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For a 3-manifold M , McMullen derived from the Alexander
polynomial of M a norm on H1(M, R) called the Alexander
norm. He showed that the Thurston norm is an upper bound
for the Alexander norm. He asked if these two norms were
the same when M fibers over the circle. Here, I give exam-
ples that show this is not the case. This question relates to
the faithfulness of the Gassner representations of the braid
groups. The key tool used is the Bieri-Neumann-Strebel in-
variant, and I show a connection between this invariant and
the Alexander polynomial.

1. Introduction.

1.1. Statement of results. For a 3-manifold M , McMullen derived from
the Alexander polynomial of M a norm on H1(M, R) called the Alexander
norm. He showed that the Thurston norm on H1(M, R), which measures the
complexity of a dual surface, is an upper bound for the Alexander norm. He
asked (Question A below) if these two norms were equal on all of H1(M, R)
when M fibers over the circle. Here, I will give examples which show that the
answer to Question A is emphatically no. As explained below, Question A is
related to the faithfulness of the Gassner representations of the braid groups.
The key tool used to understand Question A is the Bieri-Neumann-Strebel
invariant from combinatorial group theory. Theorem 1.7 below, which is
of independent interest, connects the Alexander polynomial with a certain
Bieri-Neumann-Strebel invariant.

I will begin by reviewing the definitions of the Alexander and Thurston
norms, and Theorem 1.2 which relates them. Then I’ll discuss Question A
and the connection to the braid groups. After that, I’ll state Question B, a
much weaker version of Question A, to which the answer is also no. A brief
description of the examples which answer these two questions concludes
Section 1.1. In Section 1.5, I’ll connect these questions with the Bieri-
Neumann-Strebel invariants, and explain why, morally speaking, the answer
to both questions must be no. Section 1.8 outlines the rest of the paper.

The Alexander norm is defined in [McM] as follows. Let M be a 3-
manifold (all 3-manifolds in this paper will be assumed to be connected).
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Let G be the fundamental group of M . Let ab(G) denote the maximal free
abelian quotient of G, which is isomorphic to Zb1(M) where b1(M) is the first
Betti number of M . The Alexander polynomial ∆M of M is an element of
the group ring Z[ab(G)]. It is an invariant of the homology of the cover of
M with covering group ab(G) (for details see Section 3.1). The Alexander
norm on H1(M, R) is the norm dual to the Newton polytope of ∆M . That
is, if ∆M =

∑n
i=1 aigi with ai ∈ Z \ {0} and gi ∈ ab(G) then the norm of a

class φ ∈ H1(M, R) is defined to be

‖φ‖A = sup
i,j

φ(gi − gj).

The unit ball BA of this norm is, up to scaling, the polytope dual to the
Newton polytope of ∆M .

The Thurston norm is defined as follows. For a compact connected surface
S, let χ−(S) = |χ(S)| if χ(S) ≤ 0 and 0 otherwise. For a surface with mul-
tiple connected components S1, S2, . . . , Sn, let χ−(S) be sum of the χ−(Si).
Then the Thurston norm of an integer class φ ∈ H1(M, Z) ∼= H2(M,∂M ; Z)
is

‖φ‖T = inf {χ−(S) | S is a properly embedded oriented surface

that is dual to φ} .

As described in [Thu], this norm extends continuously to all of H1(M, R).
The unit ball BT in this norm is a finite-sided convex polytope.

It should be noted that both of these “norms” are really semi-norms—
they can be zero on non-zero vectors of H1(M, R).

McMullen proved the following theorem which connects the two norms;
here bi(M) = rank Hi(M, R) denotes the ith Betti number of M .

Theorem 1.2 ([McM]). Let M be a compact, orientable 3-manifold whose
boundary, if any, is a union of tori. Then for all φ in H1(M, R), the Alexan-
der and Thurston norms satisfy

‖φ‖A ≤ ‖φ‖T if b1(M) ≥ 2,

or

‖φ‖A ≤ ‖φ‖T + 1 + b3(M) if b1(M) = 1 and φ generates H1(M, Z).

Moreover, equality holds when φ : π1(M) → Z and φ can be represented by
a fibration M → S1, where the fibers have non-positive Euler characteristic.

