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This paper deals with univalent harmonic mappings of an-
nuli onto punctured bounded convex domains. Several aspects
of these mappings are investigated; in particular, boundary
functions, existence and uniquenss questions, and the geome-
try of their analytic and (co-analytic) parts. The paper also
considers univalence criteria for Dirichlet solutions in annuli
of boundary functions that are a generalized type of home-
omorphisms, called quasihomeomorphisms, on one boundary
component and constants on the other.

1. Introduction.

A harmonic mapping f of a region D is a complex-valued function of the
form f = h + g, where h and g are analytic functions in D, unique up
to an additive constant, that are single-valued if D is simply connected
and possibly mutiple-valued otherwise. We call h and g the analytic and
co-analytic parts of f , respectively. If f is (locally) injective, then f is
called (locally) univalent. Note that every conformal and anti-conformal
function is a univalent harmonic mapping. The Jacobian and second complex
dilatation of f are given by the functions J(z) = |h′(z)|2 − |g′(z)|2 and
ω(z) = g′(z)/h′(z), z ∈ D, respectively. Note that ω is either a nonconstant
meromorphic function or a (possibly infinite) constant. A result of Lewy
[13] states that if f is a locally univalent mapping, then its Jacobian J is
never zero; namely, for z ∈ D, either J(z) > 0 or J(z) < 0. In the first case
|ω(z)| < 1 and f is sense-preserving, and in the second |ω(z)| > 1 and f is
sense-reversing.

A ring domain is a doubly-connected open subset of the plane. Denote
by A(ρ, 1) the annulus {z : ρ < |z| < 1}, 0 ≤ ρ < 1. It seems that Nitsche
[16] was the first to consider univalent harmonic mappings of A(ρ, 1) onto
A(R, 1). Indeed, Nitsche observed that, unlike with conformal mappings, R
can possibly be zero as with the harmonic mapping

f(z) = (z − ρ2/z)/(1− ρ2)(1.1)
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which can be easily shown to map A(ρ, 1) univalently onto the punctured
disc A(0, 1). Later, Nitsche [17, §879] posed the following question.

Question (Nitsche). All univalent harmonic mappings from A(ρ, 1) onto
A(0, 1), up to a rotation, are of form (1.1).

A negative answer to this question was given by Hengartner and Schober
[9]. In their paper, the authors also investigated existence and uniqueness
theorems for univalent harmonic mappings with given dilatations between
annuli. Subsequently, Hengartner and Szynal [10] and Bshouty and Hen-
gartner [1] gave a representation for harmonic mappings f defined on an
annulus A(ρ, 1) and constant on the inner circle as follows.

Theorem A. Let f be a harmonic function of A(ρ, 1), 0 < ρ < 1, that
extends continuously across |z| = ρ with f identically ζ there. Then there
exists a constant c and a function h analytic in A(ρ2, 1) such that

f(z) = h(z)− h(ρ2/z) + ζ + 2c log(|z|/ρ).(1.2)

Further, if f extends continuously across |z| = 1, and f∗ is the restriction
of f on |z| = 1, then c = 0 if and only if ζ equals

ζ0 =
1
2π

∫ 2π

0
f∗(eit) dt.(1.3)

Using Theorem A, Bshouty and Hengartner [1] proved the following re-
sult.

Theorem B. Suppose that the following are true:
(i) G is a bounded convex domain.
(ii) f∗ is a sense-preserving homeomorphism between the unit circle and

∂G, and the constant ζ0 ∈ G given by Equation (1.3) on |z| = ρ.
(iii) f is the Dirichlet solution of f∗ in A(ρ, 1).

Then f : A(ρ, 1) → G \ {ζ0} is a homeomorphism.

The author [14, Theorem 2] observed that Theorem B remains true under
the weaker condition f(A(ρ, 1)) ⊂ G rather than the convexity of G.

In this paper, we investigate univalent harmonic mappings of ring domains
onto bounded punctured convex domains. Throughout the paper we shall
use the following notation: C for the complex plane, Ĉ for the extended
complex plane, D for the open unit disc {z ∈ C : |z| < 1}, T for the unit
circle {z ∈ C : |z| = 1}, 0 < ρ < 1, Tρ for the circle {z ∈ C : |z| = ρ}, A(ρ, 1)
for the annulus {z ∈ C : ρ < |z| < 1}, G for a bounded convex domain.
Also, for a subset S ⊂ C, we denote by ∂S and S the boundary and closure
of S in C, respectively.

The paper is organized as follows. In Section 2, we describe the boundary
functions, called quasihomeomorphisms, of univalent harmonic mappings
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onto punctured convex domains, and extend Theorem B to sense-preserving
quasihomeomorphisms. Section 3 is devoted to investigate the geometry of
the analytic parts of univalent harmonic mappings in A(ρ, 1) onto punctured
convex domains. One result of this section asserts that these (analytic parts)
have nonvanishing derivatives on Tρ, and that they map Tρ univalently onto
Jordan convex curves. Another concludes that these can be written as uni-
valent close-to-convex functions of homeomorphisms in A(ρ, 1). In Section 4,
we study univalence criteria for Dirichlet solutions in A(ρ, 1) of boundary
functions that are sense-preserving quasihomeomorphisms between T and
∂G and constants on Tρ— a study which was motivated by Hengartner [2,
Problem 15]. In Section 5, we prove a uniqueness result implying that the
function f defined by (1.1) is the only univalent harmonic mapping, up to
rotation, of A(ρ, 1) onto A(0, 1) having zero as an average value on T and
with analytic part that extends analytically throughout D. This somehow
corrects Nitsche’s question above and sheds light on Nitsche’s insight in that
direction.

