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Following Taubes, we describe a collection of critical-expo-
nent Sobolev norms, discuss their embedding and multiplica-
tion properties, and describe optimal Green’s operator esti-
mates where the constants depend at most on the first positive
eigenvalue of the covariant Laplacian of a G connection and
the L2 norm of the connection’s curvature, for arbitrary com-
pact Lie groups G. Using these critical-exponent norms, we
prove a sharp, global analogue of Uhlenbeck’s Coulomb gauge-
fixing theorem, where the usual product connection over a
ball is replaced by an arbitrary reference connection over the
entire manifold. We also prove a quantitative version of the
conventional slice theorem for the quotient space of G connec-
tions, with an invariant and sharp characterization of those
points in the quotient space which are contained in the image
of an L4 ball in the Coulomb-gauge slice. Our gauge-fixing
and slice theorems use L2

1 distance functions on the quotient
space and the estimate constants depend at most on the first
positive eigenvalue of the covariant Laplacian of the reference
connection and the L2 norm of its curvature.

1. Introduction.

The use of certain “critical-exponent” Sobolev norms is an important fea-
ture of methods employed by Taubes to solve the anti-self-dual and related
non-linear elliptic partial differential equations [23], [24], [25]. Indeed, the
estimates one can obtain using these critical-exponent norms appear to be
the best possible when one needs to bound the norm of a Green’s operator
for a Laplacian, depending on a connection varying in a non-compact family,
in terms of minimal data such as the first positive eigenvalue of the Laplacian
or the L2 norm of the curvature of the connection. Despite their utility, par-
ticularly in applications where an optimal analysis is required for gluing or
degeneration problems (for example, when considering Uhlenbeck-bubbling
families of anti-self-dual connections or PU(2) monopoles), these methods
are not widely known. Following Taubes [21], [23], [24], [25] we describe a
collection of critical-exponent Sobolev norms and general Green’s operator
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estimates depending only on first positive eigenvalues or the L2 norm of the
connection’s curvature. These estimates are especially useful both for the
construction of gluing maps, in the case of either anti-self-dual connections
[24] or, more recently, in the case of PU(2) monopoles [6], [7], [9] and for
analyzing their asymptotic behavior with respect to Uhlenbeck limits of the
underlying gluing data. We apply them here to prove an optimal slice the-
orem for the quotient space of connections. The result is “optimal” in the
sense that if a point [A] in the quotient space is known to be just L2

1-close
enough to a reference point [A0] (see below for the precise statement), then
A can be placed in Coulomb gauge relative to A0, with all constants depend-
ing at most on the first positive eigenvalue of the covariant Laplacian defined
by A0 and the L2 norm of the curvature of A0. Such slice theorems are par-
ticularly advantageous when analyzing gluing maps and their differentials
in situations (such as those of [8], [9]) where the underlying gluing data
is allowed to “bubble”. In this paper we shall for simplicity only consider
connections over four-dimensional manifolds, but the methods and results
can adapted to the case of manifolds of arbitrary dimension, as in [26], to
prove slice theorems applicable to cases where the reference connection is
allowed to degenerate.

1.1. Critical-exponent Sobolev norms and the slice theorem. Sup-
pose that X is a closed, Riemannian four-manifold, that G is a compact Lie
group, and that Bk,p

E = Ak,p
E /Gk+1,p

E is the quotient space of Lp
k connections

on a G bundle E modulo the Banach Lie group of Lp
k+1 gauge transfor-

mations. Here, the integer k ≥ 1 and the Sobolev exponent 1 < p < ∞
obey the constraint (k + 1)p > 4, so Lp

k+1(X) ⊂ C0(X) and gauge trans-
formations in Gk+1,p

E are continuous. When (k + 1)p = 4 we have the “bor-
derline”, “critical”, or “limiting case” of the Sobolev embedding theorem:
Lp

k+1(X) ⊂ Lq(X) for all q < ∞ but not q = ∞.
A connection A ∈ Ak,p

E is in Coulomb gauge relative to a reference con-
nection A0 if d∗A0

(A − A0) = 0 and it is a standard result that SA0 =
A0 + Ker d∗A0

⊂ Ak,p
E provides a slice for the action of the gauge group

Gk+1,p
E [2], [5], [10], [11], [13], [14], [16], [18]. (See Proposition 3.4 for a de-

tailed statement.) More exactly, if Bk,p
A0

(ε) is the Lp
k ball in SA0 with center

A0 and Lp
k,A0

-radius ε and StabA0 ⊂ Gk+1,p
E is the stabilizer of A0, then the

projection π : Bk,p
A0

(ε)/ StabA0 → Bk,p
E is a homeomorphism onto its image

and thus contains a small enough Lp
k ball

Bk,p
[A0](η) =

{
[A] ∈ Bk

E : distLp
k,A0

([A], [A0]) < η
}

,(1.1)
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where gauge-invariant distance functions on the Gk+1,p
E -quotient are defined

by

dist
Lp′

k′,A0

([A], [A0]) = inf
u∈Gk+1,p

E

‖u(A)−A0‖Lp′
k′+1,A0

,(1.2)

whenever Lp
k ⊂ Lp′

k′ . One unsatisfactory aspect of the standard slice theorem
concerns the dependence of the constants ε([A0], k, p) and η([A0], k, p) above
on the orbit [A0]—in particular on the curvature FA0—when k and p are
large enough that gauge transformations in Gk+1,p

E are continuous. Even in
the minimal cases, k = 1 and p > 2 or k = 2 and p = 2, the constants ε, η
depend unfavorably on [A0] when the curvature FA0 bubbles. This makes
it difficult to analyze the asymptotic behavior of Taubes’ gluing maps [20],
[22], [23], [24] and their differentials on neighborhoods of points in the Uh-
lenbeck boundary of the moduli space of anti-self-dual connections, since the
balls Bk,p

A0
(ε) and Bk,p

[A0](η) tend to shrink as [A0] approaches an Uhlenbeck-
boundary point. For example, if the connection A0 is anti-self-dual, then
its energy is bounded by a constant depending only on the topology of E
via the Chern-Weil identity [5, §2.1.4], whereas ‖FA0‖Lp (with p > 2) or
‖FA0‖L2

1,A0
tends to infinity as the curvature of A0 bubbles.

Our main purpose in this article is to prove a global analogue, Theo-
rem 1.1, of Uhlenbeck’s local Coulomb gauge-fixing theorem [26, Theorems
1.3 & 2.1] and a corresponding slice theorem, Theorem 1.2, where the radii
of the coordinate balls on the quotient Bk,p

E depend only on ‖FA0‖L2 and the
least positive eigenvalue ν0[A0] of the Laplacian d∗A0

dA0 on Ω0(gE). The key
difficulty in establishing Theorem 1.1 is to ensure that the constants depend
at most on ‖FA0‖L2 and ν0[A0]: To guarantee this minimal dependence, we
employ critical-exponent Sobolev norms (defined below) to circumvent the
fact that when (k + 1)p = 4 the standard Sobolev embedding and multi-
plication theorems fall just short of what one needs to give the quotient
Bk,p

E = Ak,p
E /Gk+1,p

E a manifold structure (see Section 4). Such norms were
introduced by Taubes for related purposes in [23].

1.2. Statement of results. For clarity, we now fix p = 2 and k ≥ 2 and
define the following distance functions on the quotient space Bk

E = Ak
E/Gk+1

E

of L2
k connections modulo L2

k+1 gauge transformations,

distL],2
1,A0

([A], [A0]) = inf
u∈Gk+1

E

(
‖u(A)−A0‖L2],4 + ‖d∗A0

(u(A)−A0)‖L],2

)
,

dist
L],2

1,A0

([A], [A0]) = inf
u∈Gk+1

E

(
‖u(A)−A0‖L2

1,A0
+ ‖d∗A0

(u(A)−A0)‖L],2

)
,

(1.3)
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where the norms of a ∈ Ω1(gE) are defined by (see Equations (4.1), (4.2),
and (4.3)),

‖a‖L](X) = sup
x∈X

‖dist−2(x, ·)|a|‖L1(X),

‖a‖L2](X) = sup
x∈X

‖dist−1(x, ·)|a|‖L2(X),

‖a‖L],2(X) = ‖a‖L2(X) + ‖a‖L](X),

‖a‖L2],4(X) = ‖a‖L4(X) + ‖a‖L2](X),

‖a‖L2
1,A0

(X) =
(
‖a‖2

L2(X) + ‖∇A0a‖2
L2(X)

)1/2
.

Here, dist(x, y) denotes the geodesic distance between points x, y ∈ X. The
distance function dist

L],2
1,A0

([A], [A0]) is bounded by scale invariant norms,

‖a‖L4(X,g) +‖∇
g
Aa‖L2(X,g) + sup

x∈X
‖dist−2

g (x, ·)|d∗g

A0
a|‖L1(X,g), a ∈ Ω1(gE),

since the L4/` norm on ⊗`(T ∗X) is conformally invariant, while the third
term is invariant under constant rescalings g 7→ g̃ = λ−2g of the metric, as
d
∗g̃

A0
a = λ2d

∗g

A0
a, dist−2

g̃ (x, y) = λ2 dist−2
g (x, y) and dVg̃ = λ−4dVg. Similarly

for distL],2
1,A0

([A], [A0]). Like the L4 norm, the L2] norm on one-forms is scale-

invariant. Our first result is the following global analogue of Uhlenbeck’s
theorem and complements results of Taubes in [23, §6]:

Theorem 1.1. Let X be a closed, smooth four-manifold with metric g and
let G be a compact Lie group. Then there are positive constants c, z with
the following significance. Let E be a G bundle over X and suppose that
k ≥ 2 is an integer. Given a point [A0] in Bk

E, let ν0[A0] be the least
positive eigenvalue of the Laplacian d∗A0

dA0 on Ω0(gE) and set K0 = (1 +
ν0[A0]−1)(1 + ‖FA0‖L2). Let ε1 be a constant satisfying 0 < ε1 ≤ zK−2

0 (1 +
ν0[A0]−1/2)−1. Then:

(1) For any [A] ∈ Bk
E with distL],2

1,A0

([A], [A0]) < ε1, there is a gauge

transformation u ∈ Gk+1
E , unique up to an element of the stabilizer

StabA0 ⊂ Gk+1
E , such that:

(a) d∗A0
(u(A)−A0) = 0,

(b) ‖u(A)−A0‖L2],4 ≤ cK0 distL],2
1,A0

([A], [A0]).

(2) For any [A] ∈ Bk
E with dist

L],2
1,A0

([A], [A0]) < ε1, there is a gauge

transformation u ∈ Gk+1
E , unique up to an element of the stabilizer

StabA0 ⊂ Gk+1
E , such that:

(a) d∗A0
(u(A)−A0) = 0,

(b) ‖u(A)−A0‖L2],4 ≤ cK0 distL],2
1,A0

([A], [A0]),
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(c) ‖u(A)−A0‖L2
1,A0

≤ cK0 dist
L],2

1,A0

([A], [A0]).

In Theorem 2.1 of [26] the L2 norm of the curvature FA of a local connec-
tion matrix A over the unit ball in R4 provides a natural (gauge-invariant)
measure of the distance from [A] to [Γ], where Γ is the product connec-
tion. Uhlenbeck’s theorem guarantees the existence of an Lp

k+1 gauge trans-
formation u taking an Lp

k connection A on the product bundle over the
unit four-ball, with product connection Γ, to a connection u(A) satisfying
d∗Γ(u(A) − Γ) = 0 and ‖u(A) − Γ‖L2

1
≤ c‖FA‖L2 ; one only requires that

‖FA‖L2 be smaller than a universal constant.
We next have the following refinement of the standard slice theorem for

the quotient space Bk
E . The observation that an L4-ball in Ker d∗A0

provides
a slice for Gk+1

E was pointed out to us Mrowka; that slightly smaller L2],4

and L2
1,A0

balls provide slices follows from the second of our two proofs of
Theorem 1.1 in Section 8. For any ε > 0, we define open balls

B1,],2
[A0] (ε) =

{
[A] ∈ Bk

E : dist
L],2

1,A0

([A], [A0]) < ε

}
⊂ Bk

E ,

B1,∗,2
[A0] (ε) =

{
[A] ∈ Bk

E : distL],2
1,A0

([A], [A0]) < ε

}
⊂ Bk

E ,

B4
A0

(ε) =
{

A ∈ Ak
E : d∗A0

(A−A0) = 0 and ‖A−A0‖L4(X) < ε
}

⊂ SA0 ,

(1.4)

where SA0 = {A0} + Ker(d∗A0
|L2

k
) ⊂ Ak

E is the slice through A0. We let

B̄1,],2
[A0] (ε) and B1,∗,2

[A0] (ε) denote the closed balls.

Theorem 1.2. Let X be a closed, smooth four-manifold with metric g and
let G be a compact Lie group. Then there are positive constants c1, c2, z
with the following significance. Let E be a G bundle over X, let k ≥ 2 be an
integer, and suppose that [A0] ∈ Bk

E. Then:
(1) For ε0 such that 0 < ε0 < z(1 + ν0[A0]−1/2)−1, the projection π :

B4
A0

(ε0)/ StabA0 → Bk
E, A 7→ [A], is a homeomorphism onto an open

neighborhood of [A0] ∈ Bk
E and a diffeomorphism on the open subset

where StabA0 / Center(G) acts freely;
(2) For any constant ε1 satisfying 0 < ε1 ≤ zK−2

0 (1 + ν0[A0]−1/2)−1 we
have the following inclusions of open neighborhoods in Bk

E:

B1,],2
[A0] (ε1) ⊂ B1,∗,2

[A0] (c1ε1) ⊂ π(B4
A0

(c2K0ε1)).

That sharper versions of the standard slice theorem (as in [5], [10], [11],
for example) would hold is suggested by related results of Taubes, namely
[21, Lemma A.1] and [23, Lemma 6.5]: For example, they show that if
u is an L2

2 gauge transformation intertwining L2
1 connections Ai, i = 1, 2,
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obeying a slice condition d∗A0
(Ai − A0) = 0 defined by an L2

1 connection
A0, then u is necessarily in C0. Moreover, transition functions relating
neighborhoods of the origin in Ker(d∗A0

|L2
1
) and Ker(d∗A0+a|L2

1
), where a is

L2
1,A0

-small, are constructed in [23, Lemma 6.5]; the constants depend only
on ‖FA0‖L2 and ν0[A0]. (See [23, §6] for detailed statements and related
results.) The proof of Theorem 1.1 makes use of methods developed in [21],
[23], [24]. To illustrate applications of the methods of Sections 4 and 5 and
to point to possible generalizations of the estimates in this article, we derive
some elliptic estimates for the linearization of the anti-self-dual equation in
Section 5.2.

1.3. Outline of the proofs. Assertion (1) of Theorem 1.2 is proved in
Section 3. The proof that the projection map π : B4

A0
(ε0) → Bk

E is a
local diffeomorphism away from connections with non-minimal stabilizer
essentially follows Uhlenbeck’s verification of “openness” in her proof of
Theorem 2.1 in [26] via the method of continuity (see Lemma 3.6). The
proof that the L4 ball B4

A0
(ε0) injects into the quotient (see Lemma 3.7)

was suggested to us by Mrowka. The remainder of our article is taken up
with the proof of Theorem 1.1 and hence Assertion (2) of Theorem 1.2.

In Section 4 we introduce the family of critical-exponent Sobolev norms,
L],2

k,A0
, k = 0, 1, 2, used to complete the proof of Theorem 1.1 and in Section 5

we describe the crucial embedding theorems enjoyed by those Sobolev spaces,
as well as estimates for the Green’s operator of the Laplacian d∗A0

dA0 . In
particular, Lp

k,A0
⊂ L],2

k,A0
, for every p > 2 while, in the other direction,

L],2
2,A0

⊂ C0. The latter embedding is the key motivation for the definition
of these norms and it greatly facilitates the derivation of Green’s operator
estimates, in a wide number of applications in gauge theory [23], [24], with
minimal dependence on the curvature of the connection A0. The main ideas
and embedding results in Sections 4 and 5 are due to Taubes [21], [23], [24],
[25], so these sections are essentially expository. An earlier exposition from a
somewhat different perspective, due to Donaldson, of Taubes’ methods and
some applications appears in [4]. The estimates of Section 5 are stated only
in the four-dimensional case. While we might expect all of them to hold,
in some form, for higher dimensions we confine our attention to dimension
four as our intended applications are primarily concerned with smooth four-
manifold topology. In essence, the critical-exponent norms make a virtue
out of necessity of the familiar fact that while the Green’s operator of the
Laplacian d∗d on C∞(X) maps Lp(X) into L2p/(2−p)(X) for 1 < p < 2, it
does not map L2(X) into L∞(X) [19, Chapter V]. We recall that an Orlicz
space Lϕ can be used to provide the “best target space” for an embedding
of L2

2(X) [1, Chapter 8]. Here, we may instead view L],2
2 (X) as providing
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the “best domain space” for an embedding into L∞(X), since Lp
2(X) ⊂

L],2
2 (X) ⊂ L∞(X) for all p > 2.
We give two proofs of Theorem 1.1. For our first proof, in Section 6, we

essentially follow the strategy of Uhlenbeck [26] and apply the method of
continuity. The difficult step here (in establishing openness—see Section 6.3)
is to prove that the intrinsic, gauge-invariant L],2

1,A0
and L],2

1,A0
distances in

the quotient Bk
E bound the L2],4 and L2

1,A0
norms in the slice SA0 ⊂ Ak

E :
This is the point in our first proof where we use the critical-exponent esti-
mates derived in Section 5 to control gauge transformations. The proof of
“closedness” uses a compactness argument and is given in Section 6.2. The
proofs of Theorems 1.1 and 1.2 are completed in Section 6.3.

