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We prove the uniform integrability of the approximate
Green functions of some degenerate elliptic operators in di-
vergence form with lower order term coefficients satisfying a
Kato type condition. Some further properties of the approx-
imate Green functions of such operators are also established.

1. Introduction.

In this paper, we study the approximate Green functions of certain degen-
erate elliptic operators L on balls in Rn, n > 2, when L has the divergence
form

L := −
n∑

i,j=1

∂

∂xi

(
aij(x)

∂

∂xj

)
+

n∑
i=1

bi(x)
∂

∂xi
+ V (x).

The coefficients aij are real-valued measurable functions whose coefficient
matrix A(x) := (aij(x)) is symmetric and satisfies

ω(x)|ξ|2 ≤ 〈A(x)ξ, ξ〉 ≤ υ(x)|ξ|2.(1.1)

Here 〈., .〉 denotes the usual Euclidean inner product, and υ, ω are weight
functions that will be stipulated below.

Throughout, we will use the following notations. For functions f and g,
we shall write f . g to indicate that f ≤ Cg for some positive constant
C. We write f ≈ g if f . g and g . f . We shall use Bt(x) to designate
a ball of radius t centered at x. Also, tB will be used to represent the ball
concentric with the ball B, but with radius t times as big. Given a locally
integrable function f , we shall let f(B) denote the Lebesgue integral of f
over the set B. If f ∈ Lloc(dµ), where dµ := γ(x) dx is a weighted measure,
then we denote by

−
∫

B
f(x)γ(x) dx :=

1
γ(B)

∫
B
f(x)γ(x) dx,

the µ-average of f over B. This average shall also be denoted by fB, γ.

467

http://pjm.math.berkeley.edu/pjm
http://dx.doi.org/10.2140/pjm.2001.199-2


468 AHMED MOHAMMED

A non-negative locally integrable function ω on Rn is said to be in the
class A2 if 1/ω is also locally integrable and there is a constant C such that
for all balls B, (

−
∫

B
ω(x) dx

)(
−
∫

B

1
ω(x)

dx

)
≤ C.

A non-negative locally integrable function υ on Rn is said to satisfy a
doubling condition if there is a constant C such that υ(2B) ≤ Cυ(B) for all
balls B. Here C is independent of the center and radius of B. We denote
this by writing υ ∈ D∞. It is known that A2 ⊂ D∞.

It is also known (see [9]) that if υ satisfies a doubling condition, then it
satisfies

υ(tB) ≤ C1t
kυ(B), and υ(B) ≤ C2t

−m(tB), t > 1,

for some positive constants C1, C2, k , and m. The second condition is called
a reverse doubling condition.

The following assumptions will be made on ω, and υ.
ω and υ are non-negative locally integrable functions on Rn that satisfy

the following conditions:

ω ∈ A2, υ ∈ D∞;(1.2)

ω and υ are related by the existence of some q > 2 such that(1.3)

s

t

[
υ(Bs(x))
υ(Bt(x))

] 1
q

≤ C

[
ω(Bs(x))
ω(Bt(x))

] 1
2

, 0 < s < t, x ∈ Rn,

for some constant C independent of x, s and t.
We shall use the notation σ = q/2 so that σ > 1. Note that when υ and ω

are positive constants, as in the strongly elliptic case, the value of q in (1.3)
is q = 2n/(n− 2), so that σ = n/(n− 2).

Let now L0 be the principal part of L; that is

L0 := −
n∑

i,j=1

∂

∂xi

(
aij(x)

∂

∂xj

)
.

Let B0 be a ball of radius R that will be fixed in the sequel. Under the
conditions (1.2) and (1.3), Chanillo and Wheeden have established, in [3] the
existence and integrability properties of the Green function of L0. Among
other important properties, they have shown that if G(x, y) is the Green
function of L0 on 2B0, then for 0 < p < σ,

sup
y∈B0

∫
2B0

G(x, y)pυ(x) dx <∞.(1.4)
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Let B ⊂ B0. In analogy with the way the usual Kato class is defined, we
introduce a class of functions Kn(B) as

Kn(B) :=
{
h ∈ L1

loc(B) : lim
r→0+

η(h)(r) = 0
}
,

where
η(h)(r) := sup

x∈B

∫
Br(x)∩B

G(y, x)|h(y)| dy.

If Lp
µ(B) denotes the usual Lp space with respect to the measure µ, then for

B ⊂ B0, and p > σ/(σ − 1), the following inclusion holds:

Lp
υ1−p(B) ⊂ Kn(B).

To see this let h ∈ Lp
υ1−p(B), and x ∈ B. We pick σ/(σ−1) < s < p. Define

s′ by 1/s+1/s′ = 1 (we will use this notation throughout). Then, by Hölder
inequality∫

Br(x)∩B
G(y, x)|h(y)| dy ≤

(∫
2B0

G(y, x)s′υ(y) dy
) 1

s′

·

(∫
Br(x)∩B

|h(y)|sυ1−s dy

) 1
s

.

Since υ satisfies a reverse doubling condition, there exist positive constants C
and d such that υ(BR(x)) ≥ C(R/r)dυ(Br(x)) for any 0 < r < R. Therefore∫

Br(x)∩B

(
|h(y)|
υ

)s

υ dx

≤

(∫
Br(x)∩B

(
|h(y)|
υ

)p

υ dx

) s
p
(∫

Br(x)
υ dx

) p−s
p

≤
(∫

B

(
|h(y)|
υ

)p

υ dx

) s
p
[
C
( r
R

)d
] p−s

p

[υ(2B0)]
p−s

p .

Thus, from this last inequality and (1.4), we get the desired conclusion.
For notational simplicity, we shall use K for the function space Kn(B0).

Remark 1.1. We should remark that when υ and ω are identically equal
to positive constants, as in the strongly elliptic case, the class of functions
K coincides with the usual Kato class (see [1], or [4] for definition). Also, if
υ and ω are constant multiples of each other, then again K is the same as
the one introduced in [6].

The following assumptions will be made of the lower order coefficients
b := (b1, b2, · · · , bn), and V of the degenerate elliptic operator L.

|b|2ω−1, V ∈ K.(1.5)
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The paper is organized as follows. As the work here relies heavily on
the results of the important works of S. Chanillo and R. Wheeden in their
papers [2], and [3], we will recall several of their results that are relevant
to our discussion in Section 2. We start Section 3 by proving the bounded-
ness of certain linear functionals on some Hilbert spaces. These functionals
are associated with elements of the Kato type class defined above. Some
properties related to the approximate Green function of L0 will also be ob-
tained. The main result in this paper is Theorem 3.2 which establishes the
uniform integrability of approximate Green functions of L on balls. Uniform
integrability of approximate Green functions is a useful tool in proving exis-
tence and size estimates of the Green function. See [3], [5] and [8] for such
applications. In a forthcoming paper, we will use this uniform integrability
result to derive Harnack’s inequality for functions naturally associated with
non-negative solutions of the operator L.

2. Preliminaries and background.

Let Ω ⊂ Rn be a bounded open set. Using a standard notation, let Lip(Ω)
denote the class of Lipschitz continuous functions on the closure Ω. We say
that φ ∈ Lip0(Ω) if φ ∈ Lip(Ω) and φ has compact support contained in Ω.
The following two-weight Sobolev inequality has been proved in [2].

Let ω, υ be non-negative locally integrable functions that satisfy (1.2),
(1.3), and q be the constant that appears in (1.3). Then, for any ball B,(

−
∫

B
|f |qυ dx

) 1
q

≤ C|B|
1
n

(
−
∫

B
|∇f |2ω dx

) 1
2

, f ∈ Lip0(B).(2.1)

The constant C is independent of both the ball B and f .
Now let us consider the inner product

a0(u, ϕ) :=
∫

Ω
〈A∇u,∇ϕ〉, u, ϕ ∈ Lip0(Ω).

The completion of Lip0(Ω) with respect to the norm a0(u, u)1/2 is denoted
by H0(Ω). An element of H0(Ω) is thus an equivalence class of Cauchy
sequences {uk}, uk ∈ Lip0(Ω). If u, ϕ ∈ H0(Ω), with u = {uk}, ϕ =
{ϕk}, uk, ϕk ∈ Lip0(Ω), then a0(uk, ϕk) is convergent, and we define

a0(u, ϕ) = lim
k
a0(uk, ϕk).