2. Quasihomeomorphisms and Univalent Harmonic Mappings.

The purpose of this section is to characterize the boundary functions of
univalent harmonic mappings, and to extend Theorem B to “quasihomeo-
morphisms”. For this purpose, we need the following definition.

Definition 2.1. Let f be a function of T into a Jordan curve C of C.
We say f is a sense-preserving quasihomeomorphism of T into C if it is a
pointwise limit of a sequence of sense-preserving homeomorphisms of T onto
C. If in addition, f is a continuous function onto C, then f is called a
sense-preserving weak homeomorphism.

The definition is based on Bshouty, Hengartner and Naghibi-Beidokhti
[3, Definitions 3.1, 3.2]. Sense-preserving quasihomeomorphisms and sense-
preserving weak homeomorphisms are characterized as follows.

Proposition 2.1. Let f be a function of T into a Jordan curve C, and let
F be a sense-preserving homeomorphism of T onto C.

(i) If f is a sense-preserving quasihomeomorphism of T onto C, then there
is a real-valued nondecreasing function ϕ on R such that ϕ(t+ 2π) =
ϕ(t) + 2π and f(eit) = F (eiϕ(t)).

(ii) If f(eit) = F (eiϕ(t)), where ϕ is a real-valued nondecreasing function
on R such that ϕ(t + 2π) = ϕ(t) + 2π, and if E is the countable
set of points eiϕ(t) where ϕ is discontinuous, then f coincides on T \
E with a sense-preserving quasihomeomorphism of T. In this case,
f is the pointwise limit in T \ E of a sequence of sense-preserving
homeomorphisms fn(eit) = F (eiϕn(t)) of T onto C, where each ϕn is a
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real-valued infinite differentiable function on R such that ϕn(t+2π) =
ϕn(t) + 2π and ϕn

′(t) is always positive.
(iii) f is a sense-preserving weak homeomorphism of T onto C if and only

if there is a real-valued continuous nondecreasing function ϕ on R such
that ϕ(t + 2π) = ϕ(t) + 2π and f(eit) = F (eiϕ(t)). In this case, f is
the uniform limit of a sequence of sense-preserving homeomorphisms
fn(eit) = F (eiϕn(t)) of T onto C, where each {ϕn} is a real-valued
infinite differentiable function on R such that ϕn(t+ 2π) = ϕn(t) + 2π
and ϕn

′(t) is always positive.

Proof. (i) There is a sequence {fn} of sense-preserving homeomorphisms of
T onto C that converges pointwise to f . We can write fn(eit) = F (eiϕn(t)),
where each {ϕn} is a real-valued increasing function on R such that 0 ≤
ϕn(0) < 2π and ϕn(t+2π) = ϕn(t)+2π. Then, by Helly’s selection theorem,
there is a real-valued nondecreasing function ϕ on R such that ϕ(t+ 2π) =
ϕ(t) + 2π and ϕn → ϕ pointwise in R. Therefore, f(eit) = F (eiϕ(t)) and (i)
follows.

(ii) The function ϕ(t) − t is bounded, a.e. differentiable, and has period
2π. For fixed n = 1, 2, . . . , define the function

ϕn(t) = t+
1
2π

∫ 2π

0
P (1− 1/n, t− θ)[ϕ(θ)− θ] dθ,(2.1)

where P (r, θ) is the Poisson kernel. Then ϕn is an infinite differentiable
function such that ϕn(t+ 2π) = ϕn(t) + 2π. Also,

ϕn
′(t) =

1
2π

∫ 2π

0
P (1− 1/n, t− θ)dϕ(θ) >

1
2n− 1

since P (1− 1/n, t− θ) < 1/(2n− 1), −∞ ≤ t, θ ≤ ∞. Denote by E the set
of points of T where eiϕ(t) is discontinuous; then E is countable since ϕ is a
nondecreasing function. But by a Schwarz’s theorem, ϕn → ϕ pointwise in
the set of continuity of ϕ. Therefore, fn → f pointwise in T \ E.

(iii) If f is a sense-preserving weak homeomorphism of T onto C, then,
by (i), f(eit) = F (eiϕ(t)) where ϕ(t) is a real-valued nondecreasing function
on R such that ϕ(t+2π) = ϕ(t)+2π. Since F : T → C is a homeomorphism
and f is continuous, eiϕ(t) = F−1 ◦ f(eit) is also continuous in R. This,
together with the nonconstancy of f , implies that ϕ is also continuous in R.

