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We completely determine the residual automorphic repre-
sentations coming from the torus of odd orthogonal groups.
Under certain technical assumption on disconnected groups,
our results are valid for symplectic groups and even orthog-
onal groups. Moeglin has determined the residual spectrum
attached to the trivial character of the torus for split classical
groups. However, non-trivial characters present some non-
trivial difficulties, both local and global. Local problems are
resolved in a companion paper with C. Jantzen, where many
other useful results are obtained.

Introduction.

Let F be a number field and A its ring of adeles. Let G be a reductive
group defined over F . For simplicity we assume that the center of G is
anisotropic over F . A central problem in the theory of automorphic forms is
to decompose the right regular representation of G(A) acting on the Hilbert
space L2(G(F )\G(A)). It has continuous spectrum and discrete spectrum.

L2(G(F )\G(A)) = L2
dis (G(F )\G(A))⊕ L2

cont (G(F )\G(A)).

We are mainly interested in the discrete spectrum. Main contributions have
been made by Langlands and Arthur. First of all Langlands described, using
his theory of Eisenstein series, an orthogonal decomposition of this space of
the form:

L2
dis (G(F )\G(A)) =

⊕
(M,π)

L2
dis (G(F )\G(A))(M,π),

where (M,π) is a Levi subgroup with a cuspidal automorphic representa-
tion π taken modulo conjugacy (here we normalize π so that the action
of the maximal split torus in the center of G at the archimedean places is
trivial) and L2

dis (G(F )\G(A))(M,π) is a space of residues of Eisenstein series
associated to (M,π). Here we note that the subspace

⊕(G,π)L
2
dis (G(F )\G(A))(G,π),

is the space of cuspidal representations L2
cusp (G(F )\G(A)). Its orthogonal

complement in L2
dis (G(F )\G(A)) is called the residual spectrum and we
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denote it by L2
res (G(F )\G(A)). Therefore we have an orthogonal decompo-

sition

L2
dis (G(F )\G(A)) = L2

cusp (G(F )\G(A))⊕ L2
res (G(F )\G(A)).

Arthur described, motivated by his trace formula, described a conjectural
decomposition of this space as follows:

L2
dis (G(F )\G(A)) = ⊕ψL2(G(F )\G(A))ψ,

where ψ runs, modulo conjugacy, through the set of morphism ψ : LF ×
SL2(C) 7−→ G∗, where LF is the conjectural tannakian group, G∗ is the
Langlands’ L-group and ψ satisfies certain conditions; in particular, ψ re-
stricted to SL2(C) is algebraic, ψ restricted to LF parametrizes a cuspidal
tempered representation of a Levi subgroup and the image of ψ is not in-
cluded in proper Levi subgroups. The space L2(G(F )\G(A))ψ is defined by
local data (3.3).

Let Πres v be the set of the local components of the residual spectrum
L2

dis (G(F )\G(A))(M,π). It is of great importance to prove that Πres v ⊂
Πψv for some ψv and the multiplicity formula (3.1) holds: In other words,
the Arthur parameters parametrize the residual spectrum. For this, it is
necessary to construct a set of characters Cres v ⊂ Ĉψv attached to Πres v .

We should note that Arthur’s trace formula will not separate the cuspi-
dal part from the residual one and therefore one needs to study the residual
spectrum by computing the residues of Eisenstein series. It is noted that the
first exotic example of the residual spectrum of the split group G2, which
was discovered by Langlands and further studied later by Moeglin and Wald-
spurger, has been of significance to Arthur in formulating his conjectures.

There are two problems in calculating the residual spectrum. The first
problem is global. It is concerned with calculating the residues of the
Eisenstein series via the constant term of the Eisenstein series. Computing
residues of Eisenstein series is a very difficult problem and requires both the
knowledge of the poles of corresponding automorphic L-functions, as well as
handling very difficult computational combinatorics. These computations
are already highly non-trivial even for rank 2 split groups. For example, for
the split group G2, the Eisenstein series, built out of the maximal parabolic
subgroup attached to the long simple root, contains the third symmetric
power L-function of GL2. The precise location of the poles of the third sym-
metric power L-function was resolved only in the recent work of [Ki-Sh2]
(see the introduction of the paper for the long history). The Eisenstein series
built out of the minimal parabolic subgroups do not present a problem with
regards to poles of automorphic L-functions since the L-functions are Hecke
L-functions. However, in this case, cancelation of poles of the normalized
intertwining operators presents a problem. Even for Sp4 [Ki1], one has to
use a non-trivial fact on the subtle analysis of the normalized intertwining
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operators for SL2 due to Labesse-Langlands [L-La]. The second problem
is local. It is concerned with calculating the image of the normalized local
intertwining operators of the generalized principal series. While the unitary
principal series are well understood thanks to the Knapp-Stein R-group the-
ory, the generalized principal series are not. Moeglin’s result [M1] on the
unramified principal series of the split classical groups seems to be most
satisfactory so far.

At this moment, the most satisfying result about the residual spectrum
is due to Moeglin-Waldspurger [M-W2] who completely determined the
residual spectrum for GLn and Arthur [A2] gave the Arthur parameters for
them. Their result is that the residual spectrum for GLn is parametrized
by the cuspidal representations of GLm and the principal unipotent orbit
of GL n

m
(C), where m|n. As we observed, Arthur’s parameters require the

introduction of the hypothetical group LF . However, there are parts of it
that can be parametrized by our existing knowledge. This is the case in
particular, if the Eisenstein series is built out of minimal parabolics. In
this case, LF can be replaced by the global Weil group WF . Therefore, we
will restrict ourselves to the study of L2

dis (G(F )\G(A))(T,χ), where T is a
maximal split torus and χ is a unitary character of T .

WhenG is a split classical group and χ is trivial, Moeglin [M1] completely
solved the problem with the restriction that archimedean components are
spherical. In this case the Arthur parameter is given by

ψ : WF × SL2(C) 7−→ G∗,

where ψ|WF
= 1 and ψ|SL2(C) is determined by a distinguished unipotent

orbit of G∗. Recall that the Springer correspondence is an injective map
from the set of irreducible characters of W , the Weyl group, into the set
of pairs (O, η), where O is a unipotent orbit and η is an irreducible char-
acter of A(u) = C(u)/C(u)0, u ∈ O, where C(u) is the centralizer of u in
G∗. Let Springer (O) be the set of characters of A(u) which are in the im-
age of the Springer correspondence. Then Moeglin’s result is that the local
components of the residual spectrum are parametrized by the distinguished
unipotent orbits O of G∗ and Springer (O). Let Unip(O) be the set of the
local components of the residual spectrum. Then there is a pairing between
Unip(O) and Springer (O) which gives a desired Arthur’s multiplicity for-
mula (3.2).

Moeglin [M4] also constructed the local representations associated to the
remaining characters of A(u) which are NOT in Springer (O). These should
be local components of cuspidal representations. She [M5] obtained a partial
result on how to determine when π ∈ Πψ is a cuspidal representation. It
would be an important but a difficult problem. We note that Lusztig [Lu]
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has a theory of the generalized Springer correspondence which gives the
remaining characters of A(u).

In this paper, we will extend Moeglin’s result when χ is an arbitrary
unitary character of T . For simplicity, we will describe the result for G =
Sp2n. Because the result in [Ja-Ki] for Sp2n, O2n is not complete, our result
for Sp2n is not complete. This is due to the fact that Barbasch-Moy’s result
[B-Mo2] is not available for disconnected groups like O2n. However, we
obtain a complete result for SO2n+1. Nevertheless, the symplectic group
case will illustrate the technique and the heart of the matter.

As in [M1], we use G∗ = O2n+1(C) to denote its dual group. Let
µ1, . . . , µk be k distinct non-trivial quadratic grössencharacters of F . Fix
integers r1 ≥ · · · ≥ rk ≥ 2 and r0 so that r0 + r1 + · · · + rk = n. Then
χ = χ(µ1, . . . , µ1︸ ︷︷ ︸

r1

, . . . , µk, . . . , µk︸ ︷︷ ︸
rk

, 1, . . . , 1︸ ︷︷ ︸
r0

). We showed in [Ki-Sh] that only

the character of the above type contributes to the residual spectrum. The
character χ defines a homomorphism of the Weil group WF into a Cartan
subgroup of SO2n+1(C). Composing this homomorphism with the stan-
dard action of O2n+1(C) on C2n+1 will then give a completely reducible
representation of WF on C2n+1 which decomposes according to eigenval-
ues µ1, . . . , µk, and 1, with multiplicities 2r1, . . . , 2rk, and 2r0 + 1, respec-
tively. Write C2n+1 = V0 ⊕ V1 ⊕ . . . ⊕ Vk, where each Vi,dimVi = 2ri, is
the eigenspace attached to eigenvalue µi, 1 ≤ i ≤ k, and V0 is the triv-
ial eigenspace of dimension 2r0 + 1. In this way we get an embedding of
k∏
i=0

O(Vi) ⊂ O2n+1(C). For each i, 0 ≤ i ≤ k, let Oi be the distinguished

unipotent orbit of O(Vi). Then Arthur parameter of interest to us is a
homomorphism

ψ : WF × SL2(C) 7−→
k∏
i=0

O(Vi) ⊂ O2n+1(C),

satisfying,

(1) ψ|WF : w 7−→ 1 × µ1(w) × · · · × µk(w) ∈ {±1} × {±1} × · · · × {±1},
where {±1} is the center of O(Vi) for i = 0, . . . , k.

