
Pacific
Journal of
Mathematics

QUADRATIC BASE CHANGE FOR p-ADIC SL(2) AS A
THETA CORRESPONDENCE II: JACQUET MODULES

David Manderscheid

Volume 199 No. 2 June 2001



PACIFIC JOURNAL OF MATHEMATICS
Vol. 199, No. 2, 2001

QUADRATIC BASE CHANGE FOR p-ADIC SL(2) AS A
THETA CORRESPONDENCE II: JACQUET MODULES

David Manderscheid

Let F be a p-adic field and let O be the orthogonal group
attached to a quaternary quadratic form with coefficients in
F and of Witt rank one over F . We determine, up to one
possible exception, which nonsupercuspidal representations
of O (F ) occur in the theta correspondences attached to
(SL2 (F ) , O (F )).

This paper is the second in a series of papers examining in detail the lo-
cal theta correspondences attached to reductive dual pairs (SL2(F ),O(F ))
where F is a p-adic field of characteristic zero and O is the orthogonal group
attached to a quaternary quadratic form with coefficients in F and of Witt
rank one over F . In this paper we determine, up to one possible exception,
which nonsupercuspidal representations of O(F ) occur in the correspon-
dences. The determination is explicit and in terms of parabolic inducing
data.

The results we obtain are consistent with the first occurrence in tow-
ers conjecture [KR1] and Prasad’s conjectures [P2]. They are sharper and
more explicit than the corresponding results in Cognet’s thesis [C] and com-
plement the results of Roberts [Ro2] in the case of p odd, which are stated
in terms of distinguished representations. In future papers in this series,
we will examine which supercuspidal representations of O(F ) occur in the
correspondence and the explicit correspondence.

To explain our method, we first recall the general setting of theta corre-
spondences for symplectic and orthogonal groups; see, e.g., [MVW], [H].
For i = 1, 2, let Vi be a finite-dimensional vector space over F equipped with
a nondegenerate bilinear form 〈 , 〉i; assume that 〈 , 〉1 is skew-symmetric
while 〈 , 〉2 is symmetric. Equip W = V1 ⊗ V2 with the skew-symmetric
form 〈 , 〉 coming from tensoring the 〈 , 〉i. Let G1, G2 and G be the isom-
etry groups of 〈 , 〉1, 〈 , 〉2 and 〈 , 〉, respectively, and identify G1 and G2

with subgroups of G via their usual actions on W ; then (G1, G2) is called
a reductive dual pair in G. Let χ be a nontrivial additive character of F
and let ω∞χ denote the (smooth) oscillator representation of G̃ attached to
χ where G̃ is the (unique) nontrivial two-fold cover of G. For H a closed
subgroup of G, let H̃ denote the inverse image of H in G and let Rχ(H̃)
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denote the set of irreducible admissible representations of H̃ which occur
as quotients of ω∞χ |H̃ . Then G̃1 and G̃2 commute and Rχ(G̃1G2) gives
rise to a correspondence between Rχ(G̃1) and Rχ(G̃2). These correspon-
dences are called theta correspondences. We denote these correspondences
by θ : Rχ(G̃1) → Rχ(G̃2) and θ : Rχ(G̃2) → Rχ(G̃1); the direction of θ will
be clear from context. Theta correspondences are known in general to be
bijections for p odd [Wa] and for all p in the cases considered in this paper
[R2]. Furthermore, in all cases considered here, the space V2 will be even-
dimensional and thus the G̃1 and G̃2 are trivial covers so that we write, in
an abuse of notation, Rχ(G1) and Rχ(G2) instead of Rχ(G̃1) and Rχ(G̃2).
Elements of these sets will be considered as representations of G1 and G2,
respectively.

Then our argument and organization for this paper are as follows. In the
first section, we establish notation and recall briefly known results that will
be necessary in what follows. These results include the parameterizations
of the admissible duals of GL2(F ) and SL2(F ), the results of the first paper
in this series [M] on which representations of SL2(F ) occur in Rχ(SL2(F ))
for the pair (SL2(F ),O(F )), quadratic base change for GL2(F ) and SL2(F )
and finally the results of Cognet’s thesis [C] that will be necessary.

We begin the second section by showing that the representations of O(F )
that occur in Rχ(O(F )) must restrict irreducibly to SO(F ). This is a stan-
dard seesaw duality [K1] argument. We then parameterize the irreducible
admissible nonsupercuspidal parameterizations of O(F ) with this property.
The parameterization is explicit and in terms of inducing data from the
(unique up to conjugacy) maximal parabolic subgroup of SO(F ). This par-
abolic has Levi, M say, isomorphic to F× × E1, where F× denotes the
multiplicative group of F and E1 is the kernel of the norm map from E× to
F× where E/F is the quadratic extension of F attached to the anisotropic
part of the quadratic form, Q say, giving rise to O.

In the third section, we consider ω∞χ in the Schroedinger model. In this
model, O(F ) acts linearly on S(V ) where V is the space on which Q is defined
and S(V ) is the space of locally constant compactly supported function on
V . We use this to determine necessary conditions on the representations
of M that can be used for inducing data of representations occurring in
Rχ(O(F )). The argument is by calculation of Jacquet modules.

In the fourth and final section, we show that the necessary conditions
of the third section are also sufficient with one possible exception. The
argument involves our previous results, Cognet’s results and results on base
change. It also involves determining which representation of O(F ) pairs with
the trivial representation of SL2(F ). The pairing representation is also one-
dimensional and the argument involves the determination of which orbits in
V under O(F ) can support this representation. We plan on returning to the
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possible exception, a generalized Steinberg representation, in a future paper
in this series.

Finally, we would like to thank the referee of this paper for pointing out
to us that we needed to modify the proof of Lemma 4.2.

1. Notation and known results.

In this section, we establish notation, recall the parameterization of the ad-
missible dual of G1 = SL2(F ) and recall some other known results necessary
for this paper. We will be brief in our discussion.

Let F be a nonarchimedean local field of characteristic 0. Let p denote
the residual characteristic of F and let O = OF , P = PF , ω = ωF , k = kF ,
q = qF and | |=| |F denote, respectively, the ring of integers, the prime
ideal, a uniformizing parameter, the residue field and the absolute value
on F normalized so that |x| = q−ν(x) where ν = νF denotes the order
function on F . Let U = UF = O×F and Un = Un

F = 1 + Pn
F for n a

positive integer. Further, for K/F a Galois extension of fields, let Γ(K/F )
denote the associated Galois group and if, in addition, [K : F ] < ∞, let
NK/F = N denote the norm map and let K1 = K1

F , the norm one elements
in K. Finally, fix an algebraic closure F̄ of F and a Weil group WF ; let the
associated Weil group notation be as in [T].