Suppose now that f(eit) = F (eiϕ(t)) where ϕ is a real-valued continuous
nondecreasing function on R such that ϕ(t + 2π) = ϕ(t) + 2π. Define the
functions ϕn as in the proof of (ii), and recall that ϕn(t+ 2π) = ϕn(t) + 2π
and that ϕ′n is always positive. Observe that, since ϕ is continuous, ϕn →
ϕ uniformly in R. Hence, with fn(eit) = F (eiϕn(t)), each fn is a sense-
preserving homeomorphism of T onto C and fn → f uniformly on T. This
concludes (iii). �
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Let f be a function of A(ρ, 1) into Ĉ, and let ξ ∈ T. We say that f has
the unrestricted limit a ∈ Ĉ at if

f(z) → a z → ξ, z ∈ A(ρ, 1);

by defining f(ξ) = a the function f becomes continuous at ξ as a function
in A(ρ, 1)∪{ξ}. We shall use f(ξ) to denote the unrestricted limit whenever
it exists, and call the resulting function, on its domain of definition in T,
the unrestricted limit function f . We also define the cluster set C(f, ξ) of f
at ξ as the set of all b ∈ Ĉ for which there are sequences {zn} such that

zn ∈ A(ρ, 1), zn → ξ, f(zn) → b as n→∞.

Moreover, If F is a subset of T, then we define the cluster set C(f, F ) of f
at F as the set-union of the cluster sets C(f, ξ) for ξ ∈ E.

Sense-preserving quasihomeomorphisms are essential for describing the
boundary behaviour of univalent harmonic mappings of ring domains onto
bounded convex domains. Suppose f is a univalent harmonic mapping of
A(ρ, 1) onto a ring domain G \ {ζ}, ζ ∈ G. Then either lim|z|↑1 f(z) = ζ
and C(f,Tρ) = ∂G, or lim|z|↓ρ f(z) = ζ and C(f,T) = ∂G. In the first case,
f(1/z) becomes a univalent harmonic mapping of A(ρ, 1) onto G \ {ζ} with
lim|z|↓ρ f(1/z) = ζ and C(f(1/z),T) = ∂G. For our study, this leads us to
consider, without loss of generality, only univalent harmonic mappings of
A(ρ, 1) onto ring domains G \ {ζ}, ζ ∈ G, with lim|z|↓ρ f(z) = ζ.

Definition 2.2. Denote by Hu(ρ,G) the class of all univalent harmonic
mappings f of A(ρ, 1) onto ring domains G \ {ζ}, ζ ∈ G, with f(Tρ) = ζ.

The boundary behavior of functions f ∈ Hu(ρ,G) is given as follows.

Theorem 2.1. Let f ∈ Hu(ρ,G). Then there is a countable set E ⊂ T such
that the following hold:

(i) For each eiθ ∈ T \ E, the unrestricted limit f(eiθ) exists and belongs
to ∂G. Furthermore, f is continuous in A(ρ, 1) \ E.

(ii) For each eiθ0 ∈ E, the side-limits limθ↑θ0 f(eiθ) and limθ↓θ0 f(eiθ) exist
in ∂G and are distinct.

(iii) For each eiθ0 ∈ E, the cluster set C(f, eiθ0) lies in ∂G and is
the straight-line segment joining the side-limits limθ↑θ0 f(eiθ) and
limθ↓θ0 f(eiθ).

(iv) co(f(T \ E)) = G.
(v) There is a sense-preserving quasihomeomorphism of T into ∂G that

coincides with the unrestricted limit function f on T \ E.
(vi) f is the Dirichlet solution in A(ρ, 1) of the function f∗ defined by the

unrestricted limit function of f on T and the value of f on Tρ.
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The fact that f∗ is not defined on E in (vi) is insignificant. Indeed,
Dirichlet solutions in multiply connected domains coincide whenever their
boundary functions coincide almost everywhere.

Proof. Applying [8, Theorem 4.3] to f locally at each eiθ yields (i), (ii),
and (iii) except for the inclusion C(f, eiθ0) ⊂ ∂G which follows because
f : A(ρ, 1) → ∂G is onto. Also, (vi) follows from the maximum principle.

(iv) Since G is convex and each unrestricted limit f(eiθ) belongs to ∂G,
co(f(T \E)) ⊂ G. Let w ∈ ∂G. Because f : A(ρ, 1) → G is onto, w belongs
to the cluster set of some point ξ ∈ T. If ξ ∈ E, then w is the unrestricted
limit f(ξ). If ξ 6∈ E, then w belongs to the boundary straight-line segment
joining the side-limits at ξ of the unrestricted function f . Note that these
limits belong to co(f(T \E)); consequently w ∈ co(f(T \E)). In either case
G ⊂ co(f(T \ E)), and (iv) follows.

(v) Since G is a Jordan domain, there is a homeomorphism F of D onto
G which maps D conformally onto G. Let G(z) = F−1 ◦ f(z), z ∈ A(ρ, 1).
Observe that G is sense-preserving homeomorphism of A(ρ, 1) into D which
extends continuously to a mapping, also denoted by G, from A(ρ, 1)∪(T\E)
to T. Let I = {t : −∞ < t < ∞, eit ∈ T \ E}. We conclude that there is a
continuous nondecreasing function ϕ on I such that G(eit) = eiϕ(t), t ∈ I,
and

sup{ϕ(t) : t ∈ I ∩ [0, 2π)} − inf{ϕ(t) : t ∈ I ∩ [0, 2π)} ≤ 2π.