(2) By Jacobson-Morozov theorem, ψ|SL2(C) defines the unipotent orbit∏k
i=0Oi of G∗.

The unipotent orbits Oi determine, through the Jacobson–Morozov’s the-
orem, certain conjugacy class of unramified characters of T . Let λ0 =
λ1,0 + . . . + λk,0 + λ0,0 be the one in the positive Weyl chamber. To ψ,
Arthur associates a Langlands’ parameter φψ:

φψ : WF −−−→ O2n+1(C),
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where φψ(w) = ψ

(
w,

(
|w|

1
2 0

0 |w|−
1
2

))
. It is given by φψ = χ ⊗ exp〈λ0,

HB( )〉. Its non-tempered part is φ+
ψ = exp〈λ0,HB( )〉.

In [Ki-Sh], we studied the special case when Oi is the unipotent orbit
of the form (2ri − 1, 1) for i = 1, . . . , k and O0 is of the form (2r0 + 1).
This is the opposite of the trivial character case. In this case, we showed
that the local components of the residual spectrum in Πφψ are parametrized
by the Knapp-Stein R-group of the unitary principal series Iv = IndM

B0
χv,

where M is the Levi subgroup whose L-group is M∗ = Cent(imφ+
ψ , G

∗). We
note that M is of the form GLn1 ×· · ·×GLnk ×Sp2k. Keys-Shahidi pairing
[Ke-Sh] gives a desired multiplicity formula (3.2). We note that the method
of [Ki-Sh] can only prove “if” part in (3.2). We need the inner product of
pseudo-Eisenstein series to prove “if and only if.”

In general case, the Knapp-Stein R-groups are not enough. Our result is
that the local component of the residual spectrum Cres v is parametrized by
the unipotent orbits Oi, i = 0, . . . , k and [Springer (O0)×· · ·×Springer (Ok)],
where [ ] is defined as follows (see Theorem 6.2.2): If µ1v = µ2v 6= µiv for
i = 3, . . . , k, then we replace Springer (O1)× Springer (O2) by

C(O1, O2, µ1v) = {η ∈ Springer (O) : η|A(Oi) ∈ Springer (Oi), for i = 1, 2},

where O is a unipotent orbit of Sp(2(r1 + r2),C) by combining O1, O2. In
Section 6, we show that the calculation of the residues of the Eisenstein series
is reduced to that of the Eisenstein series of O2r1×· · ·×O2rk×Sp2r0 attached
to the trivial character. There remains a local problem of calculating the
image of the normalized local intertwining operators. This has been taken
care of by [Ja-Ki], under some assumptions that Barbasch-Moy’s result
[B-Mo2] holds for disconnected groupO2n. Therefore for symplectic groups,
the result is not complete. We review the result in Section 6.

In Section 3, we review quadratic unipotent Arthur parameters and
Moeglin’s reformulation of Arthur’s conjecture on the multiplicity formula.
In Section 4, we review Eisenstein series and pseudo-Eisenstein series in
the sense of [M-W1] attached to a character of a Borel subgroup. In Sec-
tion 7, we show how automorphic representations obtained by Kudla-Rallis
[Ku-Ra] by considering degenerate principal series, are fit as a special case.
In Section 8, we explain how the result in [Ki-Sh] is fit as a special case.
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guidance and encouragement this paper could not have been finished. We
would like to thank Prof. Moeglin for patiently answering many of our
questions [M5] and for many correspondences. We also thank Dr. Jantzen
for many discussions. Without his help on local questions [Ja-Ki], this
paper could not have been finished.
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1. Preliminaries.

Let F be a field and let G = SO2n+1, Sp2n or SO2n over F . Let Jn be the
n× n matrix given by

Jn =


1

1
.

.
.

1

 .

Let J ′2n =
(

Jn
−Jn

)
. Then

Sp(2n) =
{
g ∈ GL(2n)

∣∣ tgJ ′2ng = J ′2n
}
,

and
SO(n) =

{
g ∈ GL(n)

∣∣ tgJng = Jn; det(g) = 1
}
.

In each case we let T be the maximal split torus consisting of diagonal
matrices in G. Then

T (F ) =


t(l1, . . . , ln) =



l1
l2

. . .
ln

l−1
n

. . .
l−1
2

l−1
1



∣∣∣∣ li ∈ F ∗


,

if G = Sp(2n) or SO(2n), and

T (F ) =



t(l1, ..., ln) =



l1
l2

. . .
ln

1
l−1
n

. . .
l−1
2

l−1
1



∣∣∣∣ li ∈ F ∗


if G = SO(2n+ 1).

Let Φ(G,T ) be the roots of G with respect to T . We choose the ordering
on the roots so that the Borel subgroup B is the subgroup of upper triangular
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matrices in G. Let ∆ be the simple roots in Φ(G,T ) given by ∆ = {αj}nj=1 ,

with αj = ej − ej+1 for 1 ≤ j ≤ n− 1, and

αn =


en G = SO(2n+ 1),
2en G = Sp(2n),
en−1 + en G = SO(2n).

We let 〈, 〉 be the standard Euclidean inner product on Φ(G,T ). If Φ is a
root system of type Bn, Cn, or Dn, then we denote by G(Φ) the split group
with root system Φ.

For G = SO(2n+ 1) or Sp(2n), the Weyl group W (G/T ) ' Sn n Zn2 . Sn
acts by permutations on the λi, i = 1, . . . , n. We will use standard cycle
notation for the elements of Sn. Thus (ij) interchanges λi and λj . If ci is
the non-trivial element in the i-th copy of Z2 then ci takes λi to λ−1

i . The
element ci is called a sign change because its action on Φ(G,T ) takes ei to
−ei. For G = SO(2n), the Weyl group is given by W (G/T ) ' Sn n Zn−1

2 .
Sn acts by permutations on the λi, and Zn−1

2 acts by even numbers of sign
changes. The requirement that the number of sign changes be even comes
from the determinant condition in SO(2n). Note that the sign change ci
is an element of O(2n) and normalizes T (F ). Each ci acts on SO(2n) by
conjugation, and cn induces the non-trivial graph automorphism on the
Dynkin diagram of Φ(G,T ).

2. Unipotent orbits of classical groups over C.

Theory of Jordan normal forms implies that a unipotent matrix in GLN is
conjugate to J(p1)⊕J(p2)⊕· · ·⊕J(ps), p1 ≥ p2 ≥ · · · ≥ ps, p1+p2+· · ·+ps =
N , where J(p) is the p × p Jordan matrix with entries 1 just above the
diagonal and the diagonal and zero everywhere else. Therefore unipotent
classes in GLN are in 1 to 1 correspondence with partitions λ of N . We use
the following standard notation for λ: λ = (1r1 , 2r2 , 3r3 , . . . ), where rj is the
number of pi equal to j.

Let G be a classical group, of type Bn (O2n+1(C)), Cn (Sp2n(C)) or Dn

(O2n(C)). We start with the following facts:
(1) X,X ′ ∈ G are conjugate in G if and only if they are conjugate in

GLN , N = 2n+ 1 or 2n.
(2) Let X ∈ GLN be unipotent. Then X is conjugate to an element of G

if and only if ri is even for even i in the orthogonal case and for odd i
in the symplectic case.

Therefore for G = O2n+1(C), unipotent classes are in 1 to 1 correspondence
with partitions λ of 2n+ 1 such that ri is even for even i.

Let u be a unipotent element in G and let Su be its centralizer in G. Then
we have:
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(3) In the orthogonal case (resp. symplectic) case, Su/S◦u is k product of
Z/2Z, where k is the number of odd (resp. even) i such that ri > 0.

Here we note that for G = GLN (C), the centralizer ZG(S) is connected
for any subset S of G.

We say that a unipotent element u is distinguished if all maximal tori of
Cent (u,G) are contained in the center of G◦, the connected component of
the identity. This is equivalent to the fact that the unipotent orbit O of u
does not meet any proper Levi subgroup of G (Spaltenstein [Sp, p. 67]).
(I.e., if L is a Levi subgroup of a parabolic subgroup of G and u ∈ L for a
u ∈ O, then L◦ = G◦.) If G = O2n+1(C), then G◦ = SO2n+1(C) and G◦

has trivial center. By Carter [C], for G = O2n+1(C) or O2n(C), if u is a
unipotent element with Jordan blocks (1r1 , 2r2 , . . . ), then the reductive part
of the connected centralizer Cent(u,G)◦ is of type∏

i even

Cri/2 ×
∏

i odd , ri even

Dri/2 ×
∏

i odd , ri odd

B(ri−1)/2.

Therefore, O is a distinguished unipotent class if and only if it has Jordan
blocks (1r1 , 3r3 , 5r5 , . . . ), where ri = 0 or 1.