In this way, ‖u‖0 := a0(u, u)1/2 defines a norm on the Hilbert space H0(Ω).
Lip0(B) is included in H0(B) by considering {ϕk} with all ϕk = ϕ ∈
Lip0(B). As a consequence of the Sobolev inequality (2.1), it is possible
to associate with each ϕ ∈ H0(Ω) a unique pair (ϕ̃,∇ϕ̃) so that if ϕ = {ϕk},
then ϕk → ϕ̃ in L2σ

υ (Ω), and ∇ϕk → ∇ϕ̃ in L2
ω(Ω). We shall refer to (ϕ̃,∇ϕ̃)
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as the pair of functions associated with ϕ. This pair is independent of the par-
ticular representation {ϕk} of ϕ. If ϕ ∈ Lip0(Ω), then ϕ̃ = ϕ, and ∇ϕ̃ = ∇ϕ.
Furthermore, it can be shown that given ϕ ∈ H0(Ω), ∇ϕ̃ is the distribu-
tional gradient of ϕ̃. See [3] for proofs of these assertions.

For future reference, we record the following inequality that can be easily
verified using the Cauchy-Schwarz inequality.

‖ϕφ‖0 ≤ ‖ϕ‖∞‖φ‖0 + ‖φ‖∞‖ϕ‖0, ϕ, φ ∈ Lip0(Ω).(2.2)

We will also consider the Hilbert space H(Ω) which is the completion of
Lip(Ω) under the inner product

a(u, ϕ) := a0(u, ϕ) +
∫

Ω
uϕυ, u, ϕ ∈ Lip(Ω).

If u ∈ H(Ω), u = {uk}, uk ∈ Lip(Ω), then uk converges in L2
υ(Ω) to

a function ũ, and ∇uk converges in L2
ω(Ω) to a vector ∇ũ . If ϕ =

{ϕk}, ϕk ∈ Lip(Ω), then the limits a(u, ϕ) = limk a(uk, ϕk) and a0(u, ϕ) =
limk a0(uk, ϕk) exist, and satisfy

a(u, ϕ) := a0(u, ϕ) +
∫

Ω
ũϕ̃υ.

In this way, a(u, ϕ) defines an inner product on H(Ω), and ‖u‖ := a(u, u)1/2

defines a norm. By the Sobolev inequality (2.1), H0(Ω) is continuously
embedded in H(Ω).

For u ∈ H(Ω) we say that u ≥ 0 on Ω, if uk ≥ 0 for all k and some {uk}
representing u. If u ≥ 0 on Ω, then ũ ≥ 0 a.e. on Ω. The following, proved
in [3], will be useful to us.

Let u, ϕ ∈ H(Ω), and ∇ũ, ∇ϕ̃ be the associated gradients respectively.
If u = {uk}, ϕ = {ϕk}, then as k →∞∫

Ω
|〈A∇uk,∇ϕk〉 − 〈A∇ũ,∇ϕ̃〉| → 0.(2.3)

In particular

a0(u, ϕ) =
∫

Ω
〈A∇ũ,∇ϕ̃〉, and a(u, ϕ) =

∫
Ω
〈A∇ũ,∇ϕ̃〉+

∫
Ω
ũϕ̃υ.

Before we proceed further, we should perhaps make two remarks. Let
B ⊂ B0 be a ball.

Remark 2.1. If fυ−1 ∈ L(2σ)
′

υ (B), then

ϕ 7→
∫

B
fϕ̃(2.4)

defines a continuous linear functional on H0(B). This follows from Hölder’s
inequality and the Sobolev inequality (2.1). Therefore, by the Lax-Milgram
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theorem there is a unique u ∈ H0(B) such that

a0(u, ϕ) =
∫

B
fϕ̃.

We shall refer to u as the Lax-Milgram solution of L0u = f in B and u =
0 on ∂B.

By the above Remark, given x ∈ B, and ρ > 0 with Bρ(x) ⊂ B there is a
unique Gρ ∈ H0(B) such that

a0(Gρ, ϕ) = −
∫

Bρ(x)
ϕ̃υ, ϕ ∈ H0(B).

G̃ρ is called an approximate Green’s function of L0 on B with pole x.

Remark 2.2. Let f ∈ L1(B) such that the map in (2.4) is a continu-
ous linear functional on H0(B). Suppose {ϕk} is a bounded sequence in
H0(B). Then {ϕk} contains a subsequence {ϕkj

} that converges weakly to
some element ϕ ∈ H0(B). Now, if u = {uk} ∈ H(B) is fixed, then since
|a0(u, ϕ)| ≤ ‖u‖‖ϕ‖0, we have

a0(u, ϕ) = lim a0(u, ϕkj
) = lim

[
a0(ukj

, ϕkj
) + a0(u− ukj

, ϕkj
)
]

= lim a0(ukj
, ϕkj

).

Therefore

a0(u, ϕ)−
∫

B
fϕ̃ = lim

j→∞

[
a0(ukj

, ϕkj
)−

∫
B
fϕ̃kj

]
.

We shall need several lemmas from [3], and we will state them below for
the readers’ convenience.

Lemma 2.1. Suppose u is a supersolution in H0(Ω); that is u ∈ H0(Ω),
and a0(u, ϕ) ≥ 0 whenever 0 ≤ ϕ ∈ Lip0(B). Then u ≥ 0.

Proof. The proof that the approximate Green function Gρ of L0 is non-
negative is given on page 323 of [3]. It depends on properties of the inner
product a0(., .) and the fact that a0(Gρ, ϕ) ≥ 0 for 0 ≤ ϕ ∈ H0(Ω). Exactly
the same proof applies in our case. In fact, if u := {uk}, then also u = {|uk|}.
See Lemma 3.6 below for a detailed proof. �

Lemma 2.2. Let G(x, y) be the Green function of L0 on 2B and fυ−1 ∈
Lt

′

υ (2B) for some t < σ. If u is the Lax-Milgram solution of L0u = f in 2B,
then

ũ(y) =
∫

2B
G(x, y)f(x) dx, for a.e. y ∈ B.

Another useful Lemma is the following weak maximum principle (cf.
Lemma 2.1 above).
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Lemma 2.3 (Weak Maximum Principle). Let u ∈ H(Ω) satisfy a0(u, ϕ) ≥
0 if ϕ ∈ Lip0(Ω), ϕ ≥ 0. Let u = {uk}, uk ∈ Lip(Ω) and assume that uk ≥ 0
in some neighborhood (depending on k) of ∂Ω. Then ũ ≥ 0 a.e in Ω.

Let G̃ρ be the approximate Green function of L0 on a ball B with pole
x ∈ B, and G be the corresponding Green function. In [3], it was shown
that for an appropriate subsequence, G̃ρk(y) → G(x, y) pointwise a.e. on B
for a.e. x ∈ 1

2B. If B ⊂ B∗, then the weak maximum principle, Lemma 2.3
shows that G̃ρ ≤ G̃ρ

∗ a.e on B if G̃ρ
∗ is the approximate Green function of

L0 on B∗ with pole x. Consequently, the inequality G ≤ G∗ holds a.e. on
1
2B × 1

2B, where G∗ is the Green function of L0 on B∗.
We also need Lemma (2.7) of [3] in the following slightly modified form.

To accomodate this change, we shall indicate the minor alterations needed
in the proof of Lemma (2.7) of [3].

Lemma 2.4. Let Bj := Bj(x0) be balls of radius rj for j = 1, 2, 3, with
rj < rj+1. If ϕ ∈ H(B3) and ϕ̃ ≤ m a.e. in B2, then given any M > m,
and r1 < r < r2, there exist ϕk ∈ Lip(B3) such that ϕk → ϕ in H(B3) and
ϕk ≤M a.e. on B∗(x0), a ball of radius r.