Our second proof of Theorem 1.1 occupies Sections 7 and 8. In Sec-
tion 7 we show that the exponential map Exp : Ω0(gE) → GE extends to
a continuous map Exp : L],2

2 (gE) → L],2
2 (gE) and that the resulting space

of L],2
2 -gauge transformations G2,],2

E is a Banach Lie group. In particular,
L],2

2 -gauge transformations are continuous and are contained in G2,p
E for ev-

ery p > 2. The Sobolev multiplication and composition results for the
critical-exponent norms then allow us to apply the inverse function theo-
rem directly in Section 8, while still ensuring that all constants depend at
most on ν0[A0] and ‖FA0‖L2 . We first use the compactness result of Sec-
tion 6.1 to establish the existence of gauge transformations w in G3

E which
minimize the L],2

1,A0
and L],2

1,A0
distances in the quotient Bk

E . Then, assuming
the norm ‖w(A)−A0‖L2],4 or ‖w(A)−A0‖L2

1,A0
is sufficiently small, we use

the Sobolev embedding and multiplication theorems of Sections 4, 5, and 7
and a quantitative version of the inverse function theorem to prove the ex-
istence of a gauge transformation v ∈ G3

E such that d∗A0
(u(A) − A0) = 0,

u = vw ∈ Gk+1
E , and ‖u(A) − A0‖L2],4 and ‖u(A) − A0‖L2

1,A0
are controlled

by distL],2
1,A0

([A], [A0]) and dist
L],2

1,A0

([A], [A0]), respectively.
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2. Preliminaries.

We assume throughout this article that X is a closed, connected, smooth,
four-manifold with Riemannian metric g. Let G be a compact Lie group
with matrix representation ρ : G ⊂ SO(E) = SO(r) where E ' Rr as a real
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inner product space, let P be a principal G bundle, and let E = P ×ρ E
be the corresponding Riemannian vector bundle associated to P by the
representation ρ. Let gE ⊂ gl(E) be the bundle of Lie algebras associated
to P via the adjoint representation Ad : G → Aut(g) of G on its Lie
algebra g and viewed as a subbundle of gl(E) via the induced representation
ρ∗ : g ⊂ so(E).

Given the covariant derivative ∇A : C∞(E) → C∞(T ∗X ⊗ E), we define
the exterior covariant derivative dA : Ωi(E) → Ωi+1(E) in the usual way
by setting dA = ∇A on Ω0(E) = C∞(E) and extending dA to Ωi(E) =
C∞(Λi ⊗ E), where Λi := Λi(T ∗X), according to the rule dA(ω ∧ v) =
dω ∧ v + (−1)iω ∧ dAv for ω ∈ Ωi(X) and v ∈ Ωj(E).

For any integer k ≥ 0, exponent 1 ≤ p ≤ ∞, and Lp
k connection A0 on E

we define the Lp
k Sobolev completion, Lp

k(Λ
` ⊗E), of Ω`(E) with respect to

the norm

‖s‖Lp
k,A0

(X) :=

 k∑
j=0

‖∇j
A0

s‖p
Lp(X)

1/p

.

We define the action of a C∞ gauge transformation u ∈ GE on a C∞ con-
nection A on the bundle E by pushforward, so u(A) := A− (dAu)u−1. Fix
a connection A0 ∈ AE , let Ak

E = A0 + L2
k(Λ

1 ⊗ gE), and define

Gk+1
E := {u ∈ L2

k+1(gl(E)) : u ∈ G a.e.} ⊂ L2
k+1(gl(E)).

The space Gk+1
E is a Banach Lie group, with Lie algebra TidE

Gk+1
E =L2

k+1(gE),
and acts smoothly on Ak

E with quotient Bk
E := Ak

E/Gk+1
E endowed with the

quotient L2
k topology.

The stabilizer subgroup StabA ⊂ Gk+1
E for a connection A on E always

contains the center Center(G) ⊂ G. We let A∗,kE ⊂ Ak
E denote the space

of connections A ∈ Ak
E with minimal stabilizer StabA = Center(G) and let

B∗,kE = A∗,kE /Gk+1
E . As usual, the stabilizer subgroup StabA ⊂ GE can be

identified with a closed subgroup of G ⊂ GL(E|x0) for any point x0 ∈ X by
parallel translation with respect to the connection A. Let stabA denote the
Lie algebra of StabA, so stabA = Ker{dA : L2

k+1(gE) → L2
k(Λ

1 ⊗ gE)}.
Throughout the article, we use c or z to denote positive constants which

depend at most on the Riemannian manifold (X, g) and the group G; con-
stants may increase from one line to the next and are not renamed unless
clarity demands otherwise.

3. The slice theorem.

In this section we prove the first assertion of Theorem 1.2—see Proposi-
tion 3.4 below—namely, that a small enough L4-ball B4

A0
(ε0)/ StabA0 pro-

vides a slice for the action of Gk+1
E . The proof that the projection π :
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B4
A0

(ε0)/ StabA0 → Bk
E is injective (Lemma 3.7) was suggested to us by

Mrowka.
Let k ≥ 2 be an integer. The Banach Lie group Gk+1

E has Lie alge-
bra TidE

Gk+1
E = L2

k+1(gE) and exponential map Exp : L2
k+1(gE) → Gk+1

E

given by ζ 7→ u = Exp ζ. Recall that StabA = {γ ∈ Gk+1
E : γ(A) = A}

may be identified with a Lie subgroup of G and has Lie algebra stabA =
Ker(dA|L2

k+1
). The operator d∗A : L2

k+2(Λ
1 ⊗ gE) → L2

k+1(gE) has closed
range and we have an L2-orthogonal decomposition

TidE
Gk+1

E = L2
k+1(gE)(3.1)

=
(
Ker(dA|L2

k+1
)
)⊥

⊕Ker
(
dA|L2

k+1

)
= Im

(
d∗A|L2

k+2

)
⊕Ker

(
dA|L2

k+1

)
=

(
Ker

(
dA|L2

k+1

))⊥
⊕ stabA.

Let Stab⊥A = L2
k+1 ∩ Stab⊥A = Exp((Ker dA|L2

k+1
)⊥), the second equality

following from the Sobolev composition lemma. The subspace Stab⊥A ⊂ Gk+1
E

is closed and is a Banach submanifold of Gk+1
E with codimension dim stabA.

From Claim 3.5 below we see that Stab⊥A is a slice near idE ∈ Gk+1
E for the

right action of StabA on Gk+1
E .

The map dA : L2
k+1(gE) → L2

k(Λ
1 ⊗ gE) has closed range and so we have

an L2-orthogonal decomposition

TAAk
E = L2

k

(
Λ1 ⊗ gE

)
(3.2)

= Im
(
dA|L2

k+1

)
⊕Ker

(
d∗A|L2

k

)
= Im

(
dA|L2

k+1

)
⊕KA,

of the tangent space to the space of L2
k connections at A, where KA =

Ker(d∗A|L2
k
).

The slice SA ⊂ Ak
E through a connection A is given by SA = A + KA. If

π is the projection from Ak
E onto Bk

E = Ak
E/Gk+1

E , denoted by A 7→ [A], we
let

BA(ε) = {A1 ∈ SA : ‖A1 −A‖L2
k;A

< ε}

= A + {a ∈ KA : ‖a‖L2
k;A

< ε}

be the open L2
k-ball in SA with center A and L2

k,A-radius ε. Similarly, we let

B4
A(ε) = {A1 ∈ SA : ‖A1 −A‖L4 < ε}

= A + {a ∈ KA : ‖a‖L4 < ε}
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be the open ball in SA with center A and L4-radius ε.
The proof that the quotient space Ak

E is Hausdorff makes use of the
following well-known technical result [10, Proposition A.5]. Note that the
space G2

E is neither a Banach Lie group nor does it act smoothly on Ak
E for

k ≥ 1.

Lemma 3.1. Let E be a Hermitian bundle over a Riemannian manifold
X and let k ≥ 2 be an integer. Suppose {Aα} and {Bα} are sequences of
L2

k unitary connections on E and that {uα} is a sequence in G2
E such that

uα(Aα) = Bα. Then the following hold.
(1) The sequence {uα} is in Gk+1

E ;
(2) If {Aα} and {Bα} converge in Ak

E to limits A∞, B∞, then there is a
subsequence {α′} ⊂ {α} such that {uα′} converges in Gk+1

E to u∞ and
B∞ = u∞(A∞).

We shall need the following quantitative version of the inverse function
theorem here and especially in Section 8:

Theorem 3.2. Let Φ : E → F be a C` map of Banach spaces, for some
` ≥ 1, such that the differential (DΦ)x0 : E → F has a continuous inverse
(DΦ)−1

x0
: F → E satisfying

‖(DΦ)−1
x0
‖ ≤ K and ‖(DΦ)x − (DΦ)x0‖ ≤

1
2
K−1, if ‖x− x0‖ ≤ δ,

for some positive constants K and δ. Then the following hold:
(1) The restriction of Φ to the ball U = BE(x0, δ) is injective and Φ(U) =

V is an open set in F containing the ball BF(Φ(x0), δ/(2K));
(2) The inverse map Φ−1 : V → U is C`;
(3) If x1, x2 ∈ BE(x0, δ), then ‖x1 − x2‖ ≤ 2K‖Φ(x1)−Φ(x2)‖.

For quantitative comparisons in this section, the following elementary fact
will suffice:

Lemma 3.3. Let E, F be Banach spaces and let T ∈ Hom(E,F) have a
right (left ) inverse S. If T̃ ∈ Hom(E,F) satisfies ‖T̃ − T‖ < ‖S‖−1, then T̃
also has a right (left ) inverse.

Proof. If S ∈ Hom(F,E) is a right inverse for T , so TS = idF, then ‖(T̃ −
T )S‖ ≤ ‖T̃ − T‖‖S‖ < 1 and idE + (T̃ − T )S is an invertible element of the
Banach algebra End(E). Define S̃ = S(1 + (T̃ − T )S)−1, so S̃T = idE and
S̃ is a right inverse for T̃ . Similarly for left inverses. �

This consequence of the usual characterization of invertible elements of a
Banach algebra will be invoked in the proof of Lemma 3.6.

Proposition 3.4. Let X be a closed, Riemannian four-manifold. Then
there is a positive constant z with the following significance. Let E be a
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G bundle over X. Suppose that k ≥ 2 is an integer. Given [A0] in Bk
E, let

ν0[A0] be the least positive eigenvalue of the Laplacian ∆0
A0

and let ε0 be a
constant satisfying 0 < ε0 < z(1 + ν0[A0]−1/2)−1. Then:

(1) The space Bk
E is Hausdorff;

(2) The subspace B∗,kE ⊂ Bk
E is open and is a C∞ Banach manifold with

local parameterizations given by π : B4
A0

(ε0) → B∗,kE ;
(3) The projection π : A∗,kE → B∗,kE is a C∞ principal Gk+1

E / Center(G)
bundle;

(4) The projection π : B4
A0

(ε0)/ StabA0 → Bk
E is a homeomorphism onto

an open neighborhood of [A0] ∈ Bk
E and a diffeomorphism on the subset

where StabA0 / Center(G) acts freely.

Proof. The stabilizer StabA0 acts freely on Gk+1
E and thus on the Banach

manifold Gk+1
E × Sk

A0
by (u, A) 7→ γ · (u, A) = (uγ−1, γ(A)) and so the

quotient Gk+1
E ×StabA0

SA0 is again a Banach manifold. We define a smooth
map

Ψ : Gk+1
E ×StabA0

SA0 → Ak
E , [u, A] 7→ u(A).(3.3)

Our main task is to show that the map Ψ is (i) a local diffeomorphism onto
its image and (ii) injective upon restriction to a sufficiently small neigh-
borhood Gk+1

E ×StabA0
B4

A0
(ε0). Given δ0 > 0, let BidE

(δ0) be the ball
{u ∈ Gk+1

E : ‖u− idE‖L2
k+1;A0

< δ0} and let B⊥
idE

(δ0) = BidE
(δ0) ∩ Stab⊥A0

.

Claim 3.5. For small enough δ = δ(A0, k), the ball BidE
(δ) is diffeomorphic

to an open neighborhood in B⊥
idE

(δ) × StabA0 , with inverse map given by
(u0, γ) 7→ u = u0γ.

Proof. The differential of the multiplication map

Stab⊥A0
×StabA0 → Gk+1

E , (u0, γ) 7→ u0γ,

at (idE , idE) is given by

Ker
(
dA0 |L2

k+1

)⊥
⊕ stabA0 → L2

k+1(gE) (ζ, χ) 7→ u0ζγ + u0γχ,

and so is just the identity map with respect to the L2-orthogonal decompo-
sition (3.1) of the range. Hence, the Banach space implicit function theo-
rem implies that there is a diffeomorphism from an open neighborhood of
(idE , idE) onto an open neighborhood of idE ∈ Gk+1

E . For small enough δ, we
may suppose that if u ∈ BidE

(δ), then u can be written uniquely as u = u0γ
with u0 ∈ B⊥

idE
(δ) and γ ∈ StabA0 . �

Lemma 3.6. For any 0 < ε0 < 1
2(1 + ν0[A0]−1/2)−1, the map Ψ is a local

diffeomorphism from Gk+1
E ×StabA0

B4
A0

(ε0) onto its image in Ak
E.



82 PAUL M.N. FEEHAN

Proof. We first restrict the map Ψ to a neighborhood BidE
(δ0)×StabA0

SA0 ,
which is diffeomorphic to the neighborhood B⊥

idE
(δ) × SA0 in Stab⊥A0

×SA0

by Claim 3.5. The differential of the induced map

Ψ : Stab⊥A0
×SA0 → Ak

E , (u, A) 7→ u(A),(3.4)

at (idE , A) := (idE , A0 + a0) is given by

(DΨ)(idE ,A) :TidE
Stab⊥A0

⊕TASA0 → TAAk
E ,

(ζ, a) 7→ −dAζ + a = −dA0ζ − [a0, ζ] + a,

where we recall that TASA0 = KA0 = Ker(d∗A0
|L2

k
) and

TidE
Stab⊥A0

=
(
Ker

(
dA0 |L2

k+1

))⊥
= Im

(
d∗A0

|L2
k+2

)
.

Using the L2-orthogonal decomposition (3.2) of the range we see that the
map

−dA0⊕idE :
(
Ker

(
dA0 |L2

1

))⊥
⊕Ker

(
d∗A0

|L2
1

)
→ Im

(
dA0 |L2

1

)
⊕Ker

(
d∗A0

|L2
1

)
given by (ζ, b) 7→ −dA0ζ +b is a Hilbert space isomorphism. More explicitly,
the operator

dA0 :
(
Ker

(
dA0 |L2

1

))⊥
→ Im(dA0 |L2

1
) =

(
Ker

(
d∗A0

|L2

))⊥
has a two-sided inverse

G0
A0

d∗A0
: Im

(
dA0 |L2

1

)
→

(
Ker

(
dA0 |L2

1

))⊥
,

where G0
A0

is the Green’s operator for the Laplacian ∆0
A0

= d∗A0
dA0 : Indeed,

G0
A0

d∗A0
dA0 = G0

A0
∆0

A0
is the L2-orthogonal projection Π0

A0
from L2

1(Λ
1⊗gE)

onto (Ker(dA0 |L2
1
))⊥ and dA0G

0
A0

d∗A0
is the L2-orthogonal projection Π1,⊥

A0
=

id−Π1
A0

from L2(Λ1 ⊗ gE) onto (Ker(d∗A0
|L2))⊥, as

d∗A0
(id− dA0G

0
A0

d∗A0
) = 0.