Jacobson-Morozov Theorem. Suppose u is a unipotent element in a
semi-simple algebraic group G. Then there exists a homomorphism φ :

SL2 7−→ G such that φ
(

1 1
0 1

)
= u.

Here, replacing φ by a conjugate underG, we can assume that φ
(
a 0
0 a−1

)
is in the closure of the positive Weyl chamber in the maximal torus. In
fact, by the theory of weighted Dynkin diagrams (cf. Section 5.6 of [C]),

φ

(
a 0
0 a−1

)
is uniquely determined by the unipotent orbit of u as follows

(Carter [C, p. 395]):
Suppose O has Jordan blocks (d1, d2, d3, . . . ). For each di, we take the set

of integers di − 1, di − 3, . . . , 3− di, 1− di. We then take the union of these
sets for all di and write this union as (ξ1, ξ2, ξ3, . . . ) with ξ1 ≥ ξ2 ≥ ξ3 ≥ . . . .
Then

(2.1) φ

(
a 0
0 a−1

)
= diag(aξ1 , aξ2 , aξ3 , . . . ).

Lemma ([B-V, Prop. 2.4]). Let u be a unipotent element and φ : SL2 7−→

G be a homomorphism such that φ
(

1 1
0 1

)
= u. Let Sφ = Cent(imφ,G) ⊂

Su = Cent(u,G) and Uu be the unipotent radical of Su. Then:

(1) Su = Sφ · Uu, a semi-direct product. Sφ is reductive.
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(2) The inclusion Sφ ⊂ Su induces an isomorphism between Sφ/S◦φZG and
Su/S

◦
uZG.

3. Quadratic unipotent Arthur parameters.

We follow Moeglin [M3]. Let F be a number field and let WF be the global
Weil group of F . Let G = Sp2n, SO2n+1, O2n and we can take the dual group
G∗ = O2n+1(C), Sp2n(C), O2n(C). An Arthur parameter is a homomorphism

ψ : WF × SL2(C) 7−→ G∗,

with the following properties: (The usual definition of Arthur parameter
uses Langlands’ hypothetical group LF instead of WF . But since we are
only dealing with Langlands’ quotients which come from principal series,
WF is enough.)

(1) ψ(WF ) is bounded and included in the set of semi-simple elements of
G∗.

(2) The restriction of ψ to SL2(C) is algebraic.
(3) Composing ψ|WF

with the determinant of G∗ gives a quadratic char-
acter of WF , denoted by detψ. We want detψ = 1.

We call an Arthur parameter quadratic unipotent if the following
condition is satisfied:

(4) ψ|WF
is trivial on the intersection of the kernels of the quadratic char-

acters of WF .
Because of conditions (1), and (4), the action of ψ(WF ) gives an orthog-

onal decomposition:

C2n+1,C2n = V1 ⊕ · · · ⊕ Vk ⊕ V0,

where dim V0 = 2r0 + 1 or 2r0, dim Vi = 2ri, 2r0 + 1 + 2r1 + · · · + 2rk =
2n + 1, 2n, r1 ≥ · · · ≥ rk and Vi is the eigenspace with eigenvalue µi. Here
µ1, . . . , µk are non-trivial distinct quadratic grössencharacters of F , viewed
as characters of WF , and dim Vi, i = 1, . . . , k, being even comes from con-
dition (3).

The parameter ψ factors through
∏k
i=0G

∗
i , where

G∗
i =

{
O(Vi), if G = Sp2n, O2n

Sp(Vi), if G = SO2n+1
:

ψ : WF × SL2(C) 7−→
k∏
i=0

G∗
i .

(1) WF is mapped into the product of centers of G∗
i

ψ|WF : w 7−→ 1× µ1(w)× · · · × µk(w) ∈ {±1} × {±1} × · · · × {±1},
where {±1} is the center of G∗

i , for i = 0, . . . , k.
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(2) By Jacobson-Morozov theorem, ψ|SL2(C) defines a unipotent orbit of
G∗ of the form

k∏
i=0

Oi,

where Oi is a unipotent orbit of G∗
i . Inside Oi we fix an element ui

such that

ψ

(
1 1
0 1

)
=

k∏
i=0

ui.

Let Sψ = Cent(imψ,G∗) and

Cψ = Sψ/S
◦
ψZG∗ .

We know that Sψ is a maximal reductive subgroup of
∏k
i=0 Cent (ui, G∗

i ).
Therefore S◦ψ = 1, i.e., Sψ is finite if and only if each ui is a distinguished
unipotent element inG∗

i . Especially, since O2(C) has no distinguished unipo-
tent element, we have:

Lemma. Let ψ be a quadratic unipotent Arthur parameter. Suppose S◦ψ = 1.
Then rk ≥ 2.

Now it is clear that Sψ/S◦ψZG∗ is equal to

Cent (u0, G
∗
0)/Cent (u0, G

∗
0)
◦ZG∗0

k∏
i=1

Cent (ui, G∗
i )/Cent (ui, G∗

i )
◦.

Here Cent (ui, G∗
i )/Cent (ui, G∗

i )
◦ is t product of Z/2Z, where t is the number

of i with ri > 0 in Jordan blocks.
For each place v of F , we have a map ψv = ψ|WFv×SL2(C). As in global

case, we can then define Sψv . But in the local case, µiv may not be distinct.
Suppose µ1v = µ2v 6= µiv for i = 3, . . . , k and µ1v 6= 1. Then in the above
formula,

Cent (u1, G
∗
1)/Cent (u1, G

∗
1)
◦ × Cent (u2, G

∗
2)/Cent (u2, G

∗
2)
◦

must be replaced by

Cent (u1 × u2, G
∗
12)/Cent (u1 × u2, G

∗
12)

◦,

where G∗
12 = O(V1⊕V2) or Sp(V1⊕V2). Now we recall Moeglin’s reformula-

tion of Arthur’s conjecture ([M3]): It is a part of local Arthur’s conjecture
that for each irreducible character ηv of Cψv , there exists an irreducible
representation π(ψv, ηv). For each v, let Πψv be the set of π(ψv, ηv).

We define the global Arthur packet Πψ to be the set of irreducible rep-
resentations π = ⊗vπv of G(A) such that for each v, πv belongs to Πψv .
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Arthur’s Conjecture (Global).
(1) The representations in the packet corresponding to ψ may occur in the

discrete spectrum if and only if Sψ is finite, i.e., S◦ψ = 1. We call such
an Arthur parameter elliptic.

(2) For an elliptic Arthur parameter ψ, any π ∈ Πψ occurs in L2
dis (G(F )\

G(A)) if and only if

(3.1)
∑
x∈Cψ

∏
v

ηv(xv) 6= 0,

where π = ⊗vπ(ψv, ηv), x = (xv). Note that, if Cψ is abelian, (3.1) is
equivalent to

(3.2)
∏
v

ηv|Cψ = 1,

when ψ|WF
is trivial.

We define

(3.3) L2(G(F )\G(A))ψ = Πψ ∩ L2
dis (G(F )\G(A)).

Remark 3.1. For split classical groups, Cψ is abelian and Moeglin [M2]
proved the multiplicity formula (3.2). However, in general, Cψ is not abelian.
For example, in the case of split exceptional group of type G2, Cψ can be
S3, the symmetric group on 3 letters. This fact leads to a “bizarre” multi-
plicity formula in Moeglin-Waldspurger’s work on the residual spectrum of
G2 [M-W1, Ki2].

Let Πres v be the subset of Πψv which consists of the local components of
the residual spectrum. It is of great importance to parametrize the elements
in Πres v and prove the multiplicity formula (3.1), i.e., we will construct a
set of characters Cres v ⊂ Ĉψv and each character of Cres v gives an element
in Πres v .

Remark 3.2. To any Arthur parameter ψ, Arthur associates a Langlands’
parameter φψ : WF 7−→ G∗ as follows:

φψ(w) = ψ

(
w,

(
|w|

1
2 0

0 |w|−
1
2

))
.

Let Sφψ = Cent (imφψ, G
∗) and Cφψ = Sφψ/S

◦
φψ
ZG∗ . For each place v, we

have Sφψv , Cφψv . For each v, there is a natural surjection Cψv → Cφψv . The
parameter φψv gives a L-packet Πφψv

which consists of Langlands’ quotients.
It is a part of Arthur’s original local conjecture that for each place v, there
is a pairing 〈 , 〉 on Cφψv × Πφψv

and an enlargement Πψv of Πφψv
which

allows an extension of 〈 , 〉 to Cψv × Πψv such that π ∈ Πφψv
⊂ Πψv if and

only if the function 〈 ,̇π〉 lies in the image of Ĉφψv in Ĉψv . Since Cψv is
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abelian in our case, giving a pairing between Cψv and Πψv is the same as
giving a character of Cψv .

Note that in the unipotent case (Moeglin’s case) where ψ|WF
is trivial,

Cφψ = 1. Therefore, Πφψv
consists of only one element, that is, the spherical

one. So there is no non-trivial extension to Πψv .