Extend ϕ to (−∞,∞) by defining ϕ(τ) = inf{ϕ(t) : t ∈ I ∩ [0, 2π), t > τ}
if τ ∈ [0, 2π) \ I, and by letting ϕ(t + 2π) = ϕ(t) + 2π. It is immediate
that the new ϕ is a nondecreasing function on (−∞,∞) with period 2π that
is continuous only on I. Using Proposition 2.1(ii), the function F (eiϕ(t))
coincides with a sense-preserving quasihomeomorphism of T into ∂G on
T \ E. �

Now Let f∗ be a sense-preserving quasihomeomorphism of T into ∂G.
Throughout the paper we denote by Ẽ(f∗) the set of points eiθ at which
f∗ is continuous. Our second purpose in this section is to show that if G
is the closed convex hull of f∗(Ẽ(f∗)), then f∗ yields a univalent harmonic
mapping of A(ρ, 1) onto the convex domain G minus one point. This extends
Theorem B to sense-preserving quasihomeomorphisms f∗ of T into ∂G.

Theorem 2.2. Suppose that the following are true:

(i) f∗ is a sense-preserving quasihomeomorphism of T into ∂G, and the
constant ζ0 defined by (1.3) on Tρ.

(ii) cof∗(Ẽ(f∗)) = G.
(iii) f is the Dirichlet solution of f∗ in A(ρ, 1).
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Then ζ0 ∈ G, f ∈ Hu(ρ,G), and there is an analytic function h of A(ρ2, 1)
such that

f(z) = h(z)− h(ρ2/z) + ζ0, (z ∈ A(ρ, 1)).(2.2)

The proof of the theorem requires two lemmas. Let f∗ be a sense-
preserving quasihomeomorphism of T into ∂G, and let F be a homeomor-
phism of D onto G that maps D conformally onto G. By Proposition 2.1(i),
there is a real-valued nondecreasing function ϕ on R such that ϕ(θ+ 2π) =
ϕ(θ) + 2π and f∗(eiθ) = F (eiϕ(θ)). If E is the set of points of discontinuity
of eiϕ(θ) in T, then Proposition 2.1(ii) yields a sequence {ϕn} of real-valued
infinite-differentiable functions on R such that ϕn(θ + 2π) = ϕn(θ) + 2π,
ϕn

′(θ) > 0, and F (eiϕn(θ)) → f(eiθ) pointwise on T\E. Let {rn}, ρ < rn ≤ 1,
be a sequence converging to 1, and let f∗n(eiθ) = F (rneiϕn(θ)). Since F is
uniformly continuous on D, we conclude that f∗n(eiθ) → f(eiθ) pointwise on
T \ E. Note that since F is a convex univalent function, if rn < 1 then
f∗n is an infinite-differentiable sense-preserving homeomorphism of T onto a
convex curve in G, and (f∗n)′(eiθ) is nonvanishing. Define f∗ and each f∗n on
Tρ by the constants ζ0 and ζn respectively, where ζ0 is given by (1.3) and

ζn =
1
2π

∫ 2π

0
f∗n(eit) dt.(2.3)

By the bounded convergence theorem, ζn → ζ0. Now let f and fn be the
solutions of the Dirichlet problems of f∗ and f∗n in A(ρ, 1) respectively. By
Theorem A, we can represent f by (1.2) and write each fn as

fn(z) = hn(z)− hn(ρ2/z) + ζn(2.4)

where hn is analytic in A(ρ2, 1). Moreover, Theorem B implies that each
fn : A(ρ, 1) → G \ {ζn} is a homeomorphism.

Under the above assumptions, we prove the requisite lemmas.

Lemma 2.1. fn → f locally uniformly in A(ρ, 1).

Proof. Let Φ be a local homeomorphism of D \ {±1} onto A(ρ, 1) that maps
D conformally onto A(ρ, 1), the upper semi-circle: |ξ| = 1,=ξ > 0 onto
T, and the lower semi-circle: |ξ| = 1,=ξ < 0 onto Tρ. Put T ∗n = f∗n ◦ Φ,
T ∗ = f∗◦Φ, Tn = fn◦Φ, and T = f ◦Φ. Note that Tn and T are the Dirichlet
solutions of T ∗n and T ∗ in D respectively, and that T ∗n → T ∗ pointwise a.e.
in T since ζn → ζ0. Hence, for η = ReiΘ, we can write

Tn(η) =
1
2π

∫ 2π

0
P (R, τ −Θ)T ∗n(eiτ ) dτ

and

T (η) =
1
2π

∫ 2π

0
P (R, τ −Θ)T ∗(eiτ ) dτ.
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Let K ⊂ A(ρ, 1) be a compact disc, and let K̃ be a connected component of
Φ−1(K). Then K̃ is also compact with a distance σ > 0 from T. Then, for
η ∈ K̂,

|Tn(η)− T (η)| ≤ 1
(1− σ)π

∫ 2π

0
|T ∗n(eiτ )− T (eiτ )| dτ,

and Tn → T uniformly on K̃ by the bounded convergence theorem. It
follows at once that fn → f uniformly on K. �

Remark 2.1. The above proof uses only the pointwise convergence a.e. of
T ∗n to T ∗ in T which follows at once from the the pointwise convergence of
f∗n to f∗ in Ẽ(f∗). We conclude that if f∗ and f∗n, n = 1, 2, . . . , are sense-
preserving quasihomeomorphisms of T into ∂G such that f∗n → f∗ pointwise
a.e. in T, then fn → f locally uniformly in A(ρ, 1) where f and each fn are
as defined above.

