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Lorenz Halbeisen and Benedikt Löwe

We define the dualizations of objects and concepts which
are essential for investigating the Ramsey property in the first
levels of the projective hierarchy, prove a forcing equivalence
theorem for dual Mathias forcing and dual Laver forcing, and
show that the Harrington-Kechris techniques for proving the
Ramsey property from determinacy work in the dualized case
as well.

1. Introduction.

Set theory of the reals is a subfield of Mathematical Logic mainly concerned
with the interplay between forcing and Descriptive Set Theory. One of
the motivations behind Descriptive Set Theory is the strong intuition that
simple sets of real numbers should not display irregular behaviour, or, in
other words, they should be topologically and measure theoretically nice.

In order to fill this statement with mathematical content, we should make
clear what we mean by “simple” and what we mean by “nice”. Both ques-
tions have a conventional and well known answer:

• The measure of simplicity with which we categorize our sets of reals
is the projective hierarchy, in other words, the number of quantifiers
necessary to define the sets with a formula in first order analysis (or
second order arithmetic).

• A set should be considered “nice” or “regular” if it has the Baire
property in all naturally occurring topologies on the real numbers and
is a member of all conceivably natural σ-algebras.

Set theory teaches us that the axioms of ZFC do not entail a formal
version of these intuitions: It is consistent with ZFC that there are irregular
sets already at the first level of the projective hierarchy.1 Thus the focus
shifts from proving that all simple sets are nice to investigating the situations
under which our intuitions are met by the facts.

1In Gödel’s Constructible Universe L there is a ∆1
2 set which is not Lebesgue measur-

able and which does not have the Baire property. Worse still, there is an uncountable Π1
1

set with no perfect subset and a Π1
1 set which is not Martin measurable.
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A whole array of research in this direction is dealing with the second level
of the projective hierarchy. Solovay provided us with the prototype of a
characterization theorem for the second level:

Theorem 1.1. The following are equivalent:
(i) Every Σ1

2 set of reals has the Baire property.
(ii) For every real a ∈ [ω]ω the set of Cohen generic reals over the model

L[a] is comeager in the standard topology on the real numbers.

One could call a theorem like this a “transcendence principle over the con-
structible universe”. These principles connect the theory of forcing and the
topological properties of the reals. Comparable theorems have been proved
in [JuSh89] (for the ∆1

2 level) and in [BrLö99] (for different topologies and
σ-algebras).

A particularly interesting instance of niceness in the above sense is the
Ramsey property, a topological property which is deeply connected to
Ramsey theory and infinitary combinatorics. The Ramsey property is linked
to a forcing notion called Mathias forcing, introduced by Mathias in
[Mat77], and Judah and Shelah were able to obtain the following Solovay–
type characterization for it (cf. [JuSh89, Theorem 2.7 & Theorem 2.8]):

Theorem 1.2. The following are equivalent:
(i) Every Σ1

2 set of reals has the Ramsey property.
(ii) Every ∆1

2 set of reals has the Ramsey property.
(iii) For every real a ∈ [ω]ω the set {r ∈ [ω]ω : r is Ramsey over L[a][Fr]}

is comeager in the Ellentuck topology.2

One connection to Mathias forcing is given by the following result (cf.
[HalbJu96, Theorem 4.1]):

Proposition 1.3. If N is any model of ZFC, then the following are equiv-
alent:

(i) N is a model in which every Σ1
2 set is Ramsey, and

(ii) N is Σ1
3-Mathias-absolute.3

As the Ramsey property talks about infinite subsets of the natural num-
bers, it is easily dualized by something we shall call the dual Ramsey
property, talking about infinite partitions of the natural numbers.4 This

2A real r is Ramsey over L[a][Fr] if and only if Fr := Dr∩L[a][Dr] forms an ultrafilter
in L[a][Fr], where Dr := {r′ ∈ [ω]ω : r ⊆∗ r′}, and r is LFr -generic over L[a][Fr], where
LFr is Laver forcing restricted to Fr.

3Similar characterizations also exist for some other properties, e.g., for Lebesgue mea-
surability and Baire property (cf. [BaJu95, Theorem 9.3.8]).

4Infinite subsets can be seen as images of injective functions and infinite partitions can
be seen as preimages of surjective functions, so the move from infinite subsets to infinite
partitions actually is a dualization process.
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property has been introduced by Carlson and Simpson in [CaSi84] and
further investigated in [Halb98-2] and [Halb98-1].

One thing that is striking about the relationship between the Ramsey
property and the dual Ramsey property are the distinctive symmetries and
asymmetries. This paper can be understood as a catalogue of some of the
similarities; in fact, one could see parts of this paper as an attempt to reach
the obvious dualization of Theorem 1.2:

Conjecture 1.4. The following are equivalent:
(i) Every Σ1

2 set of reals has the dual Ramsey property.
(ii) Every ∆1

2 set of reals has the dual Ramsey property.
(iii) For every real a ∈ [ω]ω the set {R : R is dual Ramsey over L[a][DR]}

is comeager in the dual Ellentuck topology.

In order to approach this conjecture and to give an idea what “dual Ram-
sey over L[a][DR]” could mean, several of the techniques of [JuSh89] and
[Mat77] have to be adapted to the new environment:

Mathias forcing has a characteristic product form M = P(ω)/fin ∗ MU

where U is the canonical name for the generic ultrafilter added by P(ω)/fin.
This ultrafilter is in fact a Ramsey ultrafilter,5 and Judah and Shelah show
in their [JuSh89] that Mathias forcing relative to an ultrafilter is forcing-
equivalent to Laver forcing relative to the same ultrafilter, provided that the
ultrafilter is Ramsey (cf. [JuSh89, Theorem 1.20 (i)]):

Theorem 1.5. Let F be a Ramsey ultrafilter. Then the forcing notions LF
and MF are equivalent.

This theorem was our motivation to search for a dual version of Laver forc-
ing and the dualization of Ramsey ultrafilters to work towards a dualization
of Theorem 1.2.

In our dualized situation there are many things to be done to make sense of
the dualized versions: One has to find a dualized version of P(ω)/fin and to
prove the corresponding product form of dual Mathias forcing (already done
in [Halb98-1]), one has to find a dualized version of Ramsey ultrafilters,
and one has to make explicit what Laver forcing in this context is supposed
to mean.

Section 2 of this paper defines all the dualized notions needed for the tech-
nical work on the dual Ramsey property. In Section 3, the reader will find a
couple of facts about a dualization of Ramsey ultrafilters; their connection
to the game filters from [Halb98-1] is given in the appendix. Section 4

5A set F ⊆ [ω]ω is a Ramsey filter if F is a filter and for any colouring τ : [ω]n → r +1
(with n, r ∈ ω) there is an x ∈ F such that τ�[x]n is constant. Notice that every Ramsey
filter is an ultrafilter.
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moves on to discuss dual Laver forcing and proves the dualized version of
Theorem 1.5.

In Sections 5 and 6 we investigate the extent of sets with the dual Ram-
sey property in the projective hierarchy. In Section 5 we prove a couple
of consistency results for the first three levels of the projective hierarchy.
After that, Section 6 looks at the dual Ramsey property from a completely
different angle: If we assume an appropriate amount of determinacy, we
know that a large collection of sets has the Ramsey property. This re-
sult is not at all immediate from the Banach-Mazur game for the topology
associated with the Ramsey property.6 However, in that section we note
that the Harrington-Kechris technique of proving the Ramsey property from
standard determinacy (cf. [HarKe81]) alone works for the dualized case as
well.

It should be mentioned that the technicalities of the dualization process
are not always as easy as they seem in retrospect. Finding the correct and
natural dualizations for the interesting notions from the classical case is the
most challenging part in this project. After the right dualizations are at
hand, in most cases one can follow the classical proofs. So, the merits of
this paper lie mainly in the definitions that make the proofs nice and easy
and give a proper and firmly rooted understanding of the symmetries. This
is also the reason for the unproportional size of Section 2 compared to the
other sections.

2. Definitions and notations.

2.0. Set-theoretic notation. Most of our set-theoretic notation is stan-
dard and can be found in textbooks like [Je78], [Ku83] or [BaJu95]. For
the definitions and some basic facts concerning the projective hierarchy we
refer the reader to [Kan94, §12].

We shall consider the set [ω]ω as the set of real numbers. For the Turing
join of two reals x and y (i.e., coding two reals into one), we use the standard
notation x⊕ y.