4. Eisenstein series attached to Borel subgroups.

Let α∨ be the coroot corresponding to α ∈ Φ+(G,T ). Explicitly, for α =
ei − ej , α∨(l) = t(1, . . . , l

i
, . . . , l−1

j
, . . . , 1) ∈ T (F ) for 1 ≤ i < j ≤ n. For

α = ei+ ej , α∨(l) = t(1, . . . , l
i
, . . . , l

j
, . . . , 1), for 1 ≤ i < j ≤ n. For α = 2ei,

α∨(l) = t(1, . . . , l
i
, . . . , 1) for 1 ≤ i ≤ n. Here dots represent 1.

Let X(T ) (resp. X∗(T )) be the character (resp. cocharacter) group of T .
There is a natural pairing 〈, 〉 : X(T ) ×X∗(T ) 7−→ Z. For α, β ∈ Φ(G,T ),
〈β, α∨〉 = 2(β, α)/(α, α), where ( , ) is the standard inner product in
Φ(G,T ). Let ωi = e1 + · · · + ei. Then ω1, . . . , ωn are the fundamental
weights of G with respect to (G,T ). (If G = Sp2n, since G is simply
connected, X(T ) = Zω1 + · · · + Zωn and X∗(T ) = Zσ∨1 + · · ·Zσ∨n .) Set
a∗ = X(T ) ⊗ R, a∗C = X(T ) ⊗ C, and a = X∗(T ) ⊗ R = Hom (X(T ),R),
aC = X∗(T )⊗ C. The positive Weyl chamber in a∗ is

C+ = {λ ∈ a∗|〈λ, α∨〉 > 0, for all α positive roots}

=

{
n∑
i=1

aiωi| ai > 0

}
.

We fix a non-trivial additive character ψF = ⊗vψFv of A/F and let
L(z, µ) be the Hecke L-function with the ordinary Γ-factor so that it satis-
fies the functional equation L(z, µ) = ε(z, µ)L(1 − z, µ−1), where ε(z, µ) =∏
v ε(z, µv, ψFv) is the usual ε-factor. If µ is the trivial character µ0, then

we write simply L(z) for L(z, µ0). We have the Laurent expansion of L(z)
at z = 1:

L(z) =
c(F )
z − 1

+ a+ · · · .

4.1. Definition of Eisenstein series. For µ1, . . . , µn grössencharacters of
F , we define a character χ = χ(µ1, . . . , µn) of T (A) by

χ(µ1, . . . , µn)(t(l1, . . . , ln)) = µ1(l1) · · ·µn(ln).
Let B = TU , where U is the unipotent radical. Let I(χ) be the space
of functions Φ on G(A) satisfying Φ(utg) = χ(t)Φ(g) for any u ∈ U(A),
t ∈ T (A) and g ∈ G(A). Then for each λ ∈ a∗C, the representation of G(A)
on the space of functions of the form

g 7−→ Φ(g) exp〈λ+ ρB,HB(g)〉, Φ ∈ I(χ),
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is equivalent to I(λ, χ) = Ind
B↑G

χ ⊗ exp(λ,HB( )). We form the Eisenstein

series:
E(g, f, λ) =

∑
γ∈B(F )\G(F )

f(γg),

where f = Φ e〈λ+ρB ,HB( )〉 ∈ I(λ, χ) and ρB is the half-sum of positive roots,
i.e., ρB = ω1 + · · · + ωn. It converges absolutely for Reλ ∈ C+ + ρB and
extends to a meromorphic function of λ. It is an automorphic form and the
constant term of E(g, f, λ) along B is given by

E0(g, f, λ) =
∫
U(F )\U(A)

E(ug, f, λ) du =
∑
w∈W

M(w, λ, χ)f(g),

where W is the Weyl group of T and

M(w, λ, χ)f(g) =
∫
wU(A)w−1∩U(A)\U(A)

f(w−1ug) du.

Then M(w, λ, χ) defines an intertwining map from I(λ, χ) to I(wλ,wχ) and
satisfies a functional equation of the form

M(w1w2, λ, χ) = M(w1, w2λ,w2χ)M(w2, λ, χ).

Let S be a finite set of places of F , including all the archimedean places
such that for every v /∈ S, χv, ψFv are unramified and if f = ⊗fv, for v /∈ S,
fv is the unique Kv-fixed function normalized by fv(ev) = 1. We have

M(w, λ, χ) = ⊗vA(w, λ, χv).

Then by applying Gindikin-Karpelevic method, we can see that for v /∈ S,

A(w, λ, χv)fv =
∏

α>0,wα<0

L(〈λ, α∨〉, χv ◦ α∨)
L(〈λ, α∨〉+ 1, χv ◦ α∨)

f̃v,

where f̃v is the Kv-fixed function in the space of I(wλ,wχ). For any v, let

rv(w) =
∏

α>0,wα<0

L(〈λ, α∨〉, χv ◦ α∨)
L(〈λ, α∨〉+ 1, χv ◦ α∨)ε(〈λ, α∨〉, χv ◦ α∨, ψFv)

.

We normalize the intertwining operators A(w, λ, χv) for all v by

A(w, λ, χv) = rv(w)R(w, λ, χv).

Let R(w, λ, χ) = ⊗vR(w, λ, χv) and

r(w) = Πvrv(w) =
∏

α>0,wα<0

L(〈λ, α∨〉, χ ◦ α∨)
L(〈λ, α∨〉+ 1, χ ◦ α∨)ε(〈λ, α∨〉, χ ◦ α∨)

.

Here R(w, λ, χ) satisfies the functional equation

R(w1w2, λ, χ) = R(w1, w2λ,w2χ)R(w2, λ, χ),
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for any w1, w2. We know, by Winarsky [W] for p-adic cases and Shahidi
[Sh3, p. 110] for real and complex cases, that

(4.1) A(w, λ, χv)
∏

α>0,wα<0

Lv(〈λ, α∨〉, χv ◦ α∨)−1

is holomorphic for any v. So for any v, R(w, λ, χv) is holomorphic for λ with
Re(〈λ, α∨〉) > −1, for all positive α with wα < 0. For χ = χ(µ1, . . . , µn),

χ ◦ α∨ =


µiµ

−1
j , for α = ei − ej

µiµj , for α = ei + ej and i < j

µi, for α = 2ei
µ2
i , for α = ei.

For α ∈ Φ+, let Sα = {λ ∈ a∗C|〈λ, α∨〉 = 1}. We call Sα a singular
hyperplane. We say that E(g, f, λ) has a pole of order n at λ0 if λ0 is
the intersection of n singular hyperplanes in general position on which the
Eisenstein series has a simple pole.

For Ψ ⊂ Φ+, we define r(w, λ,Ψ) by

r(w, λ,Ψ) =
∏

α∈Ψ,wα<0

L(〈λ, α∨〉, χ ◦ α∨)
L(〈λ, α∨〉+ 1, χ ◦ α∨)ε(〈λ, α∨〉, χ ◦ α∨)

.

Observe that we have suppressed the dependence of r(w, λ,Ψ) on χ.

4.2. Definition of pseudo-Eisenstein series. We follow Moeglin [M1]
and introduce pseudo-Eisenstein series. For T a maximal torus, a character
χ of T (A)/T (F ) defines a cuspidal representation of T . For any w ∈ W ,
wTw−1 = T and so (T,wχ) is conjugate to (T, χ). Let I(χ) be the set of
entire functions φ of Paley-Wiener type such that φ(λ) ∈ I(λ, χ) for each λ.
Let

θφ(g) =
(

1
2πi

)n ∫
Reλ=λ0

E(g, φ(λ), λ) dλ,

where λ0 ∈ ρB + C+. Let

L2(G(F )\G(A))(T,χ),

be the space spanned by θφ for all φ ∈ I(wχ) as wχ runs through all dis-
tinct conjugates of χ. Let L2

dis (G(F )\G(A))(T,χ) be the discrete part of
L2(G(F )\G(A))(T,χ). It is the set of iterated residues of E(g, φ(λ), λ) of or-
der n and the residual spectrum attached to (T, χ). In order to decompose
L2

dis (G(F )\G(A))(T,χ), we use the inner product formula of two pseudo-
Eisenstein series: Let χ and χ′ be conjugate characters and φ ∈ I(χ),
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φ′ ∈ I(χ′). Then

〈θφ, θφ′〉 =
1

(2πi)n

∫
Reλ=λ0

∑
w∈W (χ,χ′)

(M(w−1,−wλ,wχ)φ′(−wλ), φ(λ)) dλ

=
1

(2πi)n

∫
Reλ=λ0

∑
w∈W (χ,χ′)

(M(w, λ, χ)φ(λ), φ′(−wλ)) dλ,

where W (χ, χ′) = {w ∈ W |wχ = χ′}. We can assume, after conjugation,
χ = χ(µ1, . . . , µ1︸ ︷︷ ︸

r1

, . . . , µk, . . . , µk︸ ︷︷ ︸
rk

, 1, . . . , 1︸ ︷︷ ︸
r0

), r0 + · · · + rk = n, r1 ≥ · · · ≥ rk,

where µi’s are non-trivial distinct quadratic grössencharacters. Let D be
the set of distinguished coset representatives in Proposition 6.2.2. Then
{dχ| d ∈ D} is the set of distinct conjugates of χ.

