groupes classiques, preprint,
1994.

[M4] , Représentations quadratiques unipotentes des groupes classiques p-
adiques, Duke Math. J., 84 (1996), 267-332 MR 97h:22013, Zbl 864.22008.

[M5] , Cuspidal quadratic unipotent representation, preprint, 1994.

[M6] , Letters.

[M-W1] C. Mœglin and J.L. Waldspurger, Spectral Decomposition and Eisenstein series,
une paraphrase de l’Ecriture, Cambridge Tracts in Mathematics, 113, Cambridge
University Press, 1995, MR 97d:11083, Zbl 846.11032.

[M-W2] , Le spectre résiduel de GL(n), Ann. Scient. Éc. Norm. Sup., 22 (1989),
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