This theorem generalizes the fact that the degree of the Alexander poly-
nomial of a knot is bounded by twice the genus of any Seifert surface. In
many simple cases, e.g. almost all the exteriors of the links with 9 or fewer
crossings, the Alexander and Thurston norms agree on all of H1(M, R) (see
[McM]). In such cases, this theorem explains D. Fried’s observation from
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the 80’s that frequently the shape of the Newton polytope of the Alexander
polynomial is dual to that of the Thurston norm ball.

Before stating Question A, I need to discuss the relationship between
the Thurston norm and cohomology classes φ : π1(M) → Z which can be
represented by fibrations M → S1. There are top-dimensional faces, called
the fibered faces, of BT such that a class φ ∈ H1(M, Z) can be represented
by a fibration over the circle if and only if φ lies in the cone over the interior
of one of the fibered faces [Thu, §3]. In this context, the last sentence of
Theorem 1.2 is equivalent to “Moreover, the two norms agree on classes that
lie in the cone over the fibered faces of BT ”. The point of this paper is to
answer:

Question A (McMullen [McM]). Let M be a compact, orientable 3-man-
ifold whose boundary, if any, is a union of tori. Suppose that M fibers over
the circle and that b1(M) ≥ 2. Do the Alexander and Thurston norms agree
on all of H1(M, R)?

My motivation for studying this question is McMullen’s result that a
yes answer would imply that the Gassner representations of the pure braid
groups are all faithful [McM, §8]. This would answer in the affirmative
the important question: Are the braid groups linear, that is, do they have
faithful, finite-dimensional, linear representations? Sadly, I will show that
the answer to Question A is no in a strong sense. (Note: Since I wrote this
paper, Bigelow and Krammer have independently shown that braid groups
are linear [Big2, Kra1, Kra2]. Their proofs use a different representation,
and it remains unknown whether the Gassner representation is faithful.)

To explain why the answer to Question A is no, let me formulate a weaker
version of Question A which will help make clear some of the issues involved.
Henceforth, I will assume that b1(M) ≥ 2. A typical example of BT is given
in Figure 1.3.

There is a pair of fibered faces and the rest of the faces are not fibered.
Theorem 1.2 tells us that ‖ · ‖A ≤ ‖ · ‖T hence that BA ⊇ BT . Since the
two norms agree on a fibered face FT of BT , there is a face FA of BA which
contains FT . Now, it seems a bit much to expect that if M fibers over the
circle then the two norms agree on classes that are far from any fibered face.
So it’s reasonable to consider:

Question B. Let M be a compact, orientable 3-manifold whose boundary,
if any, is a union of tori. Suppose that M fibers over the circle and that
b1(M) ≥ 2. Let FT be a fibered face of BT and FA the face of BA which
contains it. Are FT and FA always equal?

Figure 1.4 shows the two possibilities. Note that a yes answer to Ques-
tion A implies a yes answer to Question B. I will give examples which show
that
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Fibered faces
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Figure 1.3. The Thurston norm ball.
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Figure 1.4. Possible answers
to Question B.

Answer. The answer to Question B, and therefore Question A, is no.

I will give two kinds of examples. In Section 2, I will constuct examples
using the fact that the Burau representation of the braid group on 5 strands
is not faithful. Section 2 is independent of the rest of the paper. Section 6
contains an example which is the exterior of a specific 17 crossing link in S3.

McMullen’s formulation of Question A restricted attention to those man-
ifolds which are the exteriors of links in S3. All my examples are such
manifolds, but I felt the more general statement was appropriate here.
1.5. Connection to the BNS invariants. In this section I will describe
the connection between Question B and the Bieri-Neumann-Strebel (BNS)
invariants. In light of this connection, I will explain why the answer to
Question B must be, morally speaking, no. The BNS invariants will also be
used in constructing and verifying the example in Section 6.