For G a group and σ a representation (all representations assumed smooth
unless stated otherwise) of a subgroup H of G, let Ind(G, H;σ) denote the
representation of G induced by σ (form of induction determined by context)
and for g in G, let σg denote the representation of Hg = gHg−1 defined
by σg(h) = σ(g−1hg) for h in Hg. If J is a subgroup of H, we let σ|J
denote the restriction of σ to J . Further, if J C H and σ is a representation
of H/J , then we also view σ as a representation of H via inflation. If σ
and τ representations of G, then we let HomG(σ, τ) denote the set of G-
intertwining operators from σ to τ with the category, once again, specified
by context. Finally, we let G∧ denote the admissible dual of G.

By a character, we mean a (not necessarily unitary) one-dimensional rep-
resentation. If χ is a character of F×, we also view χ as a character of WF

via local class field theory and as a character of GL2(F ) by composition with
det, the determinant map. Further, if K/F is a finite-dimensional Galois
extension, we view χ as a character χK of K× via composition with NK/F .
If χ is a character of F and a is an element of F , we let χa denote the
character of F defined by χa(y) = χ(ay). Finally, we say representations π1

and π2 of GL2(F ) are twist equivalent if there exists a character η of F×

such that π1
∼= π2 ⊗ η.

We now briefly recall the parameterization of the admissible dual of
G1(F ) = SL2(F ) in [LL]. To do this we first recall the parameterization
of the admissible dual of G′

1(F ) = GL2(F ) in [JL] in a form suitable for our
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purposes. If µ and ν are characters of F× such that µ(x)ν−1(x) 6= |x| or
|x|−1, let π(µ, ν) denote the irreducibly induced (normalized induction) prin-
cipal series representation of G′

1 attached to µ and ν. Note that π(µ, ν) ∼=
π(ν, µ). If µ(x)ν−1(x) = |x|, write µ = χ | |1/2 and ν = χ | |−1/2 and let
σ(µ, ν) denote the special representation corresponding to the unique invari-
ant subspace of the space of the associated induced representation from the
Borel subgroup of G

′
1 and let π(µ, ν)(∼= χ) denote the corresponding quo-

tient. Similarly, if µ(x)ν−1(x) = |x|−1, let σ(µ, ν) denote the correspond-
ing special representation (now the quotient) and π(µ, ν) the corresponding
one-dimensional. Note that σ(µ, ν) ∼= σ(ν, µ) and π(µ, ν) ∼= π(ν, µ). Fur-
ther, if K/F is quadratic and θ is a character of K×, let π(θ) = π(ρ)
denote the corresponding irreducible representation of G′

1 associated to
ρ = Ind(WF ,WK ; θ); note that π(θ) ∼= π(θ−1) and note also that π is
supercuspidal if and only if θ does not factor through NK/F which in turn
happens if and only if ρ is irreducible. We call representations of the form
π(θ) Weil representations. The irreducible representations of G′

1 not of one
of the above forms are called exceptional and occur only if p = 2. These rep-
resentations are supercuspidal and can be parameterized naturally in terms
of the primitive (i.e., not induced from a proper subgroup) two-dimensional
representations of WF [Ku]; for σ such a representation of WF , we write
π(σ) for the corresponding exceptional representation. Finally, we note that
the representations enjoy no other equivalences with the exception that if µ
and ν are characters of F× with µν−1 of order two, then π(µ, ν) ∼= π(µK)
where K/F is the quadratic extension of F associated to µν−1 by local class
field theory.

Now let G1 = G1(F ) = SL2(F ) viewed as a subgroup of G′
1. Then we

have:

Theorem 1.1 ([LL]). Let π1 be an irreducible representation of G1; then
there exists an irreducible representation π of G′

1, unique up to twist equiv-
alence, which contains π1 upon restriction to G1. The L-packet of π1 is of
the form {π1, . . . , πs} where the πi are distinct irreducible representations
of G1 and the restriction of π to G1 decomposes as

⊕s
i=1 πi. Further, given

1 ≤ i, j ≤ s there exists g in G′
1 such that πg

i
∼= πj. Moreover, with χ a

character of F×:
(i) If π is not a Weil representation, then s = 1. Further, if π ⊗ χ ∼= π,

then χ is trivial.
(ii) If π = π(θ) with θ a character of K× such that θ|K1 is not of order

two, then s = 2 and πg
i
∼= πi if and only det g is a norm from K×.

Further, π⊗χ ∼= π if and only if χ is trivial or χ = ωK/F , the character
of F× associated to K by local class field theory. If π is supercuspidal
in this setting, then ρ is singly imprimitive (i.e., can only be induced
nontrivially from WK).
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(iii) If π = π(θ) with θ a character of K× such that θ|K1 is of order two,
then s = 4. In this case, ρ is triply imprimitive and if Ki, i = 1, 2, 3,
are the fields such that ρ may be induced from WKi and L is their
composite, then Γ(L/F ) ∼= Z/2Z ⊗ Z/2Z and πg

i
∼= πi if and only if

det g is a norm from L×. Further, π ∼= π⊗χ if and only if χ is trivial
or χ = ωKi/F for some i.

(iv) The collection of distinct L-packets partitions G∧
1 . Further, another

representation π′ in (G′
1)
∧ gives rise to the same L-packet as π if and

only if π and π′ can be realized as follows:
(a) π = π(µ, ν) and π′ = π(µ′, ν ′) with µν−1 = (µ′)(ν ′)−1;
(b) π = σ(µ, ν) and π′ = σ(µ, ν ′) with µν−1 = (µ′)(ν ′)−1;
(c) π = π(θ) and π = π′(θ′) with θ and θ′ on K× with θ(θ′)−1|K1 = 1;
(d) π = π(σ) and π′ = π(σ′) with σ and σ′ primitive projectively equiv-

alent representations.