2.1. Partitions. A set P ⊆ P(S) is a partition of the set S if ∅ /∈ A,⋃
P = S and for all distinct p1, p2 ∈ P we have p1 ∩ p2 = ∅. An element of

a partition P is also called a block of P and dom(P ) :=
⋃
P is called the

domain of P . A partition P is called infinite, if |P | is infinite, where |P |
denotes the cardinality of the set P . The equivalence relation on S uniquely
determined by a partition P is denoted by ∼P .

6The obstacle is that playing basic open sets in this topology cannot be coded by
natural numbers. So the Banach-Mazur games essentially needs determinacy for games
with real moves, e.g., PDR. This is connected to the famous open question whether AD
implies that every set has the Ramsey property (cf. [Kan94, Question 27.18]).
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Let P and Q be two arbitrary partitions. We say that P is coarser than
Q (or that Q is finer than P ) and write P v Q, if for all blocks p ∈ P , the
set p ∩ dom(Q) is the union of some sets qi ∩ dom(P ), where each qi is a
block of Q. Let P uQ be the finest partition which is coarser than P and Q
with dom(P uQ) = dom(P ) ∪ dom(Q). We say that P is almost coarser
than Q and write P v∗ Q if there is a partition R such that dom(R) is finite
and R u P v Q. If P v∗ Q and Q v∗ P , then we write P ∗= Q.7

Let P and Q be two partitions. If for each p ∈ P there is a q ∈ Q
such that p = q ∩ dom(P ), we write P 4 Q. Note that P 4 Q implies
dom(P ) ⊆ dom(Q).

For x ⊆ ω let min(x) :=
⋂
x. If P is a partition with dom(P ) ⊆ ω, then

Min(P ) := {min(p) : p ∈ P}; and for n ∈ ω, P (n) denotes the unique block
p ∈ P such that |min(p) ∩Min(P )| = n+ 1.

The set of all infinite partitions of ω is denoted by (ω)ω; and the set of
all partitions s with dom(s) ∈ ω is denoted by (N).

For s ∈ (N), let s∗ denote the partition s ∪
{
{dom(s)}

}
. Notice that

|s∗| = |s|+ 1.
For a natural number n, let (ω)n∗ denote the set of all u ∈ (N) such that

|u| = n. Further, for n ∈ ω and X ∈ (ω)ω let

(X)n∗ := {u ∈ (N) : |u| = n ∧ u∗ v X} ,
and for s ∈ (N) such that |s| ≤ n and s v X, let

(s,X)n∗ := {u ∈ (N) : |u| = n ∧ s 4 u ∧ u∗ v X} .
It will be convenient to consider ω as the partition which contains only

singletons, and therefore, for s ∈ (N), (s, ω)n∗ := {u ∈ (N) : |u| = n∧s 4 u}.

A family F ⊆ (ω)ω is called a filter if
(α) ∅ /∈ F;
(β) If X ∈ F and X v Y , then Y ∈ F;
(γ) If X and Y belong to F, then X u Y ∈ F.

Further, we call F ⊆ (ω)ω an ultrafilter if F is a filter which is not properly
contained in any filter. Notice that if X ∈ F and F ⊆ (ω)ω is an ultrafilter,
then each Y ∈ (ω)ω with Y ∗= X belongs to F, too.

2.2. The dual Ellentuck topology and the dual Ramsey property.
Let X ∈ (ω)ω and s ∈ (N) be such that s v X. Then

(s,X)ω := {Y ∈ (ω)ω : s 4 Y v X}
and

(X)ω := (∅, X)ω = {Y ∈ (ω)ω : Y v X}.
7We choose this notation because the properties of v and u are similar to those of ⊆

and ∩.
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Obviously, this definition depends on the model we are working in, so, if
this should become important, we denote by (s,X)ω

N the corresponding set
interpreted in the model N.

Let the basic open sets on (ω)ω be ∅ and the sets (s,X)ω, where s and X
are as above. These sets are called the dual Ellentuck neighbourhoods.
The topology induced by the dual Ellentuck neighbourhoods is called the
dual Ellentuck topology (cf. [CaSi84]).

A family A ⊆ (ω)ω has the dual Ramsey property (or just is dual
Ramsey) if and only if there is a partition X ∈ (ω)ω such that either
(X)ω ⊆ A or (X)ω ∩A = ∅.

Closely related (but stronger) is the notion of a completely dual Ramsey
set: A set A ⊆ (ω)ω is said to be completely dual Ramsey if and only
if for each dual Ellentuck neighbourhood (s,X)ω there is a Y ∈ (s,X)ω

such that (s, Y )ω ⊆ A or (s, Y )ω ∩ A = ∅. If we are always in the latter
case, then A is called completely dual Ramsey-null. It is not clear if
“every projective set is completely dual Ramsey” is really stronger than just
“every projective set is dual Ramsey”, because we cannot simply translate
Lemma 2.1 of [BrLö99], where it is shown among other things that “every
projective set is Ramsey” and “every projective set is completely Ramsey”
are equivalent.

Carlson and Simpson proved in [CaSi84] that a set A is completely dual
Ramsey if and only if A has the Baire property with respect to the dual
Ellentuck topology and A is completely dual Ramsey-null if and only if A is
meager with respect to the dual Ellentuck topology.8 As a matter of fact
we like to mention that in the dual Ellentuck topology every meager set is
nowhere dense and hence, the dual Ellentuck topology is a Baire topology
(i.e., no open set is meager). This corresponds to the similar facts about
“being completely Ramsey” and the Ellentuck topology.9

2.3. Dual Mathias forcing. The conditions of the dual Mathias forcing
MF = 〈MF,≤〉 are the pairs 〈s,X〉 such that (s,X)ω is a non-empty dual
Ellentuck neighbourhood, and the partial order is defined by

〈s,X〉 ≤ 〈t, Y 〉 ⇔ (s,X)ω ⊆ (t, Y )ω.

If 〈s,X〉 is an MF-condition, then we call s the stem of the condition.

If G is MF-generic over N, then G induces in a canonical way an infinite
partition XG ∈ (ω)ω such that N[G] = N[XG], and therefore we consider

8A set S has the Baire property if there is an Borel set B such that the symmetric
difference S4B is meager, where a meager set is the union of countably many nowhere
dense sets.

9Cf. [El74] & [Ke95, §19.D].
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the partition XG as the generic object. We can reconstruct the original G
from XG by observing that

〈s,X〉 ∈ G ⇐⇒ XG ∈ (s,X)ω
N[G].

Since the dual Ellentuck topology is innately connected with dual Mathias
forcing, we choose the following notation for meager and comeager sets in
the dual Ellentuck topology:

A ∈ (mF
0 ) ⇐⇒ A is dual Ellentuck meager, and

A ∈ (mF
1 ) ⇐⇒ A is dual Ellentuck comeager,

i.e., (ω)ω \A is dual Ellentuck meager.

Since A is dual Ellentuck meager if and only if A is completely dual
Ramsey-null, (mF

0 ) ⊆ P((ω)ω) is also the ideal of completely dual Ramsey-
null sets.

The following fact gives two properties of dual Mathias forcing which also
hold for Mathias forcing.

Fact 2.1. If XG is MF-generic and Y ∈ (XG)ω, then Y is MF-generic as
well (we will call this property the homogeneity property); and therefore,
dual Mathias forcing is proper. Moreover, for any sentence Φ of the forcing
language MF and for any MF-condition 〈s,X〉, there is an MF-condition
〈s, Y 〉 ≤ 〈s,X〉 such that 〈s, Y 〉 MFΦ or 〈s, Y 〉 MF¬Φ (this property is
called pure decision).

Proof. For a proof, cf. [CaSi84, Theorem 5.5 & Theorem 5.2]. �

As an immediate consequence we get that the set of dual Mathias generic
partitions over every model N is either empty or a non-meager set which is
completely dual Ramsey.

Like Mathias forcing, dual Mathias forcing has also a characteristic prod-
uct form.

Let UF = 〈(ω)ω,≤〉 be the partial order defined as follows:

X ≤ Y ⇔ X v∗ Y.

UF is the natural dualization of P(ω)/fin.
For a family E ⊆ (ω)ω we define the restricted dual Mathias forcing

MF

E as follows. The conditions of MF

E = 〈MF

E ,≤〉 are the MF-conditions
〈s,X〉 such that X ∈ E.