I’ll begin with the definition of the BNS invariants (for details see [BNS],
and from a different point of view, [Bro]). Let G be a finitely-generated
group. Set

S(G) =
(
H1(G, R) \ {0}

) /
R+,

where R+ acts by scalar multiplication and S(G) is given the quotient topol-
ogy. A point [ χ ] in S(G) will be thought of as an equivalence class of ho-
momorphisms χ : G → R. For [ χ ] ∈ S(G) define Gχ = χ−1 ([0,∞)) =
{g ∈ G | χ(g) ≥ 0}, which is a sub-monoid of G.
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Let H be a group acted on by G where G′ acts by inner automorphisms
(e.g. H = G′ where G acts by conjugation). Then the BNS invariant of G
and H is:

ΣH = {[χ ] ∈ S(G) | H is finitely generated over some
finitely generated sub-monoid of Gχ} .

It turns out that ΣH is always an open subset of the sphere S(G).
Let M be a 3-manifold, and G = π1(M). Set Σ = ΣG′ . Bieri, Neu-

mann, and Strebel proved the following with the help of Stallings’ fibration
theorem:

Theorem 1.6 ([BNS, Thm. E]). Let M be a compact, orientable, irreduci-
ble 3-manifold. Then Σ is exactly the projection to S(G) of the interiors of
the fibered faces of the Thurston norm ball BT .

For convenience, in the rest of this section I will assume that H1(M, Z)
is free. This is not essential, and the theory will be developed without this
assumption in Sections 3-5. The commutator subgroup G′ is the fundamen-
tal group of the universal abelian cover of M . So A = G′/G′′ is the first
homology of that cover. Thought of as a module over Z[ab(G)], A is the
Alexander invariant of M , from which the Alexander polynomial is derived.
Thus it is not too surprising that the BNS invariant ΣA is connected to the
Alexander polynomial:

Theorem 1.7. Let M be a compact, orientable 3-manifold. There are top-
dimensional faces F1, F2, . . . , Fn of the Alexander ball BA such that the pro-
jection of the interiors of the Fi into S(G) is exactly ΣA. Moreover, the Fi

are completely determined by the Alexander polynomial of M .

Theorem 5.1 below is an expanded version of Theorem 1.7 which explains
how the Fi are determined. Now since A is a quotient of G′, it follows imme-
diately from the definitions that ΣA ⊃ Σ. Combining this with Theorem 1.7,
it follows that Question B is equivalent to:

Question B′. Let M be a compact, orientable 3-manifold whose boundary,
if any, is a union of tori. Suppose that M fibers over the circle and that
b1(M) ≥ 2. Let C be a connected component of Σ. If D is the connected
component of ΣA which contains C, is D always equal to C?

Put this way it begins to become clear that the answer to Question B
should be no. For many groups G, ΣG′ is strictly contained in ΣG′/G′′ . It
remains only to produce examples of 3-manifolds whose fundamental groups
have this property.

1.8. Outline of rest of paper. Section 2 describes how to construct ex-
amples using the Burau representation. Section 3 defines the Alexander
polynomial and proves a fact about the Alexander invariant that’s needed
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to prove Theorem 1.7. Section 4 discusses the BNS invariants and records
the properties that will be needed later. Section 5 proves the full version of
Theorem 1.7. Finally, Section 6 gives an example of a specific link exterior
in S3 for which the answer to Question B is no.
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University of Chicago supported by a Sloan Dissertation Fellowship. I would
like to thank Curt McMullen for useful correspondence. I got interested in
the connection between the Alexander polynomial and Thurston norm at a
problem session at KirbyFest (MSRI, June 1998), where Fried’s observation
was related by Joe Christy. I would like to thank the organizers, MSRI, and
the NSF for support to attend that conference. I would also like to thank
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2. Connection with braid groups.

Let Bn denote the n-strand braid group. McMullen showed that if the
answer to Question A is yes, then the Gassner representation of Bn is faithful
for all n [McM]. In this section, I’ll give a very similar argument to show:

Proposition 2.1. If the answer to Question B is yes, then the Burau rep-
resentation of Bn is faithful for all n.

Since the Burau representation of Bn is not faithful for n ≥ 5 [Big1, LP,
Moo], the proposition implies that the answer to Question B, and hence
Question A, is no.