In what follows we will distinguish among the πi by their Whittaker mod-
els. In particular, recall that if π is an infinite-dimensional irreducible repre-
sentation of G′ and η is a nontrivial character of F , then π has, up to scaling,
a unique Whittaker model with respect to η and, of course, if π is finite-
dimensional, then it has no Whittaker models. Thus, for infinite-dimensional
π, we let π(µ, ν; η) denote the component of π(µ, ν) with η-Whittaker model
and similarly for σ(µ, ν), π(θ) and π(σ). The only remaining representation
is the trivial representation which we denote by 1. Finally, for a in F× and
π an irreducible representation of G1, let πa = πg where g is an element of
G′

1 with det g = a. Then one checks that if π has an η-Whittaker model
then πa has an ηa-Whittaker model.

We continue by recalling the result of [M] that will be necessary for
this paper. To this end, let E/F be a quadratic extension and set V =
{A ∈ M2(E) | Āt = A} where Ā denotes the matrix obtained from A by
applying σ to each entry where Γ(E/F ) = 〈σ〉. Now the negative of the
determinant map det : M2(E) → E when restricted to V maps to F and
defines a quadratic form, Q say, on V viewed as an F vector space. Let H1

denote the isometry group of this form. Further, for χ a nontrivial additive
character of F , let Rχ(G1) denote the representations in the admissible dual
of G1 that occur in the theta correspondence attached to χ and the reductive
dual pair (G1,H1); see [M] and [MVW] for more details concerning theta
correspondences.

Theorem 1.2 ([M]). If π is an irreducible representation of G1 such that
either, for some b in NE/F (E×), πb has a Whittaker model with respect to
χ, or π is trivial, then π is in Rχ(G1).

Theorem 1.1 and Theorem 1.2 have the following consequences: If π′ is
an irreducible representation of G′

1 that cannot be realized as a π(θ) with θ
a character of E×, then the entire L-packet for G1 associated to π occurs in
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Rχ(G1). On the other hand if π can be realized as a π(θ) with θ a character
of E×, then at least half of the representations in the associated L-packet
occur.

We now recall the results on base change from SL2(F ) to SL2(E) [LL]
that will be necessary in what follows. To begin, we first recall base change
from G′

1(F ) = GL2(F ) to G′
1(E) = GL2(E) [L]. In particular, if π is

an irreducible representation of G′
1(F ), let Π denote its (Langlands-Saito-

Shintani) base change to G′
1(E).

Theorem 1.3. Let π be an irreducible representation of G′
1(F ).

(i) If π ∼= π(µ, ν) with µ and ν characters of F×, then Π ∼= π(µE , νE).
(ii) If π ∼= σ(µ, ν) with µ and ν characters of F×, then Π ∼= σ(µE , νE).
(iii) If π ∼= π(θ) = π(ρ) with θ a character of K×, K/F quadratic, then

Π ∼= Π(ρ|WE
). In particular, if K 6= E, then Π ∼= π(θKE), and if

K = E, then Π ∼= π(θ, θσ) where 〈σ〉 = Γ(E/F ).
(iv) If π is exceptional, then so is Π.

Proof. (i) through (iii) follow directly from [L] (see also [GL] for a convenient
summary).

(iv) Suppose Π is not exceptional. Then there exists a nontrivial char-
acter, η say, of E× such that Π ⊗ η ∼= Π, by Theorem 1.1. First assume η
factors through NE/F , i.e., that η = χE for some nontrivial character χ of
F×. Then the base change of π ⊗ χ to G′

1(E) is Π⊗ χE
∼= Π [L] and thus,

also by [L], π ∼= π ⊗ χ or π ∼= π ⊗ χ ⊗ ωE/F where ωE/F is the character
of F× associated to E/F by local class field theory. But then since π is
exceptional, either χ is trivial or χ⊗ωE/F is. By assumption χ is nontrivial
so χ = ωE/F but then η is trivial, a contradiction. Thus, assume η does not
factor through NE/F , i.e., that ησ 6= η where 〈σ〉 = Γ(E/F ) and ησ is the
character of E× defined by ησ(x) = η(xσ). Now define the representation
Πσ of G′

1(E) by Πσ(g) = Π(gσ) where σ acts coordinatewise. Then, by [L]
since Π is in the image of base change, Π ∼= Πσ. Thus, Π ⊗ η ∼= Π implies
that Π⊗ ησ ∼= Π whence Π⊗ ηησ ∼= Π. Now, ηησ does factor through NE/F

so it follows from the first part of this argument that ηησ = 1. But η is of
order two (see Theorem 1.1) and thus η = ησ, a contradiction. �

Remark 1.4. We only include a proof of (iv) above since we know of no
place where it occurs in the literature. We, however, make no claim to the
result.

Quadratic base change for SL2 is then at the level of L-packets and can
be summarized by the following theorem. Note that, with notation as in the
theorem, the representations {Πi}S

i=1 actually factor to PSL2(E) since the
central character of Π is that of π composed with NE/F [L].

Theorem 1.5. If {πi}s
i=1 is an L-packet for SL2(F ), then the base change of

{πi}s
i=1 to SL2(E) is the packet {Πi}S

i=1 obtained by restricting Π to SL2(E)
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where Π is the base change of π, a representation of GL2(F ) restricting to
SL2(F ) to give the L-packet {πi}s

i=1.

Finally, we need to recall a result of Cognet. To this end, we first recall
the structure of the orthogonal group H1. Let H ′

1 denote the generalized
orthogonal group attached to Q and V . Then (see [D] for further details of
this discussion) the map Ψ : G′

1(E)× F× → EndF (V ) defined by

Ψ(g, u)(A) =
(

u 0
0 u

)
gAḡt,

where denotes Galois conjugation coordinatewise, is a homomorphism into
H ′

1. It has kernel {((
a 0
0 a

)
, N(a)−1

)∣∣∣∣ a ∈ E×
}

and image of index two. Further, H ′
1
∼= Im Ψ o 〈σ〉 where σ is the element

of V corresponding to the isometry of V given by conjugation and Im Ψ
consists of those elements in H ′

1 whose determinant is the square of their
similitude factor. Now consider the restriction of Ψ to those elements of
the form (g, u) with N(det g)u2 = 1; call this group H. Then Ψ(H) is the
subgroup, H0

1 say, of H1 consisting of those elements of determinant one and
H1 = H0

1 o 〈σ〉. We map G1(E) to H1 via the map k(g) = Ψ((g, 1)) for g
in G1. The kernel of k is ±I and thus, in a slight abuse of notation, we can
use k to identify PSL2(E) with a subgroup of H1. Then k(PSL2(E)) is the
commutator subgroup of H1 and has index 2n+3 where n = 0 unless p = 2
in which case n = [F : Q2]. Indeed identifying F× with a subgroup of H0

1

via the map i : F× → H0
1 defined by

i(a) = Ψ
((

a 0
0 1

)
, a−1

)
for a in F× we get that i(F×)k(PSL2(E)) ∼= H0

1 and H0
1/k(PSL2(E)) ∼=

i(F×)/i((F×)2).