Proof. As in [3], we pick hk ∈ Lip(B3) with hk → ϕ in H(B3). Thus hk → ϕ̃
in L2

υ(B3), and by using a subsequence, we may assume that hk → ϕ̃ a.e. on
B3. By hypothesis, ϕ̃ ≤ m a.e. on B2. By Egorov’s theorem, given M > m,
and δ > 0, there exist E ⊂ B2, and k0 such that |B2 r E| < δ and hk ≤M
on E, if k ≥ k0. Let χ ∈ C∞c (B2), 0 ≤ χ ≤ 1, and χ ≡ 1 on B∗, where
B∗ := B∗(x0) is a ball of radius r. We now define ϕk := hkχ∧M+hk(1−χ).
Clearly ϕk ∈ Lip(B3), and ϕk ≤ M a.e. on B∗. It now remains to show
that ϕk → ϕ in H(B3). Noting that ϕk − hk is supported on B2, the rest of
the proof proceeds in the same way as that of Lemma (2.7) of [3]. �

Remark 2.3. If ϕ ≥ 0 in the sense of H(B3), then the ϕk in Lemma 2.4
can be taken to be non-negative, as can be seen from the definition of ϕk in
the proof.

Remark 2.4. Let 0 ≤ m, and ϕ ∈ H0(B) such that ϕ̃ ≤ m a.e. on B.
Then given M > m, we can choose ϕk ∈ Lip0(B) such that ϕk → ϕ in
H0(B), and ϕk ≤ M a.e. on B. This follows from the proof of Lemma 2.4
by extending ϕ̃ to be zero outside B.

3. Approximate Green functions.

The following embedding lemma is useful in the subsequent development.
In proving the Lemma, we adapt a method used in [6], in the case of equal
weights.
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Lemma 3.1. If f ∈ K, and B ⊂⊂ B0 is a ball of radius r, then for any
u ∈ H0(B) the following holds.∫

B
|f |ũ2 dx . η(f)(3r)

∫
B
〈A∇ũ,∇ũ〉.

Proof. Let G∗ and G be the Green functions of L0 on 2B∗ and 2B0, respec-
tively, where B∗ is a concentric slight enlargement of B. As pointed out
in the remark following Lemma 2.3, we first observe that G∗ ≤ G a.e. on
B∗×B∗. Let fk = |f | ∧ (kυ), k = 1, 2, . . . , and note that fkυ

−1 ∈ Lt
υ(2B)

for any t. Since ω ∈ A2, and ω ≤ υ, we see that υ can not vanish on a set
of positive Lebesgue measure. Therefore fk → |f | a.e. on B. Thus once the
inequality in the Lemma is shown to hold for fk, then by Fatou’s Lemma,
it will also hold for f . So there is no loss of generality in assuming that
fυ−1 ∈ Lt′

υ (2B) for some t < σ.
First, let us suppose that u ∈ Lip0(B). Let ζ := {ζk} ∈ H0(2B∗) be the

Lax-Milgram solution of L0ζ = |f |χB in 2B∗ and ζ = 0 on ∂(2B∗). Let ζ̃ be
the associated function. Then by the representation theorem in Lemma 2.2,
we know that for a.e. x ∈ B∗

ζ̃(x) =
∫

B
G∗(x, y)|f(y)| dy ≤

∫
B
G(x, y)|f(y)| dy

≤
∫

3Br(x)∩2B0

G(x, y)|f(y)| dy.

Therefore, ζ̃(x) ≤ η(f)(3r) for a.e x ∈ B∗. By Lemma 2.1, and Lemma 2.4
we pick a sequence ζk ∈ Lip0(2B∗) such that 0 ≤ ζk → ζ in H0(2B∗) and
ζk . η(f)(3r) a.e. on B. By extending u to be zero outside B, we consider
the element ϕ = {u2} ∈ H0(2B∗). Then, we write

δk +
∫

2B∗
|f |u2 =

∫
2B∗

〈A∇ζk,∇u2〉,(3.1)

where
δk =

∫
2B∗

〈A∇ζk,∇u2〉 −
∫

2B∗
|f |u2.

By Cauchy-Schwarz inequality, we have

〈A∇ζk,∇u2〉 = 2〈A(u∇ζk),∇u〉 ≤ 4η〈A∇u,∇u〉+
1
4η
〈A(u∇ζk), u∇ζk〉,

(3.2)

where η := η(f)(3r). But

〈A(u∇ζk), u∇ζk〉
= 〈A∇ζk,∇ζk〉u2 = 〈A∇ζk,∇(u2ζk)〉 − 2〈A(u∇ζk), ζk∇u〉

≤ 〈A∇ζk,∇(u2ζk)〉+
1
2
〈A(u∇ζk), u∇ζk〉+ 2〈A(ζk∇u), ζk∇u〉.
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That is,

〈A(u∇ζk), u∇ζk〉 ≤ 2〈A∇ζk,∇(u2ζk)〉+ 4〈A∇u,∇u〉ζ2
k .(3.3)

Using (3.3) in (3.2), we obtain∫
2B∗

〈A∇ζk,∇u2〉

≤ 4η
∫

2B∗
〈A∇u,∇u〉+

1
2η

∫
2B∗

〈A∇ζk,∇(u2ζk)〉

+
1
η

∫
2B∗

〈A∇u,∇u〉ζ2
k

= 4η
∫

2B∗
〈A∇u,∇u〉+

1
2η

∫
2B∗

|f |u2ζk +
1
η

∫
2B∗

〈A∇u,∇u〉ζ2
k +

1
2η
γk,

where

γk :=
∫

2B∗
〈A∇ζk,∇(u2ζk)〉 −

∫
2B∗

|f |u2ζk.

Using this in (3.1), and recalling that supp(u) ⊂ B, and 0 ≤ ζk . η a.e. on
B, we obtain

δk +
∫

B
|f |u2 . 5η

∫
B
〈A∇u,∇u〉+

1
2

∫
B
|f |u2 +

1
2η
γk.(3.4)

By (2.2), {ϕk} := {u2ζk} is easily seen to be bounded in H0(2B∗). There-
fore there is a weakly convergent subsequence which we continue to denote
by {ϕk}. Using this subsequence, and recalling that ζ ∈ H0(2B∗) is the
Lax-Milgram solution of L0ζ = |f |χB in 2B∗ and ζ = 0 on ∂(2B∗) , we see
by Remark 2.2 that δk → 0, and γk → 0 as k → ∞. Therefore, taking the
limit as k →∞ in the inequality (3.4), we conclude∫

B
|f |u2 . 5η

∫
B
〈A∇u,∇u〉+

1
2

∫
B
|f |u2,

from which follows the desired result when u ∈ Lip0(B).
To prove the Lemma for u ∈ H0(B), suppose u = {uk}, uk ∈ Lip0(B).

For each k, we have ∫
B
|f |u2

k . 10η
∫

B
〈A∇uk,∇uk〉.

Take a subsequence of {uk} that converges pointwise a.e. to ũ on B. By
appealing to (2.3), and Fatou’s Lemma we get the desired result after taking
the limit as k →∞. �

Remark 3.1. Let f ∈ K, and B ⊂⊂ B0 be a ball. Using Hölder inequality,
followed by an application of Lemma 3.1, the map

ϕ 7→
∫

B
fϕ̃
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is seen to be continuous on H0(B). Therefore, by the Lax-Milgram theorem
there is a unique ζ ∈ H0(B) such that

a0(ζ, ϕ) =
∫

B
fϕ̃ , for ϕ ∈ H0(B).

We will also refer to ζ as the Lax-Milgram solution of L0ζ = f on B, ζ =
0 on ∂B.

Lemma 3.2. Let f ∈ K, and B ⊂ B0 be a ball of radius r.
(1) If G̃ρ is the approximate Green function of L0 on B, then∫

B
|f |G̃ρ . η(f)(2r).

(2) If ξ ∈ H0(B) is the Lax-Milgram solution of L0ξ = |f | in B, then

ξ̃(x) . η(f)(2r), for a.e x ∈ B.

