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We study the injective envelope I(X) of an operator space
X, showing amongst other things that it is a self-dual C∗-
module. We describe the diagonal corners of the injective
envelope of the canonical operator system associated with X.
We prove that if X is an operator A-B-bimodule, then A and
B can be represented completely contractively as subalgebras
of these corners. Thus, the operator algebras that can act on
X are determined by these corners of I(X) and consequently
bimodule actions on X extend naturally to actions on I(X).
These results give another characterization of the multiplier
algebra of an operator space, which was introduced by the
first author, and a short proof of a recent characterization of
operator modules, and a related result. As another applica-
tion, we extend Wittstock’s module map extension theorem,
by showing that an operator A-B-bimodule is injective as an
operator A-B-bimodule if and only if it is injective as an op-
erator space.

1. Introduction.

In this paper we investigate some connections between the following topics:
Injectivity of operator spaces, self-dual Hilbert C∗-modules (in the sense of
Paschke); completely contractive actions of one operator space on another;
and the notion of a multiplier operator algebra of an operator space which
was recently introduced by the first author.

The results and definitions follow a natural logical sequence, so we be-
gin without further delay. We refer to [7] for additional information, and
complementary results, and to [29, 15, 32] for background information on
operator spaces and completely bounded maps.

Recall that an operator space X is injective, if for any operator spaces
W ⊂ Z, and any completely bounded linear T : W → X, there exists a linear
T̃ : Z → X extending T , with ‖T‖cb = ‖T̃‖cb. It has been known for a long
time that B(H) is an injective operator space (see [29, 39, 28, 2]) for any
Hilbert space H. In 1983, Youngson showed [40] that an injective operator
space X is a ‘corner’ of a C∗-algebra A, by which we mean that there exist
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projections p, q in the multiplier algebra M(A) of A, such that X = pAq.
It is well-known [34] that this last condition is equivalent to saying that
such an X is a Hilbert C∗-module. Then Hamana in 1985 (see notes in
[19, 20]), and Ruan independently [35], showed that any operator space X
has an operator space injective envelope I(X). To prove the existence of
this envelope, one may follow the classical construction for Banach space
injective envelopes. We will sketch the main idea: One begins by choosing
any injective object B containing X. Then one considers the X-projections
on B, by which we mean completely contractive idempotent maps on B
which fix X. An idempotent map of course is one such that Ψ ◦ Ψ = Ψ.
There is a natural ordering on such maps, and, with a little work one can
show, by a Zorn’s lemma argument, that there is a minimal X-projection
Φ. The range of Φ in B may be taken to be the injective envelope I(X) of
X, and one has X ⊂ I(X) ⊂ B. Thus one sees that I(X) is the smallest
injective space containing X. As in the Banach space case (see [21, Section
11] for details and references), one proves that I(X) is an ‘essential’ and
‘rigid’ extension of X. The latter term, rigidity, means that the identity
map is the only completely contractive map on I(X) extending the identity
map on X.

Note that if S is a linear subspace of B(H) containing IH (for example,
if S is a unital C∗-algebra), then one may choose B = B(H) in the above.
Since Φ(I) = I, it follows that Φ is completely positive [29]. A well-known
theorem of Choi and Effros [12] states that the range of a completely positive
unital idempotent map on a C∗-algebra, is a C∗-algebra with respect to a
certain multiplication. Hence it follows that I(S) is a unital C∗-algebra.1

Hamana also gives another construction of I(X) to the one outlined above,
which allows one to prove something a little stronger. Since this construction
will be important for us, we will outline some of the ideas. By the method
popularized by the second author (see [29] Lemma 7.1), we may embed the
operator space X in a canonical unital operator system2

S(X) =
(

C X
X∗ C

)
.

If one forms the injective envelope I(S(X)), it will be a unital C∗-algebra,
by the aforementioned argument using the Choi-Effros result. Indeed, since
the minimal S(X)-projection fixes the C∗-algebra C⊕C which is the diagonal
of S(X), it follows immediately (for example by Lemma 1.6 below, although
this is not necessary), that the following elements of S(X) are two selfadjoint

1In fact, I(A) is a unital C∗-algebra even for a non-unital C∗-algebra A. Since we have
no good reference for this no doubt well known fact, we supply a proof later.

2An operator system is a selfadjoint linear subspace of B(H) containing IH .
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projections with sum 1 in the C∗-algebra I(S(X)):

p =
(

1 0
0 0

)
, q =

(
0 0
0 1

)
.

Therefore, with respect to p and q, we may decompose I(S(X)) to write it as
consisting of 2× 2 matrices. Hamana shows that pI(S(X))q, the 1-2 corner
of I(S(X)), is the injective envelope of X. This recovers and strengthens
Youngson’s result. The four corners of I(S(X)) we will name:

I(S(X)) =
(

I11 I(X)
I(X)∗ I22

)
.