Theorem 1.6 ([C]). If π is an irreducible infinite-dimensional representa-
tion of G1 = SL2(F ), then there exists π′ in the L-packet of π such that
π′ occurs in the theta correspondence attached to χ and (G1,H1) and such
that the corresponding representation of H1, upon restriction to PSL2(E),
decomposes as a sum of representations in the L-packet for SL2(E) obtained
from that of π by base change.

Proof. Cognet’s statements are at the level of the similitude groups G′
1 and

H ′
1. However, it is a straightforward argument using results relating simili-

tude theta correspondences to regular theta correspondences (see, e.g., [B]
or [Ro1]) to obtain the result above from [C]. �
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2. Nonsupercuspidal Galois-invariant representations of H1.

Although the emphasis in this section will be on representations which are
not supercuspidal, our first result will apply to all representations inRχ(H1).
To begin, let det : H1 → C× be the representation of H1 defined by the
determinant map. Then our first result is fairly standard but we provide a
complete proof since we know of no good reference to the literature.

Lemma 2.1. If π is an irreducible admissible representation of H1 which
is in Rχ(H1), then π ⊗ det is not in Rχ(H1). In particular, π and π ⊗ det
are not isomorphic and π|H0

1
is irreducible with (π|H0

1
)σ ∼= π|H0

1
.

Proof. It suffices to show that π⊗det does not occur. Suppose the contrary.
Let W ′ be a four-dimensional symplectic vector space over F with form 〈 , 〉′
and identify W ′ with two transverse copies of the space giving rise to G1.
Then in the language of [K1] we have the following seesaw reductive dual
pair:

G1 ×G1 H1.

G(W ′) H1 ×H1

"
"

""
b

b
bb

Then, since both π and π ⊗ det are in Rχ(H1) for the reductive dual pair
(G1,H1), it follows that π⊗(π⊗det) occurs in Rχ(H1×H1) (defined relative
to the pair (G1 ×G1,H1 ×H1)). But then since irreducible representations
of orthogonal groups are self-contragredient [N], it follows that π⊗ (π⊗det)
restricted to H1 has det as a quotient. Then from the reciprocity formula
for seesaw reductive dual pairs (see, e.g., [P1] or [M]), it follows that det
is in Rχ(H1) relative to the pair (G(W ′),H1). But this contradicts [R1,
Appendix] since dim (W ′)/2 ≥ dim V1 does not hold. �

An immediate consequence of the above lemma is that representations
in Rχ(H1) are parameterized by their restriction, which is Galois invari-
ant, to H0

1 . Our next step is to parameterize such representations in the
nonsupercuspidal case.

Recall that we have i(F×)k(PSL2(E)) ∼= H0
1 . Let j : E1 → H0

1 be the
imbedding of E1 in H0

1 defined by

j(a) = Ψ
((

a 0
0 1

)
, 1
)

with Ψ also as in the previous section. We note that i(−1) 6= j(−1) and
that i(−1)j(−1) = −I, the nontrivial element of the center of H0

1 . We note
that for a in E×

i(N(a))j(a/ā) = k

(
a 0
0 a−1

)
,(2.1)
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as is easily checked.
Now let V ′ denote the subspace of V consisting of those matrices which

are zero with the possible exception of the (1, 1) entry. Let P denote the
parabolic subgroup of H0

1 which stabilizes V ′. Then one checks that P =
MN where

N =
{

k

(
1 a
0 1

)∣∣∣∣ a ∈ E

}
and M = i(F×)j(E1). Moreover, all proper parabolic subgroups of H0

1 are
conjugate to P and thus all irreducible nonsupercuspidal representations of
H0

1 may be realized as subrepresentations (or subquotients) of representa-
tions induced from P . We parametrize these representations below. Since
we use normalized induction, we note that the modulus function of P , δP

say, is given by δP (i(a)j(b)) = |a|2F , as is easily checked. Also, note that

δP

(
k

(
a 0
0 a−1

))
= δP (i(N(a))) = |N(a)|2F = |a|2E .

Let T denote the subgroup of PSL2(E) obtained by considering the diagonal
matrices in SL2(E) modulo ±I. We identify E×/ 〈−1〉 with T via the map
j′ : E× → T defined by

j′(a) =
(

a 0
0 a−1

)
.

We view characters of M as characters of P , as usual, by inflation. We
also note that M/k(T ) ∼= H0

1/k(PSL2(E)) ∼= F×/(F×)2 where the first
isomorphism is via the map induced by inclusion as can be checked using
(2.1) and the second isomorphism is as was noted above. We will thus view
characters of these groups interchangeably. Further, for any character of M ,
we view λ|k(T ) as a character of E× via pullback along j′ ◦ k.

Lemma 2.2. Let λ be a character of M .
(i) If λ|k(T ) is not | |E or | |−1

E and is not of order two, then Ind(H0
1 , P ;λ)

is irreducible. It is Galois invariant if and only if λ2 is trivial upon
restriction to j(E1) or i(F×); in these cases, set π(λ) = Ind(H0

1 , P ;λ).
(ii) If λ|k(T ) = | |, then Ind(H0

1 , P ;λ) has a unique irreducible subrepre-
sentation, σ(λ) say, and unique irreducible quotient, π(λ) say, both of
which are Galois invariant. Further, π(λ) = λ | |−1.

(iii) Similarly, if λ|k(T ) = | |−1, then Ind(H0
1 , P ;λ) has a unique irreducible

subrepresentation, π(λ) say, and unique irreducible quotient, σ(λ) say,
both of which are Galois invariant. Further, π(λ) = λ · | |.