Following Moeglin [M1], we consider the constant term of the pseudo-
Eisenstein series:

EPS0 (φ, λ, χ) =
∑
w∈W

M(w−1, wλ,wχ)φ(wλ).

Here
∑

w∈W M(w−1, wλ,wχ)φ(wλ) signifies

∑
d∈D

 ∑
w∈W (χ,dχ)

M(w−1, wλ,wχ)φd(wλ)

 ,

where φd ∈ I(dχ). Here M(w−1, wλ,wχ) = r(w−1, wλ,wχ)R(w−1, wλ,wχ).
We show the following:

Lemma 4.1. (1) r(w, λ, χ) = r(w, λ, χ),
(2) r(w−1, wλ,wχ) = r(w,−λ, χ−1).

Proof. (1) is immediate. We note that if χ = χ(µ1, . . . , µn), then χ−1 =
χ(µ−1

1 , . . . , µ−1
n ). Then

r(w−1, wλ,wχ) =
∏

α>0,w−1α<0

L(〈wλ, α∨〉, (wχ) ◦ α∨)
L(〈wλ, α∨〉+ 1, (wχ) ◦ α∨)

.

Let γ = −w−1α. Then {α > 0|w−1α < 0} = −{γ > 0|wγ < 0}.
If α = ei ± ej , 〈wλ, α∨〉 = (wλ, α) = (λ,w−1α) = −(λ, γ) = −〈λ, γ∨〉.

If α = 2ei, then 〈wλ, α∨〉 = 1
2(wλ, α) = 1

2(λ,w−1α) = −〈λ, γ∨〉. Also we
can see that wχ ◦ (wα)∨ = χ ◦ α∨. Therefore, (wχ) ◦ α∨ = χ ◦ (w−1α)∨ =
χ ◦ (−γ)∨ = χ−1 ◦ γ∨. Hence (2) follows.

If χ is a quadratic character, i.e., χ−1 = χ, then

EPS0 (φ, λ, χ) =
∑
w∈W

r(w,−λ, χ)R(w−1, wλ,wχ)φ(wλ).
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Even though Moeglin completely analyzed the continuous spectrum as
well, we will only be interested in the discrete spectrum. Let 〈, 〉dis be the in-
ner product on L2

dis (G(F )\G(A))(T,χ). The discrete spectrum is spanned by
the square integrable iterated residues of order n of EPS0 (φ, λ, χ). More pre-
cisely, EPS0 (φ, λ, χ) has a simple pole on n singular hyperplanes H1, . . . , Hn

which are the poles of the L-functions in the numerator of the normalizing
factor and whose intersection is λ0. Then we have to take iterated residue
at H1,H1 ∩H2, . . . , H1 ∩ · · · ∩Hn.

Let us summarize Moeglin’s arguments. Here χ = 1 and we suppress it:
Moeglin showed that only the points λp, where p ∈ P (O) and O is a dis-
tinguished unipotent orbit (see Section 5), contribute the square integrable
residues. She also found n singular hyperplanes H1, . . . , Hn whose intersec-
tion is λp. In order to take the iterated residue at H1,H1 ∩ H2, . . . , H1 ∩
· · · ∩ Hn, Moeglin defined the following function, for a certain Weyl group
element wp,

lp(φ, λ) =
∑
w∈W

r(w,−λ)R(wpw
−1, wλ)φ(wλ).

Poles of lp(φ, λ) in a neighborhood of λp are contained in the local inter-
twining operators. She showed that lp(φ, λp) can be defined inductively by
restricting lp(φ, λ) to H1,H1∩H2, . . . , H1∩· · ·∩Hn. lp(φ, λp) is the iterated
residue of EPS0 (φ, λ) and spans the residual spectrum L2

dis (G(F )\G(A))(T,1).
lp(φ, λp) belongs to ⊗′

vRv(wp, λp)Iv(λp). She analyzed the image of the lo-
cal intertwining operator Rv(wp, λp)Iv(λp) and verified Arthur’s multiplicity
formula. We will review her result in detail in Section 5.

In Section 6, we calculate the constant term of the pseudo-Eisenstein
series for a general χ and show that we can reduce the calculation of the
poles to that of the trivial character case and apply Moeglin’s result.

5. The trivial character case; summary of Moeglin’s result.

Moeglin [M1] completely analyzed the residual spectrum of Sp2n, SO2n+1

and split O2n, attached to the trivial character of the maximal torus. Her
results also completely describe continuous spectrum. Her results are that
the residual spectrum of split classical groups attached to the trivial char-
acter of the maximal torus is parametrized by distinguished unipotent or-
bits O in G∗ and Springer (O), which is a set of characters of A(u) which
are in the image of the Springer correspondence and A(u) = C(u)/C(u)0,
C(u) = Cent (u,G∗), u ∈ O. Recall that the Springer correspondence is an
injective map from the set of irreducible characters of W , the Weyl group,
into the set of pairs (O, η), where O is a unipotent orbit and η is an irre-
ducible character of A(u). We refer [Ja-Ki] for the review of her results.
We just remark that since we are only interested in discrete spectrum, we
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need to consider distinguished unipotent orbits, i.e., r = 0. In that case we
get an explicit order of the set Springer (O).

Lemma 5.1. If O = (q1, ..., qs) is a distinguished unipotent orbit in O2n(C)
or O2n+1(C) (thus qi odd ), then

|Springer (O)| = sC[ s
2
].

Proof. Let Symb (O) = (a1, . . . , as) (see [M1, p. 663]), where ai = [ qi2 ] + i.
We note that ai ≤ ai+1− 2 for all i. (If we set qi = 2ri+1, qi+1 = 2ri+1 +1,
ri < ri+1, then ai = ri + i and ai+1 = ri+1 + i+ 1.)

Let S = (a′1, . . . , a
′
s) be a class of Symb (O). Then it satisfies: (a′1, . . . , a

′
s)

coincides with Symb (O) and a′i ≤ a′i+2−2 for i = 1, . . . , s−2. For such class
S, define η, a character of A(O) by: η(σ(qi)) = 1 if and only if {j : a′j = ai}
contains an element which has the same parity as i. Then it defines a
bijection between classes of Symb (O) and Springer (O). It is clear that the
number of classes of Symb (O) is sC[ s

2
].

If s is odd, let s = 2r + 1. Then sC[ s
2
] = 2r+1Cr ∼ 2 22r

√
πr

.
We interpret Moeglin’s results in terms of Arthur’s parameters:

Theorem 5.2 (Moeglin). Let G = Sp2n, SO2n+1, O2n. Then the residual
spectrum of G attached to the trivial character of the torus is parametrized
by unipotent Arthur parameters

ψ : SL2(C) 7−→ G∗,

which are given by distinguished unipotent orbits in G∗= O2n+1(C), Sp2n(C),
O2n(C). More specifically, for O a distinguished unipotent orbit, let Cres =
Springer (O) ⊂ Cψv and Πres = Unipv(O) ⊂ Πψv for all finite places. For
each X ∈ Πres , there is a character ηX ∈ Springer (O) and it satisfies
Arthur’s conjecture. i.e.,

L2
dis (G(F )\G(A))(T,1) ∩ L2(G(F )\G(A))ψ,

is the set of π = ⊗′
vXv, where Xv satisfies the following conditions:

(1) There exists p ∈ P (O) such that Xv ∈ Unipv(p) for all v, i.e., ηX
factors through A(p).

(2) Xv is spherical for almost all v and archimedean places.
(3)

∏
v ηXv is trivial on A(O).

6. Arbitrary character case.

We first do the simple case to explain our method.
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6.1. The case G = Sp2n and χ = χ(µ, . . . , µ), µ non-trivial and qua-
dratic grössencharacter. Let Φ1 = {ei ± ej , 1 ≤ i < j ≤ n} and
Φ2 = {2ei, i = 1, . . . , n}. Then for α ∈ Φ1, χ ◦ α∨ = 1 and for α ∈ Φ2,
χ◦α∨ is non-trivial. Then the constant term of the pseudo-Eisenstein series
is given by

EPS0 (λ, φ, χ) =
∑
w∈W

r(w,−λ, χ)R(w−1, wλ,wχ)φ(wλ)

=
∑
w∈W

r(w,−λ,Φ1)r(w,−λ,Φ2)R(w−1, wλ,wχ)φ(wλ).

We note that for f ∈ IndO2n
B exp(λ,HB( )),

EPS0 (λ, f) =
∑
w∈W

r(w,−λ,Φ1)R(w−1, wλ)f(wλ),

is a pseudo-Eisenstein series for O2n attached to the trivial character of
the maximal torus. Since χ ◦ α∨ is non-trivial for α ∈ Φ2, r(w,−λ,Φ2) is
holomorphic.

Let O be a distinguished unipotent orbit in O2n(C) and p ∈ P (O). Let,
for φ ∈ PW ,

lp(λ, φ, χ) =
∑
w∈W

r(w,−λ, χ)R(wpw
−1, wλ,wχ)φ(wλ).