For ζ ∈ (Ker(dA0 |L2
1
))⊥ and b = dA0ζ ∈ Im(dA0 |L2

1
), we have

‖G0
A0

d∗A0
b‖L2

1,A0
= ‖G0

A0
∆0

A0
ζ‖L2

1,A0
= ‖Π0

A0
ζ‖L2

1,A0
= ‖ζ‖L2

1,A0

≤ ‖dA0ζ‖L2 + ‖ζ‖L2 ≤
(
1 + ν

−1/2
0

)
‖dA0ζ‖L2

=
(
1 + ν

−1/2
0

)
‖b‖L2

and so G0
A0

d∗A0
has Hom(L2, L2

1,A0
) operator norm bound

‖G0
A0

d∗A0
‖ ≤ 1 + ν

−1/2
0 .
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The Sobolev embedding L2
1 ⊂ L4 and Kato’s inequality imply that

‖dAζ − dA0ζ‖L2 ≤ ‖[a0, ζ]‖L2 ≤ 2‖a0‖L4‖ζ‖L4 ≤ 2‖a0‖L4‖ζ‖L2
1,A0

,

and so dA − dA0 has Hom(L2
1,A0

, L2) operator norm bound

‖dA − dA0‖ ≤ 2‖a0‖L4 .

In particular, we see that (DΨ)−1
(idE ,A0) = G0

A0
d∗A0

⊕ id = G0
A0

d∗A0
⊕G0

A0
∆0

A0

satisfies∥∥∥(DΨ)−1
(idE ,A0)

∥∥∥ ≤ 1+ν
−1/2
0 and

∥∥(DΨ)(idE ,A) − (DΨ)(idE ,A0)

∥∥ ≤ 2‖a0‖L4 .

Hence, Lemma 3.3 implies that if ‖a0‖L4 < 1
2(1+ν

−1/2
0 )−1, then the operator

(DΨ)(idE ,A) :
(
Ker

(
dA0 |L2

1

))⊥
×Ker

(
d∗A0

|L2
1

)
→ L2(Λ1 ⊗ gE)

is an isomorphism from L2
1 to L2 and restricts to a bounded linear map from

L2
k+1 to L2

k. Provided (DΨ)(idE ,A) : L2
k+1 → L2

k is bijective, the open map-
ping theorem guarantees the existence of a bounded inverse (DΨ)−1

(idE ,A) :
L2

k → L2
k+1. If (DΨ)(idE ,A)(ζ, a) = 0 for (ζ, a) ∈ L2

k+1, then (ζ, a) is zero in
L2

1 and thus zero in L2
k+1, so (DΨ)(idE ,A) is injective. If b ∈ L2

k(Λ
1 ⊗ gE),

then b = (DΨ)(idE ,A)(ζ, a) = −dAζ + a for some (ζ, a) ∈ (Ker(dA0 |L2
1
))⊥ ×

Ker(d∗A0
|L2

1
). As d∗A0

a = 0, we have

d∗A0
dAζ = −d∗A0

b ∈ L2
k−1

and d∗A0
dA : L2

k+1 → L2
k−1 is an elliptic operator with L2

k−1 coefficients.
Thus, ζ ∈ L2

k+1, so a = b + dAζ ∈ L2
k, and (DΨ)(idE ,A) is surjective.

Combining the above observations, we see that the operator

(DΨ)(idE ,A) :
(
Ker

(
dA0 |L2

k+1

))⊥
⊕Ker

(
d∗A0

|L2
k

)
→ L2

k(Λ
1 ⊗ gE),

is an isomorphism for all A = A0+a0 with ‖a0‖L4 < ε0 = 1
2(1+ν

−1/2
0 )−1. So,

by the Banach space implicit function theorem, there are positive constants
ε = ε(A, k) and δ = δ(A, k) and an open neighborhood UA ⊂ Ak

E such that
the map

Ψ : B⊥
idE

(δ)×BA(ε) → UA, (u, A1) 7→ u(A1),

with BA(ε) ⊂ B4
A0

(ε0), gives a diffeomorphism from an open neighborhood
of (idE , A) onto an open neighborhood of A. In particular, we obtain a map
UA → Stab⊥A0

, given by A1 7→ u = uA1 , such that

Ψ−1(A1) = (u, u−1(A1)) ∈ B⊥
idE

(δ)×BA(ε) ⊂ Stab⊥A0
×B4

A0
(ε0).
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Hence, for any A1 ∈ UA there is a unique u ∈ B⊥
idE

(δ) such that u−1(A1)−
A0 ∈ KA0 :

d∗A0
(u−1(A1)−A0) = 0.(3.5)

The neighborhood B4
A0

(ε0) is StabA0-invariant: If A ∈ BA0(ε) and γ ∈
StabA0 , then

‖γ(A)−A0‖L4 = ‖A− γ−1(A0)‖L4 = ‖A−A0‖L4 < ε,

and

d∗A0
(γ(A)−A0) = γ

(
d∗γ−1(A0)(A− γ−1(A0))

)
= γ

(
d∗A0

(A−A0)
)

= 0,

so γ(A) ∈ BA0(ε).
The group Gk+1

E acts on Gk+1
E × SA0 by (u, A) 7→ (vu, A), and so gives a

diffeomorphism

BidE
(δ)×B4

A0
(ε0) → Bv(δ)×B4

A0
(ε0), (u, A) → (vu, A),

and as this action commutes with the given action of StabA0 , it descends to
a diffeomorphism

BidE
(δ)×StabA0

B4
A0

(ε0) → Bv(δ)×StabA0
B4

A0
(ε0), [u, A] → [vu,A],

for each v ∈ Gk+1
E . Consequently, the Gk+1

E -equivariant map

Gk+1
E ×StabA0

B4
A0

(ε0) → Ak
E

is a local diffeomorphism onto its image, as desired. �

Plainly, [γ(A)] = [A] for each γ ∈ StabA0 and A ∈ B4
A0

(ε0) and hence,
the projection π : B4

A0
(ε0) → Ak

E factors through B4
A0

(ε)/ StabA0 .

Lemma 3.7. There is a positive constant z with the following significance.
Let ν0[A0] be the least positive eigenvalue of the Laplacian ∆0

A0
. Then for

any constant ε0 satisfying 0 < ε0 < z(1 + ν0[A0]−1/2)−1, the projection map
π : B4

A0
(ε0)/ StabA0 → Bk

E is injective.

Proof. Suppose Ai ∈ B4
A0

(ε0) for i = 1, 2 and that [A1] = [A2] ∈ Bk
E , so

u(A1) = A2 for some u ∈ Gk+1
E . Since u(A0) = A0 − (dA0u)u−1, we see that

u ∈ StabA0 if and only dA0u = 0. Here, we view u ∈ L2
k+1(gl(E)) via the

isometric embedding Gk+1
E ⊂ L2

k+1(gl(E)) and write

u = u0 − γ,

where u0 ∈ (Ker dA0)
⊥ and γ ∈ Ker dA0 . We claim that u0 = 0, so u = γ ∈

StabA0 .
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Since u(A1) := A1 − (dA1u)u−1 = A2, we have A2u = A1u − dA1u =
A1u− dA0u− [A1 −A0, u], and therefore

dA0u0 = dA0u = u(A1 −A0)− (A2 −A0)u.

Since d∗A0
(Ai −A0) = 0 for i = 1, 2, we obtain

d∗A0
dA0u0 = − ∗ (dA0u ∧ ∗(A1 −A0)) + ud∗A0

(A1 −A0)

− (d∗A0
(A2 −A0))u + ∗(∗(A2 −A0) ∧ dA0u)

= − ∗ (dA0u0 ∧ ∗(A1 −A0)) + ∗(∗(A2 −A0) ∧ dA0u0).

Integrating by parts gives

‖dA0u0‖2
L2 = (d∗A0

dA0u0, u0)2 ≤ ‖d∗A0
dA0u0‖L4/3‖u0‖L4 .

Kato’s inequality and the embedding L2
1 ⊂ L4 gives ‖u0‖L4 ≤ c(‖dA0u0‖L2 +

‖u0‖L2), so the eigenvalue estimate ‖u0‖L2 ≤ ν
−1/2
0 ‖dA0u0‖L2 gives ‖u0‖L4 ≤

c(1 + ν
−1/2
0 )‖dA0u0‖L2 and thus

‖dA0u0‖2
L2 ≤

(
1 + ν

−1/2
0

)
‖d∗A0

dA0u0‖L4/3‖dA0u0‖L2 .

Therefore, if dA0u0 6≡ 0, the preceding expression for d∗A0
dA0u0 yields

‖dA0u0‖L2 ≤ c
(
1 + ν

−1/2
0

)
‖d∗A0

dA0u0‖L4/3

≤ c
(
1 + ν

−1/2
0

)
‖dA0u0‖L2(‖A1 −A0‖L4 + ‖A2 −A0‖L4),

and so we have

1 ≤ c
(
1 + ν

−1/2
0

)
(‖A1 −A0‖L4 + ‖A2 −A0‖L4) ≤ c

(
1 + ν

−1/2
0

)
ε0

which gives a contradiction for ε0 < c−1
(
1 + ν

−1/2
0

)−1
. �

We now return to consider the local diffeomorphism Ψ of Lemma 3.6.
Suppose Ψ[u1, A1] = Ψ[u2, A2] ∈ Ak

E , where [u1, A1], [u2, A2] ∈ Gk+1
E ×StabA0

B4
A0

(ε0), and so u1(A1) = u2(A2) ∈ Ak
E and hence [A1] = [A2] ∈ Bk

E .
Provided ε0 also satisfies the constraints of Lemma 3.7, we have u−1

2 u1 =
γ ∈ StabA0 and γ(A1) = A2. Hence [u2, A2] = [u1γ

−1, γ(A1)] = [u1, A1], so
Ψ is injective and therefore a diffeomorphism onto Ak

E .
The map π : B4

A0
(ε0)/ StabA0 → Bk

E can be factored as the composition of
the inclusion A 7→ (idE , A) of B4

A0
(ε0) into Gk+1

E ×B4
A0

(ε0), the projection
onto the StabA0-quotient Gk+1

E ×StabA0
B4

A0
(ε0), the diffeomorphism Ψ of

Gk+1
E ×StabA0

B4
A0

(ε0) with Ak
E and the projection from Ak

E onto the Gk+1
E -

quotient Bk
E = Ak

E/Gk+1
E . Hence, π is a homeomorphism onto an open

neighborhood of [A0] in Bk
E and a diffeomorphism on the open subset where

StabA0 / Center(G) acts freely.
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Claim 3.8. The quotient space Bk
E is Hausdorff.

Proof. Let Γ be the subspace {{A, u(A)} : A ∈ Ak
E and u ∈ Gk+1

E } of Ak
E ×

Ak
E . If {(Aα), uα(Aα)} is a sequence in Γ which converges in L2

k to a point
{A∞, B∞}, then Lemma 3.1 implies that there is a subsequence {α′} ⊂ {α}
such that {uα} converges in L2

k+1 to u∞ ∈ Gk+1
E and u∞(A∞) = B∞. Thus,

Γ is closed and Ak
E/Gk+1

E is Hausdorff. �

Claim 3.8 gives Assertion (1) of the proposition and Assertions (2), (3),
and (4) now follow from the preceding arguments and Lemma 3.7. This
completes the proof of the proposition. �

4. Critical-exponent Sobolev norms.

We now describe the basic properties of the critical-exponent norms and
corresponding Banach spaces introduced by Taubes in [21], [23], [24], [25].
In particular, we give the basic embedding, multiplication, and composition
lemmas we need to complete the proof of our slice theorem. We shall make
frequent use of the pointwise Kato inequality, |d|v|| ≤ |∇Av| for v ∈ Ω0(E),
so that the norms of the embedding and multiplication maps depend at most
on the Riemannian manifold (X, g). Moreover, for simplicity, we confine our
attention to the case of closed four-manifolds: There are obvious analogues
of the Sobolev lemmas described here for any n-manifold, with n > 2. Simi-
larly, extensions are possible to the case of complete manifolds bounded ge-
ometry (bounded curvature and injectivity radius uniformly bounded from
below)—see [1], [3] for further details for Sobolev embedding results in those
situations and for the construction of Green kernels. We refer the reader to
the monograph of R. Adams [1] for a comprehensive treatment of Sobolev
spaces and to that of E. Stein [19] for a treatment based on potential func-
tions.

Throughout this section, A, B denote C∞ orthogonal connections on
Riemannian vector bundles E, F over X with C∞ sections u, v, respectively.
We first have the following analogues of the L2 and L4 norms,

‖u‖L](X) = sup
x∈X

‖dist−2(x, ·)|u|‖L1(X),

‖u‖L2](X) = sup
x∈X

‖dist−1(x, ·)|u|‖L2(X),
(4.1)

where dist(x, y) denotes the geodesic distance between points x and y in X
defined by the metric g; these norms have the same behavior as the L2 and
L4 norms with respect to constant rescalings of the metric g—the L] norm
on two-forms and the L2] norm on one-forms are scale invariant . Indeed, one
sees this by noting that if g 7→ g̃ = λ−2g, then distg̃(x, y) = λ−1 distg(x, y)
and dVg̃ = λ−4dVg, while for any a ∈ Ω1(E) and v ∈ Ω2(E), we have
|a|g̃ = λ|a|g, and |v|g̃ = λ2|v|g.
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Next, we define analogues of the L2
1 and L2

2 norms

‖u‖L2
1,A(X) = ‖∇Au‖L2(X) + ‖u‖L2(X),

‖u‖L2
2,A(X) = ‖∇2

Au‖L2(X) + ‖∇Au‖L2(X) + ‖u‖L2(X),

and set
‖u‖

L]
1,A(X)

= ‖∇Au‖L](X) + ‖u‖L2](X) + ‖u‖L](X),

‖u‖
L]

2,A(X)
= ‖∇∗A∇Au‖L](X) + ‖u‖L](X),

(4.2)

where ∇∗A = − ∗ ∇A∗ : Ω1(E) → Ω0(E) is the L2-adjoint of the map
∇A : Ω0(E) → Ω1(E).

Finally, we define analogues of the C0 ∩ L2
2 norm

‖u‖C0∩L2
2,A(X) = ‖u‖C0(X) + ‖u‖L2

2,A(X),

and set
‖u‖L],2(X) = ‖u‖L]∩L2(X) = ‖u‖L](X) + ‖u‖L2(X),

‖u‖L2],4(X) = ‖u‖L2]∩L4(X) = ‖u‖L2](X) + ‖u‖L4(X),

‖u‖
L],2

1,A(X)
= ‖u‖

L]
1,A∩L2

1,A(X)
= ‖u‖

L]
1,A(X)

+ ‖u‖L2
1,A(X),

‖u‖
L],2

2,A(X)
= ‖u‖

L]
2,A∩L2

2,A(X)
= ‖u‖

L]
2,A(X)

+ ‖u‖L2
2,A(X).

(4.3)

It might have appeared, at first glance, a little more natural to continue
the obvious pattern and instead define ‖u‖

L]
2,A(X)

using ‖∇2
Au‖L](X): As we

shall see below, though, the given definition is most useful in practice. For
related reasons, if u ∈ Ω1(E) = Ω0(Λ1 ⊗ E), it is convenient to define the
norm ‖u‖

L]
1,A(X)

by

‖u‖
L]

1,A(X)
= ‖∇∗Au‖L](X) + ‖u‖L2](X) + ‖u‖L](X).(4.4)

Let L](X) be the Banach space completion of C∞(X) with respect to the
norm ‖ · ‖L] and similarly define the remaining Banach spaces above.

We have the following extensions of the standard Sobolev embedding the-
orem [10], [15]: Their proofs are given in the next section. See also [4], [17],
[21], [23, §6], [24, Eq. (3.4) & §5], and [25, Lemma 4.7].

Lemma 4.1. The following are continuous embeddings:
(1) Lp

k(E) ⊂ L]
k(E), for k = 0, 1, 2 and all p > 2;

(2) Lq(E) ⊂ L2](E), for all q > 4;
(3) L2

1(E) ⊂ L2](E).

In the reverse direction we have:

Lemma 4.2. The following are continuous embeddings:
(1) L](E) ⊂ L1(E) and L2](E) ⊂ L2(E);
(2) L]

2(E) ⊂ C0 ∩ L2
1(E).
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We next consider the extension of the standard Sobolev multiplication
lemma [10], [15]. While there is no continuous multiplication map L2

2 ×
L2

2 → L2
2, it is worth observing that there is a continuous bilinear map

C0 ∩L2
2(E)×C0 ∩L2

2(F ) → C0 ∩L2
2(E ⊗ F ) given by (u, v) 7→ u⊗ v. Note

that for u ∈ Ω0(E) and v ∈ Ω0(F ) we have

∇2
A⊗B(u⊗ v) = (∇2

Au)⊗ v + 2∇Au⊗∇Bv + u⊗∇2
Bv,(4.5)

∇∗A⊗B∇A⊗B(u⊗ v) = (∇∗A∇Au)⊗ v + ∗((∗∇Au) ∧∇Bv)

− ∗(∇Au ∧ ∗∇Bv) + u⊗∇∗B∇Bv.

Similarly, for u ∈ Ω0(Λ1 ⊗ E) and v ∈ Ω0(F ), we have

∇∗A⊗B(u⊗ v) = (∇∗Au)⊗ v + ∗(∗u ∧∇Bv).(4.6)

In particular, we see that if u, v ∈ Ω0(gl(E)), then

∇∗A∇A(uv) = (∇∗A∇Au)v + ∗((∗∇Au) ∧∇Av)(4.7)

− ∗(∇Au ∧ (∗∇Av)) + u(∇∗A∇Av),

an identity we will need in the next section.