It is clear that I11 and I22 are also injective C∗-algebras.
We will write j for the canonical inclusion of X inside I(X).
Writing I = I(X) for a moment, we define a subset of I(S(X)) by

L(I(X)) =
(
II∗ I
I∗ I∗I

)
where II∗ for example, is the closed span in I11 of terms xy∗ with x, y ∈ I.
Constructions related to this one have been studied by Hamana, Ruan, and
C. Zhang ([41]). Henceforth, we will reserve the letters C(X) and D(X) for
II∗ and I∗I respectively. When X is understood we will simply write C and
D. Thus C ⊂ I11 ,D ⊂ I22 as C∗-subalgebras. Notice also that L(I(X))
coincides with the smallest closed 2-sided ideal in I(S(X)) containing the
copy of I(X) in the 1-2-corner of I(S(X)), and this fact will be used below.

Clearly L(I(X)) is a C∗-subalgebra of I(S(X)). From this, or otherwise,
it is easy to see that I(X) is a C − D-bimodule which, with respect to the
natural C- and D-valued inner products given by xy∗ and x∗y, is a ‘strong
Morita equivalence C − D-bimodule’ in the language of Rieffel. Sometimes
this is also referred to as a ‘C − D-imprimitivity bimodule’. It follows by
basic C∗-algebraic Morita theory (see [34, 22] say), that C ∼= K(I(X)) as
C∗-algebras, where K(I(X)) is the so called ‘imprimitivity C∗-algebra’ of the
right D-module I(X). Also, M(C) ∼= BD(I(X)), the adjointable D-module
maps on I(X). In fact we shall see that the left multiplier algebra LM(C)
(which by a result of Lin [24] may be identified with the space BD(I(X)) of
bounded right D-module maps on I(X)) coincides withM(C). Also L(I(X))
may be identified with the ‘linking C∗-algebra’ [34] of the bimodule I(X).
Although this will not be explicitly used below, it is a useful perspective.

We shall write S0(X) for the subspace of S(X) consisting of those elements
with 0’s on the main diagonal.

Proposition 1.1. For any operator space X, we have that

J = I(S(X))S0(X)I(S(X))

is an essential ideal in I(S(X)).
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Proof. Suppose that K is an ideal in I(S(X)) whose intersection with J
is zero. Let π : I(S(X)) → I(S(X))/K. Thinking of I(S(X)) as 2 × 2
matrices, it is clear that π maps each of the 4 corners into a matching
‘corner’ of I(S(X))/K. Since π is 1-1 on J , it is completely isometric on
S0(X). Let Φ be the restriction of π to S(X). By Lemma 7.1 in [29], Φ is
a complete order injection.

Extend the map from π(S(X)) → S(X) which is the inverse of Φ, to a
map γ : I(S(X))/K → I(S(X)). Since γ ◦Φ = IdS(X), it follows by rigidity
that γ ◦ π = IdI(S(X)). Thus K = (0). �

Corollary 1.2. For any operator space X, we have that L(I(X)) is an
essential ideal in I(S(X)), and that C = C(X) is an essential ideal in I11.
Thus we have the following canonical inclusions of C∗-algebras

C ⊂ I11 ⊂M(C) .

If C is represented faithfully and nondegenerately on a Hilbert space H, then
this string may be regarded as inclusions of subalgebras of B(H). Similar
assertions hold for D(X) ⊂ I22.

Proof. Clearly J ⊂ L(I(X)) ⊂ I(S(X)), where J is as in Proposition 1.1.
Thus L(I(X)) is an essential ideal in I(S(X)), by that Proposition. To see
the second assertion, notice that if t ∈ I11 and tC = 0, then tCt∗ = 0, which
implies that tzz∗t∗ = tz = 0 for all z ∈ I(X). It follows immediately that
(t ⊕ 0)L(I(X)) = 0. Hence by the first assertion, t = 0. Thus C is an
essential ideal in I11.

That I11 ⊂ M(C) follows from the universal property of the multiplier
algebra, namely that M(C) contains a copy of any C∗-algebra containing C
as an essential ideal ([22] Chapter 2, say). �

Since C is essential in I11, it follows from [16] Theorem 4.5, that M(C) ⊂
I11. Thus in fact I11 = M(C) ∼= BD(I(X)). However we will deduce all this
in a self-contained way, from some machinery we develop next:

Corollary 1.3. If t ∈ I11, and if tx = 0 for all x ∈ X, then t = 0.

