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We find families of words W where W is a product of k
pieces for k=2. For k=3,4,6, W arises in a small cancella-
tion group with single defining relation W=1. We assume W
involves generators but not their inverses and does not have
a periodic cyclic permutation (like XY...XYX for nonempty
base word XY). We prove W or W written backwards equals
ABCD where ABC, CDA are periodic words with base words
of different lengths. One family includes words of the form
EFGG for periodic words G, E, F with the same base word
and increasing lengths. Other W are found using Mathematica.

1. Introduction.

A small cancellation condition on a group’s defining relations yields, for
example, a solution to the conjugacy problem. See [1, 4]. There are 3
types of such conditions. Each includes a condition C(k) for k = 3, 4 or 6,
depending on the type. For a group G with one defining relation R = 1,
C(k) involves the set [R] of cyclic permutations of R and of R−1. A piece
is a nonempty, initial subword of 2 distinct members of [R]. C(k) requires
that no word in [R] is a product of fewer than k pieces.

To study a “large cancellation” group G and avoid all small cancellation
types, we can use the condition that R is a product of 2 pieces. What does
such a word R look like? For simplicity, in this paper we consider words
involving generators but not their inverses. In particular, we study 2-piece
words R, meaning

R involves generators but not their inverses and R is a product of 2 pieces.
(1.1)

An attempt to classify these words led to the results in this paper. These
results also lie in the field of combinatorics on words which is surveyed in
[3].

2. Summary of results.

For convenient exposition, from now on, a word W is a finite sequence of
letters taken from some alphabet; |W | = length of W ; the empty word=1;
|1| = 0. Write W ∼ V if W, V are cyclic permutations. W is 2-piece if
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(∃U, V, Y, Z 6= 1) W = UV ∼ UY ∼ V Z, Z 6= U, Y 6= V. (U, V ) is a 2-
piece pair. W is periodic if (∃Q 6= 1, P, k ≥ 2) W = P (QP )k. X < W
means W = XY, Y 6= 1. W is biperiodic if (∃P,Q,R, S,m, n) W = UV,
U = P (QP )m, V = R(SR)n, SR < U, QP < V, 1 6= QP 6= SR 6= 1,
URS 6= SRU and V PQ 6= QPV ; m,n ≥ 1.

The main results are: If a 2-piece word W has no periodic cyclic per-
mutation then W or W written backwards is biperiodic. Each biperiodic
word is 2-piece. W is biperiodic and |S| < |RS| < |PR| < PQ| < |RSR|
is equivalent to (∃A,B, a, b, c,m, n) W = A(BA)b(A(BA)c)m(A(BA)a)n to-
gether with AB 6= BA, 1 < a < b < c ≤ 2a, m, n ≥ 1. Such a word W is not
periodic for n ≥ 2. Two other similar equivalences are proved. Other as yet
unclassified biperiodic words are found using Mathematica.

The title of the paper refers to the periodic subwords P (QP )m+1,
R(SR)n+1 which begin word W = P (QP )mR(SR)n and its cyclic permu-
tation R(SR)nP (QP )m, respectively, whenever W is biperiodic and hence
2-piece.

3. Terminology.

Terminology in the previous section is augmented as follows. Let A,B be
words over some alphabet. The concatenation of words A,B is written as a
product AB. The product of k copies of A, written Ak, is a power of A if
k ≥ 0, with A0 = 1, and a proper power if k ≥ 2. Call W simple if W is not
a proper power. Note the empty word E = 1 is not simple since E = E2.
If W = XY Z then X, Y, Z are factors of W ; write X, Y, Z ⊆ W . X, Z are
left and right factors; write X ≤ W , W ≥ Z. If U is a factor of W then U
is major if 2|U | ≥ |W | and proper if U 6= W. Proper left and right factors
of W are indicated by X < W, W > Z. Denote W written backwards by
W ∗, the reverse of W . As in [4, p. 153], the period π(W ) of a word W is
the minimum length of the words admitting W as a factor of some of their
powers. Equivalent definitions of periodic are in Theorem 4.13. Call W
plain if W has no periodic cyclic permutation.

We restate a definition to enable later reference to its parts:

Definition 3.1. Word W is biperiodic using U, V, P, Q, R, S, m, n if W =
UV for words U, V such that:

U = P (QP )m for some words Q 6= 1, P and some integer m ≥ 1.(3.1a)

V = R(SR)n for some words S 6= 1, R and some integer n ≥ 1.(3.1b)

SR < U, QP < V .(3.1c)

1 6= QP 6= SR 6= 1.(3.1d)

URS 6= SRU , V PQ 6= QPV .(3.1e)
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4. Preliminaries.

Let A,B, . . . denote words and a, b, . . . denote integers in the following Lem-
mas. Lemmas 4.1–4.3 are found in Propositions 1.3.4, 8.1.1 and Theorem
8.1.2 in [3]. Lemmas 4.4, 4.5, 4.6, 4.8, 4.9, 4.10, 4.12 are in the following
Propositions in [2]: 1.2, 1.3, 1.4, 1.4′′, 1.8, 1.16, 1.23 . Prove Lemma 4.7
from Lemma 4.6 and Lemma 4.11 from Lemma 4.10 using reverse words.
Use S simple if and only if S∗ simple.

Lemma 4.1. Y, Z 6= 1, XZ = Y X imply (∃n ≥ 0, U, V ) Y = UV, Z = V U,
X = U(V U)n.

Lemma 4.2. π(W ) = Min{|W | − |V |} where V < W > V.

Lemma 4.3. p = π(XY ), q = π(Y Z), d = gcd(|X|, |Y |), |Y | ≥ p + q − d
imply p = q = π(XY Z).

Lemma 4.4. If XY = Y X then (∃S simple, a, b ≥ 0) X =a, Y =b.

Lemma 4.5. If S, T simple, Sa = T b, a, b ≥ 1 then S = T.

Lemma 4.6. If S is a simple word and PS ≤ Sn, n ≥ 1 then P is a power
of S.

Lemma 4.7. If S is a simple word and Sn ≥ SP , n ≥ 1 then P is a power
of S.

Lemma 4.8. If PBA ≤ A(BA)r, r ≥ 1, P 6= 1 with BA simple then
(∃e ≥ 0) P = A(BA)e.

Lemma 4.9. A cyclic permutation of a simple word is a simple word.

Lemma 4.10. X ≤ Y eX, e > 0, Y 6= 1 imply (∃t ≥ 0, E) t, E unique,
X = Y tE, E < Y.