(iv) Assume λ|k(T ) is of order two. Let ωλ be the associated character of
E× and let E(λ)/E be the quadratic extension associated to ωλ by local
class field theory. Then if E(λ)/F is biquadratic, then Ind(H0

1 , P ;λ)
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is the direct sum of two distinct irreducible Galois-invariant represen-
tations, π+(λ) and π−(λ) say, each of which remains irreducible upon
restriction to k(PSL2(E)) with the sign being determined by requiring
that π+(λ) ∼= π(λ, 1;χ ◦ trE/F ) as a representation of PSL2(E). Fur-
thermore, in this case λ itself is of order two. If E(λ)/F is cyclic, then
π(λ) = Ind(H0

1 , P ;λ) is irreducible and Galois invariant. In this case
λ is not of order two but λ2(j(E1)) = λ2(i(NE/F (E×))) = 1. Finally,
if E(λ)/F is not Galois, then Ind(H0

1 , P ;λ) is either irreducible or the
direct sum of two distinct irreducible representations. In either case,
none of the irreducible representations obtained is Galois invariant.

(v) The π(λ), π±(λ) and σ(λ) constructed above exhaust the nonsupercus-
pidal Galois-invariant portion of the admissible dual of H0

1 . Further,
π(λ) ∼= π(λ′) if and only if λ′ = λ or λ′ = λ−1 and similarly for σ(λ).
Finally, the representations enjoy no other equivalences.

Proof. The composition series statements in (i), (ii) and (iii) follow readily
from the background material of the first section, in particular, Theorem 1.1,
since i(F×)k(PSL2(E)) = H0

1 and

i(a)k(g)i(a−1) = k

((
a 0
0 1

)
g

(
a 0
0 1

)−1
)

for g in PSL2(E) and a in F×. Now consider the composition series when
λ|K(T ) is of order two. In this case, it follows from the material of the first
section that Ind(H0

1 , P ;λ) is irreducible or the direct sum of two irreducible
representations with the latter occurring if and only if F× is contained in
NE(λ)/E(E(λ)×). If E(λ)/F is biquadratic, then the decomposition follows
since NE(λ)/E(E(λ)×) = {x ∈ E× | NE/F (x) ∈ NE′/F ((E′)×)} where E′ is
any quadratic extension of F such that EE′ = E(λ), see, e.g., [I, Theorem
7.6]. On the other hand if E(λ)/F is cyclic, then F×/NE(λ)/F (E(λ)×) is
cyclic of order four by local class field theory and thus NE(λ)/F (E(λ)×)
cannot contain (F×)2 whence NE(λ)/E(E(λ)×) cannot contain F×. Finally,
if E(λ)/F is not Galois, then the composition series statement follows from
Theorem 1.1.

We now consider equivalences amongst the π(λ), π±(λ) and σ(λ). We
consider here only the infinite-dimensional representations, the other cases
being trivial. Restricting to k(PSL2(E)), we see that π(λ) can only be
isomorphic to some π(λ′) and similarly for π+(λ), π−(λ) and σ(λ). Suppose
π(λ) ∼= π(λ′). Then, also by restricting to k(PSL2(E)), we get that λ′|k(T ) =
λ|k(T ) or λ′|k(T ) = λ−1|k(T ). Suppose the former. Write λ′ = λλ′′ with λ′′ a
character of M trivial on k(T ). Now it follows from Frobenius reciprocity
that π(λ)⊗λ′′ ∼= π(λλ′′) with λ′′ on the left-hand side viewed as a character of
H0

1 . Thus, π(λ)⊗λ′′ ∼= π(λ). This either implies λ′′ = 1 or, by Theorem 1.1,
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λ|k(T ) is of order two and λ′|i(F×) ◦ i = ωE(λ)/E |F× . If λ′′ = 1, we are done.
Thus, assume the latter. In this case, λ′′ is completely determined by (2.1)
since λ′′|k(T ) is trivial. Now, also by (2.1), since λ|k(T ) = λ−1|k(T ), it suffices
to show that λ|i(F×) = (λ′)−1|i(F×). But for a in F×, we have

λ2(i(a)) = λ

(
k

(
a 0
0 a−1

))
as is easily checked and thus

λλ′(i(a)) = λ2λ′′(i(a))

= λ2(i(a))λ′′(i(a))

= λ

(
k

(
a 0
0 a−1

))
ωE(λ)/E(a)

= ωE(λ)/E(a)ωE(λ)/E(a)
= 1.

Now in general considering

π(λ)Ψ(( 0
1

1
0),1)

one sees from Frobenius Reciprocity that π(λ) ∼= π(λ−1). Thus, the case
λ′|k(T )

∼= λ−1|k(T ) follows from the previous case. The arguments for the
remaining equivalences are similar, using that the relevant composition series
are multiplicity free.

Finally, we consider Galois invariance. Let π be a nonsupercuspidal ir-
reducible representation of H0

1 . Then HomH0
1
(π, Ind(H0

1 , P ;λ)) 6= 0 for
some λ, a one-dimensional representation of M . Now one checks that
Ind(H0

1 , P ;λ)σ ∼= Ind(H0
1 , P ;λσ) since the modulus character is invariant.

Then it follows from a similar argument to that for the equivalences (invari-
ance was not used) that λ = λσ or λ = (λ−1)σ. Now one checks that λ = λσ

if and only if λ2(j(E1)) = 1 and λ = (λ−1)σ if and only if λ2(i(F×)) = 1.
The invariance portions of (i), (ii), (iii) then follow. Thus, assume λ|k(T )

is of order two. Now by local class field theory E(λ)/F is Galois if and
only if E(λ) = E(λσ). Then since λ|k(T ) is of order two, it follows that
E (λ) = E(λσ) if and only if λ|k(T ) = λσ|k(T ) and λ|k(T ) = (λ−1)σ|k(T ). But
these are equivalent to λ2(j(E1)) = 1 and λ2(i(NE/F (E×))) = 1. Finally,
since

λ2(i(a)) = λ

(
k

(
a 0
0 a−1

))
for all a in F×, our determination of the order of λ follows from our discus-
sion of reducibility. �
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3. Jacquet modules.

We now turn to Jacquet modules to find restrictions, in addition to Galois
invariance, on the nonsupercuspidal representations of H1 that can occur in
Rχ(H1). We realize ωχ on S(V ), the space of locally constant compactly
supported functions on V with the action of H1 being the natural linear
action, i.e., a Schrodinger model. Set S(V )N = S(V )/〈f − ωχ(n)f | f ∈
S(V ), n ∈ N〉 and view S(V )N as an M -module (unnormalized) as usual.
Finally, for f in S(V ), let f̄ denote the image of f in S(V )N .