Now we get

Fact 2.2. MF = UF∗MF

G, where G is the canonical name for the UF-generic
object.

Proof. For a proof, cf. [Halb98-1, Fact 2.5]. �
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2.4. Restricted dual Laver forcing. In order to define the forcing notion
which will be investigated later on, we first have to give some notations.

For T ⊆ (N) and t ∈ T we define the successor set of t in T as follows:

succT (t) := {u ∈ T : t 4 u ∧ |u| = |t|+ 1} .
Let E ⊆ (ω)ω be any non-empty family (later on we investigate only the

case when E is an ultrafilter).
With respect to E, we define the dual Laver forcing restricted to E,

denoted by LF

E = 〈LF

E,≤〉, as follows:
(α) p ∈ LF

E if and only if p ⊆ (N) with the property that there is an s ∈ p
(denoted stem(p)) such that for all t ∈ p we have s 4 t.

(β) There exists a set {Xp
t : t ∈ p} ⊆ E such that for t ∈ p we have t∗ v Xp

t

and
succp(t) = {u : u ∈ (t∗, Xp

t )(|t|+1)∗} .
Further, for t, u ∈ p with t 4 u we have

(u,Xp
u)ω ⊆ (t,Xp

t )ω ,

and if dom(t) = dom(u) and t v u, then

Xp
t = Xp

u .

(γ) For two LF

E-conditions p and q we stipulate

p ≤ q ⇐⇒ p ⊆ q.

Notice that p ≤ q implies stem(q) 4 stem(p) and hence, if G ⊆ LF

E is LF

E-
generic over some N, then the set {s : s = stem(p) for some p ∈ G} forms
in a canonical way a partition XG ∈ (ω)ω. Moreover, N[G] = N[XG] and
therefore we may consider also the partition XG as the LF

E-generic object.
For an LF

E-condition p we call a partition X ∈ (ω)ω a branch of p if each
t ∈ (N) with t∗ v X belongs to p.

Fact 2.3. If X is a branch of the LF

E-condition p where stem(p) = s and
Y ∈ (s,X)ω, then Y is a branch of p, too.

Proof. This follows immediately from (β). �

2.5. Special ultrafilters on (ω)ω. A family F has the segment colour-
ing property (or just scp) if for any s v X ∈ F with |s| = n and for
any colouring π : (s,X)(n+k)∗ → r, where r and n + k are positive natural
numbers, there is a Y ∈ (s,X)ω∩F such that (s, Y )(n+k)∗ is monochromatic.

A family F ⊆ (ω)ω is an scp-filter if F is a filter which has the segment
colouring property.

In Section 7 we shall introduce the notion of game filters (from
[Halb98-1]) and show that game filters are scp-filters.

Fact 2.4. If F ⊆ (ω)ω is an scp-filter, then F is an ultrafilter.
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Proof. Let F ⊆ (ω)ω be an scp-filter and assume that there exists an X ∈
(ω)ω such that for every Y ∈ F, X u Y ∈ (ω)ω. Let π : (ω)n∗ → 2 be such
that π(s) = 0 if s ∈ (X)n∗, otherwise π(s) = 1. Because F has the segment
colouring property, we find a Y ∈ F such that π�(Y )n∗ is constant. If
π�(Y )n∗ = {1}, then XuY /∈ (ω)ω which contradicts the assumption. Thus,
π�(Y )n∗ = {0}, which implies X ∈ F and hence, the filter F is maximal. �

A family F is diagonalizable if for any LF

F-condition p, there is a partition
X ∈ F such that X is a branch of p. Notice that a diagonalizable family can
also be characterized by a two player game, where the LF

F-condition p can
be considered as a strategy for player I.

A family F is a RamseyF filter if F is a diagonalizable scp-filter.

In Footnote 5 we have defined Ramsey ultrafilters over ω in terms of
colourings. This definition corresponds to the definition of scp-filters. On
the other hand, Galvin and Shelah proved that Ramsey ultrafilters can be
characterized as well by a two player game without a winning strategy for
player I, where a winning strategy for player I is in fact a restricted Laver-
condition (cf. [BaJu95, Theorem 4.5.3]). This definition of Ramsey ultra-
filters corresponds to diagonalizable filters. It is possible that the notions
of “scp-filters” and “diagonalizable filters” are equivalent, but this is still
open.

Beyond the dualization of the notion of a Ramsey ultrafilter, the dual-
ization process leading from [ω]ω to (ω)ω has interesting consequences for
the spaces of ultrafilters on these spaces. These consequences belong to the
asymmetrical aspects of the relationship between [ω]ω and (ω)ω and are the
point of focus in [HalbLö∞].

2.6. Switching between reals and partitions. We fix [ : [ω]2 → ω to
be any arithmetic bijection between the set of pairs of natural numbers and
ω.

Let x ∈ [ω]ω; then the set trans(x) ⊆ ω is defined by

n ∈ trans(x) : ⇐⇒ ∃s ∈ ω<ω
(
n = [(s(0), s(|s| − 1)) and

∀k ∈ |s| − 1([(s(k), s(k + 1)) ∈ x)
)
.

As the name suggests, trans(x) is the set of codes of pairs in the transitive
closure of the relation [(k, `) ∈ x. A real x is called transitive if trans(x) =
x.

Note that in general trans(x) ⊆ x and that the relation

Rx(k, `) : ⇐⇒ [(k, `) ∈ trans(x)
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is symmetric (by choice of the domain of [) and transitive. Thus, if x ∈ [ω]ω,
we can consider x as a partition (by reflexivization of Rx) via

n ∼x m : ⇐⇒ n = m or [(n,m) ∈ trans(x).

We call this partition the corresponding partition of x ∈ [ω]ω, and
denote it by cp(x). Note that cp(x) ∈ (ω)ω if

∀k∃n > k∀m < n(¬(n ∼x m))

and further if y ⊆ x, then cp(y) w cp(x).
We encode a partition X of ω by a real pc(X) (the partition code of

X) as follows.

pc(X) := {k ∈ ω : ∃n∃m(k = [(n,m) ∧ (n ∼X m))}.
Note that if X v Y then pc(X) ⊇ pc(Y ).

Notice that both the function pc and the function cp are arithmetic, and
that they are in a sense inverse to each other:

Observation 2.5. For every X ∈ (ω)ω and every x ∈ [ω]ω the following
hold:

(i) cp(pc(X)) = X, and
(ii) if x is transitive, then pc(cp(x)) = x.

Now, a set A ⊆ [ω]ω has the dual Ramsey property (or just is dual
Ramsey) if and only if the set {X ∈ (ω)ω : ∃x ∈ A(X = cp(x))} has the
dual Ramsey property. By Observation 2.5, this is equivalent to saying that
the set {X ∈ (ω)ω : pc(X) ∈ A} has the dual Ramsey property.

By the definition of the dual Ramsey property we have that every Σ1
n set

is dual Ramsey if and only if every Π1
n set is dual Ramsey. Furthermore, we

have by [Halb98-1, Lemma 7.2] that if every Σ1
n set is dual Ramsey then

every Σ1
n set has the classical Ramsey property.

As a matter of fact we like to mention the following

Proposition 2.6. If every ∆1
n set has the dual Ramsey property, then every

∆1
n set has the Ramsey property.

Proof. Suppose A is a ∆1
n set of reals. Let ϕ be a Σ1

n formula and ψ be a
Π1

n formula witnessing this, i.e.,

x ∈ A ⇐⇒ ϕ(x) ⇐⇒ ψ(x).

To show that A is Ramsey we define a different ∆1
n set by formulae ϕ∗ and

ψ∗ as follows:

ϕ∗(v) : ⇐⇒ ∃w(w = Min(cp(v)) ∧ ϕ(w)),

ψ∗(v) : ⇐⇒ ∀w(w = Min(cp(v)) → ψ(w)).
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Obviously, ϕ∗ is Σ1
n and ψ∗ is Π1

n, and since Min(cp(v)) is uniquely
determined for each v, these two formulae are equivalent and hence define
a ∆1

n set A∗ of reals. The rest of the proof is exactly as in [Halb98-1,
Lemma 7.2]. �

And as a corollary we get

Corollary 2.7. If every ∆1
2 set is dual Ramsey, then every Σ1

2 set is Ram-
sey.