Lemma 4.11. XY e ≥ X, e > 0, Y 6= 1 imply (∃t ≥ 0, E) t, E unique,
X = EY t, Y > E.

Lemma 4.12. If XY Z = ZY X, X 6= 1, Z 6= 1 then (∃a, b, c ≥ 0, U, V )
X = U(V U)a, Y = V (UV )b, Z = U(V U)c and the word UV is simple.

Lemma 4.13. Equivalent conditions on a word W are:

W has a proper major left factor which is also a right factor.(4.13a)

W = Y X = XZ, |X| ≥ |Y | > 0.(4.13b)

(∃k ≥ 2, U 6= 1) W ≤ Uk, |W | ≥ 2|U |.(4.13c)

W is periodic, that is, (∃B 6= 1, A,m ≥ 2) W = A(BA)m.(4.13d)

|W | ≥ 2π(W ) and W 6= 1.(4.13e)

Proof. (a) if and only if (b): Use definitions.
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(b) implies (c): Deduce |W | = |Y X| ≥ |Y Y | = 2|Y | and W < Y W. By
Lemma 4.10, W = Y tE < Y t+1 for some word E with t ≥ 1 because
|E| < |Y | < |W |.

(c) implies (d): From (c), (∃t ≥ 2) t|U | ≤ |W | < (1 + t)|U |. So (∃B 6=
1, A) U = AB, W = U tA, proving (d).

(d) implies (b): Use X = A(BA)m−1, Y = AB, Z = BA.
(d) implies (e): From (d), W < (AB)m+1 and so π(W ) ≤ |AB|. It

follows that |W | = |A(BA)m| ≥ m|BA| ≥ 2|AB| ≥ 2π(W ), yielding
(e).

(e) implies (c): In general, π(W ) ≤ |W |. From (e), (∃V 6= 1, k ≥ 1)
|V | = π(W ), W ⊆ V k. k ≥ 2 since 2|V | = 2π(W ) ≤ |W | ≤ k|V |.
Then (∃U ∼ V ) W ≤ Uk.

�

Lemma 4.14. If W = XY eZ, Z ≤ Y ≥ X, Y 6= 1, e ≥ 1 then (∃B 6=
1, A, p) 0 ≤ p ≤ 2, W = A(BA)e+p, |AB| = |Y |, XZ = A(BA)p.

Proof. (∃C,D) Y = ZC = DX. Let Y1 = XD, X1 = XZ. Then X1 ≤ W =
(Y1)eX1. Apply Lemma 4.10 to X1 ≤ (Y1)eX1. (∃p ≥ 0, A) X1 = (Y1)pA,
A < Y1. So (∃B 6= 1) Y1 = AB. Hence W = (AB)e(AB)pA = A(BA)e+p;
XZ = X1 = (AB)pA = A(BA)p. Also p ≤ 2 since |Y pA| = |(Y1)pA| =
|X1| = |XZ| ≤ |Y 2|. �

Lemma 4.15. If AB 6= BA then (∃C,D 6= 1, a, b ≥ 0) CD simple, A =
C(DC)a, B = D(CD)b. For t ≥ 0, A(BA)t = C(DC)p(t), (AB)t =
(CD)q(t), p(t) = (a + b + 1)t + a, q(t) = (a + b + 1)t.

Proof. (∃ simple S, e ≥ 1) AB = Se. (∃a, b ≥ 0, C, D) S = CD, A =
C(DC)a, B = D(CD)b. C, D 6= 1 else A,B are powers of the same word
and AB = BA, a contradiction. �

Lemma 4.16. Y, Z 6= 1, XZ = Y X imply (∃r ≥ 0, s ≥ 1, C, D) CD
simple, Y = (CD)s, Z = (DC)s, X = C(DC)r.

Proof. By Lemma 4.1, (∃n ≥ 0, U, V ) Y = UV, Z = V U, X = U(V U)n.
(∃ simple S) UV is a power of S. (∃i, j ≥ 0, C, D) S = CD, U = C(DC)i,
V = D(CD)j . Use r = i + n(i + j + 1), s = i + j + 1. �

5. General results.

Each 2-piece word is simple (Theorem 5.5). If W = UV is 2-piece then U, V
appear again as factors of cyclic permutations of W. If U, V appear at least
twice in W then W is periodic (Theorem 5.6). If a 2-piece word W is plain
then W or W ∗ is biperiodic (Theorem 5.8). Each biperiodic word is 2-piece
(Theorem 5.9). We start with some easily verifiable remarks.
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Remark 5.1. If PQ 6= QP and m ≥ 2 then the periodic word W =
P (QP )m is 2-piece, by definition, using U = P (QP )m−1, V = QP, Y = PQ,
Z = QPP (QP )m−2.

Remark 5.2. A word is simple, periodic, 2-piece or biperiodic if and only
if its reverse has the same property.

Remark 5.3. If (U, V ) is a 2-piece pair then so are (V,U) and (V ∗, U∗).

Given a 2-piece word W,W ∗ inherits properties as follows:

Remark 5.4. If a 5-tuple (W,U, V, Y, Z) of words satisfies W = UV ∼
Y U ∼ ZV, 16= U 6= Z, 1 6= V 6= Y then so does (W ∗, V ∗, U∗, Z∗, Y ∗).

Theorem 5.5. Each 2-piece word is a simple word.

Proof. Let W be 2-piece word, W = UV ∼ UY ∼ V Z, 1 6= U 6= Z,
1 6= V 6= Y. (∃A,B) W = AB, UY = BA. Suppose W is not simple. Then
(∃ simple X) W = Xm, m ≥ 2.

If |X| ≤ |U | then (∃C) U = XC. So AX ≤ AUY ≤ ABAB = X2m. By
Lemma 4.6, A is a power of X, so is W and hence so is B. Thus AB = BA.
Then UV = AB = BA = UY implies V = Y, a contradiction.

If |X| > |U | then |X| ≤ |V |. By Remark 5.3, W ∗ = V ∗U∗ is 2-piece
and W ∗ = (X∗)m. Get a contradiction for W ∗, V ∗, U∗ as previously with
W,U, V. �

Theorem 5.6. If U, V 6= 1 each appear at least twice in W = UV then W
is periodic. In other words, W = UV = IUJ = KV L and U, V, I, L 6= 1
imply W is periodic.

Proof. Assume W = UV = XUT = RV Y and U, V,X, Y 6= 1. The change
in letters allows a more pleasing factorization W = RST in Case 1.