Proof. First we show that if ζ ∈ H0(2B) is the Lax-Milgram solution of
L0ζ = |f |χB in 2B, then ζ̃(x) . η(f)(2r) for a.e. x ∈ 2B. To this end, let
us write |f |(k) := |f |∧(kυ), k = 1, 2, 3 · · · , and |f |(0) := |f |. As in the proof
of Lemma 3.1, we can argue that |f |(k) → |f | pointwise a.e. on B. By (2.1)
and Lemma 3.1 the map

ϕ ∈ H0(2B) 7→
∫

B∗
|f |(k)ϕ̃,

is seen to be continuous on H0(2B) for all k = 0, 1, 2, · · · . Let ζ(k) ∈ H0(2B)
be the Lax-Milgram solution of L0ζ = |f |(k)χB∗ on 2B. Here B∗ is a ball
concentric to B but with radius (1− ε)r for small ε > 0. For k = 1, 2, 3, · · · ,
note that |f |(k)υ−1 ∈ Lt′

υ (B), t < σ. Then, by the representation formula of
Lemma 2.2, we have for a.e. x ∈ B, and k = 1, 2, · · · ,

ζ̃(k)(x) =
∫

B∗
Gr(x, y)|f |(k)(y) dy ≤

∫
B∗
G(x, y)|f |(k)(y) dy

≤
∫

2Br(x)∩2B0

G(x, y)|f(y)| dy ≤ η(f)(2r),

where Gr and G denote the Green functions of L0 on 2B and 2B0 respec-
tively. We have used the fact that Gr ≤ G on B, which is valid by the
weak maximum principle, Lemma 2.3. By Lemma 2.4, there is a sequence
{ζ(k)

m } in Lip0(2B) such that ζ(k)
m → ζ(k) in H0(2B), and ζ(k)

m . η(f)(2r) a.e.
on a ball concentric with B, and of radius strictly between that of B∗, and
B. Now let us observe that ζ(k), for k = 1, 2, 3, · · · , is the weak solution
of L0ζ = 0 on 2B r B∗ such that Cη(f)(2r) − ζ

(k)
m ≥ 0 on a neighborhood

of ∂(2B r B∗). Therefore by the weak maximum principle, Lemma 2.3,
we conclude that ζ̃(k) . η(f)(2r) on 2B r B∗, and hence on 2B. To show
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that the same bound holds for ζ := ζ(0), let G̃ρ
∗ be the approximate Green

function of L0 on 2B, and let us observe that

−
∫

Bρ

(ζ̃− ζ̃(k))υ = a0(Gρ
∗, ζ− ζ(k)) = a0(ζ− ζ(k), Gρ

∗) =
∫

B
(|f |− |f |(k)χB∗)G̃ρ

∗,

for all k. Since |f |G̃ρ
∗ ∈ L1(B), we invoke the Lebesgue dominated conver-

gence theorem to conclude that

−
∫

Bρ

ζ̃υ = lim
k→∞

−
∫

Bρ

ζ̃(k)υ +
∫

B
|f |(1− χB∗)G̃ρ

∗

≤ Cη(f)(2r) +
∫

BrB∗
|f |G̃ρ

∗.

After letting ε→ 0, we obtain

−
∫

Bρ

ζ̃υ . η(f)(2r).

This leads to the claimed estimate after taking the limit as ρ → 0, namely
we get,

ζ̃(x) . η(f)(2r), for a.e. x ∈ 2B.(3.5)

We now use this result to prove the statement in (1). To see this, let us
take the Lax-Milgram solution ζ of L0ζ = |f |χB in H0(2B). Let G̃ρ, and G̃ρ

∗
be the approximate Green functions of L0 on B, and 2B respectively. Since
Gρ
∗ −Gρ is a solution of L0 in B, and G̃ρ

∗ − G̃ρ ≥ 0 near ∂B, by Lemma 2.3
we note that G̃ρ ≤ G̃ρ

∗ on B. Therefore, by (3.5) above,∫
B
|f |G̃ρ ≤

∫
B
|f |G̃ρ

∗ = a0(ζ,Gρ
∗) = a0(Gρ

∗, ζ) = −
∫

Bρ

ζ̃υ . η(f)(2r).

The statement in (2) is now an easy consequence of (1). To see this, let
ξ ∈ H0(B) be the Lax-Milgram solution of L0ξ = |f | in B. Let G̃ρ be the
approximate Green function of L0 on B. Then

−
∫

Bρ

ξ̃υ = a0(Gρ, ξ) = a0(ξ,Gρ) =
∫

B
|f |G̃ρ . η(2r).

Taking the limit as ρ→ 0, we obtain the desired result. �

The next Lemma is a slight extension of (2.3), and we will use it repeat-
edly.

Lemma 3.3. Let u = {uk}, ϕ = {ϕk} be in H(B). If {ζk} is a bounded
sequence in L∞(B) that converges pointwise a.e. to ζ ∈ L∞(B), then∫

B
〈A∇uk,∇ϕk〉ζk →

∫
B
〈A∇ũ,∇ϕ̃〉ζ, as k →∞.
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Proof. Since ∫
B
|〈A∇uk,∇ϕk〉ζk − 〈A∇ũ,∇ϕ̃〉ζ|

is not bigger than

‖ζk‖∞
∫
|〈A∇uk,∇ϕk〉 − 〈A∇ũ,∇ϕ̃〉|+

∫
|〈A∇ũ,∇ϕ̃〉ζ||ζk − ζ|,

and 〈A∇ũ,∇ϕ̃〉ζ ∈ L1(B) the Lemma follows from (2.3), and the Lebesgue
dominated convergence theorem. �

Let us now consider the general elliptic operator:

Mu := −div(A(x)∇u+ c(x)u) + b(x) · ∇u+ V (x)u,

where, in addition to (1.5) we also assume that |c|2ω−1 ∈ K. With M , and
its adjoint operator

M∗u := −div(A(x)∇u+ b(x)u) + c(x) · ∇u+ V (x)u,

we associate the bilinear forms D(., .) and D∗(., .) as follows. Fix a ball
B ⊂⊂ B0 of radius r, and let

D(u, ϕ) :=
∫

B
〈A∇u,∇ϕ〉+ c(x) · (∇ϕ)u+ b(x) · ∇uϕ+ V uϕ,

and D∗(u, ϕ) := D(ϕ, u), for all u, ϕ ∈ Lip0(B). Observe that by Hölder
inequality and Lemma 3.1, it follows

|D(u, ϕ)− a0(u, ϕ)| . ϑ(r)‖u‖0‖ϕ‖0, u, ϕ ∈ Lip0(B),(3.6)

where ϑ(r) := (η(|c|2ω−1)(3r))1/2 + (η(|b|2ω−1)(3r))1/2 + η(V )(3r). There-
fore, we get

|D(u, ϕ)| . (1 + ϑ(r))‖u‖0‖ϕ‖0, u, ϕ ∈ Lip0(B).(3.7)

Thus if u = {uk}, ϕ = {ϕk}, uk, ϕk ∈ Lip0(B) are elements of H0(B) then
the above inequality shows that {D(uk, ϕk)} is a Cauchy sequence and hence
limk D(uk, ϕk) exists. Therefore we define

D(u, ϕ) := lim
k
D(uk, ϕk).

Having defined D(u, ϕ) for u, ϕ ∈ H0(B), the inequality (3.7) still holds
for any u, ϕ ∈ H0(B). As a result of this inequality we see that for a fixed
u ∈ H0(B), the map ϕ 7→ D(u, ϕ) is a continuous linear functional on
H0(B).

Using (3.6) one also obtains a0(u, u)(1 − Cϑ(r)) . D(u, u), for u ∈
Lip0(B). Therefore for sufficiently small r0, and all 0 < r ≤ r0, we have

‖u‖2
0 . D(u, u), u ∈ H0(B),

so that D(., .) is a coercive bilinear form on H0(B).
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Given f ∈ K, we shall say that u ∈ H0(B) is a weak solution of Mu = f
in B if

D(u, ϕ) =
∫

B
fϕ̃,

for all ϕ ∈ H0(B). Similar statements and definitions hold for the adjoint
operator M∗ and the associated bilinear form D∗(., .).

The following remark will be useful at several stages in our subsequent
proofs.

Remark 3.2. Let f ∈ K, and u = {uk} ∈ H0(B) be a weak solution of
Mu = f in B. If {vk} is a bounded, weakly convergent sequence in H0(B),
then

lim
k→∞

[
D(uk, vk)−

∫
B
fṽk

]
= 0.

This can be verified along the lines of argument given in Remark 2.2, since
the linear functionals

ϕ 7→ D(u, ϕ), and ϕ 7→
∫

B
fϕ̃

are continuous on H0(B).