Proof. This follows immediately from Proposition 2.6 by Theorem 1.2. �

2.7. Descriptive Set Theory of the Cabal. For our results in Section 6
we shall need some basic notions of the Descriptive Set Theory of the Cabal
Seminar. Everything we lay out here can be found in [Mo80], our account
is just for the convenience of the more combinatorially oriented reader who
might be unfamiliar with the language of the Cabal.

We shall presuppose basic knowledge with the standard notation for de-
terminacy and the elementary results of the theory of perfect information
games as outlined in [Kan94, §27].

Let X be a set of reals and α ∈ Ord. Any surjective function ϕ : X → α
is called a norm on X. The ordinal α is called the length of ϕ. A family
Φ := 〈ϕn : n ∈ ω〉 of norms on X is called a scale on X if for every sequence
〈xi : i ∈ ω〉 ⊆ X and every n ∈ ω the following holds: If 〈ϕn(xi) : i ∈ ω〉 is
eventually constant, say, equal to λn, then x := limi∈ω xi ∈ X and ϕn(x) ≤
λn.10

Let Γ be any pointclass, ϕ any norm on X, and Φ any scale on X. We
shall call ϕ a Γ norm if there are two relations R and R∗ in Γ such that:

y ∈ X ⇒ ∀x
(
(x ∈ X ∧ ϕ(x) ≤ ϕ(y)) ⇐⇒ R(x, y) ⇐⇒ ¬R∗(x, y)

)
.

We call a scale Φ a Γ scale if all norms ϕn occurring in Φ are Γ norms,
uniformly in n.11 We shall say that a set X admits a Γ norm (a Γ scale)
if there is a norm (a scale) on X that is a Γ norm (a Γ scale).

The fundamental theorems connecting determinacy, norms and scales are
the “Periodicity Theorems” of [AdMo68], [Mar68] and [Mo71]. In the
following we shall need the first two Periodicity Theorems in special cases:

First Periodicity Theorem 2.8. Suppose that Det(∆1
2n) holds and x ∈

[ω]ω is a real. Then every Π1
2n+1(x) set admits a Π1

2n+1(x) norm.

Second Periodicity Theorem 2.9. Suppose that Det(∆1
2n) holds and x ∈

[ω]ω is a real. Then every Π1
2n+1(x) set admits a Π1

2n+1(x) scale.

10For the basic theory of scales, cf. [KeMo78].
11A more precise definition can be found in [Mo80, p. 228].
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For proofs of these theorems (in a much more general formulation), we
refer the reader to [Mo80, 6B.1 & 6C.3].

We define (for every n ∈ ω) the projective ordinals by

δ1
n := sup{‖≤‖ : ≤ is a ∆1

n prewellordering on [ω]ω},
and note that for every Π1

2n+1 complete set the length of every Π1
2n+1 norm

on it is exactly δ1
2n+1 ([Mo80, 4C.14]).

Let P x
2n+1 be a Π1

2n+1(x) complete set of reals. Assuming Det(∆1
2n) we

get a Π1
2n+1(x) scale Φx = {ϕx

m : m ∈ ω} for P x
2n+1 by Theorem 2.9.

For any real y ∈ P x
2n+1, we denote by Φx(y) the sequence of ordinals

determined by the scale, i.e., Φx(y) = 〈ϕx
m(y) : m ∈ ω〉.

Now let

T x
2n+1 := {〈y�m,Φx(y)�m〉 : y ∈ P x

2n+1,m ∈ ω}
be the tree associated to Φx. By the remark about the lengths of norms,
it is a tree on ω × δ1

2n+1. If x is any recursive real, we write T2n+1 instead
of T x

2n+1.
The model L[T2n+1] can be seen as an analogue of the constructible uni-

verse L in the odd projective levels: The (Shoenfield) Π1
1 scale for a Π1

1

complete set is in L, hence L[T1] = L.12 Indeed, the reals of L[T2n+1] are
exactly the reals of M2n, the canonical iterable inner model with 2n Woodin
cardinals.13

Moreover, not just the reals of the models, but the models L[T2n+1] them-
selves are independent of the choices of the particular Π1

2n+1 complete set
and the scale on it, as has been shown by Becker and Kechris in [BeKe84,
Theorem 1 & 2]:

Theorem 2.10. Assume PD and let x ∈ [ω]ω be a real. If P and Q are
Π1

2n+1(x) complete sets, Φ and Ψ are scales on P and Q, respectively, and
T and S are the trees associated to Φ and Ψ, respectively. Then L[T ] = L[S].

Another consequence of determinacy which will be mentioned only briefly
to simplify notation is the existence of largest countable sets of certain (light-
face) complexity classes:

Theorem 2.11. Let x ∈ [ω]ω be a real. Suppose that Det(∆1
2n(x)) holds.

Then there is a largest countable Σ1
2n+2(x) set which will be denoted by

C2n+2(x).14

Proof. Cf. [KeMo72, Theorem 2]. �

12For a proof, cf. [KeMo78, 9C].
13Combine [St95, Corollary 4.9] with [HarKe81, Theorem 7.2.1].
14As for the trees T2n+1, we shall omit the parameter x and write C2n+1 if the real x

is recursive.
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3. On RamseyF ultrafilters.

In this section we show that RamseyF ultrafilters exist if we assume CH and
that in general both existence and non-existence of RamseyF ultrafilters are
consistent with ZFC.

First we show that an scp-ultrafilter induces in a canonical way a Ramsey
filter on ω.

Fact 3.1. If F ⊆ (ω)ω is an scp-ultrafilter, then {Min(X) : X ∈ F} \ {0} is
a Ramsey filter on ω.

Proof. For positive natural numbers n and r let τ : [ω]n → r be any colour-
ing. We define π : (ω)n∗ → r by stipulating π(s) := τ

(
Min(s∗) \ {0}

)
. It is

easy to see that if π�(X)n∗ is constant for an X ∈ F, then τ�[Min(X)\{0}]n
is constant, too. �

Proposition 3.2. It is consistent with ZFC that there are no scp-ultrafilters.

Proof. Kunen proved (cf. [Je78, Theorem 91]) that it is consistent with
ZFC that there are no Ramsey filters on ω. Therefore, by Fact 3.1, in a
model of ZFC in which there are no Ramsey filters, there are also no scp-
ultrafilters. �

Let UF = 〈(ω)ω,≤〉 be the partial order defined as in Subsection 2.3. It
is easy to see that the forcing notion UF is σ-closed (this is part of Fact 2.3
of [Halb98-1]).

Lemma 3.3. If G is UF-generic over V, then G is an scp-ultrafilter in
V[G].

Proof. Let s ∈ (N) and k ∈ ω with |s| = n and n + k > 0. Further, let
π : (ω)(n+k)∗ → r be any colouring and for s v X ∈ (ω)ω let

Hπ(s,X) := {Y ∈ (s,X)ω : π(s,X)�(s, Y )(n+k)∗ is constant} .

By the main result of [Halb∞] and its proof, for every dual Ellentuck neigh-
bourhood (s,X)ω and for any colouring π : (s,X)(n+k)∗ → r, there is a
Y ∈ (s,X)ω such that π�(s, Y )(n+k)∗ is constant. Hence, for any dual El-
lentuck neighbourhood (s,X)ω and for any colouring π : (ω)(n+k)∗ → r,
the set Hπ(s,X) is dense below X. Because every such colouring π can be
encoded by a real and UF is σ-closed, the forcing notion UF does not add
any colouring π, which implies, because G meets each dense set, that G is
an scp-ultrafilter in V[G]. �

We can prove with similar arguments:

Lemma 3.4. If G is UF-generic over V, then G is a diagonalizable ultra-
filter in V[G].
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Proof. Let ṗ be a UF-name such that

UF“ṗ is an LF

G-condition”,

where G is the canonical name for the UF-generic object, and let X be
any UF-condition. Because ṗ can be encoded by a real number and UF

is σ-closed, there is a UF-condition Y ≤ X and a real p′ ∈ V such that
Y UFp′ = ṗ, which implies Y v∗ succp′(t) for every t ∈ p′. By induction
one can construct a Z v∗ Y such that Z is a branch of p′ and therefore,

Z UF“there is a branch of ṗ which belongs to G”.

Since Z ≤ X, this completes the proof. �

Proposition 3.5. Assume CH, then there is a RamseyF ultrafilter.