For l an integer, let Ul denote the neighborhood of 0 in V consisting of
those v such that vii is in P l

F for i = 1, 2 and v12 is in OEP l
F where vij

denotes the (i, j)-entry of v. Then the Ul form a neighborhood basis of 0 in
V . For A in V and l an integer, define fA,l in S(V ) by setting

fA,l(v) =
{

1 if A− v is in Ul,
0 otherwise.

Then the fA,l span S(V ).

Theorem 3.1. Suppose λ in M∧ occurs as a quotient of (ωχ)N . Set λ′ =
λ · | |−1. Then either λ′|i(F×) is trivial or λ′|j(E1) is trivial. Further, if
λ′|i(F×) is trivial, then λ′ is determined by λ′|k(T ). Finally, if λ′|j(E1) is
trivial, then λ′ is determined by λ′|k(T ) up to (possibly) twisting by ωE/F .

Proof. Let T : S(V )N → C be a nonzero element of HomM ((ωχ)N , λ). Then
there exist A and l such that T f̄A,l 6= 0.

We proceed by cases. First, suppose νF (a22) < l and that νE(a12a
−1
22 ) ≥ 0.

Let

n =
(

1 −a12a
−1
22

0 1

)
.

Then one checks that ωχ(k(n))fA,l = fA1,l with

A1 =
(

a11 0
0 a22

)
.

It follows that T f̄A1,l 6= 0 and thus λ(j(E1)) = 1 since

Tωχ(j(α))N f̄A1,l = λ(j(α))T f̄A1,l

for all α in E1 as can be checked. Then by (2.1),

λ(i(N(a))) = λ

(
k

(
a 0
0 a−1

))
for a in F× and the result follows.

Now suppose that ν(a22) < l but νE(a12a
−1
22 ) < 0. Choose m such that

νE((a12a
−1
22 )ωm

F ) ≥ 0.
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Let Ul,m =
{

A ∈ Ul | a12 ∈ OEP l+m
F , a22 ∈ P l+2m

F

}
. For B in Ul, set

fA,l,B(v) =
{

1 if A + B − v is in Ul,m
0 otherwise.

Then since T f̄A,l 6= 0, it follows that there exists B in Ul such that T f̄A,l,B 6=
0. Let

n =
(

1 −(a12 + b12)(a22 + b22)−1

0 1

)
.

Then one checks that ωχ(k(n))fA,l,B = fA1,l,B1 where (A1 + B1)12 = 0 and
(A1 + B1)ii = (A + B)ii. Then as in the previous case, one checks that
λ(j(E1)) = 1 and

λ(i(N(a))) = λ

(
k

(
a 0
0 a−1

))
for a in F×, whence the result.

Finally, suppose that ν(a22) ≥ l. In this case, we may assume a22 = 0.
Now if a12 is in OEP l

F , then arguing as above we obtain that λ(j(E1)) = 1
and

λ(i(N(a))) = λ

(
k

(
a 0
0 a−1

))
for a in F× and we are done. Thus, suppose a12 is not in OEP l

F . Now
suppose a11 is in P l

F . Then since E/F is separable, there exists an integer
l′ such that trE/F (P l′

Ea12) = P l
F . Similarly, if a11 is not in P l

F , then there

exists l′ such that trE/F (P l′
Ea12) = P

ν(a11)
F . Let m′ ≥ l be an integer such

that N(P l′
E)ωm′

F ⊆ P l+1
F and tr(P l′

EPm′
F ) ⊂ P l+1

F . Further, let m ≥ m′ be an
integer such that P l′

EPm
F ⊆ OEPm′

F . Finally, let U ′ denote the neighborhood
of 0 in V consisting of all v such that νF (v11) ≥ l, νF (v22) > m and v12 is in
OEPm′

F . Then by an argument similar to the above in the case a22 = 0, we
may assume that T f̄ ′A is nonzero where A′ is in V such that A−A′ is in Ul,
and for any B in V , f ′B in S(V ) is defined by

f ′B(v) =
{

1 if v −B is in U ′,
0 otherwise.

Without loss of generality, we assume A′ = A so that T f̄ ′A 6= 0.
Now, by our choice of l′, there exists x in P l′

E such that trE/F (xa12) = a11.
Let

n =
(

1 x
0 1

)
.

Then one checks that, by virtue of our choices of m and m′, ωχ(k(n))f ′A = f ′B
with b11 = 0, b12 = a12 and b22 = a22 = 0. Thus, we may assume that a11 =
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0 in considering T f̄ ′A 6= 0. It then follows that, for b in O×F , ωχ(i(b))f ′A = f ′A
and thus λ(i(b)) = λ′(i(b)) = 1. Hence to complete the proof, it suffices to
show that λ(i(ω−1

F )) = q.
For B in V , define f ′′B in S (V ) by

f ′′B(v) =
{

1 if v −A is in i(ω−1
F )U ′,

0 otherwise.

Then it is clear that ωχ(i(ω−1
F ))f ′A = f ′′A. Now

f ′′A =
∑
B∈R

gA+B

where R is a set of coset representatives for U ′′/i(ω−1
F )U ′ with U ′′ =

{v ∈ U ′ : νF (v22) ≥ m + 1} and gA+B is defined as follows:

gA+B(v) =
{

1 if v −A−B is in U ′′,
0 otherwise.

Then arguing as above in the case a11 6= 0, one shows that ḡA+B = ḡA for
all B in R. Thus,

ωχ

(
i(ω̄−1

F )
)
N

f̄ ′A = qḡA

so that

Tωχ

(
i(ω̄−1

F )
)
N

f̄ ′A = qT ḡA

with both sides nonzero. But now

gA =
∑
C∈S

f ′A+C

with S a set of coset representatives for U ′/U ′′. Then by an argument
similar to that in case a22 6= 0, the result of the theorem follows if T f̄ ′A+C is
nonzero for any C not in U ′′. Thus, we may assume T ḡA = T f̄ ′A and then
the theorem follows. �

As an immediate consequence of the above results, the exactness of the
Jacquet functor and the adjointness of the Jacquet functor and induction,
we have the following.