Case 1: |X| < |U |; |Y | < |V |. Then (∃F,G) UGT = XUT = W =
RFV = RV Y, |U | > |X| = |G| > 0, |V | > |F | = |Y | > 0. So U =
RF, V = GT, W = RFGT . Let S = FG. Then W = RST. Hence
UGT = W = RST = W = RFV imply UG = RS, ST = FG. Apply
Lemma 4.2 to W1 = RS, W2 = ST.

So π(RS) ≤ |RS| − |U |, π(ST ) ≤ |ST | − |V | since RS = UG = XU,
ST = FV = V Y. Then |S| = |F | + |G| = |RS| − |U | + |ST | − |V | ≥
π(RS) + π(ST ). By Lemma 4.3, π(RST ) = π(RS) = π(ST ). Since
|W | ≥ |S| ≥ π(RS) + π(ST ) = 2π(W ), W is periodic by (4.13e) in
Lemma 4.13.

Case 2: |U | ≤ |X|; |V | ≤ |Y |. Then |U | ≤ |UT | ≤ |V |, |V | ≤ |RV | ≤ |U |.
So |U | = |V |, U = V and hence W = UU is periodic.

Case 3: |X| < |U |; |V | ≤ |Y |. Then (∃F ) UFT = XUT = W with
|U | > |X| = |F | > 0. So UF = XU. By Lemma 4.16, (∃C,D, r ≥
0, s ≥ 1) CD simple, U = C(DC)r, F = (DC)s, X = (CD)s. r ≥ 1
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since |U | > |X| ≥ |CD|. DC ≤ V since V = FT . Thus |W | ≥ |UF | ≥
2|CD|. Also (∃P,Q) U = PV Q.

Then PDC ≤ PV ≤ U = C(DC)r. Also DC ∼ CD implies DC
simple by Lemma 4.9. By Lemma 4.8, P = C(DC)e, e ≥ 0 implying
V ≤ (DC)r−e. So W ≤ C(DC)2r−e; hence π(W ) ≤ |CD|. Then |W | ≥
2|CD| ≥ 2π(W ) implies W is periodic by (4.13e) in Lemma 4.13.

Case 4: |U | ≤ |X|; |Y | < |V |. Then V ∗, U∗ each appear at least twice in
W ∗ = V ∗U∗. Apply Case 3 to W ∗; get W ∗ periodic. By Remark 5.2,
W is periodic.

�

Lemma 5.7. Let W = UV be a plain word. Assume cyclic W has 2nd
occurrences U ′′, V ′′ of the words U, V, respectively. Then (i) U,U ′′ overlap
and V, V ′′ overlap and (ii) U ′′ is a factor of one of the words UV, V U and
V ′′ is a factor of the other.

Proof. First prove results (1)-(7).
(1) Conclusions for U, V, U ′′, V ′′ apply to V ∗, U∗, (V ′′)∗, (U ′′)∗. By Re-
marks 5.2, 5.3, 5.4, assumptions on W,U, V, U ′′, V ′′ apply to W ∗, V ∗, U∗,
(V ′′)∗, (U ′′)∗, respectively.
(2) Neither UV nor V U has both factors U ′′, V ′′. Use Theorem 5.6.
(3) U,U ′′ overlap or V, V ′′ overlap. If not then U has factor V ′′, V has
factor U ′′. Therefore U = V, W = UU, W is periodic, contradicting W is
plain.
(4) U,U ′′ overlap implies (U ′′ ⊆ UV or U ′′ ⊆ V U). Suppose U,U ′′

overlap and U ′′ is not a factor of UV or V U . Then (∃A,B, C 6= 1) W =
ABCV, U = ABC, U ′′ = CV A. So CV < ABCV > CV, AB < CV AB >
AB. Then ABCV or CV AB has a major left and right factor, namely, CV
or AB, respectively. Thus ABCV or CV AB is periodic by Lemma 4.13,
contradicting W is plain. Thus (4) is true.
(5) V, V ′′ overlap implies (V ′′ ⊆ V U or V ′′ ⊆ UV ). Use (1), (4).
Get V ∗, (V ′′)∗ overlap implies ((V ′′)∗ ⊆ V ∗U∗ or (V ′′)∗ ⊆ U∗V ∗). This
implies (5).
(6) U,U ′′ overlap implies V, V ′′ overlap. If not then U,U ′′ overlap but
V, V ′′ do not. So V ′′ ⊆ U . Also U ′′ ⊆ UV or U ′′ ⊆ V U. Then U,U ′′, V, V ′′ ⊆
UV (or V U), contradicting (2).
(7) V, V ′′ overlap implies U,U ′′ overlap. Use (1), (6). Therefore V ∗, (V ′′)∗

overlap implies U∗, (U ′′)∗ overlap. This implies (7).
Now (i) follows from (3), (6), (7) and (ii) follows from (i), (2), (4), (5). �

Theorem 5.8. Each plain, 2-piece word W is biperiodic or its reverse is
biperiodic.
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Proof. By Remarks 5.2 and 5.3, W ∗ is plain, 2-piece. Since W = UV
satisfies the 2-piece condition, cyclic W has 2nd occurrences U ′′, V ′′ of the
words U, V, respectively. By Lemma 5.7, there are 2 cases:

Case 1: U ′′ ⊆ UV, V ′′ ⊆ V U . Using the 2-piece property and Lemma 5.7
Part (i), it follows that UV = W = UDB = CU ′′B, V U = V FG =
EV ′′G, U = FG, V = DB, Y = BC, Z = GE, |U | > |C|, |V | > |E|
for some words B,C,D,E, F,G 6= 1. Since |U | > |C|, |V | > |E|, we
can apply Lemma 4.1 to UD = CU and V F = EV.

(∃Q 6= 1, P, m ≥ 1) U = P (QP )m, C = PQ, D = QP and (∃S 6=
1, R, n ≥ 1) V = R(SR)n, E = RS, F = SR. Thus UV = UDB =
UQPB, QP < V = R(SR)n and V U = V FG = V SRG, SR < U =
P (QP )m, implying Conditions (3.1a), (3.1b) and (3.1c).

If |PQ| = |RS| then QP < V = R(SR)n implies QP = RS. So
W = PXm+nR for X = QP and W is periodic by Lemma 4.14, a
contradiction. So (3.1d) is true.

If URS = SRU then FU = SRU = URS = UE = FGE = FZ
and U = Z, not true. If QPV = V PQ then DV = QPV = V PQ =
DBC = DY and V = Y, not true. So URS 6= SRU, QPV 6= V PQ,
(3.1e) is true, making W biperiodic.