Before proving the proposition, let me define the braid groups and the
Burau representation (see [Bir] for more). Let Dn be the disc with n punc-
tures. Consider the group of homeomorphisms Hom+(Dn, ∂Dn) of Dn which
are orientation preserving and fix ∂Dn pointwise. The braid group Bn is
Hom+(Dn, ∂Dn) modulo isotopies which pointwise fix ∂Dn.

To define the Burau representation, consider the homomorphism

φ : H1(Dn) → Z = 〈t〉
which takes any clockwise oriented loop about a single puncture to t. Let
D̃n be the cover of Dn corresponding to φ. The homology of D̃n is a module
over the group ring Z [〈t〉] of the group of covering transformations. The
module H1(D̃n, Z) is free of rank n − 1. The Burau representation is a
homomorphism Burau: Bn → Aut

(
H1(D̃n)

)
. By Aut

(
H1(D̃n)

)
, I mean

automorphisms of H1(D̃n) as a Z [〈t〉]-module. Choosing a Z [〈t〉] basis of
H1(D̃n) allows one to view the Burau representation as having image in
GL(n − 1, Z [〈t〉]). Given β in Bn, Burau(β) is constructed as follows. Let
f : Dn → Dn be a representative of β. Choose a lift f̃ : D̃n → D̃n of f . Since
the action of f on H1(Dn) commutes with φ, the lift f̃ is equivariant. Thus
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there is a unique lift of f which leaves the inverse image of ∂Dn pointwise
fixed. Let f̃ be that lift and set Burau(β) = f̃∗ : H1(D̃n) → H1(D̃n).

I’ll need the following property of the Burau representation (see also
[Mor]). Suppose β is a braid whose action on the set of punctures is an
n-cycle. Let Mβ be the 3-manifold which is the mapping torus of β. The
manifold Mβ has two boundary components, and H1(Mβ) = Z ⊕ Z. Take
as a basis of H1(Mβ) the pair (t′, w) where t′ is a counter-clockwise loop
about a puncture in Dn and w is a point in ∂Dn cross S1. It’s not hard
to see that the universal abelian cover of Mβ is D̃n × R. The covering
transformation corresponding to t′ is

(
d̃, r

)
7→

(
t(d̃), r

)
, and the covering

transformation corresponding to w is
(
d̃, r

)
7→

(
f̃(d̃), r + 1

)
. If we replace t

by t′ in Burau(β), the matrix (wI − Burau(β)) is a presentation matrix for
the homology of the universal abelian cover of Mβ as a Z[H1(Mβ)]-module.
Thus

∆Mβ
= det

(
wI − Burau(β)

)
.

I will now prove the proposition.

Proof of Proposition 2.1. Suppose the answer to Question B is yes and the
Burau representation of Bn has kernel for some n. As the Burau represen-
tation is known to be faithful for n = 2, assume n is at least 3. Then there
is a pseudo-Anosov element δ in the kernel [Lon, Iva]. Replacing δ with
a power of δ if necessary, we can assume δ is a pure braid, that is, fixes
each puncture. Let γ be the braid σ1σ2 . . . σn−1 where σi is the ith standard
generator of Bn (see Figure 2.2).

w

t

Figure 2.2. The
braid γ when n = 5.

Figure 2.3. The Thurston
norm ball of Mγ .

Taking a power of δ if necessary, we can assume that β = δγ is pseudo-
Anosov. Now β induces an n-cycle on the punctures because δ was a pure
braid and γ induces an n-cycle. Since Burau(β) = Burau(γ), the Alexander
polynomials of Mβ and Mγ are the same. The manifold Mγ is Seifert fibered,
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and it’s easy to see that the Thurston norm ball is as shown in Figure 2.3,
where the two infinite faces are fibered faces. Thus by Theorem 1.2, the
Alexander norm ball of Mγ has exactly the same shape as the Thurston
norm ball. Since Mγ and Mβ have the same Alexander polynomials, the
Alexander norm ball of Mβ is as shown. But Mβ is hyperbolic, and hence
the Thurston norm is non-degenerate. So any face of the Thurston norm
ball is bounded. Thus a fibered face of the Thurston norm ball of Mβ is
properly contained in the corresponding face of the Alexander norm ball.
This contradicts the assumption that the answer to Question B is yes. �

3. The Alexander polynomial and its friends.

3.1. Definitions. I’ll begin by reviewing the definition of the Alexander
polynomial and related invariants (for more see [Hil, Rol, McM]). Let X

be a finite CW-complex with fundamental group G. Let X̃ be the universal
free abelian cover of X, that is, the cover induced by the homomorphism
from G to its free abelianization ab(G). Let p be a point of X, and p̃ its
inverse image in X̃. The Alexander module of X is

AX = H1(X̃, p̃; Z)

thought of as a module over the group ring Z[ab(G)]. The reason one uses
the free abelianization is so that the ring Z[ab(G)] has no zero divisors.

For a finitely generated module M over Z[ab(G)], the ith elementary ideal
Ei(M) ⊂ Z[ab(G)] is defined as follows. Take any presentation

0 → (Z[ab(G)])r P−→ (Z[ab(G)])s → M → 0

and set Ei(M) to be the ideal generated by the (s − i, s − i) minors of the
matrix P . The Alexander ideal of X is E1(AX). The Alexander polynomial
of X, denoted ∆X , is the greatest common divisor of the elements of the
Alexander ideal. The polynomial ∆X is defined up to multiplication by a
unit g ∈ ab(G) of Z[ab(G)]. Equivalently, ∆X is a generator of the smallest
principle ideal containing the Alexander ideal.

I should mention that the Alexander module, and hence Alexander poly-
nomial, depends only on the fundamental group of X; it can be thought of
as an invariant of a finitely generated group.

I will need to consider BX = H1(X̃; Z), the Alexander invariant of X.
When H1(X; Z) is free, BX = G′/G′′. As with AX , the Alexander invariant
BX is to be thought of as a module over Z[ab(G)]. The two modules are
related as follows. Let m ⊂ Z[ab(G)] be the augmentation ideal, that is
m = 〈1− g | g ∈ ab(G)〉. The homology long exact sequence for the pair
(X̃, p̃) gives rise to the short exact sequence

0 → BX → AX → m → 0.
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The Alexander polynomial of X could just have well been defined as the gcd
of E0(BX) (for the equivalence of these two definitions see, e.g. [Tra]).

3.2. Structure of the Alexander invariant of a 3-manifold. The fol-
lowing fact about the structure of the Alexander ideal of a 3-manifold was
crucial in McMullen’s proof of Theorem 1.2.

Theorem 3.3 ([McM, 5.1]). Let M be a compact, orientable 3-manifold
whose boundary, if any, is a union of tori. Let G = π1(M). Then E1(AM ) =
mp · (∆M ) where

p =

{
0 if b1(M) ≤ 1,
1 + b3(M) otherwise,

and m is the augmentation ideal of Z[ab(G)].

The corresponding fact about E0(BM ) will be key to the proof of The-
orem 1.7. For a manifold with non-empty torus boundary, Crowell and
Strauss [CS] showed that E0(BM ) = (∆M ) · mq for an explicit value of q.
The following proposition is weaker than [CS], but it also applies to closed
3-manifolds. It will suffice for my purposes and follows easily from known
results.

Proposition 3.4. Let M be a compact, orientable 3-manifold whose bound-
ary, if any, is a union of tori. Then√

E0(BM ) ∩m =
√

(∆M ) ∩m.

Proof. By Theorem 1.1 of [Tra] the short exact sequence

0 → BM → AM → m → 0

implies that there are integers r, s ≥ 0 such that

E1(AM ) ·mr ⊂ E0(BM ) and E0(BM ) ·ms ⊂ E1(AM ).

Combining and multiplying by m gives

E1(AM ) ·mr+s+1 ⊂ E0(BM ) ·ms+1 ⊂ E1(AM ) ·m.

Taking radicals of the above and using that
√

I · J =
√

I ∩
√

J gives√
E1(AM ) ∩

√
m =

√
E0(BM ) ∩

√
m.

Now m is radical since it is the kernel of the ring homomorphism Z[ab(G)] →
Z which sends every g ∈ ab(G) to 1. By Theorem 3.3 we have E1(AM ) =
(∆M ) ·mp. Combining, we get

√
E0(BM )∩m =

√
(∆M )∩m as desired. �
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4. Bieri-Neumann-Strebel invariants.