Lemma 3.4. Suppose fυ−1 ∈ Lp
υ(B) for some p > σ

σ−1 , and some B ⊂ B0,
where B is a ball of raduis r. Then there is a unique solution u of L0u = f
in H0(B), and the following estimate holds.

‖ũ‖L∞(B) ≤ Cr2
υ(B)

1
p′

ω(B)
‖fυ−1‖Lp

υ(B).

Proof. The existence and uniqueness follows by the Lax-Milgram Theorem
as pointed out in Remark 2.1.

Let G̃ρ be the approximate Green function of L0 on B with pole y ∈ B.
Then

−
∫

Bρ

ũυ = a0(Gρ, u) = a0(u,Gρ) =
∫

B
fG̃ρ,

so that by Hölder’s inequality,∣∣∣∣∣−
∫

Bρ

ũυ

∣∣∣∣∣ =
∣∣∣∣∫

B
fG̃ρ

∣∣∣∣ ≤ ‖fυ−1‖Lp
υ(B)

(∫
B

(G̃ρ)p′υ

) 1
p′

≤ Cr2
υ(B)

1
p′

ω(B)
‖fυ−1‖Lp

υ(B).

In the last inequality, we used, (see [3]) the fact that, when 1 < p′ < σ,(∫
B

(G̃ρ)p′υ

) 1
p′

≤ Cr2
υ(B)

1
p′

ω(B)
,(3.8)
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where C is independent of ρ and the pole of G̃ρ. If we now let ρ → 0, we
conclude

|ũ(y)| ≤ Cr2
υ(B)

1
p′

ω(B)
‖fυ−1‖Lp

υ(B).

This and the arbitrariness of y ∈ B establishes the Lemma. �

Remark 3.3. Let Gρ be the approximate Green function of L0 on B. Thus
Gρ is the Lax-Milgram solution of L0G

ρ = υχBρ [υ(Bρ)]−1. Therefore, by
Lemma 3.4, ‖G̃ρ‖L∞(B) ≤ C for some constant C depending on ρ, the pole
of Gρ, and υ.

For the next Lemma, given B ⊂ B0 we take f ∈ L1(B) such that the map

ϕ 7→
∫

B
fϕ̃, ϕ ∈ H0(B)

is continuous on H0(B). Furthermore, we require that∫
B
|f |G̃ρ = O(1), as ρ→ 0+,

where G̃ρ is the approximate Green function of L0 on B.

Lemma 3.5. If u ∈ H0(B) is the unique solution of L0u = f on B, then
u has a representative u = {uk}, uk ∈ Lip0(B) such that ‖uk‖∞ ≤ M
uniformly in k for some constant M .

Proof. Let u(+) ∈ H0(B), and u(−) ∈ H0(B) be the solutions of L0u
(+) =

f+, and L0u
(−) = f− respectively. Here f+ := max{0, f}, and f− :=

max{0,−f}. If ũ(+), and ũ(−) are the associated functions, then

−
∫

Bρ

ũ(±)υ = a0(Gρ, u(±)) = a0(u(±), Gρ) =
∫

B
f±G̃ρ ≤ C.

Taking the limit as ρ → 0, we conclude that ũ(±) ≤ C a.e. on B. By
Lemma 2.4 (see Remark 2.4), the solutions u(+), and u(−) have represen-
tatives u(+) = {u(+)

k }, u(+)
k ∈ Lip0(B), and u(−) = {u(−)

k }, u(−)
k ∈ Lip0(B)

such that
u

(+)
k . C, and u

(−)
k . C

a.e. on B. By Lemma 2.1, we can in fact choose such representatives to
satisfy

0 ≤ u
(+)
k . C, and 0 ≤ u

(−)
k . C

a.e. on B. Now let u∗ = {u(+)
k − u(−)

k }. It is easy to verify that u∗ ∈ H0(B)
is a solution of L0u = f on B. By uniqueness, we must then have u =
{u(+)

k − u
(−)
k }, and this representation satisfies the condition stated in the

Lemma. �
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From now on, we will assume that c ≡ 0 in the bilinear forms D(., .), and
D∗(., .).

Theorem 3.1. Let B ⊂⊂ B0 be a ball of radius r, and let fυ−1 ∈ Lp
υ(B)

for some p > σ
σ−1 . Then there is r0 such that if 0 < r ≤ r0, there is a unique

solution u ∈ H0(B) of Lu = f in B and it satisfies the estimate

‖ũ‖L∞(B) ≤ Cr2
υ(B)

1
p′

ω(B)
‖fυ−1‖Lp

υ(B),

for some constant C.

Proof. Choose r0 such that the bounded bilinear form D(., .) is coercive on
H0(B), whenever B is a ball of radius r, with 0 < r ≤ r0. Since ϕ→

∫
B fϕ̃

is a continuous linear functional on H0(B), by the Lax-Milgram theorem
there is a unique u ∈ H0(B) such that

D(u, ϕ) =
∫

B
fϕ̃, ϕ ∈ H0(B);

that is Lu = f in B. Moreover, by Hölder’s and Sobolev inequality,

‖u‖0 ≤ C‖fυ−1‖Lp
υ(B).

We want to show that for some constant C,

‖ũ‖L∞(B) ≤ Cr2
υ(B)

1
p′

ω(B)
‖fυ−1‖Lp

υ(B).

Let u−1 ≡ 0, and we inductively define uj ∈ H0(B), j = 0, 1, 2, · · · , as
the unique element for which

a0(uj , ϕ) =
∫

B
(f − b · ∇ũj−1 − V ũj−1) ϕ̃, for all ϕ ∈ H0(B),

so that uj is the solution of L0u+ b · ∇ũj−1 + V ũj−1 = f in H0(B). This is
possible, since for a given uj−1 ∈ H0(B), the map

ϕ 7→
∫

B
(f − b · ∇ũj−1 − V ũj−1) ϕ̃,

is a continuous linear functional on H0(B). Suppose that G̃ρ is the approxi-
mate Green function of L0 on B. We now claim that for each j = 0, 1, 2, · · · ,
we can choose a representative uj = {u(k)

j }, u(k)
j ∈ Lip0(B), such that

‖u(k)
j ‖∞ ≤Mj , and

∫
B
|∇ũj |2G̃ρω = O(1), as ρ→ 0+,(3.9)

for some positive constant Mj independent of k. We show this by induction
on j. Since G̃ρ is essentially bounded, and since Gρ ≥ 0, by Lemma 2.4 (or
see Remark 2.4) we can take a representative Gρ = {Gρ

k}, G
ρ
k ∈ Lip0(B)

such that 0 ≤ Gρ
k ≤ C a.e. on B for some constant C independent of k.
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Since u0 ∈ H0(B) is the solution of L0u = f , by Lemma 3.5 we can choose
a representative u0 = {u(k)

0 }, u(k)
0 ∈ Lip0(B) such that u(k)

0 is uniformly
bounded on B. Consequently, one can use (2.2) to show that {u(k)

0 Gρ
k},

and {(u(k)
0 )2} are bounded in H0(B). Then for some subsequences, ϕ(k)

0 :=
u

(k)
0 Gρ

k, and ψ(k)
0 := (u(k)

0 )2 are weakly convergent in H0(B). Using a further
subsequence if necessary, we can assume that ϕ(k)

0 → ũ0G̃
ρ a.e. on B. Let

us now observe that∫
B

〈
A∇u(k)

0 ,∇u(k)
0

〉
Gρ

k

=
∫

B

〈
A∇u(k)

0 ,∇
(
u

(k)
0 Gρ

k

)〉
− 1

2

∫
B

〈
A∇Gρ

k,∇
(
u

(k)
0

)2
〉

= δk +
∫

B
fu

(k)
0 Gρ

k −
1
2
−
∫

Bρ

(
u

(k)
0

)2
υ

≤ δk +
∫

B
|f |u(k)

0 Gρ
k,

where

δk :=
∫ 〈

A∇u(k)
0 ,∇

(
u

(k)
0 Gρ

k

)〉
− 1

2

∫ 〈
A∇Gρ

k,∇
(
u

(k)
0

)2
〉

−
∫
fu

(k)
0 Gρ

k +
1
2
−
∫

Bρ

(
u

(k)
0

)2
υ,

and the first three integrals are over B. We now take the limit as k → ∞.
By Remark 2.2, we observe that δk → 0. Then by Lemma 3.3, Lebesgue
dominated convergence theorem, and the fact that δk → 0, we obtain∫

B
〈A∇ũ0,∇ũ0〉G̃ρ ≤

∫
B
|f |ũ0G̃

ρ.