Proof. Without loss of generality, we may assume that ‖t‖ ≤ 1. By replacing
t by t∗t, we may also suppose that 0 ≤ t ≤ 1, where this last ‘1’ is the identity
of I11. Let p = 1 − t. Define φ(z) = pz, for z ∈ I(X). Since φ(x) = x for
x ∈ X, we obtain φ = Id, by rigidity. Thus tI(X) = 0, which (we showed
in the proof of Corollary 1.2) implies that t = 0. �

Definition 1.4. Let X be an operator space. We define the left multiplier
operator algebra of X to be IMl(X) = {T ∈ I11 : TX ⊂ X}. We define
the left multiplier C∗-algebra of X to be IM∗

l (X) = {T ∈ IMl(X) : T ∗ ∈
IMl(X)}.
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Note that IM∗
l (X) is a C∗-algebra, whereas IMl(X) is a unital non-

selfadjoint operator algebra in general. There is a similar definition for right
multipliers.

We shall soon see that these multiplier algebras coincide with the ones
introduced in [7] §4. These simultaneously generalize the common oper-
ator algebras associated with Hilbert C∗-modules, the multiplier function
algebras of a Banach space introduced by Alfsen and Effros [1] (who only
considered the real scalar case - see [4] for the complex case), and the mul-
tiplier algebras of a nonselfadjoint operator algebra with c.a.i..

Definition 1.5. Let H,K be Hilbert spaces. A multiplication situation on
H ⊕ K consists of three concrete operator spaces X,Y, Z such that Y ⊂
B(H), X ⊂ B(K,H), and Z ⊂ B(K), and such that Y X ⊂ X and XZ ⊂
X.

We will need the following elementary lemma (c.f. [29] Ex. 4.2-4.5):

Lemma 1.6 (Choi [11]). Suppose that φ : A → B is a completely posi-
tive map between C∗-algebras, with φ(1) = 1. Suppose that there is a C∗-
subalgebra N of A with 1A ∈ N , such that π = φ|N is a *-homomorphism.
Then φ is an ‘N-bimodule map’. That is,

φ(an) = φ(a)π(n) and φ(na) = π(n)φ(a)

for all a ∈ A,n ∈ N .

We will refer to the following as the ‘multiplication theorem’:

Theorem 1.7. (i) Suppose that X is an operator space, and that I11, I22
are the diagonal corners of I(S(X)), as usual. If Y, Z are two operator
spaces such that X,Y, Z form a multiplication situation on H ⊕ K,
as above, then there exist unique completely contractive linear maps
θ : Y → IMl(X) and π : Z → IMr(X) such that θ(y)j(x) = j(yx),
and j(x)π(z) = j(xz), for all x ∈ X, y ∈ Y, z ∈ Z.

(ii) If in addition, Y is a subalgebra (resp. *-subalgebra) of B(H), then θ
is also a homomomorphism (resp. *-homomomorphism into IM∗

l (X)).
Similarly for Z.

Proof. By [29] Lemma 7.1, we have a completely order isomorphic copy G
of S(X) inside B(H ⊕K). By [17] Corollary 4.2, there exists a surjective
*-homomorphism from the C∗-subalgebra C∗(G) of B(H ⊕K) generated by
G, onto the C∗-envelope C∗

e (S(X)), which fixes the copies of S(X). Let
φ : B(H ⊕ K) → I(S(X)) be a completely positive map extending the *-
homomorphism. Since φ fixes the diagonal scalars C ⊕ C, it follows by 1.6
(this is a common argument), that φ decomposes as a 2× 2 matrix of maps,
each corner map defined on the corresponding ‘corner’ of B(H ⊕ K). In
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particular, we have

φ

([
y x
0 z

])
=

[
θ(y) j(x)
0 π(z)

]
,

for a map θ : Y → I11, π : Z → I22, and for all x ∈ X, y ∈ Y, z ∈ Z. By the
previous lemma, φ is a ‘C∗(G)-bimodule map’. Hence for y ∈ Y, x ∈ X we
have:[

0 j(yx)
0 0

]
= φ

([
y 0
0 0

] [
0 x
0 0

])
= φ

([
y 0
0 0

]) [
0 jx
0 0

]
=

[
θ(y) 0
0 0

] [
0 jx
0 0

]
.

Thus j(yx) = θ(y)j(x). The uniqueness of θ follows from Corollary 1.3.
Similarly for π.

For (ii), note that for y1, y2 ∈ Y and x ∈ X we have (y1y2)x = θ(y1y2)x =
θ(y1)θ(y2)x. Now use Corollary 1.3 to conclude that θ is a homomorphism.
The last assertion follows from the fact that a contractive representation of
a C∗-algebra is a *-homomorphism. �

We recall that a right C∗-module Z over D is ‘self-dual’, if it satisfies the
equivalent of the Riesz representation theorem for Hilbert spaces, namely
that every f ∈ BD(Z,D) is given by the inner product with a fixed z ∈ Z.

Corollary 1.8. If X is an operator space, then:
(i) I11 = M(C(X)) = LM(C(X)) = RM(C(X)) = QM(C(X)) = I(C(X)).