Case 2: V ′′ ⊆ UV , U ′′ ⊆ V U. Then (V ′′)∗ ⊆ V ∗U∗, (U ′′)∗ ⊆ U∗V ∗. By
Remark 5.4, Case 1 applies to W ∗ so W ∗ is biperiodic.

�

Theorem 5.9. Each biperiodic word is a 2-piece word.

Proof. Let W = UV be biperiodic using P,Q,R, S, U, V, m, n. V U is biperi-
odic using R,S, P,Q, V, U, n, m. By symmetry and Remark 5.3, we may as-
sume |SR| < |PQ|. By Conditions (3.1a), (3.1b) and (3.1c), SR < PQ
and QP < R(SR)n. Define F, J by SRF = PQ, QPJ = R(SR)n. We now
check that W satisfies the definition of being 2-piece by using Y = JPQ,
Z = FP (QP )m−1RS.

UY = P (QP )mJPQ ∼ P (QP )m+1J = UQPJ = UV

V Z = R(SR)nFP (QP )m−1RS ∼ SRFP (QP )m−1R(SR)n

= PQP (QP )m−1V = UV.

If Y = V then V PQ = QPJPQ = QPY = QPV, a contradiction. If Z = U
then we get a contradiction from SRU = SRZ = PQP (QP )m−1RS = URS.
Thus W is 2-piece. �

6. Factoring some 2-piece words.

The 2-piece words to be factored are two types of biperiodic words. They are
called biperiodic-1 and biperiodic-2 words. They are 2-piece by Theorem 5.9.
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Their factorizations are called binary-1 and binary-2 words and have factors
A,B, AB 6= BA. See Theorems 6.10 and 6.11. A 3rd type of biperiodic word,
called a biperiodic-3 word, has a cyclic permutation possessing a 3rd type
of factorization, a binary-3 word (Theorem 6.12). Each binary-3 word has a
binary-2 cyclic permutation (Remark 6.4). Likewise, each biperiodic-3 word
has a biperiodic-2 cyclic permutation, using Theorem 6.12, Remark 6.4 and
Theorem 6.11.

Results in this section, together with Remark 5.3, will show that 2-piece
words can be found using the above factorizations and their reverses. More
precisely, we have:

Theorem 6.1. Binary-1 and binary-2 words and their reverses are 2-piece
words. Each binary-3 word has a 2-piece cyclic permutation and so does its
reverse.

The types of biperiodic words and factorizations are defined as follows:

Definition 6.2. A word W is biperiodic-1, biperiodic-2 or biperiodic-3 if W
satisfies Definition 3.1 together with (6.2a), (6.2b) or (6.2c), respectively.

|S| < |RS| < |PR| < |PQ| < |RSR|.(6.2a)

P = 1, |SR| < |Q|.(6.2b)

|RS| ≤ |P | < |PQ|.(6.2c)

Definition 6.3. A word W is binary-1, binary-2 or binary-3 if (6.3a), (6.3b)
or (6.3c), respectively, with AB 6= BA. Call such W binary. Terminology
for later use: W is binary-1 using A,B : AB 6= BA and W is binary-1 for
A,B, h, i, j. Similar terminology applies to binary-2 and binary-3.

W = A(BA)i(A(BA)j)m(A(BA)h)n, 1 < h < i < j ≤ 2h, m, n ≥ 1.(6.3a)

W = (A(BA)i)m(AB)j , 1 ≤ i, i + 1 ≤ j, m, n ≥ 1.(6.3b)

W = (A(BA)i)mA(BA)j , 1 ≤ i, i + 2 ≤ j, m, n ≥ 1.(6.3c)

Remark 6.4. Each binary-3 word W has a cyclic permutation V which is
binary-2. In particular, if W satisfies (6.3c), use V = (A(BA)i)m+1(AB)j−i.

The proof that the biperiodic-1 and binary-1 conditions are equivalent for
a word W requires 3 lemmas involving closely related conditions defined as
follows:

Definition 6.5. A word W is biperiodic-1∗ if W satisfies (3.1a)-(3.1d) with
m = n = 1. Notice the omission of (3.1e). In other words, W satisfies:

(∃P,Q,R, S) W = PQPRSR, SR < PQ, QP < RSR,(6.5a)

|S| < |RS| < |PR| < |PQ|.

Definition 6.6. W is binary-1∗ if (6.3a) with m = n = 1. (AB 6= BA not
required.)
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Lemma 6.7. Word W is biperiodic-1∗ if and only if

(∃F, I, J, P,Q,R, S, T, U) all words 6= 1 except possibly S and
(6.7a)

W = PQPRSR, SRF = PQ, QP = RSI, R = IJ , P = ST , Q = RU .

Proof. Assume (6.5a). Then SR < PQ, QP < RSR imply PQ = SRF,
QP = RSI, R = IJ for some words F, I, J 6= 1. |RS| < |PR| < |PQ| imply
|S| < |P |, |R| < |Q|. Using these inequalities and SR < PQ, QP < RSR
we get P = ST, Q = RU for some words T,U 6= 1. Thus (6.7a) is true.
(6.5a) follows easily from (6.7a). �

Lemma 6.8. If W is biperiodic-1∗ then W is binary-1∗ using A,B : B 6= 1.

Proof. By Lemma 6.7, we can assume W satisfies (6.7a) from which we
deduce:

(1) (∃V 6= 1) F = V U since STRU = PRU = PQ = SRF
and so F > U .

(2) UP = SI since RUPJ = QPJ = RSIJ .
(3) |T | < |I| since |UST | = |UP | = |SI|,

|UT | = |I|.
(4) RV = TR since (1) and

SRV U = SRF = PQ = STRU .
(5) (∃K 6= 1) I = TK since (3), (4) and R = IJ .
(6) Q = KJF since PQ = SRF = SIJF

= STKJF = PKJF .
(7) KJFST = TKJSTK by (5), (6) and KJFST = QP

= IJSI = TKJSTK.
(8) TK = KT since, from (7), K ≤ TK ≥ T.
(9) (∃N 6= 1, r, s ≥ 1) K = N r,

T = N s using (8) and Lemma 4.4.
(10) SN r = SK = US, since (8), (5), (2) and P = ST imply

hence SN r > S SKT = STK = SI = UP = UST .
(11) JFS = TJSK since (7) and (8).
(12) JV US = TJSK since (11) and (1).
(13) JV = TJ = N sJ,

hence J < N sJ using (12), (10) and (9).
(14) (∃t ≥ 0, D) S = DN t, by applying Lemma 4.11

N > D to (10) SN r > S.
(15) (∃u ≥ 0, L) J = NuL, by applying Lemma 4.10

L < N to (13) J < N sJ .
(16) PR = DN bL, since PR = STIJ

b = r + 2s + t + u = DN tN sN r+sNuL.