Using (1-1), this leads to the estimate∫
B
|∇ũ0|2G̃ρω ≤ ‖ũ0‖∞

∫
B
|f |G̃ρ ≤ C‖ũ0‖∞r2

υ(B)
1
p′

ω(B)
‖fυ−1‖Lp

υ(B)

= A0‖ũ0‖∞‖fυ−1‖Lp
υ(B),

where we have also used (3.8) in the penultimate inequality and A0 stands

for the expression Cr2υ(B)
1
p′ /ω(B). This completes the first induction step.

Let us now suppose that uj has a representative uj = {u(k)
j }, u(k)

j ∈
Lip0(B) and that (3.9) holds for the index j and some constant Mj . Then
by Lemma 3.2, Hölder’s inequality, and assumption (3.9), we see that∫

B
|f − b · ∇ũj − V ũj |G̃ρ ≤ C,
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for some constant C independent of ρ. Thus by Lemma 3.5, we can find a
representative uj+1 = {u(k)

j+1}, u
(k)
j+1 ∈ Lip0(B) such that ‖u(k)

j+1‖∞ ≤ Mj+1

on B for some positive constant Mj+1 independent of k. The rest of the
argument proceeds in exactly the same way as for the j = 0 case. This
completes the induction, thereby proving the claim that (3.9) holds for all
j.

Now let ξj := uj − uj−1, for j = 0, 1, 2, · · · , where we take the represen-
tation ξj := {ξ(k)

j } with ξ(k)
j := u

(k)
j − u

(k)
j−1. Then the ξj satisfy

a0(ξj , ϕ) = −
∫

B

(
b · ∇ξ̃j−1 + V ξ̃j−1

)
ϕ̃,

for all ϕ ∈ H0(B), and j = 1, 2, . . . .

As a result of (3.9), we have

‖ξ̃j‖∞ <∞, and
∫

B
|∇ξ̃j |2G̃ρω = O(1), as ρ→ 0+.

For notational convenience, let us introduce the following. For some suffi-
ciently small ρ0, and for j = 0, 1, 2, . . . , let

ϑ :=
√
η(|b|2ω−1)(3r) + η(V )(3r), and τj := sup

0<ρ≤ρ0

(∫
B
|∇ξ̃j |2G̃ρω

) 1
2

.

Using these notations, and using Lemma 3.2, we find that

−
∫

Bρ

ξ̃jυ = a0(Gρ, ξj) = a0(ξj , Gρ) = −
∫

B

(
b · ∇ξ̃j−1 + V ξ̃j−1

)
G̃ρ

≤
(∫

B
|b|2ω−1G̃ρ

) 1
2

·
(∫

B
|∇ξ̃j−1|2G̃ρω

) 1
2

+ ‖ξ̃j−1‖∞
∫

B
|V |G̃ρ

≤ ϑ
(
τj−1 + ‖ξ̃j−1‖∞

)
.

After letting ρ→ 0, we obtain

‖ξ̃j‖∞ ≤ ϑ
(
τj−1 + ‖ξ̃j−1‖∞

)
.(3.10)

As a consequence of (2.2), and (3.9) one can see that the sequence {ξ(k)
j Gρ

k} is

bounded inH0(B). Then for an appropriate subsequence, ϕ(k)
j := ξ

(k)
j Gρ

k and

ψ
(k)
j := (ξ(k)

j )2 are weakly convergent in H0(B). Without loss of generality,
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we can assume that ϕ(k)
j → ξ̃jG̃

ρ pointwise a.e. on B. We now observe that∫
B
〈A∇ξ(k)

j ,∇ξ(k)
j 〉Gρ

k =
∫

B
〈A∇ξ(k)

j ,∇(ξ(k)
j Gρ

k)〉 −
1
2

∫
B
〈A∇Gρ

k,∇(ξ(k)
j )2〉

= δ
(k)
j +

∫
B

(
b · ∇ξ̃j−1 + V ξ̃j−1

)
ξ
(k)
j Gρ

k −−
∫

Bρ

(ξ(k)
j )2υ

≤ δ
(k)
j +

∫
B

(
b · ∇ξ̃j−1 + V ξ̃j−1

)
ξ
(k)
j Gρ

k,

where δ(k)
j is given by∫

B
〈A∇ξ(k)

j ,∇(ξ(k)
j Gρ

k)〉 −
1
2

∫
B
〈A∇Gρ

k,∇(ξ(k)
j )2〉

−
∫

B

(
b · ∇ξ̃j−1 + V ξ̃j−1

)
ξ
(k)
j Gρ

k +−
∫

Bρ

(ξ(k)
j )2υ.

Notice that by Remark 2.2, δ(k)
j → 0 as k →∞. Therefore taking the limit in

the last inequality, as k →∞, applying Lemma 3.3, and the Lebesgue dom-
inated convergence theorem, followed by an application of Hölder inequality
and Lemma 3.1, we obtain∫

B
|∇ξ̃j |2G̃ρω ≤ ϑ‖ξ̃j‖∞

(
τj−1 + ‖ξ̃j−1‖∞

)
.

Using (3.10) to estimate ‖ξ̃j‖∞ in the above inequality, we get

τj ≤ ϑ
(
τj−1 + ‖ξ̃j−1‖∞

)
, j = 1, 2, . . . .

The sum ‖ξ̃j‖∞ + τj can thus be estimated as

‖ξ̃j‖∞ + τj ≤ 2ϑ
(
τj−1 + ‖ξ̃j−1‖∞

)
, j = 1, 2, . . . .(3.11)

Observe that τ0 + ‖ξ̃0‖∞ ≤ (A0‖fυ−1‖Lp
υ(B)‖ũ0‖∞)1/2 + ‖ũ0‖∞. But by

Lemma 3.4, we recall ‖ũ0‖∞ ≤ A0‖fυ−1‖Lp
υ(B). Therefore from (3.10), and

(3.11) one obtains by induction

‖ξ̃j‖∞ ≤ 2j−1ϑj
(
τ0 + ‖ξ̃0‖∞

)
≤ (2ϑ)jA0‖fυ−1‖Lp

υ(B), j = 1, 2, . . . .

(3.12)
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An application of Cauchy-Schwarz inequality, and Lemma 3.1 leads us
also, on using (1.1), to observe that∫

B
〈A∇ξ̃j ,∇ξ̃j〉 = a0(ξj , ξj) = −

∫
B

(
b · ∇ξ̃j−1 + V ξ̃j−1

)
ξ̃j

≤
(∫

B
|b|2ω−1ξ̃2j

) 1
2

·
(∫

B
|∇ξ̃j−1|2ω

) 1
2

+
(∫

B
|V |ξ̃2j

) 1
2

·
(∫

B
|V |ξ̃2j−1

) 1
2

≤ 2ϑ
∫

B
〈A∇ξ̃j ,∇ξ̃j〉+

1
2

∫
B
|∇ξ̃j−1|2ω.

Therefore

βj ≤
1√

2(1− 2ϑ)
βj−1, where βj :=

(∫
B
〈A∇ξ̃j ,∇ξ̃j〉

) 1
2

, j = 1, 2, . . . .

Thus

‖ξj‖0 = βj ≤

(
1√

2(1− 2ϑ)

)j

β0 =

(
1√

2(1− 2ϑ)

)j

‖ξ0‖0.(3.13)

Now, from (3.12) we observe that

‖ũm − ũk‖∞ ≤
m∑

j=k+1

‖ξ̃j‖∞ ≤ A0‖fυ−1‖Lp
υ(B)

m∑
j=k+1

(2ϑ)j−1, for m > k.

Also, from (3.13) we obtain

‖um − uk‖0 ≤
m∑

j=k+1

‖ξ̃j‖0 ≤ ‖ξ‖0

m∑
j=k+1

(
1√

2(1− 2ϑ)

)j

, for m > k.