Lemma 2.2. (a) hn → h locally uniformly in A(ρ2, 1).
(b) For z ∈ A(ρ, 1),

f(z) = h(z)− h(ρ2/z) + ζ0 = ζ0 +
∑
k 6=0

ck(f∗)
r2k − ρ2k

1− ρ2k
r−keikθ(2.5)

where ck(f∗), k = ±1,±2, . . . , is the k-th Fourier coefficient of f∗.

Proof. For z = reiθ, ρ2 < r < 1, and n = 1, 2, . . . , we have

hn(z) =
∞∑

k=−∞
ak(f∗n)rkeikθ

which, with (2.4), yields

fn(z) = ζn +
∑
k 6=0

ak(f∗n)
(
rk − ρ2k

rk

)
eikθ.(2.6)

The uniqueness of the Fourier series of fn(reiθ) gives

ak(f∗n)
(
rk − ρ2k

rk

)
=

1
2π

∫ 2π

0
f∗n(reit)e−ikt dt, (k 6= 0).

Letting r → 1, the bounded convergence theorem yields

ak(f∗n)(1− ρ2k) =
1
2π

∫ 2π

0
f∗n(eit)e−ikt dt = ck(f∗n), (k 6= 0).

Hence

ak(f∗n) =
ck(f∗n)
1− ρ2k

, (k 6= 0).(2.7)
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Substituting this in (2.6) yields

fn(z) = ζn +
∑
k 6=0

ck(f∗n)
r2k − ρ2k

1− ρ2k
r−keikθ.

Proceeding likewise for h, we conclude that if

h(z) =
∞∑

k=−∞
ak(f∗)rkeikθ,

then

ak(f∗) =
ck(f∗)
1− ρ2k

, (k 6= 0).(2.8)

Now since f∗n(eit) → f∗(eit) pointwise in T \ E, ck(f∗n) → ck(f∗) uniformly
relative to k as n→∞. It follows, by (2.8) and (2.7), that ak(f∗n) → ak(f∗)
uniformly relative to k as n→∞. This proves (a). Now since hn(z) → h(z)
and fn(z) → f(z) uniformly in A(ρ, 1), and ζn → ζ, we conclude (2.5) by
taking the limits of both sides in (2.4). �

Proof of Theorem 2.2. First, we show that ζ0 ∈ G. Obviously, ζ0 ∈ G.
Suppose that ζ0 ∈ ∂G. Since G is convex, there is a real θ0 such that

<
{
eiθ0 [f∗(eiθ)− ζ0]

}
≥ 0, (0 ≤ θ ≤ 2π).

By virtue of (ii), we conclude that this inequality must be strict in some
open interval (α, β), where 0 ≤ α < β ≤ 2π. This implies that

1
2π

∫ 2π

0
<

{
eiθ0 [f∗(eiθ)− ζ0]

}
dθ > 0,

and consequently

1
2π

∫ 2π

0
eiθ0 [f∗(eiθ)− ζ0] dθ 6= 0.

This yields at once

ζ0 6=
1
2π

∫ 2π

0
f∗(eiθ) dθ

which gives a contradiction. Hence, ζ0 ∈ G.
In view of Lemma 2.2(b), it remains to show that f : A(ρ, 1) → G \ {ζ0}

is a homeomorphism.
We show that f is univalent. Let f∗n and fn, n = 1, 2, . . . , be the functions

defined in the first paragraph succeeding the statement of the theorem but
with each rn = 1. Using (2.4), the Jacobian of fn can be written as

Jn(z) = [|zh′n(z)|2 − |ρ2h′n(ρ2/z)|2]/|z|2 > 0, z ∈ A(ρ, 1).

Since fn is univalent and sense-preserving, Lewy’s theorem [13] implies
Jn(z) > 0; so h′n(z) 6= 0 for z ∈ A(ρ, 1). But, by Lemma 2.2(a), h′n → h′
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locally uniformly in A(ρ, 1). This implies, by Hurwitz’s theorem, that either
h′ is nonvanishing or is identically zero in A(ρ, 1). If the latter case holds,
then f is constant. This yields, by [21, Theorem IV.3] and (ii), that ∂G is
a singleton which contradicts (ii). Hence h′(z) 6= 0 for z ∈ A(ρ, 1). Now the
Jacobian of f is given by

J(z) = [|zh′(z)|2 − |ρ2h′(ρ2/z)|2]/|z|2, z ∈ A(ρ, 1).

For z ∈ A(ρ, 1), J(z) ≥ 0 since Jn(z) → J(z). If J(z) = 0 for some z, then
J is identically zero; this follows by applying the maximum principle to the
dilatation of f given by

ω(z) =
(ρ2/z)h′(ρ2/z)

zh′(z)
, (z ∈ A(ρ, 1)).(2.9)

This implies, by [14, Lemma 2], that f maps A(ρ, 1) into a straight-line L.
It follows that the unrestricted limits of f lie in L. By [21, Theorem IV.3]
and (ii), f∗(Ẽ(f∗)) ⊂ L which yields ∂G ⊂ L. This gives a contradiction.
Hence J(z) > 0 for z ∈ A(ρ, 1), and Lewy’s theorem [13] yields f locally
univalent. Now the univalence of fn, together with Lemma 2.1, yields f
univalent in A(ρ, 1).