502 C.M. WEINBAUM

(17) UPR = DN cL, since UPR = USTIJ
c = 2r + 2s + t + u = SKTIJ = SKTKTJ .

(18) SR = DNaL, since SR = SIJ = STKJ
a = r + s + t + u = DN tN r+sNuL.

(19) (∃C,M) N = LM = CD using (14) and (15).

Using (18) and (19) with Lemma 4.14 and (16) and (19) with Lemma 4.14,
we have:

(∃B 6= 1, A, p ≥ 0) SR = A(BA)a+p, |AB| = |N |,
DL = A(BA)p, |A| < |N | and hence AB = DC.

(∃G 6= 1, H, q ≥ 0) PR = G(HG)b+q, |GH| = |N |,
DL = G(HG)q, |G| < |N | and hence GH = DC.

So p|N |+ |A| = |DL| = q|N |+ |G|, implying p = q, |A| = |G|. Then A = G,
B = H since AB = DC = GH. So PR = A(BA)b+p. Similarly from (17)
and (19) with Lemma 4.14, UPR = A(BA)c+p. From (16), (17) and (18),
1 < a < b < c ≤ 2a. So 1 < a+p < b+p < c+p ≤ 2a+p ≤ 2a+2p = 2(a+p).
Let h = a + p, i = b + p, j = c + p.

Then W = PQPRSR = (PR)(UPR)(SR) = A(BA)iA(BA)jA(BA)h

satisfies (6.3a) for m = n = 1. So W is binary-1∗. �

Lemma 6.9. If W is binary-1∗ using A,B : A 6= 1 then W is biperiodic-1∗.

Proof. Assume word W satisfies (6.3a) with A 6= 1, m = n = 1. Since
i − h ≤ i + h − j, there exists an integer r with 0 < i − h ≤ r ≤ i + h − j.
Therefore 0 ≤ h− i + r, j + r ≤ i + h, 0 < j − h ≤ i− r, j − i + r ≤ h. Also

(AB)j−i+r < A(BA)h(∗)

since A 6= 1.
Define P = (AB)r, Q = A(BA)i−r(AB)j−i, R = A(BA)i−r, S =

(AB)h−i+r. Note that P,Q,R > 1, S ≥ 1, W = PQPRSR.
W is biperiodic-1∗ with (6.5a) true because:

SR < PQ since SR = A(BA)h < A(BA)i(AB)j−i = PQ, h < i.

QP < RSR since QP = A(BA)i−r(AB)j−i+r

< A(BA)i−rA(BA)h = RSR using (∗).

|RS| < |PR| since |S| = |(AB)h−i+r| < |(AB)r| = |P |, AB 6= 1, h < i.

|PR| < |PQ| since |R| = |A(BA)i−r| < |A(BA)i−r(AB)j−i| = |Q|.

�

Theorem 6.10. A word is biperiodic-1 if and only if it is binary-1.
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Proof. Assume that W is biperiodic-1 with P,Q,R, S as in (3.1a)-(3.1e) and
(6.2a). Word W1 = PQPRSR is biperiodic-1∗. By Lemma 6.7, (∃F, I, J, T,
U) satisfying Condition (6.7a). By Lemma 6.8, W1 is binary-1∗ and satisfies
(6.3a) for m = n = 1 and some B 6= 1. As in the proof of Lemma 6.8:

W1 = PQPRSR = PRUPRSR,

PR = A(BA)i, UPR = A(BA)j , SR = A(BA)h.

So W = P (QP )mR(SR)n = P (RUP )mR(SR)n = PR(UPR)m(SR)n im-
plying (6.3a).

If AB = BA then by Lemma 4.4, A,B (and hence W ) are powers of the
same word. So W is a proper power, not simple. By Theorems 5.9 and
5.5, W is 2-piece and simple, a contradiction. Thus AB 6= BA and W is a
binary-1.

Now assume W is binary-1. Define P,Q,R, S as in proof of Lemma 6.9
so that:

1 < SR < PQ, QP < RSR.(6.10a)

(PQ)m = A(BA)i(A(BA)j)m−1(AB)j−i.(6.10b)

(PQ)mPR = A(BA)i(A(BA)j)m−1A(BA)j = A(BA)i(A(BA)j)m.(6.10c)

(PQ)mPR(SR)n = A(BA)i(A(BA)j)m(A(BA)h)n = W.(6.10d)

W = UV for U = (PQ)mP, V = R(SR)n. Then (6.10a) implies (3.1a)-(3.1d)
are true.

If URS = SRU then A(BA)h+1 ≤ A(BA)i <PQ <URS and A(BA)hAB
≤ SRP < SRU imply A(BA)h+1 = A(BA)hAB. So BA = AB, a contra-
diction. Thus URS 6= SRU. If V PQ = QPV then V PQ > Q > (AB)j−i >
AB, QPV > V > SR > BA imply AB = BA, a contradiction. So
V PQ 6= QPV, (3.1e) is true and W is biperiodic-1. �

Theorem 6.11. A word is biperiodic-2 if and only if it is binary-2.

Proof. Assume W is biperiodic-2. Then U = Qm, 1 < SR < Q < R(SR)n =
V, implying RS = SR. By Lemma 4.4, R = Xr, S = Xs, X 6= 1, r, s ≥ 1.
Since SR < Q < R(SR)n, (∃A 6= 1, B, t ≥ 0) Q = A(BA)r+s+t, X = AB.
Then W = (A(BA)i)m(AB)j using i = r + s + t, j = r + n(r + s). Also
Xi < XiA = Q < R(SR)n = Xj implies i < j, i+1 ≤ j. Thus (6.3b) is true.
If AB = BA then by Lemma 4.4 W is a proper power, not simple. But W
is 2-piece, simple by Theorems 5.9 and 5.5, a contradiction. So AB 6= BA
and W is binary-2.