Thus, if we further choose r0 such 4ϑ(r) < 1 for 0 < r ≤ r0, then we
conclude that {ũm}, and {uk} are Cauchy sequences in L∞(B), and H0(B)
respectively. So let us take u∗ ∈ H0(B) such that um → u∗ in H0(B). Now
let ϕ ∈ Lip0(B) be arbitrary. Then, we have

D(u∗ − u, ϕ) = D(u∗ − um, ϕ) +D(um, ϕ)−D(u, ϕ).

But

D(um, ϕ)−D(u, ϕ) = a0(um, ϕ) +
∫

B
(b · (∇um)ϕ+ V umϕ)−

∫
B
fϕ

= a0(um, ϕ)− a0(um+1, ϕ) = a0(um − um+1, ϕ).



486 AHMED MOHAMMED

Therefore, for m ≥ 1

|D(u∗ − u, ϕ)| . ‖u∗ − um‖0‖ϕ‖0 + |D(um, ϕ)−D(u, ϕ)|
. ‖u∗ − um‖0‖ϕ‖0 + |a0(um − um+1, ϕ)|
. (‖u∗ − um‖0 + ‖um+1 − um‖0) ‖ϕ‖0.

Taking the limit as m → ∞, we obtain D(u∗ − u, ϕ) = 0 for ϕ ∈ Lip0(B).
Since Lip0(B) is dense in H0(B), and the bilinear form D(., .) is coercive
on H0(B) we conclude that u = u∗. Since {ũm} is a Cauchy sequence in
L∞(B), by uniqueness of limits we know that ũm → ũ in L∞(B). But,

‖ũm‖∞ ≤
m∑

k=1

‖ξ̃k‖∞ ≤ CA0‖fυ−1‖Lp
υ(B)

m∑
k=1

(2ϑ)k−1.

Therefore, since

‖ũ‖∞ ≤ ‖ũm − ũ‖∞ + C(r)A0‖fυ−1‖Lp
υ(B),

letting m→∞, and recalling the value of A0, gives the desired estimation.
�

Remark 3.4. Let fυ−1 ∈ Lp
υ(B) for some p > σ

σ−1 . If L∗u = f for u ∈
H0(B), then L̃u = f , where L̃ := −div(A(x)∇) − b(x) · ∇ + (V − divb).
Therefore, if |b|2ω−1, divb, V ∈ K, then by the above theorem, we also
have the estimate

‖ũ‖L∞(B) ≤ Cr2
υ(B)

1
p′

ω(B)
‖fυ−1‖Lp

υ(B),

for some constant C.

For the rest of the paper we will require an additional condition on the
coefficient b of the operator L. Thus, in addition to the condition (1.5) on
the coefficients b, and V of L, we impose the following:

divb ∈ K.(3.14)

Let B ⊂⊂ B0 be a ball of radius sufficiently small that the bounded
bilinear form (with c ≡ 0) D∗(u, ϕ) is coercive on H0(B). Let y ∈ B, and
ρ > 0 such that Bρ := Bρ(y) ⊂ B. Since the map

ϕ 7→ −
∫

Bρ

ϕ̃υ

is a continuous linear functional on H0(B), by Lax-Milgram theorem there
is a unique Gρ ∈ H0(B) such that

D∗(Gρ, ϕ) = −
∫

Bρ

ϕ̃υ, ϕ ∈ H0(B).
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Following [3], we call G̃ρ the approximate Green function of L on B with
pole y. Note that by Theorem 3.1 (see Remark 3.4), ‖G̃ρ‖L∞(B) ≤ C for
some constant C depending on ρ, the pole of G̃ρ, and υ.

In the following Lemma, B ⊂ B0 is a ball of radius so small that the
bilinear form D(., .) is coercive.

Lemma 3.6. Suppose u ∈ H0(B), and D(u, ϕ) ≥ 0 whenever 0 ≤ ϕ ∈
Lip0(B). Then u ≥ 0.

Proof. Let u={uk}, uk ∈ Lip0(B). Since ∇|uk| = (sgnuk)∇uk where uk 6=
0, and (sgnuk)|uk| = uk, it follows that for each k

D(uk, |uk|) = D(|uk|, uk), and D(|uk|, |uk|) = D(uk, uk).

Since a0(uk, |uk|) = a0(|uk|, uk) also, the sequence {|uk|} is bounded in
H0(B), and thus a subsequence which we continue to write as {|uk|} con-
verges weakly to some v ∈ H0(B). Since ϕ 7→ D(u, ϕ) is continuous on
H0(B) and D(u, |uk| − uk) ≥ 0 by hypothesis, it follows that

0 ≤ lim
k→∞

D(u, |uk| − uk) = D(u, v − u),

so that D(u, u) ≤ D(u, v). Then D(u, u) = αD(u, v) for some 0 < α ≤ 1.
Let us now observe that

0 ≤ ‖u− α|uk|‖2
0 . D(u− α|uk|, u− α|uk|)

= D(u, u)− 2αD(u, |uk|) + α2D(|uk|, |uk|)
= D(u, u)− 2αD(u, |uk|) + α2D(uk, uk).

Taking the limit as k →∞, the last inequality reduces to

0 ≤ lim
k→∞

‖u− α|uk|‖2
0 . D(u, u)− 2αD(u, v) + α2D(u, u)

≤ D(u, u)− 2D(u, u) + α2D(u, u) = (α2 − 1)D(u, u).

Hence
0 ≤ lim

k→∞
‖u− α|uk|‖2

0 . (α2 − 1)D(u, u) ≤ 0.

That is, α|uk| → u in H0(B) as k → ∞, showing that u is the limit in
H0(B) of α|uk| ≥ 0. From this, it also follows that α|uk| → ũ in L2

υ. But
also uk → ũ in L2

υ(B). Therefore we must have α|ũ| = ũ a.e. on B. Thus
α = 1, and hence u = {|uk|}. �

The following lemma will be useful.

Lemma 3.7. Let B ⊂⊂ B0 be a ball of radius r, and G̃ρ be the approximate
Green function of L on B. There is r0 > 0 such that if 0 < r ≤ r0, then∫

B

(
|b|2ω−1 + |V |

)
G̃ρ ≤ Cη(|b|2ω−1 + |V |)(2r),

where C is a constant independent of ρ and the pole of G̃ρ.
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Proof. Since

ϕ 7→
∫

B

(
|b|2ω−1 + |V |

)
ϕ̃,

is a continuous linear functional on H0(B), by Lax-Milgram theorem let
ζ ∈ H0(B) be the unique solution of

a0(ζ, ϕ) =
∫

B

(
|b|2ω−1 + |V |

)
ϕ̃, ϕ ∈ H0(B).

By Lemma 3.2, ζ̃(x) . η := η(|b|2ω−1 + V )(2r) for a.e. x ∈ B. By
Lemma 2.1, and Lemma 2.4 (or Remark 2.4), let us pick a sequence ζk ∈
Lip0(B) such that 0 ≤ ζk . η a.e. on B. Let G̃ρ be the approximate
Green function of L on B. By Remark 3.4, G̃ρ is essentially bounded, and
Lemma 3.6 shows Gρ ≥ 0. Thus by Lemma 2.4 (see Remark 2.4), we can
pick a representative Gρ = {Gρ

k}, G
ρ
k ∈ Lip0(B) such that for some constant

C independent of k, we have 0 ≤ Gρ
k ≤ C a.e. on B. Let us now observe

that ∫
B

(
|b|2ω−1 + |V |

)
Gρ

k

= δk +
∫

B
〈A∇ζk,∇Gρ

k〉

= δk + γk −
∫

B

(
b · (∇ζk)Gρ

k + V ζkG
ρ
k

)
+−
∫

Bρ

ζkυ

≤ δk + γk +
√
η

∫
B
|b|2ω−1Gρ

k +
1
√
η

∫
B
〈A∇ζk,∇ζk〉Gρ

k

+ η

∫
B
|V |Gρ

k + η.

Here δk and γk are given by

δk :=
∫

B

(
|b|2ω−1 + |V |

)
Gρ

k −
∫

B
〈A∇ζk,∇Gρ

k〉,

and γk := D∗(G
ρ
k, ζk)−−

∫
Bρ

ζkυ.