Next, we show that f : A(ρ, 1) → G \ {ζ0} is onto. Let ξ ∈ T. The cluster
set C(f, ξ) of f at ξ is the singleton f(ξ) ∈ ∂G if f has an unrestricted
limit at ξ, or the straight-line segment ` joining the points limθ↑θ0 f(eiθ) and
limθ↓θ0 f(eiθ), where ξ = eiθ0 , which belong to ∂G by (ii). Suppose that the
latter case holds. If ` 6⊂ ∂G, then ` is a crosscut of G which separates G into
two Jordan domains of which one contains f(A(ρ, 1)). If L is the straight-line
containing `, then the cluster set C(f,T) of f on T lies completely in the
closed half-plane bounded by L and containing f(A(ρ, 1)). Consequently,
cof∗(Ẽ(f∗)) is a proper subset of G which contradicts (ii). Hence, ` ⊂ ∂G,
and C(f, ξ) ⊂ T for every ξ ∈ T. Now if f : A(ρ, 1) → G \ {ζ0} is not onto,
then there is ξ ∈ T such that C(f, ξ)∩G 6= Ø which yields a contradiction.
Therefore, f : A(ρ, 1) → G \ {ζ0} is a homeomorphism. This completes the
proof. �

Remark 2.2. The last paragraph of the above proof is indeed a proof for
the following result: Let f be the Dirichlet solution in A(ρ, 1) of a boundary
function f∗ defined on T by a sense-preserving quasihomeomorphism into
∂G with cof∗(Ẽ(f∗)) = G, and on Tρ by a constant ζ ∈ G. If f is univalent,
then f : A(ρ, 1) → G \ {ζ} is a homeomorphism.

Theorems 2.1 and 2.2 provide an interesting relationship between sense-
preserving quasihomeomorphisms of T into ∂G and univalent harmonic map-
ping of A(ρ, 1) onto once punctured G. View two sense-preserving quasi-
homeomorphisms f∗ of T into ∂G equivalent if they coincide almost every-
where. Let f∗ and k∗ be sense-preserving quasihomeomorphisms of T into
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∂G. Using Proposition 2.1(i), it is easily seen that f∗ and k∗ are equivalent
if and only if Ẽ(f∗) = Ẽ(k∗) and f∗ and k∗ are identical on Ẽ(f∗). Denote
by Q(G) the class of all (equivalence classes of) sense-preserving quasihome-
omorphisms f∗ of T into ∂G satisfying (ii) of Theorem 2.2. It is immediate
that if f∗ ∈ Q(G) and k∗ is equivalent to f∗, then k∗ ∈ Q(G).

Definition 2.3. Denote by H0(ρ,G) be the class of all Dirichlet solutions
f satisfying (i), (ii) and (iii) of Theorem 2.2.

The classes Q(G) and H0(ρ,G) are related as follows.

Theorem 2.3. Define T : Q(G) → H0(ρ,G) by T (f∗) = f , where f is the
Dirichlet solution in A(ρ, 1) of the boundary function which is f∗ on T and
the average of f∗ on Tρ. Then T is bijective. Furthermore, for a sequence
{f∗n} in Q(G), the following statements are equivalent:

(a) f∗n → f∗ a.e..
(b) f∗n → f∗ in L1.
(c) fn → f locally uniformly in A(ρ, 1).

Proof. Suppose that for f∗1 , f
∗
2 ∈ Q(G), T (f∗1 ) = f1, T (f∗2 ) = f2, and f1 =

f2. Then, by Theorem 2.1 (i), f∗1 = f∗2 everywhere except possibly on a
countable set. This makes T injective. Also, by Theorem 2.1, T is surjective.
Hence T is bijective.

The implication (a) ⇒ (b) follows by the bounded convergence theorem.
Conversely, by Proposition 2.1 (i) and Helly’s selection theorem, there is a
subsequence {nj} of positive integers such that the sequence {f∗nj

} converges
pointwise to a bounded function k∗. So, |f∗nj

− f∗| → |k∗ − f∗| pointwise.

Then, by (b) and the bounded convergence theorem,
∫ 2π
0 |k∗−f∗| = 0. This

gives (a), and we conclude (a) ⇔ (b). On the other hand, by Remark 2.1,
(a) ⇒ (c). It remains to show (c) ⇒ (a). Using Theorem 2.1 (i), there
exist sense-preserving quasihomeomorphisms f∗ and f∗n of T into G that
coincide with the boundary functions of f and fn everywhere except pos-
sibly on countable sets, respectively. By Helly’s selection theorem, every
subsequence of {f∗n} contains a subsequence {f∗nj

} that converges pointwise
to some bounded function k∗. Denote by k the Dirichlet solution in A(ρ, 1)
of the boundary function defined on T by k∗ and on Tρ by the average of k∗

on T. Then, by Remark 2.1, fnj → k locally uniformly on A(ρ, 1). Hence
k = f . This implies Ẽ(f∗) = Ẽ(k∗) and f∗(eiθ) = k∗(eiθ) for eiθ ∈ Ẽ(f∗).
Hence f∗nj

→ f∗ pointwise a.e.. It follows that f∗n → f∗ pointwise a.e. and
(c) ⇒ (a). This ends the proof. �
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3. Geometry of Analytic Parts of Univalent Harmonic Mappings
onto Punctured Convex Domains

Let h be the analytic part of f ∈ Hu(ρ,G). The purpose of this section
is two-fold: First, to show that h has a nonvanishing derivative on Tρ,
and that it maps Tρ homeomorphically onto a sense-preserving convex Jor-
dan curve whose diameter admits a universal upper bound, and second, to
prove that h is a composition of a univalent close-to-convex function and
a homeomorphism of A(ρ, 1) ∪ T onto a ring subdomain of D that maps T
homeomorphically onto itself.