Thus I11
∼= BD(I(X)) = BD(I(X)). Similarly, I22 = M(D) = LM(D)

= I(D).
(ii) I(X) is a self-dual right C∗-module (over D or over M(D)). Similarly,

it is a self-dual left C∗-module.
(iii) I(S(X)) is the multiplier C∗-algebra of L(I(X)). Also, I(S(X)) is the

injective envelope of L(I(X)).

Proof. (i): Represent L(I(X)) non-degenerately on a Hilbert space H ⊕K.
We obtain a multiplication situation onH⊕K given by the actions of LM(C)
and RM(D) on I(X). By the multiplication theorem, we get a completely
contractive homomomorphism θ : LM(C) → I11 such that θ(T )x = Tx,
for all x ∈ I(X) and T ∈ LM(C). Hence T = θ(T ) ∈ I11. Thus by
Corollary 1.2, we have I11 = M(C(X)) = LM(C(X)). By Lin’s theorem
[24], the latter C∗-algebra may be identified with BD(I(X)). Taking ad-
joints gives RM(C(X)) = M(C(X)). As noted in [25], (ii) below implies
that M(C(X)) = QM(C(X)). Finally, note that we have the following C∗-
subalgebras: C ⊂ I11 = M(C) ⊂ I(C). The last inclusion is a fact from [16]
which is reproved at the end of our paper. By the injectivity of I11 there
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exists a completely contractive projection Φ from I(C) onto I11; since Φ fixes
C we see by rigidity that Φ = Id and I11 = I(C).

(ii): We apply (i) but with X replaced by the right C∗-module sum
I(X)⊕c M(D). Clearly the latter is a full C∗-module over M(D), and it is
injective since it is a corner of I(S(X)). Using (i) and Corollary A.7 in [7] if
necessary, we obtain that BM(D)(I(X)⊕c M(D)) = BM(D)(I(X)⊕c M(D)),
from which it is easy to see that I(X) is a self-dual M(D)-module. However
BD(I(X),D) = BM(D)(I(X),M(D)) by Cohen’s factorization theorem.

(iii): It is well-known that for any full right C∗-module Z over a C∗-algebra
B say, we have that KD(Z⊕cD) is a copy of the linking C∗-algebra of Z. Also
BD(Z⊕cD) = M(KD(Z⊕cD)). Thus we haveM(L(I(X))) = BD(I(X)⊕D).
This of course splits into four corners. The 1-1 corner is BD(I(X)) = I11
by (i). The 2-1 corner is BD(I(X),D) ∼= I(X)∗ by (ii). The 2-2 corner is
BD(D,D) = M(D) = I22 by (i). This gives the first result. The second
follows just as I(C) = I11 in (i). �

Theorem 1.9. If X is an operator space, then:
(i) IMl(X) (resp. IM∗

l (X)) is completely isometrically isomorphic (resp.
*-isomorphic) to the left multiplier algebras Ml(X) (resp. Bl(X) =
Al(X)) defined in [7, Section 4].

(ii) IM∗
l (X) is isometrically isomorphic to a closed subalgebra of B(X).

Also, IM∗
l (X) is completely isometrically isomorphic to a closed sub-

algebra of Bl(X) or CBl(X).

Before we prove this, we define Bl(X) and CBl(X) for an operator space
X. Namely Bl(X) = B(X) but with matrix norms

‖[Tij ]‖l
n = sup


∥∥∥∥∥
[

n∑
k=1

Tik(xk)

]∥∥∥∥∥
Cn(X)

: x ∈ BALL (Cn(X))

 .

(Here Cn(X) = Xn, but with the operator space structure one gets by
identifying Cn(X) with the ‘first column’ of the operator space Mn(X).)
With these norms Bl(X) is not a matrix normed space in the traditional
sense. However Mn(Bl(X)) is a unital Banach algebra. Similarly one defines
CBl(X), the only difference being that one replaces xk in the expression
above by x(k,p),q. Here [x(k,p),q] is a matrix indexed on rows by (k, p) and on
columns by q. Again Mn(CBl(X)) is a unital Banach algebra.

Proof. (i): By 1.8, any T ∈ IMl(X) may be viewed as a bounded, and hence
completely bounded, module map on I(X). We obtain a canonical sequence
of completely contractive homomorphisms

IMl(X)
ρ→Ml(X) → CB(X)

given by restriction of domain. By Corollary 1.3, these homomorphisms are
1-1.
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On the other hand, we have a multiplication situation given by the action
of Ml(X) on X. Hence, by the multiplication theorem, there exists a com-
pletely contractive homomorphism θ : Ml(X) → I11 such that θ(T )x = Tx
for all T ∈Ml(X), x ∈ X. Thus ρθ = Id. Thus ρ is onto, and since ρ is 1-1
we obtain that IMl(X) ∼= Ml(X) completely isometrically and as operator
algebras.