Lemma 4.3. Let Ω0(E)×Ω0(F ) → Ω0(E ⊗ F ) be given by (u, v) 7→ u⊗ v.
Then the following hold.

(1) The map C0(E)⊗ L](F ) → L](E ⊗ F ) is continuous;
(2) The map L2](E)⊗ L2](F ) → L](E ⊗ F ) is continuous;
(3) The spaces L]

1(F ), L2
1(F ), and L]

2(F ) are L]
2(E)-modules;

(4) The spaces L2
1(F ), L],2

1 (F ), and L],2
2 (F ) are L],2

2 (E)-modules.
The conclusions continue to hold for Ω1(E) in place of Ω0(E) and the norms
on L]

1(Λ
1 ⊗ E) and L],2

1 (Λ1 ⊗ E) defined via (4.4).

Proof. Let u ∈ C∞(E) and v ∈ C∞(F ) and denote the covariant derivatives
on E, F , and E ⊗ F by ∇. Using ∇(u ⊗ v) = (∇u)v + u ⊗ ∇v and the
embedding L]

2(E) ⊂ C0(E), we see that

‖u⊗ v‖L] ≤ ‖u‖C0‖v‖L] and ‖u⊗ v‖L] ≤ ‖u‖L2]‖v‖L2] ,

‖∇(u⊗ v)‖L] ≤ ‖∇u‖L2]‖v‖L2] + ‖u‖C0‖∇v‖L] ≤ c‖u‖
L]

2
‖v‖

L]
1
,

‖∇(u⊗ v)‖L2 ≤ ‖∇u‖L4‖v‖L4 + ‖u‖C0‖∇v‖L2 ≤ ‖u‖C0∩L2
2
‖v‖L2

1
,

and hence the multiplication maps C0 × L] → L], L2] × L2] → L], and
L]

2 × L]
1 → L]

1 are continuous. Moreover,

‖∇(u⊗ v)‖L2 ≤ ‖∇u‖L4‖v‖L4 + ‖u‖C0‖∇v‖L2 ≤ c‖u‖C0∩L2
2
‖v‖L2

1
,

and so, using the embedding L]
2 ⊂ C0, the multiplication L],2

2 × L],2
1 → L],2

1

is continuous. Thus, L]
2 is an L]

1-module and L],2
2 is an L],2

1 -module.
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Finally, to see that L]
2 and L],2

2 are algebras, we use the identities (4.5),
noting that

‖∇∗∇(u⊗ v)‖L] ≤ ‖∇∗∇u‖L]‖v‖C0 + 2‖∇u‖L2]‖∇v‖L2] + ‖u‖C0‖∇∗∇v‖L]

≤ c‖u‖
L]

2
‖v‖

L]
2
,

so the multiplication L]
2 × L]

2 → L]
2 is continuous, while

‖∇2(u⊗ v)‖L2 ≤ ‖∇2u‖L2‖v‖C0 + 2‖∇u‖L4‖∇v‖L4 + ‖u‖C0‖∇2v‖L2

≤ c‖u‖C0∩L2
2
‖v‖C0∩L2

2
.

The embedding L]
2 ⊂ C0 now implies that the multiplication L],2

2 × L],2
2 →

L],2
2 is continuous. �

5. Critical-exponent Sobolev embeddings and estimates for
Green’s operators.

We continue the notation and assumptions of Section 4. Our goal in this sec-
tion is to prove the Sobolev embedding Lemmas 4.1 and 4.2, and to derive es-
timates for the Green’s operator GA of the Laplacian ∇∗A∇A on Ω0(E). The
key estimates described in this section are due to Taubes and they arise, in a
variety of contexts, in the proofs of [17, Lemma 5.4], [21, Equation (2.14) &
Lemmas 3.5, 3.6, & A.3], [23, Equation (3.4b) & Lemma 6.2], [24, Lemma
5.6], and [25, §4(c), (d), (e)]. However, we find it convenient to collect them
here—together with some useful extensions and generalizations—both for
the purposes of the present article and applications in [8], [9].
5.1. Estimates for the covariant Laplacian ∇∗A∇A. Let G(x, y) be the
kernel function for the Green’s operator (d∗d+1)−1 of the Laplacian d∗d+1
on C∞(X). The kernel G(x, y) of (d∗d + 1)−1 behaves like dist−2(x, y) as
dist(x, y) → 0 (see [25, Lemma 4.7] and [24, §5]):

Lemma 5.1. The kernel G(x, y) is a positive C∞ function away from the
diagonal in X ×X and as dist(x, y) → 0,

G(x, y) =
1

4π2 dist2(x, y)
+ o(dist−2(x, y)).

Proof. These and other properties of G are obtained by explicitly construct-
ing G from an initial choice of parametrix H for d∗d + 1 using the method
of [3, §4.2.2–3], where the kernel for the Green’s operator for d∗d is con-
structed. Recall from [19, p. 132] that the kernel G0(x, y) for (d∗d + 1)−1

on R4 with its standard metric satisfies

G0(x, y) =
1

4π2|x− y|2
+ o(|x− y|−2), |x− y| → 0.

The kernel G is now constructed using G0 by following the method of [3,
§4.2.2–3]. �



90 PAUL M.N. FEEHAN

Lemma 5.1 implies that there is a constant c depending at most on g such
that for all x 6= y in X,

c−1 dist−2(x, y) ≤ G(x, y) ≤ cdist−2(x, y).(5.1)

Consequently, for all u ∈ Ω0(E), we have

c−1‖u‖L](X) ≤ ‖G|u|‖C0(X) ≤ c‖u‖L](X).(5.2)

Lemma 4.2 will follow from the next estimate; a similar inequality is stated
as Equation (3.4) in [24]; see [17, Lemma 5.4(a)] for a related result on R3.

Lemma 5.2. For all f ∈ L2
1(R4), where R4 has its standard metric,

sup
x∈R4

‖dist−1(x, ·)f‖L2(R4) ≤
1
2
‖∇f‖L2(R4).

Suppose X be a closed, oriented, Riemannian four-manifold. Then there is
a positive constant c such that for all f ∈ L2

1(X),

sup
x∈X

‖dist−1(x, ·)f‖L2(X) ≤ c‖f‖L2
1(X).

Proof. Let f ∈ C∞
0 (R4) and let x = (r, θ) denote polar coordinates centered

at a point x0 ∈ R4, so r = |x− x0|. Then∫
R4

r−2|f |2 dx =
∫

S3

∫
R

rf2 drdθ

=
1
2

∫
S3

∫
R

dr2

dr
f2 drdθ = −1

2

∫
S3

∫
R

r2f
∂f

∂r
drdθ,

via integration by parts. Therefore,∫
R4

r−2|f |2 dx = −1
2

∫
R4

r−1f
∂f

∂r
dx

≤ 1
2

(∫
R4

r−2|f |2 dx

)1/2 (∫
R4

|∇f |2 dx

)1/2

.

Hence, for all f ∈ C∞
0 (R4) we have

‖dist−1(x0, ·)f‖L2(R4) ≤
1
2
‖∇f‖L2(R4),

and taking the supremum over x0 ∈ R4 yields the first assertion.
For a closed Riemannian manifold X, choosing a smooth partition of unity

for X and applying first assertion (when X is R4) to each patch then yields
the second assertion. �

Proof of Lemma 4.1. Define 1 ≤ p′ < 2 by setting 1 = 1/p + 1/p′. Then
Hölder’s inequality implies that

‖dist−2(x, ·)|u|‖L1 ≤ ‖dist−2(x, ·)‖Lp′‖u‖Lp ≤ C‖u‖Lp ,

‖dist−1(x, ·)|u|‖L2 ≤ ‖dist−1(x, ·)‖L2p′‖u‖L2p ≤ C‖u‖L2p ,
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which gives Assertions (1) and (2). By Lemma 5.2 and Kato’s inequality,
|d|u|| ≤ |∇Au|, we see that

sup
x∈X

‖dist−1(x, ·)u‖Lp = sup
x∈X

‖dist−1(x, ·)|u|‖Lp

≤ C(‖d|u|‖Lp + ‖u‖Lp)

≤ C(‖∇Au‖Lp + ‖u‖Lp).

Taking p = 2 gives Assertion (3). �

Lemma 4.2 will follow from the estimates below; the key estimates (1) and
(2) in Lemma 5.3 below and the estimates (1), (2), and (3) in Lemma 5.4
are essentially those of Lemma 6.2 in [23], except that the dependence of
the constant on ‖FA‖L2 is made explicit, but the argument is the same as
that of [23].

Lemma 5.3. Let X be a closed, oriented four-manifold with metric g. Then
there is a constant c with the following significance. Let E be a Riemannian
vector bundle over X and let A be an orthogonal L2

2 connection on E with
curvature FA. Then L]

2(E) ⊂ C0 ∩ L2
1(E) and the following estimates hold:

‖∇Au‖L2](X) + ‖u‖C0(X) ≤ c‖∇∗A∇Au‖L](X) + ‖u‖L](X),(1)

‖∇Au‖L2](X) + ‖u‖C0(X) ≤ c‖∇∗A∇Au‖L](X) + ‖u‖L2(X),(2)

‖u‖L1(X) ≤ c‖u‖L](X),(3)

‖u‖L2(X) ≤ c‖u‖L2](X),(4)

‖∇Au‖L2(X) ≤ c‖∇Au‖L2](X).(5)

Proof. For any u ∈ C∞(E) there is the following pointwise identity [10, p.
93],

|∇Au|2 +
1
2
d∗d|u|2 = 〈∇∗A∇Au, u〉,

and thus:

|∇Au|2 +
1
2
(1 + d∗d)|u|2 = 〈∇∗A∇Au, u〉+

1
2
|u|2.

Using this identity and the fact that
∫
X G(x, ·)(d∗d + 1)|u|2 dV = |u|2(x),

we obtain ∫
X

G(x, ·)|∇Au|2 dV +
1
2
|u|2(x)

≤
∫

X
G(x, ·)|〈∇∗A∇Au, u〉| dV +

1
2

∫
X

G(x, ·)|u|2 dV.

Therefore, from (5.1), we have

‖|∇Au|2‖L] + ‖|u|2‖C0 ≤ c‖〈∇∗A∇Au, u〉‖L] + c‖|u|2‖L]

≤ c‖∇∗A∇Au‖L]‖u‖C0 + c‖u‖L]‖u‖C0 .
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Consequently, using rearrangement with the last term, we see that

‖∇Au‖L2] + ‖u‖C0 ≤ c‖∇∗A∇Au‖L] + c‖u‖L] ,

giving (1). Combining this estimate with the embedding and interpolation
inequalities, ‖u‖L] ≤ c‖u‖L4 ≤ c‖u‖1/2

L2 ‖u‖
1/2
C0 , and again using rearrange-

ment with the last term yields the bound in (2). Since X is closed, for all
x 6= y we have dist(x, y) ≤ M < ∞, so∫

X
dist−2(x, ·)|u| dV ≥ M−2

∫
X
|u| dV,

and this gives the estimates in (3), (4), and (5). �

Proof of Lemma 4.2. From Lemma 5.3 we have the estimate

‖u‖C0 ≤ c‖u‖
L]

2,A0

,

for any u ∈ C∞(E). Let {um} be a sequence in C∞(E) converging to u ∈
L]

2(E). The sequence {um} is Cauchy in L]
2(E) and applying the preceding

estimate to the differences um2−um1 , we see that it is Cauchy in the Banach
space C0(E) and so the limit u lies in C0(E). The same argument, with
estimates (1) and (5) of Lemma 5.3, shows that u ∈ L2

1(E) and this yields
Assertion (2) of the lemma. Assertion (1) follows in the same manner. �

Lemma 5.4. Continue the hypotheses of Lemma 5.3. Then for any u ∈
(C0 ∩ L2

2)(E), we have

‖∇2
Au‖L2(X) ≤ ‖∇∗A∇Au‖L2(X) + c‖FA‖1/2

L2(X)
‖∇Au‖L4(X)(1)

+ ‖FA‖L2(X)‖u‖C0(X),

‖∇Au‖L4(X) ≤ ‖u‖1/2
C0(X)

(
‖∇∗A∇Au‖L2(X) + 2‖∇2

Au‖L2(X)

)1/2
,(2)

‖∇2
Au‖L2(X) ≤ 2‖∇∗A∇Au‖L2(X) + c‖FA‖L2(X)‖u‖C0(X).(3)

Proof. The Bochner-Weitzenböck formula for the covariant Laplacian [11,
Appendix, Theorem II.1] asserts that

d∗AdA + dAd∗A = ∇∗A∇A + {FA, ·},(5.3)

where we use {·, ·} to denote a certain bilinear map whose precise form
is unimportant here. Integrating by parts and noting that dA = ∇A and
d∗AdA = ∇∗A∇A on Ω0(X, V ) and FA = dA ◦ dA gives

‖∇2
Au‖2

L2 = (∇∗A∇A∇Au,∇Au)L2

= ((d∗AdA + dAd∗A)dAu, dAu)L2 − ({FA, dAu},∇Au)L2

= (d∗AFAu, dAu)L2 + (dA(d∗AdA)u, dAu)L2 − ({FA,∇Au},∇Au)L2

= (FAu, FAu)L2 + (∇∗A∇Au,∇∗A∇Au)L2 − ({FA,∇Au},∇Au)L2 .
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Therefore, applying Hölder’s inequality, we find that

‖∇2
Au‖2

L2 ≤ ‖∇∗A∇Au‖2
L2 + c‖FA‖L2‖∇Au‖2

L4 + ‖FA‖2
L2‖u‖2

C0 ,

and taking square roots gives the desired bound in (1).
We now use integration by parts and Kato’s inequality |d|u|| ≤ |∇Au| to

obtain an L4 bound on dAu:

‖dAu‖4
L4 =

(
dAu, |dAu|2dAu

)
L2

=
(
u, |dAu|2d∗AdAu

)
L2 + 2 (u, |dAu|dAu ∧ d|dAu|)L2 ,

= ‖u‖C0‖dAu‖2
L4‖d∗AdAu‖L2 + 2‖u‖C0‖dAu‖2

L4‖∇AdAu‖L2 ,

and so, if dAu 6≡ 0,

‖dAu‖L4 ≤ ‖u‖1/2
C0

(
‖d∗AdAu‖L2 + 2‖∇2

Au‖L2

)1/2
,

which gives the desired estimate in (2).
By combining the L4 estimate for ∇Au with the L2 estimate for ∇2

Au, we
obtain

‖∇2
Au‖L2 ≤ ‖∇∗A∇Au‖L2 + ‖FA‖L2‖u‖C0

+ c‖FA‖1/2
L2 ‖u‖

1/2
C0

(
‖∇∗A∇Au‖L2 + ‖∇2

Au‖L2

)1/2
.

We now use rearrangement with the last term above to give

‖∇2
Au‖L2 ≤ 2‖∇∗A∇Au‖L2 + c‖FA‖L2‖u‖C0 ,

and this establishes the desired bound in (3). �

Lemma 5.5. Continue the hypotheses of Lemma 5.3. Then for any u ∈
L],2

2 (E), we have:

‖u‖L2
2,A(X) + ‖u‖C0(X) ≤ c(1 + ‖FA‖L2(X))

(
‖∇∗A∇Au‖L],2(X) + ‖u‖L2(X)

)
.

Proof. From Assertion (3) of Lemma 5.4 we have the estimate

‖∇2
Au‖L2 ≤ 2‖∇∗A∇Au‖L2 + c‖FA‖L2‖u‖C0 ,

while integration by parts gives

‖∇Au‖L2 = (∇∗A∇Au, u)1/2
L2 ≤ 1√

2
(‖∇∗A∇Au‖L2 + ‖u‖L2) .

According to Lemma 5.3 we have

‖u‖C0 ≤ c‖∇∗A∇Au‖L] + c‖u‖L2 ,

and therefore the desired bound follows by combining these estimates. �
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The above lemmas lead to the following estimates for the Green’s operator
GA : L],2(E) → L],2

2 (E) of the Laplacian ∇∗A∇A : L],2
2 (E) → L],2(E). For

u ∈ Ω0(E) define

‖u‖L],2
2,A(X)

= ‖∇∗A∇Au‖L],2(X) + ‖u‖L],2(X),(5.4)

and observe that this is equivalent to the L],2
2,A norm defined in Section 4,

although the comparison depends on the L2 norm of the curvature FA.