By Remark 2.2, and Remark 3.2 respectively, we notice that δk → 0, and
γk → 0 as k → ∞. We thus take the limit as k → ∞. By Lemma 3.3, and
the Lebesgue dominated convergence theorem, we obtain∫

B

(
|b|2ω−1 + |V |

)
G̃ρ(3.15)

≤ √
η

∫
B
|b|2ω−1G̃ρ +

1
√
η

∫
B
〈A∇ζ̃,∇ζ̃〉G̃ρ + η

∫
B
|V |G̃ρ + η.
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As a result of (2.2), we see that {ζkGρ
k} is a bounded sequence in H0(B).

Therefore, we pick a subsequence still denoted by {ζkGρ
k} that converges

weakly in H0(B), and such that ζkG
ρ
k → ζ̃G̃ρ pointwise a.e. on B. Using

this subsequence we have∫
B
〈A∇ζk,∇ζk〉Gρ

k =
∫

B
〈A∇ζk,∇(ζkG

ρ
k)〉 −

1
2

∫
B
〈A∇Gρ

k,∇ζ
2
k〉

= δk +
∫

B

(
|b|2ω−1 + |V |

)
Gρ

kζk

+
1
2

(∫
B

(
b · (∇ζ2

k)Gρ
k + V Gρ

kζ
2
k

)
+ γk −−

∫
Bρ

ζ2
kυ

)

≤ δk +
1
2
γk + η

∫
B

(
|b|2ω−1 + |V |

)
Gρ

k

+
1
2

(
η2

∫
B

(
|b|2ω−1 + |V |

)
Gρ

k +
∫

B
〈A∇ζk,∇ζk〉Gρ

k

)
,

where

δk := a0(ζk, ζkG
ρ
k)−

∫
B

(
|b|2ω−1 + |V |

)
Gρ

kζk,

and γk := −D∗(Gρ
k, ζ

2
k) +−

∫
Bρ

ζ2
kυ.

Again by Remark 2.2, and Remark 3.2 respectively, we see that δk → 0, and
γk → 0 as k → ∞. We thus take the limit as k → ∞. By Lemma 3.3, and
the Lebesgue dominated convergence theorem, we obtain∫

B
〈A∇ζ̃,∇ζ̃〉G̃ρ ≤ η

∫
B

(
|b|2ω−1 + |V |

)
G̃ρ

+
1
2

(
η2

∫
B

(
|b|2ω−1 + |V |

)
G̃ρ +

∫
B
〈A∇ζ̃,∇ζ̃〉G̃ρ

)
.

Putting this last inequality back into (3.15), we see that there is r0 such
that for all 0 < r ≤ r0,∫

B

(
|b|2ω−1 + |V |

)
G̃ρ ≤ Cη(|b|2ω−1 + |V |)(2r),

as required. �

We now have all the needed ingredients to demonstrate the uniform inte-
grability of the approximate Green functions of L. We use the methods in
[3] (see also [5], [8]) to prove the integrability theorem.

Theorem 3.2. Let B ⊂⊂ B0 be a ball of radius r. Suppose G̃ρ is the
approximate Green function of L on B, where we assume that the coefficients
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of L satisfy the conditions (1.5) and (3.14). Then for 0 < p < σ there is a
positive constant, independent of ρ and the pole, such that(

−
∫

B

(
G̃ρ
)p
υ

) 1
p

≤ C
r2

ω(B)
,

when r is sufficiently small.

Proof. Let G̃ρ be the approximate Green function of L on B. By Lemma 3.6,
Gρ ≥ 0 on B. Therefore we pick a representative Gρ = {Gρ

k}, G
ρ
k ∈ Lip0(B)

such that Gρ
k ≥ 0.

Now, for t > 0, let us define

ϕk :=
[
1
t
− 1
Gρ

k

]+

=
[
1
t
− 1
Gρ

k

]
χ{Gρ

k>t}.

Then ϕk ∈ Lip0(B), and

∇ϕk =
∇Gρ

k

(Gρ
k)

2
χ{Gρ

k>t}.

Since ‖ϕk‖2
0 ≤ ‖Gρ

k‖
2
0/t

4, we can pick a subsequence, still denoted by {ϕk}
that converges weakly in H0(B). With such subsequence, we observe that∫

B
〈A∇Gρ

k,∇ϕk〉 = δk −
∫

B
(b · ∇ϕk + V ϕk)G

ρ
k +−

∫
Bρ

ϕkυ,(3.16)

where

δk := D∗(G
ρ
k, ϕk)−−

∫
Bρ

ϕkυ.

Using the Cauchy-Schwarz inequality, and noting that ϕk ≤ 1/t on B, we
estimate∫

B
(b · ∇ϕk + V ϕk)G

ρ
k ≤

1
2t

∫
B
|b|2ω−1Gρ

k +
t

2

∫
B
|∇ϕk|2Gρ

kω +
1
t

∫
|V |Gρ

k

≤ 1
t

∫
B

(|b|2ω−1 + |V |)Gρ
k +

t

2

∫
{Gρ

k>t}

|∇Gρ
k|

2

(Gρ
k)

4
Gρ

kω

≤ 1
t

∫
B

(|b|2ω−1 + |V |)Gρ
k +

1
2

∫
{Gρ

k>t}

|∇Gρ
k|

2

(Gρ
k)

2
ω

≤ 1
t

∫
B

(|b|2ω−1 + |V |)Gρ
k +

1
2

∫
B
〈A∇Gρ

k,∇ϕk〉.

Taking this last estimation, and using again the fact that ϕk ≤ 1/t on B
we get from (3.16) that∫

B
〈A∇Gρ

k,∇ϕk〉 ≤ 2|δk|+
2
t

∫
B

(|b|2ω−1 + |V |)Gρ
k +

2
t
.
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We now take the limit as k → ∞. By Remark 3.2 we know that δk → 0 as
k →∞. Using this fact and applying Lemma 3.7, we get

lim
k→∞

∫
B
〈A∇Gρ

k,∇ϕk〉 ≤
2
t

∫
B

(|b|2ω−1 + |V |)G̃ρ +
2
t

≤ 2
t
(1 + η(|b|2ω−1 + V )(3r)).

Hence by the degeneracy condition, we obtain the inequality

lim sup
k→0

∫
{Gρ

k>t}

|∇Gρ
k|

2

(Gρ
k)

2
ω ≤ 2

t
(1 + η(|b|2ω−1 + V )(3r)).

Now let
ψk :=

[
logGρ

k − log t
]+ =

[
logGρ

k − log t
]
χ{G

ρ
k

>t}
.

Then ψk ∈ H0(B), and ∇ψk =
(
∇Gρ

k

Gρ
k

)
χ{Gρ

k>t}. Therefore, for sufficiently
small r the last inequality now reads

lim sup
k→∞

∫
B
|∇ψk|2ω ≤

C

t
,

and hence by Sobolev inequality (2.1), we get

lim sup
k→∞

(
1

υ(B)

∫
B∩{Gρ

k>t}
log
(
Gρ

k

t

)q

υ

) 2
q

≤ C
r2

ω(B)
C

t
.

Restricting the integration to {Gρ
k > 2t}, we get

(log 2)2 lim sup
k→∞

(
υ({Gρ

k > 2t})
υ(B)

) 2
q

≤ C
r2

ω(B)
1
t
.

The above inequality remains valid if we replace 2t by t. Also by using
further subsequence if necessary, we may assume that Gρ

k → G̃ρ pointwise
a.e. on B. Thus χ{G̃ρ>t} ≤ lim inf χ{Gρ

k>t} a.e., and by Fatou’s lemma,

υ({G̃ρ > t}) ≤ lim inf
k→∞

υ({Gρ
k > t}).

Therefore we obtain,

υ({G̃ρ > t}) ≤ C

(
r2

ω(B)

)σ 1
tσ
υ(B).

The theorem then follows from this estimate, and the formula∫
B

(G̃ρ)p = p

∫ ∞

0
tp−1υ({G̃ρ > t})

≤ pυ(B)
∫ A

0
tp−1 + p

∫ ∞

A
tp−1υ({G̃ρ > t}),

where A = r2/ω(B). �
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