(ii) The first statement follows from a result which may be found in [37]
Proposition 1.1 or [5] Corollary 1, which asserts that any contractive homo-
morphism from a C∗-algebra into a Banach algebra, is a ∗-homomorphism
onto its range, which is a C∗-algebra (with the norm and algebra structure
inherited from the Banach algebra). Hence the canonical homomorphism
Bl(X) → CB(X) (or Bl(X) → B(X)) is a ∗-homomorphism onto a C∗-
algebra. Since the homomorphism is 1-1 it is therefore isometric.

The second statement follows by considering the following canonical iso-
metric inclusions

Mn(Bl(X)) ⊂Mn(BD(I(X))) ⊂Mn(Bl(I(X))) ,

the last inclusion following from Section 3 of [26]. Thus by restriction
of domain, we get a contractive unital 1-1 homomorphism Mn(Bl(X)) →
Mn(Bl(X)). Now we can apply [5] Corollary 1 to deduce that this last
homomorphism is an isometry.

A similar argument works for CBl. �

It follows from (i) and a result in [7, Section 4], that the subalgebra of
B(X) or CB(X) corresponding to IM∗

l (X) by (ii) above, is the C∗-algebra
of (left) adjointable operators Al(X) on X.

We do not know whether IM∗
l (X) is completely isometrically contained

inside CB(X) in general. However it is not hard to find examples showing
that the canonical contraction Ml(X) → B(X) (or into CB(X)) is not
an isometry in general (see [7]). This shows that if T ∈ BD(I(X)), with
T (X) ⊂ X, then one cannot expect anything like ‖T‖cb = ‖T|X‖cb.

Finally we remark that if IMl(X) = C, then it follows from the multi-
plication theorem that for any linear complete isometry i : X → B(K,H)
such that [i(X)K ]̄ = H, we have that scalar multiples of IH are the only
operators T ∈ B(H) such that Ti(X) ⊂ i(X).

2. Applications.

We recall from [7] that an oplication of an operator space Y on an operator
space X, is a bilinear map ◦ : Y ×X → X, such that

(1) ‖y ◦ x‖n ≤ ‖y‖n‖x‖n, for all n ∈ N, x ∈Mn(X), y ∈Mn(Y ),
(2) there is an element e ∈ Y1 such that e ◦ x = x for all x ∈ X.
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In (1), y ◦ x is computed by the usual rule for multiplying matrices.

We will apply the multiplication theorem from §1 to give a proof of the
‘oplication theorem’ from [7] §5:

Theorem 2.1. Suppose that Y,X are operator spaces, and suppose that
◦ : Y ×X → X is an oplication, with ‘identity’ e ∈ Y . Then there exists a
unique completely contractive linear map θ : Y → Ml(X) such that y ◦ x =
θ(y)x , for all y ∈ Y, x ∈ X. Also θ(e) = 1. Moreover, if Y is, in addition,
an algebra with identity e, then θ is a homomorphism if and only if ◦ is a
module action. On the other hand, if Y is a C∗-algebra (or operator system)
with identity e, then θ has range inside Bl(X), and is completely positive
and *-linear.

Proof. As in [7] the difficult part is to prove the first statement, the existence
of θ. (The uniqueness follows from 1.3.) Indeed it suffices to find Hilbert
spaces H,K, a complete isometry Φ : X → B(K,H), and a linear complete
contraction θ : Y → B(H), such that θ(e) = I, and such that Φ(y ◦ x) =
θ(y)Φ(x), for all y ∈ Y, x ∈ X. For in that case θ(Y ),Φ(X),C would form
a multiplication situation on H ⊕ K. Now use the multiplication theorem
above, together with the fact that IMl(X) ∼= Ml(X), to obtain the existence
of θ.

The existence of such Φ etc., follows easily from Le Merdy’s proof of
the ‘BRS’ theorem ([23] 3.3). Namely, first suppose that X ⊂ B(K). By
the ‘multilinear Stinespring’ theorem of [14, 30], we may write y ◦ x =
β1(y)α1(x), for completely contractive maps α1 : X → B(K,H1) and β1 :
Y → B(H1,K). Similarly, α1(y ◦ x) = β2(y)α2(x), where now α2 : X →
B(K,H2) say. Inductively we obtain, αk−1(y ◦ x) = βk(y)αk(x), where
αk : X → B(K,Hk), say. Since e ◦ x = x, we see that each αk is a complete
isometry. Let W = X⊗K, and define fk : W → Hk by fk(x⊗ζ) = αk(x)(ζ).
It is easy to check that ‖fk(w)‖Hk

≤ ‖fk+1(w)‖Hk+1
, for w ∈W , as in [23].

Hence (by the parallelogram law if necessary) it is clear that limk ‖fk(·)‖Hk

defines a seminorm which gives rise to a Hilbert space norm (on the quotient
of W by the nullspace of the seminorm). Write this resulting Hilbert space
as H. There is an obvious map θ : Y → L(H), given by θ(y)([x ⊗ ζ]) =
[(y ◦ x)⊗ ζ]. It is easy to see that this is completely contractive as in [23].
The map Φ : X → B(K,H) given by Φ(x)(ζ) = [x⊗ ζ] is clearly a complete
contraction, too. On the other hand, for any ζ ∈ Ball (K), we have

‖Φ(x)‖ ≥ ‖Φ(x)(ζ)‖ = lim
k
‖αk(x)(ζ)‖ ≥ ‖α1(x)(ζ)‖.