Lemma 5.6. Continue the hypotheses of Lemma 5.3. Let ν0[A] be the
least positive eigenvalue of the Laplacian ∇∗A∇A. Then for any u ∈ L],2 ∩
(Ker∇∗A∇A)⊥, we have:

‖GAu‖
L]

2,A(X)
≤ c(1 + ν0[A]−1)‖u‖L],2(X),(1)

‖GAu‖L],2
2,A(X)

≤ c(1 + ν0[A]−1)‖u‖L],2(X),(2)

‖GAu‖
L],2

2,A(X)
≤ c(1 + ν0[A]−1)(1 + ‖FA‖L2(X))‖u‖L],2(X).(3)

Proof. The first and second assertions follow from Lemma 5.3, the fact that
∇∗A∇AGAu = u for u ∈ (Ker∇∗A∇A)⊥, and the eigenvalue estimate ‖u‖L2 ≤
ν0[A]−1‖∇∗A∇Au‖L2 , while the third assertion follows from the first and
Lemma 5.5. �

5.2. Elliptic estimates for d+
A + d∗A. To illustrate their application and

to point to possible extensions, we note that the estimates of Section 5.1
for the covariant Laplacian ∇∗A∇A = d∗AdA on Ω0(E) naturally extend to
give estimates for the covariant Laplacians ∇∗A∇A on Ω`(E) = Ω0(Λ` ⊗E).
Estimates for∇∗A∇A on Ω0(Λ1⊗E) and Ω0(Λ+⊗E) are of particular interest
since these can in turn be profitably compared (via the Bochner-Weitzenböck
formulas [10, Equations (6.25) & (6.26)], as in [24]) with the remaining
Laplacians defined by the elliptic deformation complex for the anti-self-dual
equation [5], [10], namely dAd∗A + d+,∗

A d+
A on Ω0(Λ1 ⊗ gE) and d+

Ad+,∗
A on

Ω0(Λ+ ⊗ gE). Indeed, if B1 and B+ are the Levi-Civita connections on Λ1

and Λ+ induced by the Levi-Civita connection on TX for the metric g, then
the curvature “FA” in the estimates of the preceding subsection is simply
replaced by [12, p. 165]

FB1⊗A = FB1 ⊗ idgE + idΛ1 ⊗ FA,

FB+⊗A = FB+ ⊗ idgE + idΛ+ ⊗ FA,
(5.5)

where FB1 and FB+ are expressed in terms of the Riemann curvature tensor
Rm and where we abuse notation slightly and denote the connections on E
and gE both by A. (See [10, Appendix C] and [11, Appendix II].) In the
interests of brevity we shall confine our attention to the case of Lp

` estimates
with p = 2, though the methods can be modified to obtain estimates for
p 6= 2 (some work is required—see [5, p. 426] for hints).
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In order to compute the required elliptic estimates for d+
A we will need

the Bochner-Weitzenböck formulas,

dAd∗A + 2d∗Ad+
A = ∇∗A∇A + {Ric, ·} − 2{F−

A , ·},(5.6)

2d+
Ad∗A = ∇∗A∇A − 2{W+, ·}+

R

3
+ {F+

A , ·},(5.7)

for the Laplacians on Ω1(gE) and Ω+(gE) [10, Equations (6.25) & (6.26)];
here, Ric, W+, and R are the Ricci, self-dual Weyl, and scalar curvatures
of the Riemannian metric g on X. In applications to the degeneration
of anti-self-dual or “almost anti-self-dual” connections A as in [20], [22],
[23], [24], we can usually arrange to have a uniform L∞ bound on F+

A ,
but not a uniform Lp bound on F−

A when p > 2. We derive estimates in
the remainder of this subsection with such applications and assumptions in
view. To illustrate the nature of the difficulty we first derive a naive L2

1,A

estimate for a ∈ L2
1(gE) in terms of the L2 norm of (d∗A + d+

A)a:

Lemma 5.7. Let X be a closed, oriented four-manifold with metric g. Then
there is a constant c with the following significance. Let E be a Riemannian
vector bundle over X and let A be an orthogonal L2

4 connection on E with
curvature FA. Then for any a ∈ L2

1(Λ
1 ⊗ gE),

‖a‖L2
1,A(X) ≤

√
2‖(d∗A + d+

A)a‖L2(X)

+ c
(
1 + ‖F−

A ‖C0(X)

)1/2 ‖a‖L2(X).
(5.8)

If a is L2-orthogonal to Ker d+
A, so that a = d∗Av for some v ∈ L2

2(Λ
+⊗ gE),

then

‖d∗Av‖L2
1,A(X) ≤

√
2‖d+

Ad∗Av‖L2(X) + c
(
1 + ‖F−

A ‖C0(X)

)1/2 ‖v‖L2(X)

+ ‖F+
A ‖C0(X)‖v‖L2(X).

(5.9)

Proof. From the Bochner-Weitzenböck formula for dAd∗A + 2d∗Ad+
A in (5.6)

and integration by parts, we have:

‖∇Aa‖2
L2 = (∇∗A∇Aa, a)

= (dAd∗Aa, a) + 2
(
d∗Ad+

Aa, a
)
− ({Ric, a}, a) + 2

(
{F−

A , a}, a
)

≤ ‖d∗Aa‖2
L2 + 2‖d+

Aa‖2
L2 + c

(
1 + ‖F−

A ‖C0

)
‖a‖2

L2

which gives (5.8). If a = d∗Av, then d∗Ad∗Av = (d+
AdA)∗v = (F+

A )∗v, so that

‖d∗Ad∗Av‖L2 ≤ ‖F+
A ‖C0‖v‖L2 .

Thus, (5.9) follows from (5.8) and the above inequality. �

Since d∗A + d+
A is an elliptic operator, estimates of the above form follow

from the general theory of linear elliptic operators. However, the preceding
elementary derivation using the Bochner-Weitzenböck formula gives us a
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constant whose dependence on the curvature terms F−
A and F+

A is made
explicit. In particular, we see that the estimate is only useful when we have
a uniform C0 bound on F−

A independent of A, which is not possible when
A bubbles. At the cost of introducing a slightly stronger norm than the
L2 norm on the right hand side of the estimate above, we can derive an
L2

1,A bound for a = d∗Av with an estimate constant depending on ‖F−
A ‖L2(X)

rather than ‖F−
A ‖C0(X). Specifically, Equation (5.5) and Lemma 5.5 give

the following L2
2,A estimates for sections of Λ+ ⊗ gE :

Lemma 5.8. Continue the hypotheses of Lemma 5.7. Then the following
estimate holds for any v ∈ L],2

2 (Λ+ ⊗ gE):

‖v‖L2
2,A(X) + ‖v‖C0(X) ≤ c(1 + ‖FA‖L2(X))(‖∇∗A∇Av‖L],2(X) + ‖v‖L2(X)).

We now replace the covariant Laplacian ∇∗A∇A in the estimates of Lem-
ma 5.8 by the Laplacian d+

Ad∗A via the Bochner formula (5.7) to give:

Lemma 5.9. Continue the hypotheses of Lemma 5.8. Then there is a pos-
itive constant ε = ε(c) such that the following holds. If ‖F+

A ‖L],2(X) < ε,
then

‖v‖L2
2,A(X) + ‖v‖C0(X) ≤ c(1 + ‖FA‖L2(X))(‖d+

Ad∗Av‖L],2(X) + ‖v‖L2(X)).

Proof. From (5.5) and Lemma 4.3 we have

‖∇∗A∇Av‖L],2 ≤ 2‖d+
Ad∗Av‖L],2 + c‖v‖L],2 + c‖F+

A ‖L],2‖v‖C0 .

Combining the preceding estimate with that of Lemma 5.8, together with the
embedding and interpolation inequalities ‖v‖L] ≤ c‖v‖L4 ≤ c‖v‖1/2

L2 ‖v‖
1/2
C0 ,

and using rearrangement with the last term yields the desired bound. In
particular, by choosing ε(c) small enough that c‖F+

A ‖L],2‖v‖C0 ≤ 1/2, we
may use rearrangement to bring the right-hand term ‖v‖C0 to the left-hand
side. �

Since ‖d∗Av‖L2
1,A

≤ ‖v‖L2
2,A

, Lemma 5.9 yields an L2
1,A estimate for d∗Av:

Corollary 5.10. Continue the hypotheses of Lemma 5.9. Then:

‖d∗Av‖L2
1,A(X) ≤ c(1 + ‖FA‖L2(X))(‖d+

Ad∗Av‖L],2(X) + ‖v‖L2(X)).

Note that if a ∈ Ω1(gE) is L2-orthogonal to Ker d+
A, so that a = d∗Av for

some v ∈ Ω+(gE), and Ker d+
Ad+,∗

A = 0, then the estimate of Corollary 5.10
can be written in the more familiar form

‖a‖L2
1,A(X) ≤ c(1 + ‖FA‖L2(X))(‖d+

Aa‖L],2(X) + ν2[A]−1/2‖a‖L2(X)),(5.10)

where we make use of the eigenvalue estimate ‖v‖L2 ≤ ν2[A]−1/2‖d∗Av‖L2 ;
the term d+

Aa above can be replaced by (d+
A+d∗A)a without changing the esti-

mate constants. Here, ν2[A] is the least positive eigenvalue of the Laplacian
d+

Ad+,∗
A .
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6. Existence of gauge transformations via the method of
continuity.

In this section we complete the proof of Theorem 1.1, and hence the proof of
Theorem 1.2, using the method of continuity. The strategy broadly follows
that of Uhlenbeck’s proof of Theorem 2.1 in [26]. The main new tech-
nical difficulty, not present in [26], is the need to compare distances in
the Coulomb-gauge slice SA0 ⊂ Ak

E through the connection A0 and gauge-
invariant distances in Bk

E from the point [A0]. It is at this stage of the
method of continuity (in proving openness—see Lemma 6.6)—that we need
to employ the special norms and Green’s operator estimates described in
Sections 4 and 5 in order to achieve the requisite C0 control of gauge trans-
formations; the proof of closedness works, as one would expect, with stan-
dard Sobolev L4 and L2

1 norms. In [26], the L2 norm of the curvature FA

essentially serves as a gauge-invariant L2
1 measure of distance from [A] to

[Γ], where Γ is the product connection on the product G bundle over the
unit ball. Our goal in this section is to prove:

Theorem 6.1. Let X be a closed, smooth four-manifold with metric g and
let G be a compact Lie group. Then there are positive constants c, z with
the following significance. Let E be a G bundle over X and suppose that
k ≥ 2 is an integer. Given a point [A0] in Bk

E, let ν0[A0] be the least
positive eigenvalue of the Laplacian ∇∗A0

∇A0 on Ω0(gE) and set K0 = (1 +
ν0[A0]−1)(1 + ‖FA0‖L2). Let ε1 be a constant satisfying 0 < ε1 ≤ zK−2

0 (1 +
ν0[A0]−1/2)−1. Then the following hold:

(1) For any [A] ∈ Bk
E with dist

L],2
1,A0

([A], [A0]) < ε1, then u ∈ Gk+1
E exists

such that
(a) d∗A0

(u(A)−A0) = 0,
(b) ‖u(A)−A0‖L2],4 ≤ cK0 distL],2

1,A0

([A], [A0]).

(2) For any [A] ∈ Bk
E with dist

L],2
1,A0

([A], [A0]) < ε1, then u ∈ Gk+1
E exists

such that
(a) d∗A0

(u(A)−A0) = 0,
(b) ‖u(A)−A0‖L2],4 ≤ cK0 distL],2

1,A0

([A], [A0]),

(c) ‖u(A)−A0‖L2
1,A0

≤ cK0 dist
L],2

1,A0

([A], [A0]).

Our first proof of Theorem 6.1, via the method of continuity, occupies
Sections 6.1, 6.2 and 6.3. A rather different proof, via a direct application
of the inverse function theorem using L],2

2 gauge transformations, is given in
Section 8.

6.1. Distance functions on the quotient space. Our first task is to
verify the existence of minimizing gauge transformations u ∈ Gk+1

E for the
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family of distance functions on Bk
E defined above: This is established in

Lemma 6.3 and the proof uses the following version of Uhlenbeck’s weak
compactness theorem.

Proposition 6.2. Let X be a closed, smooth, Riemannian four-manifold,
let G be a compact Lie group, let M be a positive constant, let A0 be an L2

2

connection on a G bundle E over X. If {Aα} is a sequence of L2
2 connections

on E such that ‖FAα‖L2
1,A0

≤ M , then there is a subsequence {α′} ⊂ {α} and

a sequence of L2
3 gauge transformations {uα′} such that uα′(Aα′) converges

weakly in L2
2,A0

and strongly in Lp
1,A0

, for 1 ≤ p < 4, to an L2
2 connection

A∞ on E.

Proof. From the Sobolev embedding L2
1 ⊂ Lp, 2 < p < 4, we obtain a uni-

form Lp bound ‖FAα‖Lp ≤ cM and so, according to [26, Theorem 3.6], there
is a subsequence {α′} ⊂ {α} and a sequence of Lp

2 gauge transformations
{uα′} such that uα′(Aα′) converges weakly in Lp

1,A0
to an Lp

1 connection
A∞ on E. The stronger conclusion above is obtained simply by reworking
the proof of Theorem 3.6 in [26], using the following local estimate for the
connections Aα over small balls B ⊂ X. Theorem 2.1 of [26] provides a se-
quence of local trivializations vα : P |B → B×G such that aα = vα(Aα)−Γ
satisfies d∗aα = 0 and

‖aα‖Lp
1(B) ≤ c‖FAα‖Lp(B), 2 ≤ p < 4,

where Γ is the product connection. Now FAα = daα + aα ∧ aα, so

‖aα‖L2
2(B) ≤ ‖daα‖L2

1(B) + ‖aα‖L2
1(B)

≤ ‖aα ∧ aα‖L2
1(B) + ‖FAα‖L2

1(B) + ‖aα‖L2
1(B).

Now, using the multiplication L6 ×L3 → L2, the embeddings L3
1 ⊂ L

12/5
1 ⊂

L6 and d(aα ∧ aα) = daα ∧ aα − aα ∧ daα, we have

‖d(aα ∧ aα)‖L2 ≤ c‖daα‖L3‖aα‖L6 ≤ c‖aα‖2
L3

1
,

while ‖aα ∧ aα‖L2 ≤ ‖aα‖2
L4(B) ≤ c‖aα‖2

L2
1(B)

. Hence, we obtain

‖aα‖L2
2(B) ≤ c‖FAα‖L2

1(B) + c‖aα‖2
L3

1(B) + ‖aα‖L2
1(B)

≤ c‖FAα‖L2
1(B)(1 + ‖FAα‖L2

1(B))

≤ c‖FAα‖L2
1,A0

(B)(1 + ‖FAα‖L2
1,A0

(B))(1 + ‖A0 − Γ‖L2
1
).

In particular, the sequence of Coulomb-gauge, local connection matrices
{aα} is bounded in L2

2(B), so we can extract a weakly L2
2(B)-convergent and

strongly Lp
1(B)-convergent subsequence, via the compactness of embedding

L2
2(B) ⊂ Lp

1(B) when 1 ≤ p < 4. The patching argument used to complete
the proof of Uhlenbeck’s theorem now proceeds exactly as in [26] to give
the desired conclusion. �
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The proposition is used to extract the desired convergence in the next
lemma.

Lemma 6.3. For any points [A0], [A] in Bk
E there are gauge transformations

such that the following equalities hold:

distL4([A], [A0]) = ‖u(A)−A0‖L4(X), u ∈ G3
E(1)

distL],2
1,A0

([A], [A0]) = ‖v(A)−A0‖L],2
1,A0

, v ∈ G3
E ,(2)

dist
L],2

1,A0

([A], [A0]) = ‖w(A)−A0‖L],2
1,A0

, w ∈ G3
E ,(3)

distL2
`,A0

([A], [A0]) = ‖w`(A)−A0‖L2
`,A0

, ` = 1 and 3 ≤ ` ≤ k,(4)

where w1 ∈ G3
E and w` ∈ G`+1

E in (4). The above distance functions (including
the ` = 2 distance function in (4)) are continuous with respect to the quotient
L2

k topology on Bk
E.