Now assume W is binary-2. Use Q = A(BA)i, P = R = 1, S = AB,
n = j, U = Qm, V = R(SR)n. Then (3.1a)-(3.1d) and (6.2b) P = 1,
|SR| < |Q| are true. Suppose URS = SRU. Then

(A(BA)i)mAB = URS = SRU = AB(A(BA)i)m.
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Hence, AB = BA, a contradiction. Suppose V PQ = QPV. Then

(AB)nA(BA)i = V PQ = QPV = A(BA)i(AB)n

hence, AB = BA, a contradiction. Thus (3.1e) is true and W is biperiodic-
2. �

Theorem 6.12. Each biperiodic-3 word has a binary-3 cyclic permutation.
Each binary-3 word has a biperiodic-3 cyclic permutation.

Proof. Assume W is binary-3. Then W ∼ W1 = BA(A(BA)i)mA(BA)j−1.
Use P = BA,Q = A(BA)i−1, R = A, S = B, n = j. Thus (3.1a)-(3.1d)
and (6.2c) are true. If URS = SRU then URS > AB, SRU > P = BA
imply AB = BA, a contradiction. If V PQ = QPV then A(BA)iAB =
QPRS < QPV and A(BA)i+1 < A(BA)j = V < V PQ imply AB = BA, a
contradiction. So (3.1e) is true and W has a biperiodic-3 cyclic permutation
W1.

Now assume W is biperiodic-3. Then (3.1a)-(3.1c), |RS| ≤ |P | < |PQ|
imply SR ≤ P, RS < QP, QP < R(SR)n. Thus (∃I, J 6= 1, T ) QP = RSI,
QPJ = R(SR)n, P = SRT.

(1) QSRT = QP = RSI,
IJ = R(SR)n−1 using R(SR)n = QPJ = RSIJ .

(2) I = V T for some V,
|V | = |Q| from (1).

(3) QSRTJ = V TJSR since QSRTJ = QPJ = RSIJ
= R(SR)n = IJSR = V TJSR.

(4) Q = V from (3).
(5) SRTJ = TJSR from (3).
(6) QSRTJ = RSIJ

= RSV TJ = RSQTJ using (1), (2) and (4).
(7) RSQ = QSR from (6).
(8) (∃a, b, c ≥ 0, C, D) from (7) and Lemma 4.11.

R = C(DC)a, S = D(CD)b,
Q = C(DC)c, CD simple

(9) DC is simple; SR = (DC)a+b+1 by Lemma 4.9 and (8).
(10) (∃t ≥ 1) TJ = (DC)t from (9), (5) and Lemmas 4.4

and 4.5.
(11) (∃d ≥ 0, F 6= 1, G) T = (FG)dF, from (10).

DC = FG
(12) R(SR)n = C(DC)a((DC)a+b+1)n from (8).

= C(DC)r with
r = a + n(a + b + 1) ≥ n ≥ 2

(13) |C(DC)c+1| ≤ |C(DC)a+b+c+1| from (8) and |RS| ≤ |P |.
= |QSR| ≤ |QP |
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(14) |QP | < |R(SR)n| from QP < R(SR)n and (12).
= |C(DC)n(a+b+1)+a|

(15) c + 1 < n(a + b + 1) + a = r from (13) and (14).
(16) QP = C(DC)eF, by (1) QP = QSRT, (8) and (11).

e = a + b + c + d + 2
(17) (∃B 6= 1, A, p ≥ 0) by (16), QP = X1(Y1)eZ1,

QP = A(BA)e+p, AB = CD. X1 = C, Y1 = DC = FG, Z1 = F ;
Let i = e + p so that i ≥ 2. apply Lemma 4.14 to

W1 = X1(Y1)eZ1.
(18) R(SR)nP = C(DC)fF, by P = SRT, (8) and (11).

f = r + a + b + d + 1
(19) (∃M 6= 1, L, q ≥ 0) by (17), R(SR)nP = X2(Y2)eZ2,

R(SR)nP = L(ML)f+q, X2 = C, Y2 = DC = FG, Z2 = F ;
LM = CD. Let j = f + q. apply Lemma 4.14 to

W2 = X2(Y2)fZ2.
(20) |A| ≡ |CF | Modulo |DC|; from (16), (17) and |BA| = |DC|.

|A| ≤ |DC|
(21) |L| ≡ |CF | Modulo |DC|; from (18), (19) and |ML| = |DC|.

|L| ≤ |DC|
(22) |A| = |L|, A = L, B = M, by (20) and (21).

L(ML)j = A(BA)j

(23) (j − i)|DC| = (j − i)|AB| since (17) AB = CD.
= |A(BA)j | − |A(BA)i| from (19), (22) and (17).
= |R(SR)nP | − |QP | from (12) and (8).
= |R(SR)n| − |Q|
= |C(DC)r| − |C(DC)c|
= (r − c)|DC|

(24) j − i = r − c > 1 from (23) and (15).
and hence i + 2 ≤ j

(25) W has cyclic permutation from (17), (19) and (22).
W3 = (QP )mR(SR)nP
= (A(BA)i)mA(BA)j

(26) W3 satisfies (6.3c) from (17), (24) and (25).

If AB = BA, it follows that W3, W are proper powers, not simple by (25)
and Lemma 4.4. However, W is 2-piece, simple by Theorems 5.9 and 5.5, a
contradiction. So AB 6= BA and W3 is binary-3. �

7. Some nonperiodic binary words.

We prove that binary words, with some restrictions on their exponents, are
not periodic. Details are in Theorems 7.5, 7.6 and 7.7. In the proofs, AB
simple, A,B 6= 1 can be assumed in (6.3a)-(6.3c) instead of AB 6= BA
because of the following lemma.
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Lemma 7.1. For k = 1, 2 or 3, equivalent properties for a word W are:

(i) binary-k using A,B : AB 6= BA;

(ii) binary-k using C,D : C,D 6= 1, CD simple.

Proof. Assume (ii) for W. Then CD 6= DC by Lemma 4.4. Use A = C, B =
D to get (i). Now assume (i) for W . By Lemma 4.14, (∃C,D 6= 1, a, b ≥ 0)
CD simple, A = C(DC)a, B = D(CD)b. Define p(t) = (1 + a + b)t + a,
q(t) = (1 + a + b)t for t ≥ 0.

Assume k = 1. Then p(h) < p(i) < p(j) since p(t) is strictly increasing.
Since j ≤ 2h, p(j) ≤ p(2h) = (1+ a+ b)2h+ a ≤ (1+ a+ b)2h+2a = 2p(h).
Also 1 < p(h) since 1 < h ≤ p(h). So W is binary-1 for C,D, p(h), p(i), p(j).