Proof. Assume V |= CH. Let χ be large enough such that P((ω)ω) ∈ H(χ),
i.e., the power set of (ω)ω (in V) is hereditarily of size < χ. Let N be an
elementary submodel of 〈H(χ),∈〉 containing all reals of V with |N| = 2ℵ0 .
We consider the forcing notion UF in the model N. Because |N| = 2ℵ0 , in
V there is an enumeration {Dα ⊆ (ω)ω : α < 2ℵ0} of all dense sets of UF

which lie in N. Since UF is σ-closed and because V |= CH, UF is 2ℵ0-closed
in V and therefore we can construct a descending sequence {pα : α < 2ℵ0}
in V such that pα ∈ Dα for each α < 2ℵ0 . Let G := {p ∈ (ω)ω : pα v
p for some pα}, then G is UF-generic over N. By Lemma 3.3 and Lemma 3.4
we have N[G] |= “there is a RamseyF ultrafilter”, and because N contains
all reals of V and every function f : (ω)n∗ → r (where n, r ∈ ω) and every
LF

G-condition p can be encoded by a real number, the RamseyF ultrafilter
in N[G] is also a RamseyF ultrafilter in V, which completes the proof. �

4. On LF

F and MF

F for RamseyF filters F.

In this section, F ⊆ (ω)ω denotes always a RamseyF ultrafilter.
We shall show that the forcing notions LF

F and MF

F are equivalent and
that both forcing notions have pure decision and the homogeneity property
(this means that coarsenings of generic objects remain generic, see Fact 2.1).
We show first that MF

F has pure decision and the homogeneity property. To
show this we will follow [Halb98-1, Section 4].

If s ∈ (N) and s v X ∈ F, then we call the dual Ellentuck neighbourhood
(s,X)ω an F-dual Ellentuck neighbourhood and write (s,X)ω

F to em-
phasize that X ∈ F. A set O ⊆ (ω)ω is called F-open if O can be written
as the union of some F-dual Ellentuck neighbourhoods.

For s ∈ (N) remember that s∗ = s ∪
{
{dom(s)}

}
.

Let O ⊆ (ω)ω be an F-open set. Call (s,X)ω
F good (with respect to O),

if for some Y ∈ (s,X)ω
F ∩F, (s, Y )ω

F ⊆ O; otherwise call it bad. Note that if
(s,X)ω

F is bad and Y ∈ (s,X)ω
F∩F, then (s, Y )ω

F is bad, too. We call (s,X)ω
F
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ugly if (t∗, X)ω
F is bad for all s 4 t∗ v X with |t| = |s|. Note that if (s,X)ω

F

is ugly, then (s,X)ω
F is bad.

Lemma 4.1. Let F ⊆ (ω)ω be a RamseyF ultrafilter and O ⊆ (ω)ω an F-
open set. If (s,X)ω

F is bad (with respect to O), then there is a Z ∈ (s,X)ω
F

such that (s, Z)ω
F is ugly.

Proof. We begin by constructing an LF

F-condition p. Let s0 be such that
s 4 s∗0 v X and |s| = |s0|, and put stem(p) := s0. If there is an Y ∈
(s∗0, X)ω

F ∩ F such that (s∗0, Y )ω
F ⊆ O, then Xs0 := Y , otherwise, Xs0 := X.

Let s∗n+1 4 (sn uXsn) be such that |sn+1| = |sn| + 1 = |s| + n + 1 and let
{ti : i ≤ h} be an enumeration of all t such that s0 4 t v sn+1, |t| = |s| and
dom(t) = dom(sn+1). Further let Y −1 := Xsn . Now choose for each i ≤ h a
partition Y i ∈ F such that Y i v Y i−1, s∗n+1 4 Y i and ((ti)∗, Y i)ω

F is bad or
((tin)∗, Y i)ω

F ⊆ O and finally, let Xsn+1 := Y h.
Put p := {t ∈ (N) : s0 4 t∗ v s∗n for some n ∈ ω}. Since F is diagonaliz-

able, there is a partition Y ∈ F which is a branch of p. We may assume that
s0 4 Y . Define SY := {t : s 4 t∗ v Y ∧ |t| = |s|}; then, by the construction
of p, for all t ∈ SY we have either (t∗, Y )ω

F is bad or (t∗, Y )ω
F ⊆ O. Now let

B0 := {t ∈ SY : (t, Y )ω
F is bad} andB1 := {t ∈ SY : (t∗, Y )ω

F ⊆ O} = SY \B0.
Because F is an scp-filter, there is a partition Z ∈ (s, Y )ω

F ∩ F such that
SZ ⊆ B0 or SZ ⊆ B1. If we are in the latter case, we have (s, Z)ω

F ⊆ O,
which is a contradiction to our assumption that (s,X)ω

F is bad. So, we must
have SZ ⊆ B0, which implies that (s, Z)ω

F is ugly and completes the proof
of the Lemma. �

Lemma 4.2. If F is a RamseyF ultrafilter and O ⊆ (ω)ω is an F-open
set, then for every F-dual Ellentuck neighbourhood (s,X)ω

F, there is a Y ∈
(s,X)ω

F ∩ F such that (s, Y )ω
F ⊆ O or (s, Y )ω

F ∩ O ∩ F = ∅.

Proof. If (s,X)ω
F is good, then we are done. Otherwise, we can construct

an LF

F-condition p in a similar way as in Lemma 4.1, such that for any
branch Y of p which belongs to F we have the following: For each t with
s 4 t∗ v Y , the set (t∗, Y )ω

F is bad. We claim that (s, Y )ω
F∩O∩F = ∅. Take

any Z ∈ (s, Y )ω
F ∩ O ∩ F. Because O is F-open we find a t 4 Z such that

(t∗, Z)ω
F ⊆ O. Because s 4 t∗ v Y we have by construction that (t∗, Y )ω

F is
bad. Hence, there is no Z ∈ (t∗, Y )ω

F such that (t∗, Z)ω
F ⊆ O. This completes

the proof. �

Now we can show that MF

F has pure decision and the homogeneity prop-
erty.

Theorem 4.3. Let F be a RamseyF ultrafilter and let Φ be a sentence of
the forcing language. For any MF

F-condition 〈s,X〉 there is a MF

F-condition
〈s, Y 〉 ≤ 〈s,X〉 such that 〈s, Y 〉 MF

F
Φ or 〈s, Y 〉 MF

F
¬Φ.
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Proof. The proof is same as the proof of [Halb98-1, Theorem 4.3], using
Lemma 4.2. �

The next theorem shows in fact that if F is a RamseyF ultrafilter, then
MF

F is proper.

Theorem 4.4. Let F ⊆ (ω)ω be a RamseyF ultrafilter, then MF

F has the
homogeneity property.

Proof. The proof is same as the proof of [Halb98-1, Theorem 4.4], using
Lemma 4.2. �

In order to show that MF

F and LF

F are equivalent if F is a RamseyF ultra-
filter, we define first some special LF

F-conditions.
An LF

F-condition p is called uniform if there is a partition X ∈ F such
that (t,X)ω = (t,Xp

t )ω for every t ∈ p; this partition is denoted by u(p).
These conditions roughly correspond to the simple conditions of [JuSh89,
Definition 1.10].

Lemma 4.5. If F is a RamseyF ultrafilter, then the set of all uniform LF

F-
conditions is dense and open in LF

F.

Proof. Let p ∈ LF

F with s = stem(p), then, since F is diagonalizable, there
is an X ∈ F which is a branch of p. Let q be the uniform condition with
u(q) = X and stem(q) = s. Note that X is a branch of q. By Fact 2.3, each
Y ∈ (s,X)ω is also a branch of p, which implies that q ≤ p. �

Theorem 4.6. If F is a RamseyF ultrafilter, then MF

F and LF

F are forcing
equivalent.

Proof. Let I := {p ∈ LF

F : p is uniform} and define

j : I −→ MF

F

p 7−→ 〈stem(p),u(p)〉 ,
then it is easily checked that j is a dense embedding and because (by
Lemma 4.5) I is dense open in LF

F, this completes the proof. �

This is the promised dualization of Theorem 1.5 and possibly one step
towards a proof of Conjecture 1.4.

5. The dual Ramsey property for simple pointclasses.

In the following we will show that it is consistent with ZFC that the sets in
the first levels of the projective hierarchy are dual Ramsey. We begin with
the analytic sets:

Because MF has pure decision and the homogeneity property, one can
show the pretty straightforward
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Fact 5.1. Analytic sets are completely dual Ramsey.