Since r(w,−λ,Φ1) is identically zero on V ′(p) if w /∈W (↑, p), the restric-
tion of lp(λ, φ, χ) to V ′(p) is given by

lp(φ, λ, χ)|V ′(p) =
∑

w∈W (↑,p)

r(w,−λ,Φ1)r(w,−λ,Φ2)R(wpw
−1, wλ,wχ)φ(wλ).

By the definition of W (↑, p), the poles of lp(φ, λ, χ)|V ′(p) is contained in
r(w,−λ,Φ1). Therefore we apply Moeglin’s global result for O2n in the
trivial character case, i.e.,

〈θφ′ , θφ〉dis =
∑

O⊂O2n(C)

∑
p∈P (O)

cp〈〈l′[p](φ
′, λp, χ), l[p](φ, λp, χ)〉〉.

We have
lp(φ, λp, χ) ∈ ⊗′

vRv(wp, λp, χ)I(λp, χv).
From [Ja-Ki], we summarize the result on the image of the local intertwining
operator Rv(wp, λp, χ)I(λp, χv).

Theorem 6.1.1 (Theorem 3.4.7 of [Ja-Ki]). Let O be a distinguished uni-
potent orbit in O2n(C) and p ∈ P (O). Then Rv(wp, λp, χ)I(λp, χv) is semi-
simple. Let Unip(p, µv) be the set of direct summands and Unip(O,µv) be
the set of union of Unip(p, µv). Then for each X ∈ Unip(O,µv), there is a
character ηX ∈ A(O) such that:

(1) If µv 6= 1, then C(O,µv) = {ηX |X ∈ Unip(O,µv)} = Springer (O).
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(2) If µv = 1, then

C(O,µv) = {ηX |X ∈ Unip(O,µv)}

=

{
Springer (O), if O does not contain 1
Springer (O′), if O contains 1,

where O′ = O − {1}.

So we have:

Theorem 6.1.2. Let χ = χ(µ, . . . , µ), µ non-trivial quadratic grössencha-
racter. Then the residual spectrum attached to χ is parametrized by the dis-
tinguished unipotent orbits in O2n. More specifically, a distinguished unipo-
tent orbit O ∈ O2n(C) and χ give a quadratic unipotent Arthur parameter ψ
and let Cres v = C(O,µv) ⊂ Cψv and Πres v = Unip(O,µv) ⊂ Πψv for all non-
archimedean places. For each X ∈ Πres v , there is a character ηX ∈ Cres v

and it satisfies Arthur’s conjecture, i.e.,

L2
dis (G(F )\G(A))(T,χ) ∩ L2(G(F )\G(A))ψ,

is the set of π = ⊗′
vXv, where Xv satisfies the following conditions:

(1) There exists p ∈ P (O) such that Xv ∈ Unipv(p, µv) for all v.
(2) Xv is spherical for almost all v and archimedean places.
(3)

∏
v ηXv is trivial on Cψ.

6.2. General case. For χ a non-trivial character, we can assume, after
conjugation, that χ = χ(µ1, . . . , µ1︸ ︷︷ ︸

r1

, . . . , µk, . . . , µk︸ ︷︷ ︸
rk

, 1, . . . , 1︸ ︷︷ ︸
r0

), r0+· · ·+rk = n,

r1 ≥ · · · ≥ rk. We use the following notation throughout this section:

(1) If G = Sp(2n), G′ = G′
1 × · · · × G′

k × G′
0, where G′

i = O(2ri) for
i = 1, . . . , k, G′

0 = Sp(2r0). Also we denote G∗
i = O(2ri,C) for i =

1, . . . , k, G∗
0 = O(2r0 + 1,C).

(2) If G = SO(2n+ 1), G′ = G′
1 × · · · ×G′

k ×G′
0, where G′

i = SO(2ri + 1)
for i = 1, . . . , k, G′

0 = SO(2r0 + 1). Also we denote G∗
i = Sp(2ri,C)

for i = 1, . . . , k, G∗
0 = Sp(2r0,C).

(3) If G = O(2n), G′ = G′
1 × · · · × G′

k × G′
0, where G′

i = O(2ri) for
i = 1, . . . , k, G′

0 = O(2r0). Also we denote G∗
i = O(2ri,C) for i =

1, . . . , k, G∗
0 = O(2r0,C).

We recall some basic facts from [Ki-Sh]. Let E(g, φ, λ) be the Eisenstein
series associated to the character χ.

Proposition 6.2.1. The Eisenstein series has a pole of order n only if
rk ≥ 2 and µi is a quadratic grössencharacter for i = 1, . . . , k.
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We divide the set of positive roots Φ+ as follows:

Φ1 = {ei ± ej , 1 ≤ i < j ≤ r1},
Φ2 = {er1+i ± er1+j , 1 ≤ i < j ≤ r2},

...

Φk = {er1+···+rk−1+i ± er1+···+rk−1+j , 1 ≤ i < j ≤ rk},
Φ0 = {er1+···+rk+i ± er1+···+rk+j , 1 ≤ i < j ≤ r0,

2er1+···+rk+i, i = 1, . . . , r0},

ΦD = Φ+ −
k⋃
i=0

Φk.

We note that the above is for G = Sp2n. If G = SO2n+1, we need to
add, to Φi, er1+···+ri−1+j , j = 1, . . . , ri, for i = 1, . . . , k and in Φ0,
2er1+···+rk+i should be er1+···+rk+i. If G = O2n, then Φ0 does not have
the roots 2er1+···+rk+i, i = 1, . . . , r0.

Φ1, . . . ,Φk are root systems of type Dn and Φ0 is a root system of type
Cn. This corresponds to the decomposition O(V1)× · · · ×O(Vk)×O(V0) ⊂
O2n+1(C).

Let W̃i be the Weyl group corresponding to Φi for i = 1, . . . , k and Wi

be the Weyl group of OVi for i = 0, . . . , k. Then Wi = W̃icr1+···+ri for
i = 1, . . . , k. Then we have W (χ, χ) = W1 × · · · ×Wk ×W0. Let λ = λ1 +
· · ·+λk+λ0, where λi = ar1+···+ri−1+1er1+···+ri−1+1 + · · ·+ar1+···+rier1+···+ri
for i = 1, . . . , k and λ0 = ar1+···+rk+1er1+···+rk+1 + · · ·+ anen.

We recall the following well-known result. (Carter [C].)

Proposition 6.2.2. Let ∆ be a set of simple roots and W be the associated
Weyl group. Let wα be the simple reflection with respect to α ∈ ∆. Then W
is generated by the wα, α ∈ ∆. Let θ be a subset of ∆ and Wθ be the subgroup
of W generated by the wα, α ∈ θ. Then each coset wWθ has a unique element
dθ characterized by any of the following equivalent properties:

(1) dθθ > 0.
(2) dθ is of minimal length in wWθ.
(3) For any x ∈Wθ, l(dθx) = l(dθ) + l(x).

We apply Proposition 6.2.2 to ∆ = {e1 − e2, . . . , en−1 − en} and θ =
∆ − {er1 − er1+1, er1+r2 − er1+r2+1, . . . , er1+···+rk − er1+···+rk+1}. Let D be
the set of such distinguished coset representatives. Then for d ∈ D,wi ∈Wi,
i = 0, . . . , k, we have

{α > 0 : dw1 · · ·wkw0α < 0}

= ∪ki=0{α ∈ Φi : wiα < 0} ∪ {α ∈ ΦD : dw1 · · ·wkw0α < 0}.
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Then the constant term of pseudo-Eisenstein series is given by

EPS0 (φ, λ, χ) =
∑
w∈W

r(w,−λ, χ)R(w−1, wλ,wχ)φ(wλ)

=
k∏
i=0

∑
wi∈Wi

r(wi,−λi,Φi)

·

(∑
d∈D

r(dw1 . . . wkw0,−λ,ΦD)R(w−1
0 w−1

k · · ·w−1
1 d−1,

dw1 · · ·wkw0λ, dχ)φ(dw1 · · ·wkw0λ)

)
.

We note that w1 · · ·wkχ = χ. Recall that

EPS0 (φ, λ, χ) =
∑
w∈W

r(w,−λ, χ)R(w−1, wλ,wχ)φ(wλ),

actually means

∑
d∈D

 ∑
w∈W (χ,dχ)

r(w,−λ, χ)R(w−1, wλ,wχ)φd(wλ)

 ,

where φd ∈ I(dχ). By the cocycle relation, we have

R(w−1
0 w−1

k · · ·w−1
1 d−1, dw1 · · ·wkw0λ, dχ)

= R(w−1
0 w−1

k · · ·w−1
1 , w1 · · ·wkw0λ, χ)R(d−1, dw1 · · ·wkw0λ, dχ).

Let

f(w1 · · ·wkw0λ) =
∑
d∈D

r(dw1 · · ·wkw0,−λ,ΦD)

R(d−1, dw1 · · ·wkw0λ, dχ)φ(dw1 · · ·wkw0λ).