Recall the definition of the BNS invariant from Section 1.5. Let G be a
finitely-generated group. Let S(G) =

(
H1(G, R) \ {0}

) /
R+. For [ χ ] ∈

S(G) we have the sub-monoid Gχ = {g ∈ G | χ(g) ≥ 0}. Let H be a group
acted on by G where G′ acts by inner automorphisms. Then the BNS
invariant of G and H is:

ΣH = {[χ ] ∈ S(G) | H is finitely generated over some
finitely generated sub-monoid of Gχ} .

We can also consider the larger invariant

Σ′
H = {[χ ] ∈ S(G) | H is finitely generated over Gχ }.

When H is abelian Σ′
H = ΣH [BNS, Theorem 2.4]. The special case of Σ′

H
when both G and H are abelian was studied by Bieri and Strebel [BS] prior
to the development of the full BNS invariant. The rest of this section will
be devoted to that special case.

Let Q be a finitely generated free abelian group and A a finitely generated
Z[Q]-module. Since A has an action of Q, we can form the BNS invariant
ΣA = Σ′

A. To reduce clutter, I’ll denote Z[Q] by ZQ. A basic property shown
in [BS, §1.3] is that ΣA = ΣZQ/ Ann(A) where Ann(A) is the annihilator ideal
of A. Thus Σ can be seen as an invariant of an ideal I ⊂ ZQ. The following
basic identities hold for any ideals I, J in ZQ [BS, §1.3]:

ΣZQ/I = ΣZQ/
√

I and ΣZQ/(I·J) = ΣZQ/(I∩J) = ΣZQ/I ∩ ΣZQ/J .

For principle ideals I, the invariant ΣZQ/I can be easily calculated, as I
will now describe. For p ∈ ZQ, the Newton polytope Newt(p) is defined as
follows. Consider the vector space V = Q⊗R which contains Q as a lattice.
The Newton polytope of p is the convex hull in V of those q ∈ Q which have
non-zero coefficient in p. The vertices of Newt(p) lie in Q, and I’ll define
the coefficient of a vertex of Newt(p) to be the non-zero coefficient of the
corresponding term of p. Given a q in Q, define the open hemisphere Hq of
S(Q) to be

{[χ ] ∈ S(Q) | χ(q) > 0}.

The following theorem allows us to calculate ΣZQ/I for a principle ideal I.

Theorem 4.1 ([BS, 5.2]). Let Q be a finitely generated free abelian group
and p an element of ZQ. The connected components of ΣZQ/(p) are in one-
to-one correspondence with the vertices of Newt(p) whose coefficients are
±1, where such a vertex v corresponds to

Cv =
⋂
{Hvw−1 | w is a vertex of Newt(p) distinct from v}.
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5. BNS invariants and Alexander polynomial of a 3-manifold.

Let M be a compact, orientable 3-manifold whose boundary, if any, is a union
of tori. Let BM = H1(M̃, Z) be the Alexander invariant of M . Regarding
BM as a Z[ab(π1M)] module, we can form the BNS-invariant ΣBM

which
I will denote by ΣA. In Section 1.5, I defined ΣA in case where H1(M, Z)
is torsion free, and that definition was slightly different. In the torsion free
case, BM = G′/G′′ where G = π1(M). Thus only difference between the two
definitions is that one is the BNS invariant with respect to ab(G) and the
other G. Since BM is abelian and G′ acts trivially on it, the two definitions
agree.

In this section I will prove Theorem 5.1 which computes ΣA from the
Alexander polynomial ∆M . Before stating Theorem 5.1, I need to discuss
the unit ball BA in the Alexander norm.

Consider the Newton polytope Newt(∆M ) in H1(M, R). The Alexander
norm on H1(M, R) can be defined as

‖φ‖A = sup {φ(x− y) | x, y ∈ Newt(∆M )}.