Thus ‖Φ(x)‖ ≥ ‖α1(x)‖ = ‖x‖, showing that Φ is an isometry. A similar
argument shows that Φ is a complete isometry. �

As shown in [7], this theorem has very many consequences, containing as
special cases, the ‘BRS’ theorem [10], and many other results. The original
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proof of the above theorem in [7] was much more difficult. The first author
has subsequently replaced that proof there with another, part of which is
similar to the proof above, but avoids use of the ‘multiplication theorem’
above. The version in [7] also does not give the fact that IMl(X) = Ml(X).

A left operator module X over a unital operator algebra A, is an operator
space which is also a unitary left A-module (unitary means that 1x = x
for all x ∈ X), such that ‖ax‖ ≤ ‖a‖‖x‖ for all matrices a with entries in
A and x with entries in X. A similar definition holds for right modules or
bimodules.

One may deduce from the oplication theorem the following refinement of
the Christensen-Effros-Sinclair representation theorem for operator modules
[13]. We will in fact give an independent proof (which is the essentially the
same as the proof above, except that we use the original Christensen-Effros-
Sinclair theorem (which is quite simple) instead of the Le Merdy argument).
In any case note that the method shows that the A-B-action on an operator
A-B-bimodule X, may be extended to an action on I(X), making I(X) an
operator A-B-bimodule.

Theorem 2.2. Suppose that A and B are unital operator algebras, and that
X is an operator space and a unitary A-B-bimodule with respect to a bimod-
ule action m : A×X ×B → X. The following are equivalent:

(i) X is an operator A-B-bimodule.
(ii) There exist Hilbert spaces H and K, and a linear complete isome-

try Φ : X → B(K,H) and completely contractive unital homomor-
phisms θ : A → B(H) and π : B → B(K), such that Φ(m(a, x, b)) =
θ(a)Φ(x)π(b), for all a ∈ A, x ∈ X and b ∈ B.

(iii) There exists unique completely contractive unital homomorphisms θ :
A→Ml(X) and π : B →Mr(X) such that θ(a)xπ(b) = m(a, x, b) for
all a ∈ A, x ∈ X and b ∈ B.

Proof. That (i) is equivalent to (ii) is a restatement of the Christensen-
Effros-Sinclair representation theorem.

(iii) =⇒ (ii): Obvious.
(ii) =⇒ (iii): θ(A),Φ(X), π(B) form a multiplication situation on H⊕K.

The result then follows by the multiplication theorem. �

We will refer to a triple (Φ, θ, π) as in (ii) above as a CES representation
of the bimodule X. We will call it a faithful CES representation if θ and π
are also completely isometric. It is always possible, by an obvious direct sum
trick, to find a faithful CES representation for an operator bimodule. For
any CES representation of X we obtain an ‘upper triangular 2× 2 operator
algebra’, namely

U(X) =
[
θ(A) Φ(X)

0 π(B)

]
.
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We will write Ue(X) for this algebra in the case that (j, θe, πe) is the repre-
sentation in (iii) above, into the multiplier algebras. Thus Ue(X) ⊂ I(S(X)).

If A and B are C∗-algebras, and if we take faithful CES representations
and form U(X), then it is clear from [36] that U(X) as an abstract operator
algebra (i.e., as an algebra and an operator space), is independent of the
particular faithful CES representation. This is probably not true if A,B
are non-selfadjoint. However in either case, we can easily see that the triple
(j, θe, πe) given in (iii) above, is the ‘smallest’ CES representation of X:

Corollary 2.3. Suppose that A and B are unital operator algebras, and that
X is an A-B-operator bimodule. Let (Φ, θ, π) be a CES representation of X,
and let U(X) be the corresponding upper triangular 2 × 2 operator algebra.
Then there is a canonical completely contractive unital homomorphism φ :
U(X) → Ue(X), which takes each corner of U(X) into the same corner
for Ue(X). Indeed φ induces completely contractive unital homomorphisms
ρ and σ, from θ(A) and π(B), to θe(A) and πe(B) respectively, such that
ρ ◦ θ = θe and σ ◦ π = πe.

Proof. This follows immediately from the proof of Theorem 1.7, and of the
implication ‘(ii) =⇒ (iii)’ of 2.2. The φ is as in the proof of Theorem 1.7,
which is easily seen to be a homomorphism on U(X). �

Note that if θe is 1-1, then it follows that θ is also 1-1. Notice also that if
the action of A on X is faithful (i.e., if aX = 0 implies that a = 0), then θe is
1-1. This follows from Corollary 1.3. If the action of A on X is ‘completely
1-faithful’ (that is, the norm of a ∈ Mn(A) is achieved as the supremum
of the norms of the action of a on X in a sensible way), then θe and θ in
Corollary 2.3 are complete isometries.