Then we have

EPS0 (φ, λ, χ) =
k∏
i=0

∑
wi∈Wi

r(wi,−λi,Φi)

R(w−1
0 w−1

k · · ·w−1
1 d−1, dw1 · · ·wkw0λ, dχ)f(w1 · · ·wkw0λ).

We note that it has the same normalizing factors as the Eisenstein series of
O2r1 , . . . , O2rk and Sp2r0 attached to the trivial character. Let Oi’s be dis-
tinguished unipotent orbits in O2ri(C) for i = 1, . . . , k and O0 in O2r0+1(C).
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Let pi ∈ P (Oi) for i = 0, . . . , k and p = p0 × · · · × pk. Let

lp(φ, λ, χ) =
k∏
i=0

∑
wi∈Wi

r(wi,−λi,Φi)

·R(wpw
−1
k · · ·w−1

0 , w0 · · ·wkλ, χ)f(w0 · · ·wkλ).

Here wp = wp0 · · ·wpk . Since r(wi,−λi,Φi) is identically zero on V ′(pi) if
wi /∈ W (↑, pi), the restriction of lp(φ, λ, χ) to V ′(p) = V ′(p0)× · · · × V ′(pk)
is given by

lp(φ, λ, χ)|V ′(p) =
k∏
i=0

∑
wi∈W (↑,pi)

r(wi,−λi,Φi)

·R(wpw
−1
k · · ·w−1

0 , w0 · · ·wkλ, χ)f(w0 · · ·wkλ).

We note that f(w0 · · ·wkλ) is holomorphic on V ′(p). We apply Moeglin’s
results and define lp(φ, λp, χ) inductively. But the order of induction will
matter. Among V ′(pi)’s, we can shuffle the segments. By shuffling, we mean
the following:

Let p1 = (; q1, . . . , qs) and p2 = (; q′1, . . . , q
′
t) be two chains. By shuffling

of p1 × p2, we mean any permutation on segments so that (1) (q1, q2), . . . ,
(q2[ s−1

2
]−1, q2[ s−1

2
]) appear in that order and (2) (q′1, q

′
2), . . . , (q

′
2[ t−1

2
]−1
, q′

2[ t−1
2

]
)

appear in that order.
Take a shuffling of segments in such a way that it satisfies a certain condi-

tion (see [Ja-Ki, (3.1)]) to produce a maximum number of components, i.e.,
a condition on the non-vanishing of the normalized intertwining operators.

This amounts to starting with a conjugate of χ. If there is no confusion,
we will still write it as χ. Then

〈θφ′ , θφ〉dis =
k∑
i=0

∑
Oi

∑
p

cp〈〈l′[p](φ
′, λp, χ), l[p](φ, λp, χ)〉〉,

where Oi runs through distinguished unipotent orbits in O2ri(C) for i =
1, . . . , k and O2r0+1(C) for i = 0. p = p0 × · · · × pk ∈ P (O0)× · · · × P (Ok).
We have

l[p](φ, λp, χ) ∈ ⊗′
vRv(wp, λp, χ)Iv(λp, χv).

We recall the local result on the image of intertwining operatorsRv(wp, λp,
χ)Iv(λp, χv) from [Ja-Ki]: Let Unip(p, χv) be the set of direct summands
of Rv(wp, λp, χ)Iv(λp, χv) and Unip(O1, . . . , Ok, O0, χv) be the set of union
of Unip(p, χv) as pi runs through P (Oi) for i = 0, . . . , k.

Theorem 6.2.1 (Theorem 3.4.10 of [Ja-Ki]). Πres v = Unip(O1, . . . , Ok,
O0, χv) is parametrized by

C(O1, . . . , Ok, O0, χv) = [Springer (O1)×· · ·×Springer (Ok)×Springer (O0)],
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where [ ] is defined as follows: If µ1v = µ2v 6= µiv for i = 0, 3, . . . , k, then
we replace Springer (O1)× Springer (O2) by

C(O1, O2, µ1v) = {η ∈ Springer (O) : η|A(Oi) ∈ Springer (Oi), for i = 1, 2},

where O is the unipotent orbit of G∗
12 obtained by combining O1, O2, where

G∗
12 =

{
O(2(r1 + r2),C), if G = Sp(2n), O(2n)
Sp(2(r1 + r2),C), if G = SO(2n+ 1).

Therefore we have:

Theorem 6.2.2. Let χ = χ(µ1, . . . , µ1︸ ︷︷ ︸
r1

, . . . , µk, . . . , µk︸ ︷︷ ︸
rk

, 1, . . . , 1︸ ︷︷ ︸
r0

), r0 + · · · +

rk = n, r1 ≥ · · · ≥ rk, where µi’s are non-trivial distinct quadratic grössen-
characters. Then the residual spectrum attached to the conjugacy class
of (T, χ) is parametrized by the distinguished unipotent orbits in O2ri(C),
i = 1, . . . , k and O2r0+1(C). More specifically, distinguished unipotent or-
bits Oi ∈ O2ri(C), i = 1, . . . , k and O0 ∈ O2r0+1(C) and χ give a qua-
dratic unipotent Arthur parameter ψ and let Cres v = [Springer (O1)× · · · ×
Springer (Ok)×Springer(O0)] ⊂ Cψv and Πres v = Unip(O1, . . . , Ok, O0, χv)
⊂ Πψv for all non-archimedean places. For each X ∈ Πres v , there is a
character ηX ∈ Cresv and it satisfies Arthur’s conjecture. i.e.,

L2
dis (G(F )\G(A))(T,χ) ∩ L2(G(F )\G(A))ψ,

is the set of π = ⊗′
vXv, where Xv satisfies the following conditions:

(1) There exists pi ∈ P (Oi), i = 0, . . . , k such that Xv ∈ Unipv(p1, . . . , pk,
p0, χv) for all v.

(2) Xv is spherical for almost all v and archimedean places.
(3)

∏
v ηXv is trivial on Cψ.

7. Relation to Kudla-Rallis example [Ku-Ra].

7.1. Trivial character case. Let G = Sp2n and P = MN be the Siegel
parabolic subgroup so that M = GLn. Consider the degenerate principal
series I(s, χ) = IndG

P χ ⊗ exp(s,HP ( )), where χ is a trivial character of
GLn. Let E(s, f, P ) be the Eisenstein series attached f ∈ I(s, χ).

Then Kudla-Rallis [Ku-Ra] showed the following:

Theorem ([Ku-Ra]).

(1) E(s, f, P ) has a simple pole at s = {0̂, . . . , ρn − 2, ρn − 1, ρn}, where
ρn = n+1

2 and 0̂ means that 0 is omitted in the case when n is odd.
(2) The residue at s = ρn is constant.
(3) The residue at s = ρn − 1 is not square integrable.
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(4) The residue at si = ρn − i is the direct sum ⊕Rn(Q), where the direct
sum ranges over all classes of quadratic forms Q with dim Q = n +
1− 2si and χQ = 1. Here Rn(Q) is obtained by theta correspondence,
first by local construction and then by being put together. In this case
the Hasse invariant χQ = 1 controls the obstruction to the existence of
the global quadratic space.

Let O = (q1, q2, 1), q1 > q2 > 1, q1+q2 = 2n, be a distinguished unipotent
orbit in O2n+1(C). There are two inequivalent ordered partitions in P (O),
namely, p1 = (; q1, q2, 1) and p2 = (; q2, 1, q1). We show:

Proposition 7.1. The representations ⊕Rn(Q) are exactly those correspo-
nding to p1, i.e., l[p1](φ, λp1) for φ ∈ PW . (See Section 5).

Proof. In this case, in Moeglin’s notation in Section 5, λp1 = (λ1, . . . , λn),
where λt = q1+1

2 − t, 1 ≤ t ≤ q1+q2
2 . wp1(t) = −t for 1 ≤ t ≤ q1−q2

2 and
wp1(

q1−q2
2 + t) = n + 1 − t for 1 ≤ t ≤ q2. We know that Sp1 = {α >

0|wp1α < 0, 〈λp1 , α
∨〉 = 1} has n elements. But we can see easily that Sp1

contains ei − ei+1 for i = 1, . . . , n − 1. This means that since the simple
roots ei − ei+1 for i = 1, . . . , n− 1, generate the Siegel parabolic subgroup,
the iterated residue of the Eisenstein series on the singular hyperplanes
ei − ei+1 = 1, i = 1, . . . , n − 1, is exactly the Eisenstein series attached to
the trivial character of the Siegel parabolic subgroup, which Kudla-Rallis
considered.

The square integrable residues at s = {0̂, . . . , ρn − 2} exactly correspond
to the partitions (q1, q2), q1 + q2 = 2n, q1 > q2 > 1 (si = ρn − i corresponds
to (2n− 2i+ 1, 2i− 1)).

Since l[p1](φ, λp1) ∈ ⊗′
vRv(wp1 , λp1)Iv(λp1), the local component of Rn(Q)

is the direct summand of the image of the intertwining operator Rv(wp1 ,
λp1)Iv(λp1) which is a sum of two irreducible representations. We note that
Rv(wp1 , λp1)Iv(λp1) is the subrepresentation of IndG

GLn
|det |−

q1−q2
4 . Jantzen

[Ja3] gave their Langlands’ data.