Corollary 3.2. Let π be an irreducible nonsupercuspidal representation of
H1 which is in Rχ(H1). Then π0 = π|H0

1
is irreducible and π, as an element

of Rχ(H1), is determined by π0. Moreover, π0 is of the form π(λ), σ(λ), or
π±(λ) for some λ with λ|i(F×) trivial or λ|j(E1) trivial. In particular, with
λ as above, λ is determined by λ|k(T ) if λ|i(F×) is trivial and is determined
by λ|k(T ) up to a (possible) twist of ωE/F if λ|j(E1) is trivial.



QUADRATIC BASE CHANGE FOR p-ADIC SL(2) 461

To close this section we prove an elementary lemma that will be useful in
what follows. The statements on restriction in the lemma can easily be made
more precise but we leave that to the reader since the following suffices, for
our purposes.

Lemma 3.3. Let π be an irreducible representation of H1 such that π0 =
π|H0

1
is irreducible. Moreover, assume π0 is of the form π(λ), σ(λ) or π±(λ)

for some λ with λ|i(F ) or λ|j(E1) trivial.

(i) Suppose λ|i(F×) is trivial. Then π0 is of the form π(λ) or π±(λ) and
when restricted to k(PSL2(E)) decomposes as a sum of representations
in the L-packet associated to π(ρ, ρσ) where ρ is any character of E×

such that ρ(a/ā) = λ(j(a/ā)) for a in E×.
(ii) Suppose λ|j(E1) is trivial. Then if π0 is of the form σ(λ), then π0

restricts to σ(λ ◦ i ◦ N) on k(PSL2(E)). If π0 is of the form π(λ) or
π±(λ), then, when restricted to PSL2(E), π0 decomposes as a sum of
representations in the L-packet attached to π(λ ◦ i ◦N, 1).

Proof. Let π1 be an irreducible representation of PSL2(E) that appears in
the restriction of π to k(PSL2(E)). Then since i(F×)k(PSL2(E)) = H0

1 , any
other representation appearing in the restriction of π to k(PSL2(E)) must
be of the form π

i(a)
1 for a in F×. But then

i(a)k(g)i(a−1) = k

((
a 0
0 1

)
g

(
a 0
0 1

)−1
)

and

k

(
b 0
0 b−1

)
= i(N(b))j(b/b̄)

imply the result. �

4. More on occurrence.

In the previous section, we found some necessary conditions, Corollary 3.2,
for nonsupercuspidal representations of H1 to occur in the correspondence.
In this section, we will show these conditions are also sufficient, with one
possible exception. The one possible exception is a generalized Steinberg
representation as is explained in (ii) and (iii) of the following theorem.

Theorem 4.1. Let π0 be an irreducible representation of H0
1 .

(i) If π0 is of the form π(λ) or π±(λ) with λ|i(F×) trivial or λ|j(E1) trivial,
then π0 has a unique extension to H1 which occurs in Rχ(H1).

(ii) If π0 = σ (| |) or σ
(
ωE/F | |

)
then at most one extension of π0 to H1

occurs in Rχ(H1).
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(iii) At least one extension of σ (| |) or σ
(
ωE/F | |

)
occurs in Rχ(H1) and

pairs with the Steinberg representation σ (| |) of G1.
(iv) No other nonsupercuspidal representations of H1 can occur.

Proof. It suffices to show (i) through (iii) since then (iv) would follow from
Corollary 3.2.

First consider (i) and suppose that λ|i(F×) is trivial. Let θ be a character
of E× such that θ|E1 = λ|j(E1) ◦ j. Now suppose further that λ is not of
order two. Then it follows from Theorem 1.2 that π(θ;χ) occurs in Rχ(G1).
Further, by Kudla’s perseverence result [K2], it must pair with π(λ). Like-
wise, if λ|i(F×) is trivial but λ is of order two, then π(θ;χ) and π(θ;χb) occur
in Rχ(G1) and pair with π±(λ) where b is in NE/F (E×) such that π(θ;χ)
and π(θ;χb) are distinct. Therefore, in proving the theorem, we may assume
that λ|i(F×) is nontrivial.

Now consider λ with λ|i(F×) nontrivial. Let µ be a character of F×.
Assume for the moment that µE 6= | |±1 and that µ2

E is not trivial. Then
µ2 is also nontrivial and thus π(µ, 1) and π(µE , 1) restrict irreducibly to
G1(F ) and G1(E), respectively, with π(µE , 1) the base change of π(µ, 1).
Now by Theorem 1.2, π(µ, 1) is in Rχ(G1). Then since µ 6= | |±1 , π(µ, 1) is
infinite-dimensional and thus, by Theorem 1.6, the image of π(µ, 1) under
the theta correspondence, θ(π(µ, 1)) say, must restrict to k(PSL2(E)) as
a sum of copies of π(µE , 1). Now since µ2 is nontrivial, π(µ, 1) does not
occur in the theta correspondence attached to χ and (G1,H0) where H0 is
the orthogonal group attached to the anisotropic part of (V,Q). Further,
since the correspondence attached to χ and (G1,H1) is a bijection, even in
p = 2 [R2], it follows from the argument of the previous paragraph that
a λ giving rise to θ(π(µ, 1)) must satisfy λ|j(E1) is trivial. Then it follows
from Lemma 3.3 that we may assume λ must satisfy µE = λ ◦ i ◦N , whence
λ = λ1 or λ2 where

λl(i(a)j(b/b̄)) = µ(a)ωl
E/F (a)

for l = 1, 2, b ∈ E× and a in F×. It follows that both π(µ, 1) and π(µωE/F , 1)
occur in Rχ(G1) and pair with either π(λ1) or π(λ2) in Rχ(H1). Then, once
again, since the correspondence is a bijection, we get that the theorem holds
for all π(λ) with (λ|i(N(E×)))2 nontrivial and λ|i(N(E×)) 6= | |.

If λ is trivial on j(E1) and λ(i(a)) = |a|, then π(λ) is the trivial rep-
resentation and, as is well-known, π(λ) occurs in Rχ(H1) and pairs with
π
(
ωE/F | | , 1

)
in Rχ(G1), see [KR2]. Further, by Theorem 1.6 and Lem-

ma 3.3, σ (| |) is in Rχ(G1) and pairs with σ (| |) or σ
(
ωE/F | |

)
in Rχ(H1).