Proof. Let A be an arbitrary Σ1
1(a) set with parameter a ∈ [ω]ω and let

(s, Y )ω be any dual Ellentuck neighbourhood and 〈s, Y 〉 the corresponding
MF-condition. Take a countable model N of a sufficiently large fragment
of ZFC which contains Y and a. Let XG be the canonical name for the
MF-generic object. Because MF has pure decision we find an MF-condition
〈s, Z〉 ≤ 〈s, Y 〉 which decides “XG ∈ Ȧ”. Since N is countable, there is an
X ∈ (s, Z)ω which is MF-generic over N and because every X ′ ∈ (s,X)ω is
also MF-generic we have

N[X] |= “(s,X)ω ⊆ A or (s,X)ω ∩A = ∅”.
Because A and (s, Y )ω were arbitrary and Σ1

1 sets are absolute between V
and N, we are done. �

Note that Fact 5.1 is verified without any reference to forcing by looking
at the unfolded version of the Banach–Mazur game for the dual Ellentuck
topology.15

Remember that according to Proposition 2.6 if every ∆1
2 set is dual Ram-

sey then every ∆1
2 set has the classical Ramsey property. Because it is not

provable in ZFC that every ∆1
2 set is Ramsey, it is also not provable in ZFC

that every ∆1
2 set is dual Ramsey (e.g., L |= “There is a ∆1

2 set which is
not dual Ramsey”). On the other hand we have

Fact 5.2. The following theories are equiconsistent:
(a) ZFC.
(b) ZFC + CH + every Σ1

2 set is dual Ramsey.
(c) ZFC + 2ℵ0 = ℵ2 + every Σ1

2 set is dual Ramsey.

Proof. We get both (b) and (c) by an iteration (of length ω1 and ω2 respec-
tively) of dual Mathias forcing with countable support, starting from L (cf.
also [Halb98-1, Theorems 6.2 & 6.3]). �

Remember that (mF
0 ) = {A ⊆ (ω)ω : A is completely dual Ramsey-null}

and let
add(mF

0 ) := min
{
|E| : E ⊆ (mF

0 ) ∧
⋃

E /∈ (mF
0 )

}
and

cov(mF
0 ) := min

{
|E| : E ⊆ (mF

0 ) ∧
⋃

E = (ω)ω
}
.

In [Halb98-2] it is shown that add(mF
0 ) = cov(mF

0 ) = H, where H is the
dual shattering cardinal. If (m0) denotes the ideal of classical completely
Ramsey-null sets, then we get the analogous result, namely add(m0) =
cov(m0) = h, where h is the shattering cardinal (cf. [Pl86]). Because every

15Cf. [Ke95, Theorem (21.8)].
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Σ1
2 set is the union of ℵ1 Borel sets (cf. [Je78, Theorem 95]), it is easy to see

that H > ℵ1 implies that every Σ1
2 set is even completely dual Ramsey (and

the analogous result holds for the classical Ramsey property with respect
to h). Now, an ω2-iteration with countable support of dual Mathias forcing
starting from L yields a model in which H = ℵ2 (cf. [Halb98-2]). Thus,
this provides another proof that “Every Σ1

2 set is dual Ramsey” is consistent
with ZFC. In Section 6 we shall provide a third proof as a byproduct of the
analysis of scales under PD.

Concerning Martin’s Axiom MA, it is well-known that MA implies h = 2ℵ0 .
Hence, by the facts mentioned above, MA + ¬CH implies that all Σ1

2 sets
have the classical Ramsey property.

A similar argument for the dualized case does not work: Brendle has
shown in [Br00-2], that MA + 2ℵ0 > H = ℵ1 is consistent with ZFC. How-
ever, this result does not preclude that MA + ¬CH might imply that every
Σ1

2 set is dual Ramsey.

At the next level we like to mention the following

Fact 5.3. “Every ∆1
3 set is dual Ramsey” is consistent with ZFC.

Proof. An ω1-iteration (or also an ω2-iteration) with countable support of
dual Mathias forcing starting from L yields a model in which every ∆1

3 set is
dual Ramsey. The proof is exactly the same as the proof of the corresponding
result for the classical Ramsey property given in [JuSh93]; the reason for
this is that they needed only that Mathias forcing is proper and has the
homogeneity property, but these two properties hold also for dual Mathias
forcing. �

The ∆1
3 level is probably as far as we can get in ZFC without further as-

sumptions. It is a famous open question whether the consistency of “Every
Π1

3 set is Ramsey” implies the existence of an inner model with an inacces-
sible cardinal (cf. [Kan94, Question 11.16] & [Rai84, p. 49]). Most likely,
the dualized question is equally hard to conquer.

6. Determinacy and the dual Ramsey property.

We shall move on to arbitrary projective sets in this section. As we men-
tioned earlier, this means that we probably have to go beyond ZFC.

In [CaSi84, Section 5], the authors prove in fact that in the Solovay model
constructed by collapsing an inaccessible cardinal to ω1 every projective set
is dual Ramsey. As we remarked, it is unknown whether the inaccessible
cardinal is necessary for that.

But there is another question connected to the dual Ramsey property of
projective sets: As with the standard Ramsey property we can ask whether
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an appropriate amount of determinacy implies the dual Ramsey property.
As usually with regularity properties of sets of reals we would expect that
Det(Π1

n) implies the dual Ramsey property for all Σ1
n+1 sets. But a direct

implication using determinacy is not as easy as with the more prominent
regularity properties (as Lebesgue measurability and the Baire property)
since the games connected to the dual Ramsey property (the Banach–Mazur
games in the dual Ellentuck topology) cannot be played using natural num-
bers.

The same problem had been encountered with the standard Ramsey prop-
erty and had been solved in [HarKe81] by making use of the scale property
and the Periodicity Theorems 2.8 and 2.9:

Theorem 6.1. If Det(∆1
2n+2), then every Π1

2n+2 set is Ramsey.

The main ingredient of this proof was an analysis of the models L[T2n+1]
under Determinacy assumptions (Lemma 6.3). In the following we shall give
a brief review of the result with sketches of an adaptation to our context.

Lemma 6.2. Let Γ be any ω-parametrized pointclass. If U is ω–universal
for Γ, A ∈ Γ, N any model, and T ∈ N a tree such that p[T ] = U . Then
there is a tree S ∈ N such that p[S] = A.

Proof. This is basically [Kan94, Proposition 13.13 (g)], apart from the as-
sertion that S ∈ N. But this is clear since the reduction function reducing
A to U is just the trivial function x 7→ 〈n0, x〉 (where n0 is the index of A
in U) and hence in N. �

Lemma 6.3. Assume Det(∆1
2n+2). Then [ω]ω ∩ L[T2n+1] = C2n+2. In

particular, this is a countable set.

Proof Sketch. We shall very roughly sketch the argument of [HarKe81,
Theorem 7.2.1]:

First of all [ω]ω∩L[T2n+1] is easily seen to be Σ1
2n+2. That every countable

Σ1
2n+2 set of reals is a member of L[T2n+1] follows directly from Mansfield’s

Theorem (cf. [Kan94, Theorem 14.7]) and Lemma 6.2.16

So, what is left to show is that [ω]ω ∩L[T2n+1] actually is countable. The
proof uses the following steps:

(i) Fix a Π1
2n+1 norm ϕ∗ : P2n+1 → δ1

2n+1 which exists according to
Theorem 2.8.

(ii) Using ϕ∗, code the tree T2n+1 by some A ⊆ δ1
2n+1 and show that

L[T2n+1] = L[A].
(iii) For arbitrary subsets X ⊆ δ1

2n+1, define X∗ := {z ∈ [ω]ω : ϕ∗(z) ∈
X}.

16Note that by Theorem 2.10 the choice of the complete set for the definition of the
L[T2n+1] doesn’t matter.
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(iv) Show: If X∗ ∈ ∆1
2n+2, then the set [ω]ω ∩ L[X] is contained in a

countable Σ1
2n+2 set.

(v) Compute: A∗ ∈ ∆1
2n+2.

�
Harrington and Kechris used this result to receive results about projec-

tive sets from PD alone that formerly could only be derived from stronger
hypotheses. The results for the classical Ramsey property follows Solovay’s
argument for the Σ1

2 case. We shall outline this argument in full generality
and then apply it to the dual Ramsey property.

At first we need to relativize Lemma 6.3 in two different parameters:

Lemma 6.4. Assume Det(∆1
2n+2). Let x, y ∈ [ω]ω be any real numbers.