Our first result in this section relates univalent harmonic maps inHu(ρ,G)
to their average associates in H0(ρ,G).

Proposition 3.1. Suppose that the following are true:
(i) f∗ is a sense-preserving quasihomeomorphism of T into ∂G such that

co(f∗(Ê(f∗))) = G.
(ii) f is the Dirichlet solution in A(ρ, 1) of the function defined by f∗ on

T and a constant ζ ∈ G on Tρ.
(iii) f0 is the Dirichlet solution of the function defined by f∗ on T and the

average ζ0 of f∗ on T.
Then there is an analytic function h in A(ρ2, 1) such that

f(z) = h(z)− h(ρ2/z) + ζ + 2cζ log(|z|/ρ)(3.1)
= f0(z) + 2cζ log |z|,(3.2)

where cζ is given by (5.4).

Proof. By Theorem A, there is a constant c and an analytic function h of
A(ρ2, 1) such that

f(z) = h(z)− h(ρ2/z) + ζ + 2c log(|z|/ρ), (z ∈ A(ρ, 1)).

By Theorem 2.2, there is an analytic function h0 of A(ρ2, 1) such that

f0(z) = h0(z)− h0(ρ2/z) + ζ0, (z ∈ A(ρ, 1)).

Then

(f − f0)(z) = (h− h0)(z)− (h− h0)(ρ2/z)(3.3)
+ζ − ζ0 + 2c log(|z|/ρ)

is a bounded harmonic mapping in A(ρ, 1). We conclude, by Schwarz’s
theorem, that the unrestricted limit function of (f − f0) exists everywhere
on T except possibly on a countable subset E. Furthermore, it is identically
zero on T \E by the definition of f and f0. Since (f − f0)(Tρ) = ζ − ζ0, the
maximum principle yields

(f − f0)(z) = ζ − ζ0 + 2cζ log(|z|/ρ)(3.4)
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where cζ is as given in (5.4). By comparing (3.3) and (3.4), it follows that
c = cζ and h − h0 is constant. This yields (3.1) and (3.2), and the proof is
complete. �

Note that Proposition 3.1 does not require f to be in Hu(ρ,G). If this
however is the case, then we obtain Corollary 3.1.

Corollary 3.1. Let f0 be the average associate of f ∈ Hu(ρ,G) with f(Tρ)
= ζ and f0(Tρ) = ζ0. Then there is an analytic function h in A(ρ2, 1) such
that (3.1) and (3.2) hold simultaneously.

Suppose now that f ∈ Hu(ρ,G) has form (1.2). According to Propo-
sition 3.1, f and its average associate f0 have the same analytic and co-
analytic part h. Since our interest in this section is exclusively in h, we
restrict ourselves to functions f ∈ H0(ρ,G) of form (2.2).

We shall need the notion of the module M(R) of a ring domain R [18].
It is known that R is conformally equivalent to a unique annulus A(r, 1),
0 < r < 1. In this case M(R) is defined by log(1/r) if r 6= 0 and by ∞ if
r = 0. It is immediate that M is a conformal invariant, and that if R ⊂ R′

where R′ is also a ring domain, then M(R) ≤ M(R′) with equality if and
only if R = R′. The Grötzsch’s ring domain, B(t), 0 < t < 1, of R is the
doubly-connected open subset of D whose boundary components are T and
the segment {x : 0 ≤ x ≤ t}. Observe that B(t) is unique. The module
of B(t) is usually denoted by µ(t). It follows that if B(s) is the Grötzsch’s
ring domain of A(ρ, 1), then µ(s) = log(1/ρ). It is known that µ is a strictly
decreasing function of [0, 1).

Let S be a subset of C. The diameter of S is the least upper bound of the
distances between any two points of S. If `α, α ∈ R, is a straight-line in the
direction of eiα perpendicular to two support lines π and π′ of S, then we
call the distance between `α ∩ π and `α ∩ π′ the width of S in the direction
of eiα. It is known that if S is compact, then the diameter of S is equal to
its maximum width [6, p. 77]. In what follows, we denote by d the diameter
of G and by dα its diameter in the direction of eiα. We call a Jordan curve
convex if it is the boundary of a bounded convex domain.

Using these notions, our result states as follows.

Theorem 3.1. Suppose f ∈ H0(ρ,G) has form (2.2). Then
(a) h′ is nonvanishing on Tρ and h maps Tρ homeomorphically onto a

convex curve whose diameter is bounded above by

D = (4d/π) tanh−1
(
µ−1(log(1/ρ))

)
.