Theorem ([Ja3, Prop 3.10]). Rv(wp1 , λp1)Iv(λp1) = π1 ⊕ π2. Here π1 is a
spherical representation which is the Langlands’ quotient of IndG

M λO × π,
where λO is the conjugate of λp which is in the closure of the positive Weyl
chamber and M = Cent (λO, G∗) = F×× · · ·×F××GL2× · · ·×GL2×SL2

and π = Ind SL2
B 1 is an irreducible representation of SL2. And π2 is the

Langlands’ quotient of

IndG
M | |

q1−1
2 × · · · × | |

q2+1
2 × | |

q2−1
2 × | |

q2−1
2 × · · · × | |2 × | |2 × | |1 × T ,

where M = F× × · · · ×F×× Sp4 and T is the unique (irreducible) common
component of Ind Sp4

GL2
|det |

1
2 and Ind Sp4

F××SL2
1 × StSL2. Here StSL2 is the

Steinberg representation of SL2. We note that T is tempered.
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Let Unip(p1) = {π1, π2}. Then Proposition 7.1 can be rephrased as fol-
lows:

Proposition 7.2. The representations ⊕Rn(Q) are the set of π = ⊗′
vXv

which satisfies: (a) Xv ∈ Unip(p1) for all v (b) Xv is spherical almost
everywhere (c)

∏
v χXv = 1, where χXv is defined in Section 5.

But the non-degenerate Eisenstein series attached to the trivial character
of the maximal torus has more residues. We need to consider p2 ∈ P (O).
In this case λp2 = (λ1, . . . , λn), where λt = q2+1

2 − t for 1 ≤ t ≤ q2+1
2 and

λ
t+

q2+1
2

= q1+1
2 − t for 1 ≤ t ≤ q1

2 . wp2(t) = −t for all t except t = q2+1
2 .

Then

Rv(wp2 , λp2)Iv(λp2) ⊂ IndGL q2+1
2

×Spq1−1 |det |−
q2−1

4 × tr.

We have Rv(wp2 , λp2)Iv(λp2) = π1 ⊕ π3.

Theorem ([Ja3]). π3 is the Langlands’ quotient of

Ind F×···×F××GL2×···×GL2
| |

q1−1
2 × · · · × | |

q2+3
2 × | |

q2
2 σ × · · · × | |

1
2σ,

where σ is the unique quotient of IndGL2

F××F× | |
− 1

2 × | |
1
2 which is square

integrable.

Let Unip(p2) = {π1, π3}. In this special case, we have:

Theorem 7.1. The residual automorphic representations attached to the
trivial character of the maximal torus and the distinguished unipotent orbit
O = (q1, q2, 1) are the set of π = ⊗′

vXv which satisfies:
(1) Xv ∈ Unip(p1) for all v or Xv ∈ Unip(p2) for all v.
(2) Xv is spherical for almost all v.
(3)

∏
v χXv = 1.

7.2. χ = χ(µ, . . . , µ) case, µ a quadratic grössencharacter. In this
case, Kudla-Rallis showed:

Theorem ([Ku-Ra]). The degenerate Eisenstein series attached to the
character µ of GLn has a pole at s = {0̂, . . . , ρn − 2, ρn − 1} and the
residue at si = ρn − i is square integrable and given by the direct sum
⊕Rn(Q), where the direct sum ranges over all classes of quadratic forms
Q with dim Q = (n + 1) − 2si and χQ = µ. Again for this case, Hasse
invariant gives obstruction to the existence of the global quadratic space.

These correspond to the distinguished unipotent orbits O = (q1, q2) of
O2n(C), where q1 > q2 ≥ 1. There is only one element in P (O), namely,
p = (; q1, q2). The local components of Rn(Q) are the direct summands
of Rv(wp, λp, χv)I(λp, χv). Here Rv(wp, λp, χv)I(λp, χv) is a sum of two
irreducible representations unless µv = 1 and q2 = 1, in which case it is
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irreducible. If µv 6= 1, then they are the Langlands’ quotients of IndG
M λO×

πi, where λO is the conjugate of λp which is in the closure of the positive Weyl
chamber and M = Cent (λO, G∗) = F××· · ·×F××GL2×· · ·×GL2×SL2

and IndM
B χv = π1 ⊕ π2. If µv = 1, q2 6= 1, then they are the ones in the

case when χv = 1.

Remark 7.1. We can show that the residual spectrum corresponding to
the unipotent orbits of the form p = (; q1, q2, q3), q3 > 1, can be obtained by
considering the degenerate principal series of GLl×Sp2(n−l), where l = n−
q3−1

2 . In this case, λp = (λ1, . . . , λn), where λt = q1+1
2 − t, for 1 ≤ t ≤ q1+q2

2

and λ
t+

q1+q2
2

= q3+1
2 − t, for 1 ≤ t ≤ q3−1

2 . wp(t) = −t for 1 ≤ t ≤ q1−q2
2 and

q1+q2
2 ≤ t ≤ n, wp( q1−q22 + t) = q1+q2

2 − t+ 1 for 1 ≤ t ≤ q2.
We can show that Sp = {α > 0|wpα < 0, 〈λp, α

∨〉 = 1} contains all
simple roots except e

n− q3−1
2

−e
n− q3+1

2

. This means that the iterated residue
of the Eisenstein series on the singular hyperplanes in Sp is the residue of the
degenerate Eisenstein series attached to the trivial character of the parabolic
subgroup P = MN , M = GLl × Sp2(n−l).

We note that the degenerate Eisenstein series attached to GLn−1 × SL2

parabolic subgroups has been studied by Jiang [Ji].

8. Relation to our previous work [Ki-Sh].

Let χ = χ(µ1, . . . , µ1︸ ︷︷ ︸
r1

, . . . , µk, . . . , µk︸ ︷︷ ︸
rk

, 1, . . . , 1︸ ︷︷ ︸
r0

), r0 + · · ·+ rk = n, r1 ≥ · · · ≥

rk ≥ 2. In our previous work [Ki-Sh], we are concerned only with unipotent
orbits of the form Oi = (2ri−1, 1) of O2ri(C), i = 1, . . . , k and O0 = (2r0+1)
of O2r0+1(C), which correspond to the half-sum of positive roots of O2ri and
Sp2r0 , respectively. We showed:

Theorem ([Ki-Sh]). Cφψv is the Knapp-Stein R-group of the unitary prin-
cipal series IndM

B χv, where M is conjugate to GLn1 × · · · × GLnr × Sp2k.
Here n1, . . . , nr are determined by Oi’s. Πφψv

is the set of the Langlands’
quotients of IndG

M πiv × λp, where IndM
B χv = ⊕i πiv. λp is in the positive

Weyl chamber of the split component of M .

Let µi1,v, . . . , µil,v be the set of non-trivial distinct quadratic characters.
Then Cφψv is spanned by the order two elements cr1+···+ri1 , . . . , cr1+···+ril .
On the other hand, by Theorem 6.2.1 in Section 6, Cres v = C(µi1) × · · · ×
C(µil)× C0, where C(µij ) ' Z/2Z and C0 is a set determined by Oi’s. We
note that Cφψv ' C(µi1,v)× · · · × C(µil,v).

Example 8.1. Let χ = χ(µ, µ, 1, 1), where µ is a non-trivial quadratic
grössencharacter. Let O1 = (3, 1) be a distinguished unipotent orbit of
O4(C) and O0 = (5) of O5(C). Then if µv 6= 1, Cres v = Cφψv ' Z/2Z.
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But if µv = 1, Cφψv = 1 and Cres v ' Z/2Z. Here Πres v is Unip(p2) in
Theorem 7.1 for p2 = (; 3, 1, 5).

9. Correction to our paper [Ki-Sh].

p. 401: In the Abstract, the Introduction, and also in Theorem 5.1, by
the technique used in that paper, we can only claim that Π ∈ Πφψ appears

with multiplicity, not equal to dψ
|Cφψ |

∑
x∈Cφψ

〈x,Π〉, but greater than or equal

to dψ
|Cφψ |

∑
x∈Cφψ

〈x,Π〉. We need to use the technique of pseudo-Eisenstein

series in this paper to claim the assertion.
p. 415: In Theorem 4.5, w0 is different from w0 in Proposition 4.4. In

fact, w0 in Theorem 4.5 is given by w0 = w1,0 · · ·wk,0w0,0, where wi,0 is the
longest element in Wi for i = 0, . . . , k.

p. 415: The local intertwining operator R(w0,Λ, χv) is not holomorphic
at Λ0. We need to define R(w0,Λ0, χv) as the intertwining operator on
IndG

P Λ0 ⊗ IndM
B χv. We assumed this implicitly there.

p. 418: In Lemma 4.8, wΛ1,0 should be w1,0, the longest element in W1.
p. 418: In the proof of Lemma 4.8 and in Lemma 4.9, w1 should be w1,0.
p. 420: The sentence “The parameter Λ0 may not be in the positive Weyl

chamber of the split component of M ,” is false. The parameter Λ0 is in the
positive Weyl chamber of the split component of M .
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