A polytope P is balanced about 0 if it is invariant under v 7→ −v. More
generally, P is balanced about a point p if the translate of P by −p is
balanced about 0. Since M is a 3-manifold, ∆M is symmetric [Bla], [Tur,
4.5], and hence Newt(p) is balanced about some point z0. Then

‖φ‖A = sup {2φ(x− z0) | x ∈ Newt(∆M )}

and the unit ball in ‖ · ‖A is

BA = {φ | φ(x− z0) ≤ 1/2 for all x ∈ Newt(∆M )}.

Fix a basis of H1(M, R) and identify H1(M, R) with H1(M, R) via the dual
basis. Then BA is, after scaling by a factor of 2, the classical polytope dual
of Newt(∆M ) about z0.

Duality of polytopes in an n-dimensional vector space exchanges faces of
dimension i with faces of dimension n− i− 1 (for more on polytope duals,
see [Brø]). A vertex v of Newt(∆M ) becomes the top-dimensional face

Fv = {φ | φ(x− z0) ≤ 1/2 for all x ∈ Newt(∆M ) and φ(v − z0) = 1/2}.

I can now state the theorem that relates ΣA and BA.

Theorem 5.1. Let M be a compact, orientable 3-manifold whose boundary,
if any, is a union of tori. Let F1, . . . , Fn be the top-dimensional faces of BA

whose corresponding vertices of Newt(∆M ) have coefficient ±1. Then ΣA is
exactly the projection to S(ab(π1M)) of the interiors of the Fi.

Proof. Let Q = ab(π1(M)). I will show:

Lemma 5.2. Let M be as above. Then ΣA = ΣZQ/(∆M ).
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Let me now deduce the theorem assuming the lemma. By Theorem 4.1,
the components of ΣZQ/(∆M ) correspond to the vertices of Newt(∆M ) whose
coefficients are ±1. Such a vertex v corresponds to:

Cv =
⋂
{Hvw−1 | w is a vertex of Newt(p) distinct from v},

where Hq is the hemisphere {[χ ] ∈ S(Q) | χ(q) > 0}. To prove the theorem
it suffices to show Cv is the same as the projection into S(Q) of the interior of
the face Fv of BA corresponding to v. Translate Newt(∆M ) so it is balanced
about 0—this doesn’t change Cv or ‖ · ‖A. Now note that the cone over the
interior of Fv is

{φ | φ(v) > φ(w) for all vertices w of Newt(p) distinct from v}.
It’s easy to see that this cone projects to Cv in S(Q). This proves the
theorem modulo the lemma. Let’s go back and prove the lemma.

Proof of Lemma 5.2. The idea of the proof is that Proposition 3.4 says that
BM is close, in some sense, to ZQ/(∆M ). Using the properties in Section 4,
we have (notation changed for clarity):

ΣA = Σ(BM ) = Σ (ZQ/Ann(BM )) = Σ
(
ZQ

/√
Ann(BM )

)
.

For any finitely generated module B we have
√

Ann(B) =
√

E0(B), and so

ΣA = Σ
(
ZQ

/√
E0(BM )

)
.

Let m be the augmentation ideal of ZQ. Since ZQ/m = Z, the invari-
ant ΣZQ/m is all of S(Q). So for any ideal I, we have Σ (ZQ/(I ∩m)) =
Σ (ZQ/I) ∩ Σ (ZQ/m) = Σ (ZQ/I). Thus

ΣA = Σ
(
ZQ

/(√
E0(BM ) ∩m

))
.

By Proposition 3.4,
√

E0(BM ) ∩m =
√

(∆M ) ∩m, so

ΣA = Σ
(
ZQ

/(√
(∆M ) ∩m

))
= Σ

(
ZQ

/(√
(∆M )

))
= Σ(ZQ/(∆M )) ,

as required. This completes the proof of the lemma and thus the theorem.
�

5.3. Comparison of ΣG′ and ΣA when the homology is not free. Let
M be a 3-manifold and G its fundamental group. In Section 1.5, I discussed
the connection between ΣG′ and cohomology classes representing fibrations
of M over the circle. This is true independent of whether H1(M, Z) has
torsion. In Section 1.5, ΣG′ and ΣA were compared under the assumption
that H1(M, Z) is free. In this case, it is easy to see ΣA ⊃ ΣG′ , because
ΣA = ΣBM

, and BM = G′/G′′ is a quotient of G′. When H1(M, Z) is not
free, the relation ΣA ⊃ ΣG′ is still true, but not immediate since BM is
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a quotient of the kernel of the map G → ab(G), but that kernel properly
contains G′.