Proof. Consider (1). Let {uα} be a minimizing sequence in Gk+1
E , so ‖uα(A)−

A0‖L4 converges to distL4([A], [A0]) as α → ∞. Setting Bα = uα(A) =
A − (dAuα)u−1

α ∈ Ak
E , we see that Bαuα = Auα − dAuα = Auα − dA0uα −

[A−A0, uα], and thus

dA0uα = uα(A−A0)− (Bα −A0)uα.(6.1)

Therefore, as ‖uα‖C0 ≤ c(G), we have

‖∇A0uα‖L4 ≤ c(‖A−A0‖L4 + ‖Bα −A0‖L4),

so the sequence {uα} ⊂ L2
k+1(gl(E)) is bounded in L4

1,A0
(gl(E)). So, passing

to a subsequence, we may suppose that {uα} converges weakly in
L4

1,A0
(gl(E)) and strongly in Lq(gl(E)), via the compact embedding L4

1 ⊂ Lq,
for any 1 ≤ q < ∞, to a limit u ∈ L4

1(gl(E)).
We also have FBα = Fuα(A) = uαFAu−1

α , so ‖FBα‖L2 = ‖FA‖L2 and as

∇A0FBα = (∇A0uα)⊗ FAu−1
α + uα(∇A0FA)u−1

α − uαFA ⊗ u−1
α (∇A0uα)u−1

α ,

we see that
‖∇A0FBα‖L2 ≤ c(‖∇A0uα‖L4‖FA‖L4 + ‖∇A0FA‖L2)

≤ c(1 + ‖uα‖L4
1,A0

)‖FA‖L2
1,A0

.
(6.2)

Hence, the sequence of L2
k connections {Bα} has curvature uniformly

bounded in L2
1,A0

: Proposition 6.2 implies, after passing to a subsequence,
that the sequence {Bα} converges weakly in L2

2,A0
and strongly in Lp

1,A0
, for

1 ≤ p < 4, to an L2
2 G connection B on E. From (6.1) we obtain

dA0u = u(A−A0)− (B −A0)u,(6.3)

a first-order linear elliptic equation in u with L2
2 coefficients. Therefore,

u ∈ L2
3(gl(E)) and B = u(A) = A− (dAu)u−1 lies in A2

E . It is not a priori
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clear that the limit u actually lies in G3
E (since the convergence was only

weakly L4
1,A0

(gl(E)) and strongly Lq(gl(E))): However, the argument of the
last paragraph in the proof of Lemma 4.2.4 in [5, p. 130] applies (using
the compactness of the structure group G) and shows that the limit gauge
transformation u lies in G3

E . Since Bα = uα(A) converges strongly in Lp
1,A0

to u(A) we now have

distL4([A], [A0]) = lim
α→∞

‖uα(A)−A0‖L4 = ‖u(A)−A0‖L4 ,

as required in (1). The same argument proves Assertions (2) and (3) and
Assertion (4) when ` = 1. The case ` ≥ 3 in (4) is straightforward as we
can now apply Lemma 3.1 to obtain the desired convergence.

It remains to check L2
k continuity. We just consider (1), as the remaining

cases are identical. If [Aα] ∈ Bk
E is a sequence converging to [A∞] ∈ Bk

E , then
there is a sequence of gauge transformations sα ∈ Gk+1

E such that sα(Aα)
converges in L2

k,A0
to A∞ ∈ Ak

E and, in particular, in L4. But then

|distL4([Aα], [A0])− distL4([A∞], [A0])|
= |distL4([sα(Aα)], [A0])− distL4([A∞], [A0])|
≤ distL4([sα(Aα)], [A∞]) ≤ ‖sα(Aα)−A∞‖L4 ,

and so
lim

α→∞
distL4([Aα], [A0]) = distL4([A∞], [A0]),

as desired. �

6.2. Closedness. Let B ⊂ B̄1,],2
[A0] (ε) be the subset of points [A] such that

there exists a gauge transformation u ∈ Gk+1
E satisfying the conclusions of

Assertion (2) of Theorem 6.1; let B∗ ⊂ B̄1,∗,2
[A0] (ε) be the subset of points

[A] such that there exists a gauge transformation u ∈ Gk+1
E satisfying the

conclusions of Assertion (1). As in the proof of Theorem 2.1 in [26], we apply
the method of continuity to show that B∗ = B̄1,∗,2

[A0] (ε) and B = B̄1,],2
[A0] (ε) for

small enough ε. Not surprisingly, we have:

Lemma 6.4. The balls B̄1,∗,2
[A0] (ε) and B̄1,],2

[A0] (ε) are connected.

Proof. If [A] ∈ B̄1,],2
[A0] (ε), there is a gauge transformation u ∈ Gk+1

E such that
‖u(A)−A0‖L],2

1,A0

≤ ε. Then At = A0 + t(u(A)−A0), t ∈ [0, 1], is a path in

Ak
E joining A0 to u(A) and ‖At−A0‖L],2

1,A0

= t‖u(A)−A0‖L],2
1,A0

≤ tε, so the

path [At] lies in B̄1,],2
[A0] (ε) and joins [A0] to [A]. Similarly for B̄1,∗,2

[A0] (ε). �

Our task then reduces to showing that B∗ is an open and closed subspace
of B̄1,∗,2

[A0] (ε) and that B is an open and closed subspace of B̄1,],2
[A0] (ε). First we

consider closedness:
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Lemma 6.5. The subspaces B∗ ⊂ B̄1,∗,2
[A0] (ε) and B ⊂ B̄1,],2

[A0] (ε) are closed.

Proof. It suffices to consider the second assertion as the same argument
yields the first. Suppose [Aα] is a sequence of points in B which converges
in Bk

E to a point [B∞]. We may suppose, without loss of generality, that
Aα ∈ Ak

E is the corresponding sequence of connections, representing the
gauge-equivalence classes [Aα], which satisfy the defining conditions for B:

d∗A0
(Aα −A0) = 0,

‖Aα −A0‖L2],4 ≤ cK0 distL],2
1,A0

([Aα], [A0]),

‖Aα −A0‖L2
1,A0

≤ cK0 dist
L],2

1,A0

([Aα], [A0]).
(6.4)

Since [Aα] converges in Bk
E to [B∞], there is a sequence of gauge transforma-

tions uα ∈ Gk+1
E such that Bα := uα(Aα) converges in L2

k,A0
to B∞ ∈ Ak

E .
Since Bα = uα(Aα) and d∗A0

(Aα −A0) = 0, we have

dA0uα = uα(Aα −A0)− (Bα −A0)uα,(6.5)

d∗A0
dA0uα = − ∗ (dA0uα ∧ ∗(Aα −A0))− (d∗A0

(Bα −A0))uα(6.6)

− ∗(∗(Bα −A0) ∧ dA0uα),

and so, as ‖uα‖C0 ≤ 1,

‖dA0uα‖L2],4 ≤ ‖Aα −A0‖L2],4 + ‖Bα −A0‖L2],4

‖d∗A0
dA0uα‖L],2 ≤ ‖dA0uα‖L2],4‖Aα −A0‖L2],4 + ‖d∗A0

Bα −A0‖L],2

‖Bα −A0‖L2],4‖dA0uα‖L2],4 .

Therefore, the sequence uα is bounded in L2
2,A0

(gl(E)) and so, passing to
a subsequence, we may suppose that uα converges weakly in L2

2,A0
(gl(E))

(and strongly in Lp
1,A0

, for any p < 4 via the compact embedding L2
2 ⊂ Lp

1)
to a limit u∞ ∈ L∞ ∩ L2

2,A0
(gl(E)).

On the other hand, using Aα = u−1
α (Bα), we have ‖FAα‖L2 = ‖FBα‖L2

and the derivation of (6.2) gives

‖∇A0FAα‖L2 ≤ c(1 + ‖uα‖L4
1,A0

)‖FBα‖L2
1,A0

,

so the sequence Aα has curvature uniformly bounded in L2
1,A0

. Thus, after
passing to a subsequence we may assume by Proposition 6.2 that the se-
quence Aα converges weakly in L2

2,A0
and strongly in Lp

1,A0
, 2 ≤ p < 4, to a

limit A∞ ∈ A2
E .

Taking weak limits in (6.5) and (6.6) yields

dA0u∞ = u∞(A∞ −A0)− (B∞ −A0)u∞.(6.7)

The equation (6.7) is first order, linear, elliptic in u∞ ∈ L∞ ∩ L2
2 with

L2
2 coefficients. Hence, u∞ is in L2

3(gl(E)) and in particular, in G3
E , while
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B∞ = u∞(A∞). From (6.7) we see that

A∞ −A0 = u−1
∞ (B∞ −A0)u∞ + u−1

∞ dA0u∞

and so, as d∗A0
(A∞ −A0) = 0, we have

d∗A0
(u−1
∞ dA0u∞ + u−1

∞ (B∞ −A0)u∞) = 0.(6.8)

This is a second-order elliptic equation for u∞ ∈ G3
E with L2

k coefficients:
In particular, since u∞ ∈ Lp

2 for 2 ≤ p ≤ 4, a standard elliptic bootstrap-
ping argument then implies that u∞ ∈ L2

k+1 (see, for example, the proof of
Proposition 3.3 in [6]) and therefore A∞ = u−1

∞ (B∞) ∈ Ak
E .

Now, taking weak limits in (6.4), we have

d∗A0
(A∞ −A0) = lim

α→∞
d∗A0

(Aα −A0) = 0,

‖A∞ −A0‖L2],4 = lim
α→∞

‖Aα −A0‖L2],4 ≤ lim
α→∞

cK0 distL],2
1,A0

([Aα], [A0]),

‖Aα −A0‖L],2
1,A0

= lim
α→∞

‖Aα −A0‖L],2
1,A0

≤ lim
α→∞

cK0 dist
L],2

1,A0

([Aα], [A0]).

Moreover, as B∞ = u∞(A∞) and u∞ ∈ Gk+1
E ,

lim
α→∞

distL],2
1,A0

([Aα], [A0]) = distL],2
1,A0

([B∞], [A0]) = distL],2
1,A0

([A∞], [A0]),

lim
α→∞

dist
L],2

1,A0

([Aα], [A0]) = dist
L],2

1,A0

([B∞], [A0]) = dist
L],2

1,A0

([A∞], [A0]),

where the L2
k continuity of the distance functions is given by Lemma 6.3.

Therefore, [B∞] = [A∞] ∈ B. Thus, B is closed in Bk
E and in particular,

closed in B̄1,],2
[A0] (ε), as desired. �

6.3. Openness. We must first compare distances from the connection A0

in the Coulomb slice through A0 in Ak
E and gauge-invariant distances in Bk

E
from the point [A0]:

Lemma 6.6. Let (X, g) be a closed, smooth, Riemannian four-manifold.
Then there are positive constants c, z with the following significance. Let
K0 = (1 + ν0[A0]−1)(1 + ‖FA0‖L2). If A ∈ Ak

E satisfies
• d∗A0

(A−A0) = 0,
• ‖A−A0‖L2],4 ≤ zK−1

0 ,
then the following hold:

(1) If distL],2
1,A0

([A], [A0]) ≤ zK−1
0 , then

‖A−A0‖L2],4 ≤ cK0 distL],2
1,A0

([A], [A0]);

(2) If dist
L],2

1,A0

([A], [A0]) ≤ zK−1
0 , then

‖A−A0‖L2],4 ≤ cK0 distL],2
1,A0

([A], [A0]),

‖A−A0‖L2
1,A0

≤ cK0 dist
L],2

1,A0

([A], [A0]).
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Proof. Recall that for either distance function, minimizing gauge transfor-
mations in G3

E exist by Lemma 6.3; for convenience, we denote both by
u ∈ G3

E although they need not a priori coincide. Since B := u(A) =
A− (dAu)u−1 ∈ A2

E , we have

u(A)−A0 = u(A−A0)u−1 − (dA0u)u−1.

Our task, in essence, is to estimate the second term on the right above.
Rewriting this equality gives a first-order, linear elliptic equation in u with
L2

2 coefficients:

dA0u = u(A−A0)− (B −A0)u.(6.9)

Let u0 ∈ L2
3(gl(E)) be the L2 orthogonal projection of u ∈ G3

E ⊂ L2
3(gl(E))

onto Ker(dA0 |L2
3
)⊥, so u = u0 + γ, where γ ∈ Ker dA0 ⊂ Ω0(gl(E)). Thus,

as d∗A0
(A−A0) = 0 and dA0u = dA0u0, we see that

d∗A0
dA0u0 = − ∗ (dA0u ∧ ∗(A−A0)) + ud∗A0

(A−A0)

− (d∗A0
(B −A0))u− ∗(∗(B −A0) ∧ dA0u)

= − ∗ (dA0u0 ∧ ∗(A−A0))− (d∗A0
(B −A0))u

− ∗(∗(B −A0) ∧ dA0u0).

Therefore, using the bound ‖u‖C0 ≤ 1 for any u ∈ G3
E (as the representation

for G is orthogonal), we have

‖∆0
A0

u0‖L],2 ≤ ‖dA0u0‖L2],4‖A−A0‖L2],4 + ‖d∗A0
(B −A0)‖L],2‖u‖C0

+ ‖B −A0‖L2],4‖dA0u0‖L2],4

≤ C (‖A−A0‖L2],4 + ‖B −A0‖L2],4) ‖d∗A0
dA0u0‖L],2

+ ‖d∗A0
(B −A0)‖L],2 ,

where C = cK0. Now ‖B − A0‖L2],4 ≤ c‖B − A0‖L2
1,A0

via the embed-

ding L2
1 ⊂ L2],4 of Lemma 4.1. For either distL],2

1,A0

([A], [A0]) ≤ 1
4C−1 or

dist
L],2

1,A0

([A], [A0]) ≤ 1
4C−1 and ‖A−A0‖L2],4 ≤ 1

4C−1, rearrangement yields

‖∆0
A0

u0‖L],2 ≤ 2‖d∗A0
(B −A0)‖L],2 .(6.10)

On the other hand, from Lemma 5.6 we have

‖u0‖L],2
2,A0

≤ C‖∆0
A0

u0‖L],2 ,

‖u0‖L4
1,A0

≤ C‖∆0
A0

u0‖L],2 ,
(6.11)
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where C = cK0 and the second bound follows from the embedding L2
2 ⊂ L4

1.
So, combining (6.10) and (6.11) yields:

‖u0‖L],2
2,A0

≤ C‖d∗A0
(B −A0)‖L],2 ,

‖u0‖L4
1,A0

≤ C‖d∗A0
(B −A0)‖L],2 .

(6.12)

Consequently, using dA0u = dA0u0 and (6.9) rewritten in the form,

u−1(B −A0)u = (A−A0)− u−1dA0u0,(6.13)

we obtain

‖A−A0‖L2],4 ≤ ‖u−1(B −A0)u‖L2],4 + ‖u−1dA0u0‖L2],4 ,(6.14)

‖A−A0‖L2
1,A0

≤ ‖u−1(B −A0)u‖L2
1,A0

+ ‖u−1dA0u0‖L2
1,A0

.(6.15)

From (6.14) and (6.12), we see that

‖A−A0‖L2],4 ≤ ‖B −A0‖L2],4 + ‖dA0u0‖L2],4

≤ distL],2
1,A0

([A], [A0]) + C‖d∗A0
(B −A0)‖L],2

≤ (1 + C) distL],2
1,A0

([A], [A0]),

giving the desired L2],4 estimate for A−A0.
Considering the first term in (6.13), we have

∇A0(u
−1(B −A0)u) = −u−1(∇A0u)u−1 ⊗ (B −A0)u

+ u−1(∇A0(B −A0))u + u−1(B −A0)⊗∇A0u,

and so applying (6.12), noting that ∇A0u = ∇A0u0 and ‖u‖C0 ≤ 1, we have

‖∇A0(u
−1(B −A0)u)‖L2 ≤ ‖∇A0u0‖L4‖B −A0‖L4 + ‖∇A0(B −A0)‖L2

≤ C dist2
L],2

1,A0

([A], [A0]) + dist
L],2

1,A0

([A], [A0]).

Thus, if dist
L],2

1,A0

([A], [A0]) ≤ 1
4C−1, say, we obtain

‖∇A0(u
−1(B −A0)u)‖L2 ≤ 2 dist

L],2
1,A0

([A], [A0]).(6.16)

Similarly, considering the second term in (6.13), we have

∇A0(u
−1dA0u0) = −u−1(∇A0u)u−1 ⊗ dA0u + u−1∇A0dA0u

and therefore, by (6.12), we see that

‖∇A0(u
−1dA0u0)‖L2 ≤ ‖∇A0u0‖2

L4 + ‖∇2
A0

u0‖L2

≤ C dist
L],2

1,A0

([A], [A0])
(

1 + C dist
L],2

1,A0

([A], [A0])
)

.



CRITICAL-EXPONENT SOBOLEV NORMS AND THE SLICE THEOREM 105

Provided dist
L],2

1,A0

([A], [A0]) ≤ 1
4C−1, we obtain

‖∇A0(u
−1dA0u0)‖L2 ≤ 2C dist

L],2
1,A0

([A], [A0]).(6.17)

Taking the L2 norm of (6.13) and applying (6.12) to estimate the second
term gives

‖A−A0‖L2 ≤ ‖B −A0‖L2 + ‖dA0u0‖L2

≤ dist
L],2

1,A0

([A], [A0]) + C‖d∗A0
(B −A0)‖L],2 ,

and so

‖A−A0‖L2 ≤ (1 + C) dist
L],2

1,A0

([A], [A0]).(6.18)

Combining the estimates (6.15), (6.16), (6.17), and (6.18) yields

‖A−A0‖L2
1,A0

≤ 2(1 + C) dist
L],2

1,A0

([A], [A0]),

giving the desired L2
1,A0

estimate for A−A0. �

Naturally, a comparison—going in the other direction—of distances from
A0 in the Coulomb slice in Ak

E through A0 and gauge-invariant distances in
Bk

E from the point [A0] is elementary: If A ∈ SA0 and ‖A − A0‖L2
k,A0

< δ,
say, then Lemma 4.1 implies that

distL],2
1,A0

([A], [A0]) ≤ c‖A−A0‖L2
k,A0

< cδ, k ≥ 1,

dist
L],2

1,A0

([A], [A0]) ≤ c‖A−A0‖L2
k,A0

< cδ, k ≥ 2,
(6.19)

for some positive constant c(X, g, k). The observation is used in concluding
that B∗, B are open subspaces of B̄1,∗,2

[A0] (ε1), B̄1,],2
[A0] (ε1), respectively:

Lemma 6.7. Let (X, g) be a closed, smooth, Riemannian four-manifold and
let G be a compact Lie group. Then there is a positive constant z with the
following significance. Let K0 = (1 + ν0[A0]−1)(1 + ‖FA0‖L2). If ε1 <

zK−2
0 (1 + ν0[A0]−1/2)−1, then:

• B∗ is an open subspace of B̄1,∗,2
[A0] (ε1);

• B is an open subspace of B̄1,],2
[A0] (ε1).