Then [ω]ω ∩ L[T y
2n+1, x] = C2n+2(x⊕ y).

Proof Sketch. As an immediate relativization of of Lemma 6.3 (for the
pointclass Π1

2n+1(y) instead of Π1
2n+1), we get:

[ω]ω ∩ L[T y
2n+1] = C2n+2(y).

To show that [ω]ω ∩ L[T y
2n+1, x] is a countable set, we have to relativize

(iv) and (v) again. The obvious relativization of (iv) is
(iv*) If X∗ ∈ ∆1

2n+2(x ⊕ y), then the set [ω]ω ∩ L[X] is contained in a
countable Σ1

2n+2(x⊕ y) set.

Since L[T y
2n+1] = L[A] for some A ⊆ δ1

2n+1 such that A∗ is ∆1
2n+2(y)

according to (ii) and (v), we know that L[T y
2n+1, x] = L[A, x]. Thus we have

to find a set B ⊆ δ1
2n+1 such that L[B] = L[A, x] and B∗ ∈ ∆1

2n+1(x ⊕ y).
This would prove the theorem.

The natural choice for B is:

B :=
{
α ∈ δ1

2n+1 :
(
α ≥ ω ∧ α ∈ A

)
or(

α < ω ∧ ∃n(α = 2n ∧ n ∈ A)
)

or(
α < ω ∧ ∃n(α = 2n+ 1 ∧ n ∈ x)

)}
.

Obviously, B ∈ L[A, x] and A and x ∈ L[B], so L[A, x] = L[B]. Thus,
what is left is to show that B∗ is ∆1

2n+2(x⊕ y). But this is easy to see using
the definition of B, and the facts that ϕ∗ was a Π1

2n+1 norm and that A∗

was ∆1
2n+2(y). �

The following lemma is an obvious generalization of Shoenfield’s Abso-
luteness Lemma (cf. also [Mo80, Theorem 8G.10]):

Lemma 6.5. Σ1
2n+2(x) formulae are absolute for models containing T x

2n+1,
i.e., if N is a model with T x

2n+1 ∈ N and ϕ is a Σ1
2n+2 formula, then

∀X ∈ N (N |= ϕ[X,x] ⇐⇒ V |= ϕ[X,x]).
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Proof. By Theorem 2.10, we can assume that T x
2n+1 was constructed using

an ω-universal set for Π1
2n+1(x), enabling us to use Lemma 6.2.

Thus every Π1
2n+1(x) set is represented by a tree S ∈ N. We easily get a

tree S∗ for each Σ1
2n+2(x) set (cf. [Kan94, Proposition 13.13 (d)]).

But now the theorem follows from standard absoluteness of illfoundedness
as in Shoenfield’s proof (cf. [Kan94, Exercise 12.9 (a)]). �

Theorem 6.6. Let x ∈ [ω]ω be a real. Suppose that there is a dual Mathias
generic partition over L[T x

2n+1]. Then every Σ1
2n+2(x) set is dual Ramsey.

Proof. Let A be a Σ1
2n+2(x) set and ϕ a Σ1

2n+2(x) expression describing A,
i.e.,

∀y (y ∈ A ⇐⇒ ϕ[y]).

By Fact 2.1 we find a MF-condition 〈∅, X〉 ∈ L[T x
2n+1] such that

either 〈∅, X〉 ϕ(pc(XG)) or 〈∅, X〉 ¬ϕ(pc(XG)),

where XG is the name for a dual Mathias generic partition.
Without loss of generality, we assume the former. By our assumption, we

actually have a generic partition Z over L[T x
2n+1] with 〈∅, X〉 ∈ GZ , where

GZ is the filter associated to Z, i.e.,

〈t, Y 〉 ∈ GZ ⇐⇒ Z ∈ (t, Y )ω.

This means that Z ∈ (X)ω. Now by 2.1 (homogeneity of MF) again, every
element Z∗ of (Z)ω is also MF-generic over L[T x

2n+1]. Since GZ∗ ⊆ GZ , we
still have 〈∅, X〉 ∈ GZ∗ . Consequently, we have L[T x

2n+1][Z
∗] |= ϕ[pc(Z∗)].

But ϕ was absolute for models containing T x
2n+1 by Lemma 6.5, hence we

have V |= ϕ[pc(Z∗)].
Summing up, we have found a partition Z such that {pc(Z∗) : Z∗ v Z} ⊆

A. This is exactly what we had to show by Observation 2.5. �

Note that this type of argument probably will not work if you replace
“dual Ramsey” by “completely dual Ramsey”. What you would have to do
is to relativize the argument to arbitrary partitions W ∈ V. But at least
this does not work in the classical case: Brendle has shown in [Br00-1] that
in any model containing one Mathias real over a ground model N, there is
an Ellentuck neighbourhood that doesn’t contain any Mathias reals over N.

Another useful comment about Theorem 6.6 is that if you look at the
case n = 0 you get a third proof of the consistency of “Every Σ1

2 set is dual
Ramsey”:

Corollary 6.7. Suppose that for each real x ∈ [ω]ω there is a dual Mathias
generic partition over L[x]. Then every Σ1

2 set is dual Ramsey.

Proof. Immediate from Theorem 6.6, keeping in mind that T1 ∈ L by
[KeMo78, 9C], as mentioned in Subsection 2.7. �
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This particularly generic version of proving the consistency of properties
of Σ1

2 sets should be compared to analogous results for Random forcing,
Cohen forcing and Hechler forcing.17

We now move on to use Lemma 6.4 and Theorem 6.6 to get that Deter-
minacy implies the dual Ramsey property:

Corollary 6.8. Assume Det(∆1
2n+2). Then every Σ1

2n+2 set is dual Ram-
sey.

Proof. By Lemma 6.4, we get that for any reals x, y ∈ [ω]ω, the set of reals
in L[T x

2n+1, y] is countable.
By the same argument that is used to show that ∀x(ℵL[x]

1 < ℵV
1 ) im-

plies that ℵV
1 is strongly inaccessible in every L[x], we get that P((ω)ω) ∩

L[T x
2n+1, y] is countable for arbitrary choices of x and y ∈ [ω]ω.

Thus there are dual Mathias generic partitions over each L[T x
2n+1, y], in

particular over each L[T x
2n+1], and we can use Theorem 6.6 to prove the

claim. �

7. Appendix: Game-filters have the segment-colouring-property.

Let F ⊆ (ω)ω be an ultrafilter. Associated with F we define the game GF as
follows. This type of game, which is the Choquet-game with respect to the
dual Ellentuck topology (cf. [Ke95, 8.C]), was first suggested by Kastanas
in [Kas83].

I 〈t0, Y0〉 〈t1, Y1〉 〈t2, Y2〉
. . .

II 〈X0〉 〈X1〉 〈X2〉
All the moves Xn of player II must be elements of the ultrafilter F and all

the moves 〈tn, Yn〉 of player I plays must be such that Yn ∈ F and (t∗n, Yn)ω

is a dual Ellentuck neighbourhood. Further, the nth move Xn of player II is
such that Xn ∈ (t∗n, Yn)ω and then player I plays tn+1 such that t∗n 4 t∗n+1 v
Xn and |tn+1| = |tn|+1 = |t0|+n+1. Player I wins if and only if the unique
Y with tn 4 Y (for all n) is not in F.

An ultrafilter F is a game filter if and only if player I has no winning
strategy in the game GF.18

In the following we outline the proof that game filters are also scp-filters.
The crucial point will be to show the Preliminary Lemma 7.1, which is in

17Cf. [BrLö99]. Note that in most cases the existence of generics doesn’t give more
than regularity at the ∆1

2 level, and something more than mere existence is needed for
the Σ1

2 level.
18For the existence of game filters see [Halb98-1], where one can find also some results

concerning dual Mathias forcing restricted to such filters.



APPROACHING THE DUAL RAMSEY PROPERTY 141

fact Carlson’s Lemma (cf. [CaSi84, Lemma 2.4]) restricted to game filters.
But first we have to give some notations.

Let s, t ∈ (N) be such that s v t, |s| = n and |t| = m. For k with
k ≤ m− n let

(t)k
s := {u ∈ (N) : dom(u) = dom(t) ∧ s 4 u v t ∧ |u| = |s|+ k}.