The purpose of this subsection is simply to prove the that ΣA ⊃ ΣG′ for
any M , and so show that the motivation given in Section 1.5 makes sense
regardless of whether H1(M, Z) is free.

Proposition 5.4. Let M be a 3-manifold. Then ΣA ⊃ ΣG′.

Proof. Let N be the kernel of the map from G to its free abelianization. It
is clear that ΣA ⊃ ΣN as the Alexander invariant BM is a quotient of N .
By Proposition 3.4 of [BNS], ΣN = ΣG′ and we are done. �

6. Example of a specific link exterior in S3.

Let L be the link in Figure 6.1.

Figure 6.1. The link L in S3.

Let M = S3 \ N(L) be the exterior of L. In this section, I’ll show that
M is a fibered 3-manifold where the answer to Question B is no. I will do
this by explicitly computing the BNS invariants Σ and ΣA, showing that
Σ is non-empty and that each component of Σ is properly contained in the
corresponding component of ΣA. The manifold M is hyperbolic with volume
8.997 . . . , as can be checked with the program SnapPea [W], or better, Snap
[G], but I won’t use this fact. I found this example by a brute force search—
the program SnapPea was used to find many links whose fundamental groups
have a presentation with two generators and one relator. For such groups,
it is easy to calculate Σ and ΣA directly, as I will do below, and eventually
I came across this example.
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According to SnapPea, π1M has a presentation with two generators a and
b and defining relation

a2ba−1ba2ba−1b−3a−1ba2ba−1bab−1a−2 ·
b−1ab−1a−2b−1ab3ab−1a−2b−1ab−1a−1b.

A meridian for the unknoted component is b−1a−1ba2ba−1ba2ba−1b−3 and a
meridian for the other component is a−1b−1.

Let X be the 2-dimensional CW-complex corresponding to the above
presentation. Let G = π1(X). The abelian group ab(G) is freely generated
by images of a and b, and so Z[ab(G)] = Z[〈a, b〉].

Let X̃ be the universal abelian cover of X. It is natural to think of the
1-skeleton of X̃ as the integer grid in H1(X, R). Let δ be the lift of aba−1b−1

starting at 0, which freely generates the 1-chains of X̃ as a Z[ab(G)] module.
The 2-chains of X̃ are generated by any lift of the 2-cell of X. Let γ be the
lift of the relator to 1-skeleton of X̃ starting at 0, which is homologous in
the 1-skeleton to (a2b− ab− a + 1)δ. Thus

BX = H1(X̃, Z) = Z[〈a, b〉]
/
(a2b− ab− a + 1).

So ∆M = ∆X = a2b − ab − a + 1. By Theorem 5.1, or, since BM cyclic,
Theorem 4.1 directly, we find that ΣA is all of S(ab(G)) except the four
points {±[b∗],±[a∗ − b∗]}, where {a∗, b∗} is the dual basis to {a, b}.

To compute Σ, I’ll use Brown’s procedure for computing Σ for any group
with a 2-generator, 1-relator presentation [Bro, §4]. Think of the 1-skeleton
of X̃ as the integer grid in H1(X, R). Let C be the convex hull of γ, the lift
of the relator. A vertex v of C is called simple if γ passes through v only
once. Figure 6.2 shows C with the 2 simple vertices v1 and v2 marked.

Theorem 4.4 of [Bro] shows that in our case Σ consists of two components
Ci, for i = 1, 2, where

Ci =
⋂ {

Hviw−1 | w is a vertex of C distinct from vi

}
.

Thus Σ is the union of the two open intervals pictured in Figure 6.3, and
each component of Σ is properly contained in the corresponding component
of ΣA. So M shows that the answer to Question B is no.
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a

b

Σ

Σ

a

b

*

*

Figure 6.2. The region C.
The two dots are the simple
vertices v1 and v2.

Figure 6.3. Σ ⊂ S(ab(G))
consists of the two open in-
tervals shown. ΣA is the
complement of the four grey
dots.
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