Proposition 2.4. For an operator bimodule X, with the notations above,
we have I(Ue(X)) = I(S(X)) . If X is an operator A-B-bimodule over C∗-
algebras A and B, which is faithful as a left and as a right module, and if
U(X) is the triangular operator algebra associated with a CES representation
of X, then I(U(X)) = I(S(X)) .

Proof. Clearly Ue(X) ⊂ I(S(X)). Any minimal Ue(X)-projection [17] is the
identity on S(X), and is therefore the identity map. The rest is clear. �

Definition 2.5. Let Y be an operator A-B-bimodule. We shall call Y an
A-B-injective bimodule provided for every pair of operator A-B-bimodules
V and W , with V a submodule of W , each completely contractive A-B-
bimodule map T : V → Y extends to a completely contractiveA-B-bimodule
map from W to Y .

We should remark that the above definition corresponds to what was
called in [16] a tight A-B-injective bimodule.
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The following result extends Wittstock’s theorem [39] that an injective
C∗-algebra is an injective operator module over a unital C*-subalgebra. In
the following we consider unital C∗-algebras, but it is not difficult to remove
the ‘unital’ hypothesis.

Theorem 2.6. Let A and B be unital C∗-algebras.
(i) If Y is an operator space which is also an operator A-B-bimodule, then

Y is injective as an operator space if and only if Y is an A-B-injective
bimodule.

(ii) If Y is an operator A-B-bimodule, then the operator space injective
envelope I(Y ), is the operator A-B-bimodule injective envelope of Y .
That is, I(Y ) is an A-B-injective bimodule which is rigid and essential,
as an operator A-B-bimodule containing Y . Rigidity here, for example,
means: Any completely contractive A-B-bimodule map I(Y ) → I(Y ),
which is the identity on Y , is the identity on I(Y ).

Proof. One direction of (i) is obvious. Namely, suppose that Y is A-B-
injective. By CES, Y may be realized as anA-B-submodule of someB(K,H),
where H is a Hilbert A-module and K is a Hilbert B-module. Indeed
B(K,H) is an operator A-B-bimodule. By the A-B-injectivity of Y , there
is a completely contractive projection from B(K,H) onto Y . Since B(K,H)
is injective as an operator space, so is Y .

The other direction of (i) is harder. In a previous version of this paper we
had a proof which used almost all the results established until now. Instead
we shall only use a few results from part 1, and 2.2 above. We will also
use the fact, which is a simple consequence of Wittstock’s original result, or
Suen’s modification of this result [36], that if H is a Hilbert A-module, then
for any Hilbert space K, we have that B(K,H) is A-injective. Indeed their
result gives that B(H) is A-injective if A ⊂ B(H) isometrically. However in
the contrary case, one may use the following kind of trick: Pick a Hilbert
space H ′ in which A is faithfully represented, then one obtains a faithful
representation of A on H ⊕H ′. Then one may apply the Wittstock or Suen
result to conclude that B(H⊕H ′) is A-injective, from which it is easy to see
by compression that B(H) is A-injective. See [6] Theorem 4.1 for another
proof of this simple consequence.

Suppose that Y is injective. Represent the C∗-algebra I(S(Y )) faithfully
and non-degenerately on a Hilbert space; then the two diagonal projections
determine a splitting of the Hilbert space as H ⊕K, say. So I11 is a unital
*-subalgebra of B(H), and so on. Now by injectivity there is a completely
positive projection φ from B(H ⊕K) onto I(S(Y )). As in the proof of 1.7,
the Choi Lemma implies that this projection is an I(S(Y ))-module map,
and that φ decomposes as a 2× 2 matrix of maps. Let ψ be the ‘1-2 corner’
of φ. Thus ψ : B(K,H) → Y is a completely contractive projection onto
Y , and its easy to see, as in 1.7, that ψ is a left I11-module map. However
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if Y is an operator A-B-bimodule, then by 2.2 above there is a unital *-
homomorphism θ : A → I11 ⊂ B(H) implementing the left module action.
Hence H is a Hilbert A-module, via θ. Since θ maps into I11, we see that
the projection ψ is a left A-module map onto Y . Similarly, ψ is a right
B-module map onto Y . Since B(K,H) is A-B-injective, so is Y .

(ii) is obvious, given (i) and the fact, observed earlier, that the A-B-action
on Y extends to make I(Y ) an operator A-B-bimodule. �

The proof in fact shows that any injective operator space X is an I11−I22-
injective operator bimodule.

At this point we may give another proof of the self-duality of I(X): By 2.6
(i), I(X) is injective in the category of right C∗-modules over I22. Now
appeal to [25] Prop. 3.10.