Proof. It suffices to consider the second assertion, as the argument for the
first is identical. Suppose [A] ∈ B and that A ∈ Ak

E is a representative
satisfying the defining conditions for B. Then A satisfies d∗A0

(A − A0) = 0
and the estimates

‖A−A0‖L2],4 ≤ c0K0 distL],2
1,A0

([A], [A0]),≤ c0K0ε1

‖A−A0‖L2
1,A0

≤ c0K0 dist
L],2

1,A0

([A], [A0]) ≤ c0K0ε1,
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while ‖A − A0‖L2],4 ≤ c1‖A − A0‖L2
1,A0

via the Sobolev embedding L2
1 ⊂

L2],4 and Kato’s inequality. Consequently, if c1c0K0ε1 ≤ 1
2ε0, then A ∈

B4
A0

(ε0) ⊂ Ak
E and we see that

B̄1,],2
[A0] (ε1) ⊂ π

(
B4

[A0](ε0)
)

.

Lemma 3.6 implies that the map π : B4
[A0](ε0)/ StabA0 → Bk

E given by
A′ 7→ [A′] is a local homeomorphism onto its image π(B4

[A0](ε0)) for any ε0 <

z(1 + ν0[A0]−1/2)−1. In particular, if A′ ∈ B4
[A0](ε0) and ‖A′ −A‖L2

k,A0

< δ,

then A′ ∈ B1,],2
[A0] (ε1) ⊂ B̄1,],2

[A0] (ε1) for small enough δ.
The embedding L2

1 ⊂ L2],4 and Lemma 6.6 imply that if ‖A′−A0‖L2
1,A0

≤
zK−1

0 and dist
L],2

1,A0

([A′], [A0]) ≤ zK−1
0 , then

‖A′ −A0‖L2],4 ≤ cK0 distL],2
1,A0

([A′], [A0]) ≤ cK0ε1,

‖A′ −A0‖L2
1,A0

≤ cK0 dist
L],2

1,A0

([A′], [A0]) ≤ cK0ε1.

These inequalities are satisfied by A; moreover dist
L],2

1,A0

([A], [A0]) ≤ ε1 and

‖A − A0‖L2
1,A0

≤ c0Kε1. Require that ε1 ≤ 1
2zK−1

0 and c0K0ε1 ≤ 1
2zK−1

0 ,

so ε1 ≤ 1
2z min{1, c0}K−2

0 . Hence, if A′ is L2
k,A0

-close enough to A (where
k ≥ 2), we can ensure [A′] obeys the last two defining conditions for B and
so [A′] ∈ B. Thus, B ⊂ B̄1,],2

[A0] (ε1) is open, as desired. �

We can now conclude the proof of Theorem 6.1:

Proof of Theorem 6.1. Lemmas 6.5 and 6.7 imply that B is an open and
closed subset of the connected space B̄1,],2

[A0] (ε1), so B = B̄1,],2
[A0] (ε1). Similarly

for B∗ and B̄1,∗,2
[A0] (ε1) and hence the result follows. �

Similarly, we conclude the proofs of our main theorems:

Proof of Theorem 1.1. Given Theorem 6.1, the only assertion left unacco-
unted for is the uniqueness of the gauge transformation u ∈ Gk+1

E , modulo
StabA0 . But this follows from Lemma 3.7, just as in the paragraph imme-
diately following the proof of that lemma. �

Proof of Theorem 1.2. For the proof of Assertion (1), see the first paragraph
of Section 1.3. The first inclusion in Assertion (2), namely B1,],2

[A0] (ε1) ⊂
B1,∗,2

[A0] (c1ε1), follows from the definition (1.3) of the two distance functions
defining the balls (1.4) and the Sobolev embedding L2

1 ⊂ L2],4 in Lemma 4.1.
The second inclusion in Assertion (2), namely B1,∗,2

[A0] (c1ε1) ⊂ π(B4
A0

(c2K0ε1)),
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follows from the definition (1.4) of these balls and Assertion (1) in Theo-
rem 1.1. �

7. Critical-exponent Sobolev norms and the group of gauge
transformations.

We now define an L],2
2 space of gauge transformations, by analogy with the

definition of Gk+1
E when k ≥ 2, and set

G2,],2
E :=

{
u ∈ L],2

2 (gl(E)) : u ∈ G a.e.
}
⊂ L2

k(gl(E)).

It is not entirely clear a priori that G2,],2
E is a Banach Lie group. In the case

of its counterpart, Gk+1
E , the manifold structure follows from the fact that

the exponential map

Exp : TidE
GE = Ω0(gE) → GE , ζ 7→ Exp ζ,

extends to a smooth map Exp : L2
k+1(gE) → L2

k+1(gE) and defines a system
of smooth coordinate charts for Gk+1

E . Here, Exp is defined pointwise at
u ∈ GE for ζ ∈ TidE

GE by setting

(Expu ζ)(x) := expu(x)(ζ(x)), x ∈ X,

where exp : g → G is the usual, C∞ exponential map for the Lie group G
on the right-hand side [10, Appendix A].

To verify that G2,],2
E is in fact a Banach Lie group we will need estimates

for the covariant derivatives of the exponential map. The estimates below
follow by reworking the usual proof of the Sobolev lemma for left composition
of Sobolev sections by smooth vector bundle maps [15, Lemma 9.9]. The
difference here is that we keep track of the dependence of the constants
on the geometric data: This precision is required for the implicit function
argument in the next section in order to complete the proof of our slice
theorem.

For χ, ζ, ξ ∈ Ω0(gE), the differentials

(D Exp)χ : Ω0(gE) → TExp χGE , ζ 7→ (D Exp)χζ,

(D2 Exp)χ,ζ : Ω0(gE) → TExp χGE , ξ 7→ (D2 Exp)χ,ζξ,

are defined pointwise by setting

(D Exp)χζ|x = (D exp)χ(x)ζ(x),

(D2 Exp)χ,ζξ|x = (D exp)χ(x),ζ(x)ξ(x),

for any x ∈ X. When writing the differential (D2 Exp)χ,ζ above, we have
identified T(D exp)χζ(TExp χGE) with TExp χGE .
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The maps (D Exp)χ : Ω0(gE) → Ω0(gE) and (D2 Exp)χ,ζ : Ω0(gE) →
Ω0(gE) extend linearly to maps

(D Exp)χ : C∞(⊗`(T ∗X)⊗ gE) → C∞(⊗`(T ∗X)⊗ gE),

(D2 Exp)χ : C∞(⊗`(T ∗X)⊗ gE) → C∞(⊗`(T ∗X)⊗ gE),

for ` ≥ 1, by setting

(D Exp)χ(θ ⊗ ζ) = θ ⊗ (D Exp)χζ,

(D2 Exp)χ,ζ(θ ⊗ ξ) = θ ⊗ (D2 Exp)χ,ζξ,

for θ ∈ ⊗`(T ∗X) and ξ ∈ Ω0(gE). As usual, we embed GE ⊂ Ω0(gE) in
order to compute the covariant derivatives of sections u ∈ GE .

Lemma 7.1. Let G be a compact Lie group. Then there is a positive con-
stant c(G) with the following significance. Let X be a closed, smooth, Rie-
mannian four-manifold. If A is a C∞ connection on a G bundle E, and
χ ∈ Ω0(gE), then we have pointwise bounds:

|∇Aeχ| ≤ |∇Aχ|+ c|χ||∇Aχ|,(1)

|∇2
Aeχ| ≤ c(|χ|+ |∇Aχ|)|∇Aχ|+ c(1 + |χ|)|∇2

Aχ|,(2)

|∇∗A∇Aeχ| ≤ c(|χ|+ |∇Aχ|)|∇Aχ|+ c(1 + |χ|)|∇∗A∇Aχ|.(3)

Proof. We have

∇Aeχ = ∇A(Expχ) = (D Exp)χ ◦ dAχ ∈ Ω1(gE).

Since (D exp)0 = idE and exp : g → G is analytic, we have the pointwise
bound |(D exp)χ(x) − idE| ≤ c(G)|χ(x)| and thus a pointwise bound

|(D Exp)χ − idE | ≤ c|χ|,
noting that (D Exp)0 = idE . Therefore, we have

|∇Aeχ| ≤ |∇Aχ|+ c|χ||∇Aχ|,
which gives the first assertion.

Define Φ(χ, ζ) = (D Exp)χ(ζ) ∈ Ω1(gE), for χ ∈ Ω0(gE) and ζ ∈ Ω1(gE),
noting that Φ is nonlinear in χ, but linear in ζ. Thus,

∇2
Au = (D1Φ)(χ,∇Aχ)(∇Aχ) + (D2Φ)χ(∇2

Aχ),

where DiΦ, i = 1, 2, denote the partial derivatives of Φ with respect to first
and second variables. Since (DΦ)(0,0) = (D2 Exp)(0,0) = idE , as (D2 exp)0,0

= idE, and exp : g → G is analytic we have the pointwise bound

|∇2
Au| ≤ c(|χ|+ |∇Aχ|)|∇Aχ|+ c(1 + |χ|)|∇2

Aχ|,
giving the second assertion. Similarly, as ∗Φ(χ, ζ) = Φ(χ, ∗ζ) and ∇∗A∇Au =
− ∗ ∇A ∗ ∇Au, we have

|∇∗A∇Au| ≤ c(|χ|+ |∇Aχ|)|∇Aχ|+ c(1 + |χ|)|∇∗A∇Aχ|,
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giving the third assertion. �

The preceding pointwise bounds for ∇Au, ∇2
Au, and ∇∗A∇Au yield the

following estimates for the exponential map:

Lemma 7.2. Continue the hypotheses of Lemma 7.1. If k ≥ 2 is an integer
(so L2

k+1 ⊂ C0), A is an L2
k connection on a G bundle E, and χ ∈ L2

k+1(gE),
then eχ ∈ Gk+1

E satisfies

‖∇Aeχ‖L2(X) ≤ ‖∇Aχ‖L2(X) + c‖χ‖C0(X)‖∇Aχ‖L2(X),(1)

‖∇Aeχ‖L](X) ≤ ‖∇Aχ‖L](X) + c‖χ‖C0(X)‖∇Aχ‖L](X),(2)

‖∇2
Aeχ‖L2(X) ≤ c‖χ‖C0(X)‖∇Aχ‖L2(X) + ‖∇Aχ‖2

L4(X)(3)

+ c(|1 + ‖χ‖C0(X))‖∇2
Aχ‖L2(X),

‖∇∗A∇Aeχ‖L](X) ≤ c‖χ‖C0(X)‖∇Aχ‖L](X) + ‖∇Aχ‖2
L2](X)(4)

+ c(|1 + ‖χ‖C0(X))‖∇∗A∇Aχ‖L](X).

The bounds (1)-(4) continue to hold for χ ∈ L],2
2 (gE) ⊂ C0(gE), with A an

L],2
1 connection on E, and Exp : Ω0(gE) → GE extends to a continuous map

Exp : L],2
2 (gE) → G2,],2

E .

Let A1,],2
E = A0 + L],2

1,A0
(Λ1 ⊗ gE), for any C∞ reference connection A0

on E. Recall that we have an embedding L],2
2 (gE) ⊂ C0(gE) and that

the space L],2
2 (gE) is an algebra, while L],2

1 (Λ1 ⊗ gE) and L2
1(Λ

1 ⊗ gE) are
L],2

2 (gE)-modules. Therefore, the proofs of Propositions (A.2) and (A.3) in
[10] extend to give the following analogue for G2,],2

E in place of Gk+1
E :

Lemma 7.3. Let X be a closed Riemannian four-manifold and let E be a
Hermitian vector bundle over X. Then the following hold.

(1) The space G2,],2
E is a Banach Lie group with Lie algebra TidE

G2,],2
E =

L],2
2 (gE);

(2) The action of G2,],2
E on A1

E and A1,],2
E is smooth;

(3) For A ∈ A1,],2
E , the differential, at the identity idE ∈ G2,],2

E , of the map
G2,],2

E → A1,],2
E given by u 7→ u(A) = A− (dAu)u−1 is ζ 7→ −dAζ as a

map L2,]
2 (gE) → L],2

1 (Λ1 ⊗ gE), and similarly for A ∈ A1
E.

8. Existence of gauge transformations via the inverse function
theorem.

Our goal in this section is to give an alternative, “direct” proof of Theo-
rem 6.1 via the inverse function theorem. A direct argument—due to our
overarching constraint that the constants given there ultimately depend at
most on the L2 norm of the curvature and the least positive eigenvalue
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ν0[A0]—appears to be difficult within the standard framework of Lp
2 (p > 2)

gauge transformations acting on Lp
1 connections; if this constraint is dropped

then a direct proof is standard. However, we shall see that a direct argument
is fairly straightforward within the framework of L],2

2 gauge transformations.
We already know that π(B4

A0
(ε0)) is open in Bk

E , so it necessarily contains
an L2

k,A0
-ball centered at [A0]. Via the inverse function theorem we estimate

the radii of L],2
1,A0

and L],2
1,A0

balls, B1,∗,2
[A0] (ε) and B1,],2

[A0] (ε), which are contained
in π(B4

A0
(ε0)). Let us first dispose of the question of regularity for solutions

to the second-order gauge-fixing equation:

Lemma 8.1. Let X be a closed, Riemannian four-manifold. Then there is
a constant ε with the following significance. Let G be compact Lie group and
let k ≥ 2 be an integer. Suppose that A0 is an L2

k connection on a G bundle
E, that a ∈ L2

k(Λ
1 ⊗ gE) and χ ∈ L]

2(gE), and that u = eχ is a solution to

d∗A0

(
(dA0u)u−1 − uau−1

)
= 0.

If ‖dA0u‖L4 < ε then χ ∈ L2
k+1(gE) and u = eχ ∈ Gk+1

E .

Proof. Differentiation and right multiplication by u yields

d∗A0
dA0u + ∗((∗dA0u) ∧ u−1dA0u) + ∗(dA0u ∧ ∗a) + ud∗A0

a(8.1)

+ ∗(ua ∧ ∗u−1dA0u) = 0.

From Lemma 4.2 we know that u ∈ C0∩L2
1 and so the last four terms in (8.1)

are in L2. Hence, d∗A0
dA0u is in L2 and so u ∈ L2

2 by elliptic regularity for
d∗A0

dA0 . The Sobolev embedding L2
1 ⊂ L4 and multiplication L4 ×Lq → Lp

for 2 ≤ p < 4 and 1/p = 1/4 + 1/q (so 4 ≤ q < ∞) now show that the last
three terms in (8.1) are in Lp, so the equation takes the simpler form

d∗A0
dA0u + ∗((∗dA0u) ∧ u−1dA0u) = v,(8.2)

where v ∈ Lp(gE) is the tautologically defined right-hand side and u ∈
L∞ ∩ L2

2. Setting b = dA0u and noting that dA0b = FA0u, with FA0 ∈
L2

k−1(Λ
2 ⊗ gE) ⊂ L2

1(Λ
2 ⊗ gE) and FA0u ∈ L2

1(Λ
2 ⊗ gE). Thus, we may

conveniently rewrite (8.2) as a first-order elliptic equation in b ∈ L2
1(Λ

1⊗gE),

(d∗A0
+ dA0)b + ∗((∗b) ∧ u−1b) = v′ ∈ Lp(gE)⊕ Lp(Λ2 ⊗ gE),(8.3)

where 2 < p < 4 and v′ = FA0u + v. Finally, (8.3) can be rewritten as a
local equation by writing A0 = Γ + a0, where Γ is the product connection
in a local trivialization for E over a small ball U ⊂ X. Thus, the operator
d∗A0

+dA0 is replaced by d∗+d in (8.2) and the additional terms are absorbed
into the Lp inhomogeneous term v′ to give:

(d∗ + d)b + ∗((∗b) ∧ u−1b) = v′′ ∈ Lp(U, gE)⊕ Lp(U,Λ2 ⊗ gE).(8.4)
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This is a first-order, elliptic equation with a quadratic non-linearity and
Proposition 3.10 in [6] implies that the solution b = dA0u ∈ L2

1(U,Λ1 ⊗ gE)
is necessarily in Lp

1(U
′,Λ1 ⊗ gE) for U ′ b U , provided ‖b‖L4(U) < ε(g, p, U),

and so u ∈ Lp
2(U

′, gE). In particular, we find that b ∈ Lp
1(X, Λ1 ⊗ gE) and

u ∈ Lp
2(X, gE) for any 2 < p < 4, provided ‖dA0u‖L4 < ε(g, p, X). The

bootstrapping argument of Proposition 3.3 in [6] now implies that dA0u ∈
L2

k(X, Λ1 ⊗ gE). Thus u ∈ Gk+1
E and χ ∈ L2

k+1(X, gE), as desired. �

We can now proceed to the main argument:

Theorem 8.2. Let X be a closed, Riemannian four-manifold and let G be
compact Lie group. Then there are positive constants c, z with the following
significance. Let E be a G bundle over X and suppose that that A0 ∈ A2

E,
let K0[A0] = (1 + ν0[A0]−1)(1 + ‖FA0‖L2) and let ε1 be a constant satisfying

0 < ε1 ≤ zK−2
0 .