Assume k = 2. Then p(i)+1 = (1+a+b)i+a+1 ≤ (1+a+b)(j−1)+a+1 =
q(j)− b ≤ q(j) since i ≤ j − 1. 1 ≤ p(i) since 1 ≤ i ≤ p(i). So W is binary-2
for C,D, p(i), q(j).

Assume k = 3. Then 0 < p(i) since 0 < i ≤ p(i). Since i ≤ j − 2,

p(i) + 2 = (1 + a + b)i + a + 2 ≤ (1 + a + b)(j − 2) + a + 2

= q(j)− a− 2b ≤ q(j).

So W is binary-3 for C,D, p(i), p(j). Thus (ii) is true for W for k = 1, 2, 3.
�

By Lemma 7.1, binary-1 and binary-3 words are products of words Xk

defined below. Results about such products appear in the next two lemmas.

Definition 7.2. For fixed words A,B 6= 1, AB simple, define Xk = A(BA)k,
k ≥ 0.

Lemma 7.3. Let G = Xa1 . . .mXam , H = Xb1 . . .mXbn , 1 ≤ ai, 1 ≤ bj ,
1 ≤ i ≤ m, 1 ≤ j ≤ n with 2 ≤ m,n. Assume G = H. Then m = n, ai = bi

for 1 ≤ i ≤ m.

Proof. If not, pick least integer k ≥ 1 with ak 6= bk. Assume ak < bk so
that Xak

BA ≤ Xbk
. Therefore k < m, TXak

AB < TXak
Xak+1

≤ G,
TXak

BA < TXbk
≤ H for T = Xa1 . . .mXak−1

. So AB = BA; hence AB
not simple by Lemma 4.4, a contradiction. �

Lemma 7.4. Let W = Xa1 . . .mXam , 1 ≤ ai, 1 ≤ i ≤ m, m ≥ 2. Assume
(∃F ) F ≤ W ≥ F.

If |Xa1 | < |F | then (∃s, b) F = Xa1 . . .mXasXb, 1 ≤ s < m, 1 ≤ b ≤ as+1.
(7.4a)

If |Xam | < |F | then (∃t, c) F = XcXat . . .mXam , 1 < t ≤ m, 1 ≤ c ≤ at−1.
(7.4b)

Proof. Assume |Xa1 | < |F |. Using F < W, W = Xa1 . . .mXam induces a
factorization F = Y1 . . .mYrZ where Yk = A or Yk = B for 1 ≤ k ≤ r and
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Z equals P or Q for some words P,Q satisfying 1 ≤ P < A, 1 ≤ Q < B.
Also r ≥ 3 since |F | > |Xa1 |, a1 ≥ 1. Since AAA, BB do not appear in
W = Xa1 . . .mXam , Y = Yr−2Yr−1Yr equals BAA, AAB, BAB or ABA.
To prove (7.4a) it suffices to prove that Y = ABA and Z = 1.

The five cases for Y Z are BAAQ, AABP, BABP, ABAP, ABAQ. As
shown below, only Case 4 with P = 1 and Case 5 with Q = 1 can occur. So
indeed Y = ABA, Z = 1.

Case 1 BAAQ: W > F, W > BABA imply BABA > BAAQ. By
Lemma 4.7, AQ is a power of BA but |AQ| < |BA|. So AQ = 1,
contradicting A 6= 1.

Case 2 AABP : W > F, W > ABA imply ABA > ABP. ABA =
RABP for some R 6= 1 with |RP | = |A|. So ABAB = RABPB,
RAB < ABAB, AB simple. By Lemma 4.6, R is a power of AB but
|R| ≤ |A| < |AB|. So R = 1, a contradiction.

Case 3 BABP : W > F, W > ABA imply ABA > ABP as in Case 2.
Case 4 ABAP : W > F, W > BABA imply BABA > BAP . By

Lemma 4.7, P is a power of BA but |P | < |BA|. So P = 1.
Case 5 ABAQ: W > F, W > BABA imply BABA > BAQ. By

Lemma 4.7, Q is a power of BA but |Q| < |BA|. So Q = 1.
Now assume |Xam | < |F |. So W ∗ = (Xam)∗ . . .m(Xa1)

∗ and (Xat)∗ =
A∗(B∗A∗)t, t ≥ 0. AB simple implies BA simple by Lemma 4.9. (BA)∗ is
simple by Remark 5.2. A∗B∗ is simple since A∗B∗ = (BA)∗. Note that F ∗ ≤
W ∗ ≥ F ∗. Apply (7.4a) to W ∗, F ∗. So (∃t, c) F ∗ = (Xam)∗ . . .m(Xat)(Xc)∗,
1 < t ≤ m, 1 ≤ c ≤ at−1. Take reverses to get (7.4b). �

Theorem 7.5. Each binary-1 word W with n ≥ 2 is not periodic.

Proof. By Lemma 7.1, Definition 7.2, W = Xi(Xj)m(Xh)n, 1 < h < i <
j ≤ 2h for some A,B 6= 1, AB simple. By (4.13a), it suffices to prove
that each major left factor of W which is also a right factor is equal to
W . Suppose F ≤ W ≥ F, 2|F | ≥ |W |. Then |F | > |Xi|, |F | > |Xh| since
|Xi| < |Xj | > |Xh|. By Lemma 7.4, F = XiGHXh where G is a product of
one or more Xj and H is a product of one or more Xh. It also follows from
Lemma 7.4 that:

XiGH and the start of W have the same Xk factors.(7.5a)

GHXh and the end of W have the same Xk factors.(7.5b)

|F | ≤ |W | implies |GH| ≤ |(Xj)m(Xh)n−1|. It follows that:

GH and the start of (Xj)m(Xh)n−1 have the same Xk factors.(7.5c)

GH and the end of (Xj)m(Xh)n−1 have the same Xk factors.(7.5d)

(7.5c) implies G = (Xj)m. (7.5d) implies H = (Xh)n−1. Thus F = W as
required. �
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Theorem 7.6. Each binary-2 word W with m(i + 1) ≤ j, 3 ≤ j is not
periodic.

Proof. By Lemma 7.1 and Definition 7.2, W = (Xi)m(AB)j , 1 ≤ i, i+1 ≤ j,
m ≥ 1 for some A,B 6= 1, AB simple. By (4.13a) it suffices to show that
W has no proper major left factor which is also a right factor. Suppose F
is such a factor, 2|F | ≥ |W |, F < W > F. We show this implies AB = BA,
a contradiction.