The following corollary of 1.8 generalizes a standard fact for Hilbert
spaces:

Corollary 2.7. Let Y be a right C∗-module over a C∗-algebra A, which
(with respect to its canonical operator space structure) is an injective oper-
ator space. Then:

(i) Y is a self-dual C∗-module over A.
(ii) BA(Y ) = BA(Y ).
(iii) Every bounded module map Y → Z is adjointable, for any other C∗-

module Z.
(iv) BA(Y ) is an injective C∗-algebra.

Proof. We may suppose w.l.o.g. that Y is a full C∗-module over A. Thus
we may regard Y as a K(Y ) − A-imprimitivity bimodule. Let Z = I(Y ) =
Y equipped with its C(Y ) − D(Y )-imprimitivity bimodule structure. Here
C(Y ) ⊂ I11 as usual. From [19] or A.7 in [7], we know that Z ∼= Y , as
imprimitivity bimodules. Thus BA(Y ) ∼= I11, giving (iv). Similarly we get
(i). It is well-known, and fairly obvious, that (i) implies (ii) and (iii). �

The following result must be well-known. Since we cannot give a precise
reference, we prove it:

Proposition 2.8. If A is a C∗-algebra without identity, then the operator
space injective envelope I(A) is a unital C∗-algebra. Indeed I(A) = I(A1),
where A1 is the unitization of A.

Proof. Represent A non-degenerately and faithfully on a Hilbert space H. If
{ei} is a contractive approximate identity for A, then ei → IH in the SOT.
We also have IH ∈ A1 ⊂ B(H). Let Φ : B(H) → I(A) ⊂ B(H) be a minimal
A-projection. So Φ is a completely contractive idempotent map whose range
contains A. If Φ(I) = I we would be done, since in that case Φ is completely
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positive, and then we can deduce that I(A) is a unital C∗-algebra as in the
introduction (i.e., by the Choi-Effros result quoted there).

In order to see that Φ(I) = I, we choose ζ ∈ H with ‖ζ‖ = 1. Let
φ(T ) = 〈Φ(T )ζ, ζ〉, for T ∈ B(H). Then ‖φ‖ ≤ 1 and φ(ei) → 1. It
is no doubt well-known and easy to see that this implies that φ(I) = 1.
One way to do this is to write φ(T ) = 〈π(T )η, ξ〉, where π is a unital *-
representation of B(H) on a Hilbert space K, and where η, ξ ∈ BALL (K).
Set K ′ = [π(A)K ]̄, and let P be the projection onto K ′. Then it is easy to
see that the net π(ei) has P as a WOT limit point. For if T is a WOT limit
point of π(ei), then for x, y ∈ K we have

〈Tx, y〉 = lim
i
〈π(ei)x, y〉 = lim

i
〈π(ei)x, Py〉 = 〈x, Py〉 = 〈Px, y〉.

Thus 〈Pη, ξ〉 = limφ(ei) = 1. By the converse to Cauchy-Schwarz, ξ =
Pη = P 2η = Pξ. Thus

φ(I) = 〈η, ξ〉 = 〈η, Pξ〉 = 〈Pη, ξ〉 = 1.

�

In [16], it is shown that for a C∗-algebra A, there is a canonical inclusion
LM(A) ⊂ I(A). Indeed, for any essential ideal K of A, we have LM(K) ⊂
I(A). We can offer another proof of these results using our methods. Firstly,
we just saw that if X = A considered as an operator space, then I(X) is
a unital injective C∗-algebra. From this it follows from abstract principles
that I(S(X)) = I(S(I(X))) = M2(I(A)) (see for example [7] 4.18 (i)). Thus
in this case I11 = I(A). Hence

LM(A) = Ml(A) = IMl(A) ⊂ I(A).

If K is an essential ideal in A, then as we just proved, M(K) ⊂ I(K).
Thus we have

K ⊂ A ⊂M(K) ⊂ I(K).
Any minimal A-projection on I(K), is a K-projection, and is therefore equal
to the identity map, by rigidity of I(K). Thus I(K) = I(A). By the first
part, LM(K) ⊂ I(K) = I(A). This gives the result we need.

Notice from the above, that since A is an essential ideal in M(A), we have
I(A) = I(M(A)) = I(A1).

The same is true even if A is a nonselfadjoint operator algebra with con-
tractive approximate identity, with some modifications in proof.

If X is a C∗-module we see from results above that

I(B(X)) = I(M(K(X))) = I(K(X)),

where K(X) is the so-called ‘imprimitivity C∗-algebra’ of so-called ‘compact’
maps on X. Does this equal I11 in this case? Certainly K(X) ⊂ I11 as a
*-subalgebra, so that I(K(X)) ⊂ I11.
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Since this paper was written further advances have been made, for exam-
ple in the papers [8, 9].
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