If A ∈ A2
E obeys ‖A−A0‖L],2

1,A0

< ε1 then u ∈ G3
E exists such that

• d∗A0
(u(A)−A0) = 0;

• ‖u(A)−A0‖L2
1,A0

≤ cK0‖A−A0‖L],2
1,A0

;

• ‖u− idE‖L],2
2,A0

< cK0‖A−A0‖L],2
1,A0

.

Proof. The argument is broadly similar to that of Lemma 3.6, except that
we can show Ψ is a diffeomorphism directly—rather than just a local diffeo-
morphism—using the slightly stronger norms now at our disposal. Moreover,
on this occasion we seek precise bounds on the solutions so we keep track
of the dependence of constants on the curvature FA0 and the least positive
eigenvalue ν0 = ν0[A0] of the Laplacian ∆A0 = d∗A0

dA0 .
Write A = A0 + a and observe that

u(A)−A0 = A−A0 − (dAu)u−1 = uau−1 − (dA0u)u−1.

Recall that we have an L2-orthogonal decomposition

Ω0(gE) = (Ker dA0)
⊥ ⊕Ker dA0 = Im d∗A0

⊕Ker dA0 ,

and that d∗A0
: L2

1(Λ
1 ⊗ gE) → L2(gE) has closed range; this gives

L],2
2;A0

(gE) =
(

Ker dA0 |L],2
2;A0

)⊥
⊕Ker dA0 |L],2

2;A0

=
(

Ker d∗A0
|
L],2

2;A0

)⊥
⊕

(
Im d∗A0

|
L],2

1,A0

)
.

We have a similar L2-orthogonal decomposition

Ω1(gE) = Im dA0 ⊕Ker d∗A0
=

(
Ker d∗A0

)⊥ ⊕Ker d∗A0
,
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and dA0 : L2
1(gE) → L2(Λ1 ⊗ gE) has closed range; this leads to the L2-

orthogonal decomposition

L],2
1,A0

(Λ1 ⊗ gE) =
(

Im dA0 |L],2
2;A0

)
⊕

(
Ker d∗A0

|
L],2

1,A0

)
=

(
Ker d∗A0

|
L],2

2;A0

)⊥
⊕

(
Ker d∗A0

|
L],2

1,A0

)
.

We now define a map

Ψ :
(
Ker

(
dA0 |L],2

2

))⊥
⊕Ker

(
d∗A0

|
L],2

1

)
→ L],2

1,A0
(Λ1 ⊗ gE),(8.5)

(χ, a) 7→ uau−1 − (dA0u)u−1,

where u = eχ and the differential at (χ, a) given by

(DΨ)(χ,a) :
(
Ker

(
dA0 |L],2

2

))⊥
⊕Ker

(
d∗A0

|
L],2

1

)
→ L],2

1 (Λ1 ⊗ gE),(8.6)

(ζ, b) 7→ u(−dA ⊕ ι)u−1(ζ, b) = u(−dAζ + b)u−1,

since (DΨ)(0,a)(ζ, b) = −dAζ + b and Ψ is GE-equivariant. Moreover, we
have

(D2Ψ)(χ,a)((ζ, b), (η, α)) = u[η,−dAζ + b]u−1 + u[α, ζ]u−1,(8.7)

for (ζ, b), (η, α) ∈
(
Ker

(
dA0 |L],2

2

))⊥
⊕Ker

(
d∗A0

|
L],2

1

)
.

We now verify that the conditions of the inverse function theorem (The-
orem 3.2) hold for suitable constants K and δ. The operator

dA0 :
(
Ker

(
dA0 |L],2

2

))⊥
→

(
Ker

(
d∗A0

|
L],2

1

))⊥
has a two-sided inverse

G0
A0

d∗A0
:
(
Ker

(
d∗A0

|
L],2

1

))⊥
→

(
Ker

(
dA0 |L],2

2

))⊥
.

Indeed, for b ∈
(
Ker

(
d∗A0

|
L],2

1

))⊥
, we have

‖G0
A0

d∗A0
b‖

L],2
2,A0

≤ c0K0‖d∗A0
b‖L],2 ≤ c0K0‖b‖L],2

1,A0

,

and so G0
A0

d∗A0
has Hom

(
L],2

1,A0
, L],2

2,A0

)
operator norm bound

‖G0
A0

d∗A0
‖ ≤ c0K0.

In particular, we see that (DΨ)−1
(0,0) = G0

A0
d∗A0

⊕ id satisfies

‖(DΨ)−1
(0,0)‖ ≤ c0K0(8.8)

the first of the conditions we need to verify for (DΨ)(0,0) in order to apply
the inverse function theorem.
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It remains to compare (DΨ)(χ,a) and (DΨ)(0,0) using the mean value
theorem,

(DΨ)(χ,a)(ζ, b)− (DΨ)(0,0)(ζ, b) =
∫ 1

0
(D2Ψ)(tχ,ta)((ζ, b), (χ, a)) dt.(8.9)

Thus, we need an estimate for D2Ψ:

Claim 8.3. There is a universal polynomial function f(x, y), depending
only on (X, g) and G, with f(0, 0) = 0, such that the following holds. For
any t ∈ [0, 1] we have:

‖(D2Ψ)(tχ,ta)((ζ, b), (χ, a))‖
L],2

1,A0

≤ f

(
‖χ‖

L],2
2,A0

, ‖a‖
L],2

1,A0

) (
‖ζ‖

L],2
2,A0

+ ‖b‖
L],2

1,A0

)
.

Proof. From (8.7) we have the L],2 estimate

‖(D2Ψ)(tχ,ta)((ζ, b), (χ, a))‖L],2

≤ c‖χ‖C0 (‖dA0ζ‖L],2 + ‖a‖L],2‖ζ‖C0 + ‖b‖L],2) + c‖a‖L],2‖ζ‖C0 ,

and thus:

‖(D2Ψ)(tχ,ta)((ζ, b), (χ, a))‖L],2(8.10)

≤ c

(
‖χ‖

L],2
2,A0

+ ‖a‖L],2‖χ‖L],2
2,A0

+ ‖a‖L],2

) (
‖ζ‖

L],2
2,A0

+ ‖b‖L],2

)
.

The L2 estimate of ∇A0(D
2Ψ)(tχ,ta)((ζ, b), (χ, a)) is given by

‖∇A0(D
2Ψ)(tχ,ta)((ζ, b), (χ, a))‖L2

≤ c (‖∇A0u‖L4‖χ‖C0 + ‖∇A0χ‖L4) (‖dA0ζ‖L4 + ‖a‖L4‖ζ‖C0 + ‖b‖L4)

+ c‖χ‖C0

(
‖∇2

A0
ζ‖L2 + ‖∇A0a‖L2‖ζ‖C0 + ‖a‖L4‖∇A0ζ‖L4 + ‖∇A0b‖L2

)
+ c‖∇A0u‖L4‖a‖L4‖ζ‖L4 + c‖∇A0a‖L2‖ζ‖C0 + c‖a‖L4‖∇A0ζ‖L4 ,

and hence, using Lemma 7.2 to estimate u = eχ in terms of χ,

‖∇A0(D
2Ψ)(tχ,ta)((ζ, b), (χ, a))‖L2(8.11)

≤ f1

(
‖χ‖

L],2
2,A0

, ‖a‖L2
1,A0

) (
‖ζ‖

L],2
2,A0

+ ‖b‖L2
1,A0

)
,

where f1(x, y) is a polynomial function with f1(0, 0) = 0.
Noting that d∗A0

a = 0, we have

d∗A0
[a, ζ] = d∗A0

(aζ − ζa)(8.12)

= (d∗A0
a)ζ − a ∧ dA0ζ − ∗(dA0ζ ∧ ∗a)− ζ(d∗A0

a)

= −a ∧ dA0ζ − ∗(dA0ζ ∧ ∗a),
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and similarly for d∗A0
[χ, b] since d∗A0

b = 0. For any β ∈ L2
1(Λ

1⊗ gE) we have

d∗A0
(uβu−1) = − ∗ dA0(u(∗β)u−1))(8.13)

= − ∗ (dA0u ∧ ∗βu−1) + u(d∗A0
β)u−1

− ∗u((∗β) ∧ u(dA0u)u−1).

Therefore, Equations (8.7), (8.12), and (8.13) and the estimates for u = eχ

in Lemma 7.2 yield

‖d∗A0
(D2Ψ)(χ,a)((ζ, b), (χ, a))‖L],2(8.14)

≤
∥∥d∗A0

(
u[χ,−dAζ + b]u−1 + u[a, ζ]u−1

)∥∥
L],2

≤ f2

(
‖χ‖

L],2
2,A0

, ‖a‖L2],4

) (
‖ζ‖

L],2
2,A0

+ ‖b‖L2],4

)
,

where f2(x, y) is a polynomial function with f2(0, 0) = 0. The claim now
follows by combining (8.10), (8.11), and (8.14). �

Therefore, from Claim 8.3 and (8.9) we have

‖(DΨ)(χ,a)(ζ, b)− (DΨ)(0,0)(ζ, b)‖
L],2

1,A0

(8.15)

≤ f

(
‖χ‖

L],2
2,A0

, ‖a‖
L],2

1,A0

) (
‖ζ‖

L],2
2,A0

+ ‖b‖
L],2

1,A0

)
.

Consequently, with respect to the Hom
(
L],2

2,A0
, L],2

1,A0

)
operator norm, (8.15)

yields the bound ∥∥(DΨ)(χ,a) − (DΨ)(0,0)

∥∥ ≤ 1
2
c−1
0 K−1

0 ,(8.16)

where c0K0 = K is the constant of (8.8), provided (χ, a) satisfies the con-
straint

‖χ‖
L],2

2,A0

+ ‖a‖
L],2

1,A0

≤ c1K
−1
0 = δ.(8.17)

Define balls centered at the origins in
(
Ker

(
dA0 |L],2

2

))⊥
and Ker

(
d∗A0

|
L],2

1

)
by setting

B⊥;2,],2
0 (δ) =

{
χ ∈

(
Ker

(
dA0 |L],2

2

))⊥
: ‖χ‖

L],2
2,A0

< δ

}
,

B1,],2
0 (δ) =

{
a ∈ Ker

(
d∗A0

|
L],2

1

)
: ‖a‖

L],2
1,A0

< δ

}
.

Hence, Theorem 3.2 implies that the map

Ψ : B⊥;2,],2
0 (δ)×B1,],2

0 (δ) → A1,],2
E

is injective, its image is an open subset of A1,],2
E and contains the ball

B1,],2
A0

(δ/(2K)), the inverse map Ψ−1 is a diffeomorphism from B1,],2
A0

(δ/(2K))
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onto its image, and if (χ1, A1), (χ2, A2) are points in B⊥,2,],2
0 (δ)×B1,],2

0 (δ),
then

‖χ1 − χ2‖L],2
2,A0

+ ‖A1 −A2‖L],2
1,A0

≤ 2K‖u1(A1)− u2(A2)‖L],2
1,A0

,

where ui = eχi , i = 1, 2. In particular, setting (χ2, A2 −A0) = (0, 0), we see
that if A is a point in A1,],2

E such that ‖A− A0‖L],2
1,A0

< δ/(2K), then there

is a unique solution (χ, u−1(A)) = Ψ−1(A) in B⊥,2,],2
0 (δ) ×B1,],2

0 (δ). Here,
u = eχ is a gauge transformation with χ ∈ B⊥;2,],2

0 (δ) such that

d∗A0
(u−1(A)−A0) = 0,

‖χ‖
L],2

2,A0

+ ‖u−1(A)−A0‖L],2
1,A0

≤ 2K‖A−A0‖L],2
1,A0

.
(8.18)

Lemma 7.2 implies that u = eχ satisfies

‖u− idE‖L],2
2,A0

≤ f3

(
‖χ‖

L],2
2,A0

)
≤ c‖χ‖

L],2
2,A0

≤ c2δ,(8.19)

where f3(x) is a polynomial with coefficients depending only on (X, g) and
G such that f3(0) = 0. Noting that K = c0K0, δ = c1K

−1
0 , and δ/(2K) =

1
2c0c1K

−2
0 , the desired estimates follows from (8.18) and (8.19). Finally,

Lemma 8.1 implies that u ∈ G3
E and this completes the proof of the theorem.

�

While the L2
1 estimate of Theorem 8.2 suffices for most purposes, it is

occasionally useful to have the weaker L2],4 bound at hand. Recall from
Section 4 that we defined

‖a‖L],2
1,A0

= ‖a‖L2],4 + ‖d∗A0
a‖L],2 , a ∈ Ω1(gE).

A slight modification of the proof of Theorem 8.2 yields:

Theorem 8.4. Continue the hypotheses of Theorem 8.2. Then for any A ∈
A2

E such that ‖A − A0‖L],2
1,A0

< ε1 there is a gauge transformation u ∈ G3
E

with the following properties:
• d∗A0

(u(A)−A0) = 0;
• ‖u(A)−A0‖L2],4 ≤ cK0‖A−A0‖L],2

1,A0

;

• ‖u− idE‖L],2
2,A0

< cK0‖A−A0‖L],2
1,A0

.

Proof. The first difference in the argument is that the map Ψ in (8.5) is
replaced by

Ψ :
(
Ker

(
dA0 |L],2

2

))⊥
⊕Ker

(
d∗A0

|L],2
1

)
→ L],2

1,A0
(Λ1 ⊗ gE),

(χ, a) 7→ uau−1 − (dA0u)u−1.
(8.20)

The second difference is that Claim 8.3 is replaced by:
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Claim 8.5. There is a universal polynomial function f(x, y), depending
only on (X, g) and G, with f(0, 0) = 0, such that the following holds. For
any t ∈ [0, 1] we have:∥∥(D2Ψ)(tχ,ta)((ζ, b), (χ, a))

∥∥
L],2

1,A0

≤ f

(
‖χ‖

L],2
2,A0

, ‖a‖L2],4

) (
‖ζ‖

L],2
2,A0

+ ‖b‖L2],4

)
.

Proof. From (8.7) we now have the L2],4 estimate

‖(D2Ψ)(tχ,ta)((ζ, b), (χ, a))‖L2],4

≤ c‖χ‖C0 (‖dA0ζ‖L2],4 + ‖a‖L2],4‖ζ‖C0 + ‖b‖L2],4) + c‖a‖L2],4‖ζ‖C0 ,

and thus:

‖(D2Ψ)(tχ,ta)((ζ, b), (χ, a))‖L2],4(8.21)

≤ c

(
‖χ‖

L],2
2,A0

+ ‖a‖L2],4‖χ‖L],2
2,A0

+ ‖a‖L2],4

)
×

(
‖ζ‖

L],2
2,A0

+ ‖b‖L2],4

)
.

Combining (8.14) and (8.21) yields the claim. �

The rest of the argument is just as before. This completes the proof of
the theorem. �

We now have our second proof of Theorem 6.1 via Theorems 8.2 and 8.4:

Proof of Theorem 6.1. From the hypotheses we have A0 ∈ Ak
E and [A] ∈ Bk

E

with k ≥ 2. According to Lemma 6.3, there is gauge transformation w ∈ G3
E

such that

dist
L],2

1,A0

([A], [A0]) = ‖w(A)−A0‖L],2
1,A0

,

where A ∈ Ak
E , so Theorems 8.2 and the argument of 8.4 imply that there

is a gauge transformation v ∈ G3
E so that u(A) satisfies the conclusions of

Assertion (2) with u = vw ∈ G3
E . Since d∗A0

(u(A)−A0) = 0 and u ∈ G3
E and

A,A0 ∈ Ak
E , a standard bootstrapping argument implies that u ∈ Gk+1

E .
Similarly, by Lemma 6.3, there is gauge transformation w ∈ G3

E such that

distL],2
1,A0

([A], [A0]) = ‖w(A)−A0‖L],2
1,A0

,

so Assertion (1) follows from Theorem 8.4 in the same manner. �
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