For s 4 t v X, let

(t,X)k∗
s := {u ∈ (N) : t 4 u∗ v X ∧ |u| = |s|+ k},

and let (X)k∗
s := (s,X)(n+k)∗.

We have chosen this notation following [CaSi84, Definition 2.1], where
one can consider s as an alphabet of cardinality n.

For the remainder of this section, let F be an arbitrary but fixed game
filter.

Preliminary Lemma 7.1. Let s 4 X ∈ F and π : (X)0∗s → l, then there
exists a Y ∈ (s,X)ω ∩ F such that π�(Y )0∗s is constant.

Following the ideas of the proof of Theorem 6.3 of [CaSi84], the proof of
the Preliminary Lemma will be given in a sequence of lemmas. We start by
stating the well-known Hales–Jewett Theorem in our notation.

Hales-Jewett Theorem 7.2. Let s ∈ (N). For all d ∈ ω, there is an
h ∈ ω such that for any t ∈ (N) with s 4 t and |t| = |s| + h, and for any
colouring τ : (t)0s → d, there is a u ∈ (t)1s such that (u)0s is monochromatic.

The number h in the Hales–Jewett Theorem depends only on the number
d and the size of |s|. Let HJ(d, |s|) denote the smallest number h which
verifies the Hales–Jewett Theorem.

Let s, t ∈ (N) and X ∈ F be such that s 4 t v X. A set K ⊆ (N) is called
dense in (t,X)ω, if for all Y ∈ (t,X)ω ∩ F, there is a u with t 4 u∗ v Y
which belongs to K. A set D ⊆ (ω)k∗

s is called k-dense in (t,X)k∗
s , if for

all Y ∈ (t,X)ω ∩ F, we have (t, Y )k∗
s ∩D 6= ∅.

Lemma 7.3. Let s 4 t 4 X ∈ F and assume that D ⊆ (ω)0∗s is 0-dense in
(X)0∗s . Further assume that K = {u : t 4 u ∧ (u)0s ∩ D 6= ∅} is dense in
some (t, Z)ω, where Z ∈ (t,X)ω ∩ F. Then there is an s̄∗ v Z with t 4 s̄
such that for all v∗ v Z with s̄ 4 v we have (v)0s ∩D 6= ∅.

Proof. We shall define a strategy for player I in the game GF, such that
player I can follow this strategy just in the case when Lemma 7.3 fails. This
means that for every s̄∗ v Z with t 4 s̄ there is a v∗ v Z with s̄ 4 v such
that (v)0s ∩D = ∅.

Let t∗0 v Z be such that t 4 t0, |t| = |t0| and (t0)0s ∩D = ∅. Further put
Y0 = t0 u Z and player I plays 〈t0, Y0〉. Assume 〈tm, Ym〉 is the mth move
of player I and player II replies with 〈Xm〉. If the lemma fails with s̄ = t∗m,
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player I can play 〈tm+1, Ym+1〉, according to the rules of the game, such that
(tm+1)0s ∩D = ∅.

Since F is a game filter, the strategy of player I is not a winning strategy
and the unique Y ∈ (Z)ω such that tm 4 Y (for all m ∈ ω) belongs to F.
Take an arbitrary u with t 4 u∗ v Y . For such a u we find a tn 4 Y such
that u v tn and dom(u) = dom(tn). By the strategy of player I we have
(tn)0s ∩D = ∅ and therefore (u)0s ∩D = ∅. But this is a contradiction to the
assumption that K is dense in (t, Z)ω. Hence, player I cannot follow this
strategy, which completes the proof. �

Lemma 7.4. Suppose s 4 t 4 X ∈ F, D is 0-dense in (X)0∗s and K = {u :
t 4 u ∧ (u)0s ∩ D 6= ∅} is dense in (t, Z)ω, where Z ∈ (t,X)ω ∩ F. Then
there is a t̄∗ v Z with t 4 t̄ and |t̄| = |t|+ 1 such that (t̄)0s ⊆ D.

Proof. Let s̄ be as in the Lemma 7.3, and let d := |(s̄)0s|. By the Hales–
Jewett Theorem, let h := HJ(d, |s|). Pick v ∈ (N) such that s̄ 4 v∗ v X and
|v| = |s̄|+ h. Let {si : si ∈ (s̄)0s ∧ i ∈ d} be an enumeration of the elements
of (s̄)0s. We colour (v)0s by stipulating τ(u) = i if and only if si 4 u∧u ∈ D.
By the choice of n, there are t̄ ∈ (v)1s such that (t̄)0s is monochromatic, and
therefore, (t̄)0s ⊆ D. Thus, we have found a t̄ with t 4 t̄ and |t̄| = |t| + 1
such that (t̄)0s ⊆ D. �

Lemma 7.5. Suppose s 4 X ∈ F and D is 0-dense in (X)0∗s . Then there
are t ∈ (X)1∗s and Y ∈ (t,X)ω ∩ F such that {u : t 4 u ∧ (u)0s ⊆ D} is
1-dense in (t, Y )1∗s .

Proof. In a similar way as above we can define a strategy for player I in the
game GF, such that player I can follow this strategy only if Lemma 7.4 fails.
But if Lemma 7.4 is wrong, this would yield – because F is a game filter – a
contradiction (cf. [CaSi84, Lemma 6.5]). �

Notice that in Lemma 7.5 we did not require that the r ∈ (N) for which
we have r∗ 4 t ∈ (X)1∗s belongs to D. This we do in

Lemma 7.6. Suppose s 4 X ∈ F and D is 0-dense in (X)0∗s . Then there
are r∗ 4 t ∈ (X)1∗s and Y ∈ (t,X)ω ∩ F such that {u : t 4 u ∧ (u)0s ⊆ D} is
1-dense in (t, Y )1∗s and r ∈ D.

Proof. Let Y0 ∈ (t0, X)ω ∩ F be as in the conclusion of Lemma 7.5. Thus
D0 := {u : t0 4 u ∧ (u)0s ⊆ D} is 1-dense in (t0, Y0)1∗s . Using Lemma 7.5,
player I can play 〈tm, Ym〉 at the mth move such that Dm := {u : tm 4

u ∧ (u)0s ⊆ D} is (m+ 1)-dense in (tm, Ym)(m+1)∗
s .

Because player I has no winning strategy, the unique Y ∈ (s,X)ω such
that tm 4 Y (for all m) belongs to F, and because D is 0-dense in (X)0∗s ,
there is an r ∈ (Y )0∗s which belongs to D. Let t̄ ∈ (tm)1s be such that r∗ 4 t̄.
Since (t̄)0s ⊆ (tm)0s and because Dm is (m + 1)-dense in (tm, Ym)(m+1)∗

s we
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get {u : t̄ 4 u ∧ (u)0s ⊆ D} is 1-dense in (t̄, Ym)1∗s . Hence, we have found an
r∗ such that {u : r∗ 4 u ∧ (u)0s ⊆ D} is 1-dense in (r∗, Y )1∗s and r ∈ D. �

Now we can go back to the

Proof of the Preliminary Lemma. Let s 4 X ∈ F. We have to show that
for any colouring π : (X)0∗s → l, there is a Y ∈ (s,X)ω ∩ F such that (Y )0∗s
is monochromatic.

It is easy to see that at least one of the colours is 0-dense in (X)0∗s , say
j and let D := {t ∈ (X)0∗s : π(t) = j}. Now we can prove the Prelimi-
nary Lemma in almost the same way as Lemma 7.6, the only difference is
that player I uses now Lemma 7.6 to construct the mth move, instead of
Lemma 7.5. �

Finally we get the main result of this section.

Proposition 7.7. Each game filter is also an scp-filter.

Proof. We have to show that for any colouring π : (s, ω)(|s|+k)∗ → r, where
r and k are positive natural numbers and s ∈ (N), there is an X ∈ F such
that s 4 X and (s,X)(|s|+k)∗ is monochromatic.

Following the proof of [Halb∞, Theorem] and using the Preliminary
Lemma, it is not hard to define a strategy for player I in such a way that
if player I follows this strategy, then for the resulting partition X – which
must belong to F, since F is a game filter – we get s 4 X and (s,X)(|s|+k)∗

is monochromatic. �

We have seen that every game filter has the segment-colouring property.
It seems that the reverse implication is unlikely, since a strategy for player I
cannot be encoded by a real number, which makes it hard (if not impossible)
to prove that CH implies the existence of game filters. But on the other hand
we know that scp-filters always exist if we assume CH.
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