Now let µ be a character of F× of order two with µE nontrivial. Then the
L-packets for G1(F ) and G1(E) associated to π(µ, 1) and π(µE,1), respec-
tively, each have two components as does the L-packet for G1(F ) attached
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to π(ωE/F µ, 1). By Theorem 1.2, the four representations in the L-packets
associated to π(µ, 1) and π(µωE/F , 1) occur. Then, by arguments similar
to those above, they must pair with the four representations of H1, as in
Lemma 3.3, attached to λ and ωE/F λ where λ is the character of M defined
by

λ(i(a)j(b/b̄)) = µ(a).

Further, consider the representation π(1, 1) of G′
1(F ). It restricts irreducibly

to G1(F ) and by arguments also similar to those above it occurs and pairs
with the representation π(λ) of H1 with

λ(i(a)j(b/b̄)) = ωE/F (a).

Finally, consider those nontrivial characters of µ on F× such that µ2 is
nontrivial while µ2

E is trivial. Such a character has order four and by local
class field theory is associated to a cyclic extension of degree four of F
with the quadratic subfield being E. Further, if µ is such a character, then
so is µωE/F . Then arguments such as those above show that π(µ, 1) and
π(µωE/F , 1) are in Rχ(G1) and pair with π(λ1) and π(λ2) in Rχ(H1) where

λl(i(a)j(b/b̄)) = µ(a)ωl
E/F (a),

l = 1, 2.
To summarize, at this point we have shown that the theorem holds for all

representations of H0
1 with the possible exception of the one-dimensional rep-

resentation π
(
ωE/F | |

)
. Let π+

(
ωE/F | |

)
denote the extension of

π
(
ωE/F | |

)
to H1 with σ acting as the identity. Then the following lemma

completes the proof of the theorem. �

Lemma 4.2. The one-dimensional representation π+

(
ωE/F | |

)
occurs in

Rχ(H1) and pairs with the trivial representation of G1.

Proof. It suffices to show that HomH1

(
ω∞χ , π+

(
ωE/F | |

))
is one-dimen-

sional. Write π+

(
| |ωE/F

)
= ω+

E/F . Let

x =
(

1 0
0 0

)
in V . Then one checks that the stabilizer of x in H1 is Hx = j(E1)k(N)o〈σ〉.
One checks further that Hx is unimodular and that ω+

E/F |Hx is trivial since
the image of the spinor norm restricted to Hx ∩H0

1 is N(E×) because

k

(
a 0
0 a−1

)
= i(N(a))j(a/ā).
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Thus, it follows from [W] that there exists a unique, up to scalar, linear
map T : S(H1/Hx) → C such that

Tfg = ω+
E/F (g)Tf(4.1)

where fg(x) = f(gx). Now let Y = Q−1(0) and Y ′ = Y − {0}. Then by
Witt’s Theorem, Y ′ can be identified with H1/Hx and thus we can view T
as a distribution on Y ′.

We claim further that T can be extended to a distribution on S(Y ) sat-
isfying (4.1) for all f in S(Y ). To see this we recall that, up to a nonzero
scalar, T can be written

Tf =
∫

H1/Hx

ω+
E/F (y)f(y) dy

for all f in S(H1/Hx) where
∫
H1/Hx

dy is a left-invariant positive regular
Borel measure on Cc(H1/Hx), the space of compactly supported functions
on H1/Hx and ω+

E/F (y) is well-defined since ω+
E/F is trivial on Hx. Moreover,

the measure is finite on compact sets and may be normalized so that∫
H1/Hx

∫
Hx

f(yh) dhdy =
∫

H1

f(g) dg(4.2)

where
∫
H1

dg and
∫
Hx

dh denote Haar measure on H1 and Hx respectively
and f is any function in Cc(H1). We claim that T can be extended to S(Y )
by setting Tf = Tf |Y , for all f in S(Y ). To show this it suffices to show if
U is a compact neighborhood of 0 in Y then U ∩ Y ′ is of finite volume with
respect to

∫
H1/Hx

dy. To this end, using a Bruhat decomposition, H1/Hx

can be identified with

i(F×) ∪ k(N)k(w)i(F×)

where w is the standard Weyl element
(

0 1
−1 0

)
for SL2(F ). Now consider the

effect of conjugation by i(a), a ∈ F×, on (4.2). Since H1 is unimodular we
have ∫

H1

f(y) dg =
∫

H1

f(i(a)g(i(a))−1) dg(4.3)

=
∫

H1/Hx

∫
Hx

f(i(a)y(i(a))−1i(a)h(i(a))−1) dhdy

=
∫

H1/Hx

|a|−1
∫

Hx

f(y(i(a))−1h) dhdy

where the last equality follows from explicit realization of the measure
∫
Hx

dh

and left-invariance of
∫
H1/Hx

dy. Finite volume then follows from explicitly

realizing
∫
H1/Hx

dy taking into account the |a|−1. It is immediate that the
extension satisfies (4.1) since Y ′ is H1 invariant.
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Now let T : S(Y ) → C denote the extension constructed above. Then
since Y is closed in V we can extend T to S(V ) by setting Tf = T (f |Y ).
Further since Y is H1 invariant T still satisfies (4.1), whence T is a nonzero
intertwining map. Furthermore, T is the unique, up to scalar, nonzero
intertwining map with image in D(V − Y ), the space of distributions on
S(V − Y ), equal to zero since {0} only supports the trivial representation.

Now suppose S : S(V ) → C is an arbitrary nonzero element in
HomH1(ω

∞
χ , ω+

E/F ). Then it suffices to show that the image of S in D(V −Y )
is zero. Suppose that the image is nonzero. Then by [BZ], there exists an
orbit Q−1(a) in V − Y, a ∈ F× which supports a nontrivial intertwining
operator. Let X = Q−1(a), a ∈ F×, be such an orbit and let y ∈ X. Then
since Q(X) 6= 0, we can write V = 〈y〉 ⊕W with W = 〈y〉⊥. Now let O(W )
be the orthogonal group associated to W and Q|W . Then X = H1/O(W ).
Now since W is three-dimensional, the spinor norm restricted to O(W ) is
onto F×. Further, both H1 and O(W ) are unimodular and thus any inter-
twining operator which is trivial when restricted to O(W ) must have been
trivial on H1 [W]—contradicting the surjectivity of the spinor norm. �
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