Since m(i + 1) ≤ j, |(Xi)m| = |Am(BA)mi| < |(AB)m(i+1)| ≤ |(AB)j |.
Then 2|F | ≥ |W | and |(Xi)m| < |(AB)j | imply |(Xi)m| < |F |. Using F < W,
F has one of the forms:

(Xi)m(AB)rP, (Xi)m(AB)sAQ, (Xi)mR

where 1 ≤ r < j, 0 ≤ s < j, 1 ≤ P < A, 1 ≤ Q < B, 1 < R < A.

Case 1. F = (Xi)m(AB)rP : W = (Xi)m(AB)j > F, r < j imply (AB)j

> (AB)rP. By Lemma 4.7, P = 1. Then F > BA, W > AB imply
AB = BA.

Case 2. F = (Xi)m(AB)sAQ: W > F implies (AB)j > (AB)sAQ and
(AB)j > AQ. By Lemma 4.7, AQ is a power of AB. Since |AQ| <
|AB|, we have AQ = 1, A = 1, contradicting AB 6= BA. So this case
cannot occur.

Case 3. F = (Xi)mR: W > F, 3 ≤ j, 1 ≤ i imply (AB)3 > ABAR.
By Lemma 4.7, AR = (AB)t for some t ≥ 0. Here t ≤ 1 since 0 <
|R| < |A|. If t = 0 then A = 1, a contradiction. If t = 1 then R = B,
F > BA, W > AB so that AB = BA.

�

Theorem 7.7. Each binary-3 word W is not periodic.

Proof. By Lemma 7.1 and Definition 7.2, W = (Xi)mXj , 1 ≤ i, i + 2 ≤ j,
m ≥ 1 for some A,B 6= 1, AB simple. By (4.13a) it suffices to show that
W has no proper major left factor which is also a right factor. Suppose F
is such a factor, 2|F | ≥ |W |, F < W > F. We show this implies AB = BA,
a contradiction.

Since |W | ≥ |XiXj | > |XiXi| = 2|Xi| we have 2|F | ≥ |W | > 2|Xi|. By
(7.4a), F has one of the forms: (Xi)r, (Xi)sXb, (Xi)mXc where 1 ≤ r ≤ m,
1 ≤ s < m, 1 ≤ b < i, 1 ≤ c < j. Thus F has a right factor XiXa for
some a, 1 ≤ a < j and hence F > BAXa. Also W > ABXa. Therefore
AB = BA. �

8. Computing possibly biperiodic words.

Let W = UV, SR < P (QP )m = U, QP < R(SR)n = V, 0 < |RS| < |PQ| <
|U |, m, n ≥ 1. W may be biperiodic. p = |PQ|, q = |SR|, d = |U | − p,
e = |V | − q satisfy 0 < d, 0 < e, q < p < q + e. Function g (see below) with
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inputs p, q, d, e, generates such a W as a list of integers ≥ 1. Format for g
comes from Mathematica software, version 3.0.

g[p , q , d , e ] := Module[{i, k, n = p + q + d + e, w},
If [!((0 < d)&&(0 < e)&&(q < p)&&(p < q + e)),

Return[“Invalid Input”]];
w = Join [ Range[q], Range[n− 2q], Range[q]];
For[k = n− q, k ≥ p + d + 1, k −−, w[[k]] = w[[k + q]]];
For[k = p + d, k ≥ q + 1, k −−, w[[k]] = w[[k + p]]];
For[k = q, k ≥ 1, k −−, i = w[[k + p]];w = w/.(k− > i)];w].

The observed output from g is (unpredictably) either biperiodic or a proper
power.

In Mathematica, Range[q] is the list of positive integers from 1 to q.
Join[a, b, c] concatenates lists a, b, c. The code k- - indicates integer k is
decreased by 1 after each stage of a loop. w[[i]] = i-th element of the list w.
The code w = w /. (k − > i) rewrites list w by replacing each instance of
the current value of k in list w by the current value of i.

9. Examples.

We give 2 sets of examples of biperiodic words W = PQPRSR over the
alphabet {a, b}. In Example (9.1), |PR| < |RS|, P 6= 1. In Example (9.2),
|PQ| < |PR|, P 6= 1. Therefore (6.2a)-(6.2c) are not true. These examples
include g[24, 18, 3, 10] and g[24, 18, 15, 14] for the function g defined in the
previous section.

Example 9.1. W = (CCDDCD)2D(ab)j−i, C = a(ba)i, D = a(ba)j , 0 <
i < j ≤ 2i.

Let P = C, Q = CDDCD, U = PQP = CCDDCDC, R = CD(ab)j−i,
S = CC(ab)j−i, V = RSR = CDDCDD(ab)j−i. W is biperiodic because:

SR < PQ since SR = CCDD(ab)j−i,
PQ = CCDDCD = CCDD(ab)iaD, j ≤ 2i.

QP < RSR since C < D, QP = CDDCDC,
RSR = CDDCDD(ab)j−i.

|PR| < |RS| since |PR| = |CCD(ab)j−i| < |CCDDC(ab)j−i| = |RS|.
URS 6= SRU else URCCD = URSC = SRUC = SRCCDDCDCC,

CCD = DCC, not true.
QPV 6= V PQ else QPCDDCDDD = QPV C = V PQC

= V PCDDCDC, DD > DC, not true.

Using i = 1, j = 2 and shorthand 2 = ab, 3 = aba, 5 = ababa,
W = (335535)(335535)52. Rewrite W by replacing the letters a, b with the
symbols 1, 2, respectively. The resulting word, written as a list, is equal to
g[24, 18, 3, 10].
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Example 9.2. W = X(XZY )2XXY, X = (abb)hab, Y = (abb)iab, Z =
(abb)2h+1ab, 0 < h < i.

Let P = XXX, Q = bX(abb)i−h, PQ = XXZ(abb)i−h, QP = bXY XX,
U = PQP = XXZY XX, R = bXY, S = (abb)ha, V = RSR = bXY XXY.
W is biperiodic because:

SR<PQ, QP <RSR since SR = XXY .
|PQ| < |PR| since i− h < i implies Q < R.
URS 6= SRU since URS > S > ba, SRU > X > ab and ab 6= ba.
V PQ 6= QPV since V PQ > Q > bb, QPV >Y >ab and bb 6= ab.

Using h = 1, i = 2 and shorthand 5. = X, 8. = Y, 11. = Z, W =
5.5.11.8.5.11.8.5.5.8. Rewrite W by replacing the letters a, b with the sym-
bols 1, 2, respectively. The resulting word, written as a list, is equal to
g[24, 18, 15, 14].
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