(b) If h(z) =
∑∞

−∞ anz
n, z ∈ A(ρ2, 1), then

∞∑
n=1

n|a−n|2ρ−2n <
∞∑

n=1

n|an|2ρ2n ≤ D2/4 +
∞∑

n=1

n|a−n|2ρ−2n.
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The proof of the theorem needs two lemmas. The first is due to Bshouty
and Hengartner [1, Theorem 2.5]. To state this result, we call a ring domain
Ω a slit domain convex in the direction of the real axis if it is obtained by
removing a horizontal slit from a domain convex in the direction of the real
axis.

Lemma 3.1. Suppose f ∈ Hu(ρ,G) has form (2.2), and let

Φα(z) = eiαh(z) + e−iαh(ρ2/z), (z ∈ A(ρ2, 1)).(3.5)

Then Φα is univalent in A(ρ, 1) and it maps A(ρ, 1) onto a slit domain
convex in the direction of the real axis.

Our second lemma is intuitive and geometric in nature, and it needs some
basic notions. A closed curve is a continuous image of T; we use the same
notation for the curve and its defining function. Let γ be a closed curve,
and let ` be a straight line. A point w ∈ γ ∩ ` is called a meeting point of γ
and ` of multiplicity n if |γ−1(w)| = n. For a meeting point w of γ and `,
we call w a crossing point of γ and ` if there is an open subarc I of T such
that γ−1(w) ∩ ` is a singleton and ` separates γ(I) \ {w}.
Lemma 3.2. If every straight-line through the origin meets a closed curve
γ exactly twice, counting multiplicity, and at crossing points only, then γ is
a Jordan curve whose inner domain is starlike with respect to the origin.

Proof. We show first that γ is a Jordan curve. Suppose that there are points
z1, z2 ∈ T such that γ(z1) = γ(z2) = w. If w = 0, then any straight-line
passing through the origin and some other point of γ meets γ in at least
three points, counting multiplicity. If w 6= 0, for convenience w > 0, then γ
does not meet the negative real axis. This implies, by the compactness of γ,
that γ lies within a minimal sector vertexed at the origin whose sides meet
γ without crossing. In either case, we have a contradiction and the claim
holds.

Next, we show that the winding number n(γ, 0) is ±1. We consider two
cases.

(i) 0 ∈ γ: In this case γ meets only one of the positive and negative real
axes.

(ii) 0 6∈ γ: In this case γ meets R in two distinct points a and b, say a < b.
Here also we consider two cases.

(a) 0 < a < b or a < b < 0: In the first case γ does not meet the negative
real axis, and in the second it does not meet the positive real axis.

(b) a < 0 < b.
In (i) and (ii.a), the above compactness argument yield a contradiction.

Thus only (ii.b) holds. It is immediate then that n(γ, x) = 0 for all x ∈
(−∞, a)∪(b,∞). Because R∩γ = {a, b} for all a < x < b, either n(γ, x) 6= 0
or n(γ, x) = 0. In the latter case γ\{a, b} lies completely in one of the upper-
or lower-half planes and R fails to cross γ at a or b. Hence |n(γ, 0)| = 1.
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We further conclude that any straight-line passing through the origin
meets the inner domain of γ in an open segment containing the origin.
Therefore, the inner domain of γ is starlike with respect to the origin. �

Proof of Theorem 3.1. (a) Fix α ∈ R and let Φα be given as in (3.5). Then
we can write

Φα(ρeiθ) = 2<{eiαh(ρeiθ)}, (0 ≤ θ ≤ 2π).

Let mα = minθ Φα(ρeiθ), Mα = maxθ Φα(ρeiθ), and Γ be the curve defined
by Γ(θ) = h(ρeiθ), 0 ≤ θ ≤ 2π. Observe that Mα −mα is the width of Γ
in the direction of e−iα, and that Φα maps Tρ onto the real interval Iα =
[mα,Mα] which is the inner boundary of the ring domain Φα(A(ρ, 1)). Since
Φα is univalent by Lemma 3.1, Φ′

α admits two simple zeros ρeiα1 and ρeiα2 ,
where α1 < α2 < α1 + 2π, such that Φα(ρeiα1) = mα and Φα(ρeiα2) = Mα.
Letting Ψ(θ) = Φα(ρeiθ), 0 ≤ θ ≤ 2π, we obtain

Ψ′(θ) = iρeiθΦ′
α(ρeiθ) = −2=

{
eiα[ρeiθh′(ρeiθ)]

}
.

The first equality yields Ψ′(α1) = Ψ′(α2) = 0, Ψ′(θ) > 0 for α1 < θ < α2,
and Ψ′(θ) < 0 for α2 < θ < α1 + 2π. Denote by γ the curve defined by
γ(θ) = ρeiθh′(ρeiθ), 0 ≤ θ ≤ 2π. The second equality implies that the real
axis meets the curve eiαγ exactly twice, counting multiplicity, and only at
crossing points; namely ρeiα1h′(ρeiα1) and ρeiα2h′(ρeiα2). This means that
the line in the direction of e−iα meets γ exactly twice and only at crossing
points. Since α is arbitrary, this property also holds for all straight-lines
passing through origin. Using Lemma 3.2, we conclude that γ is a Jordan
curve that bounds a starlike domain with respect to the origin. Thus h′ is
nonvanishing on Tρ and

d

dθ
arg ρeiθh′(ρeiθ) = <

{
1 + ρeiθ

h′′(ρeiθ)
h′(ρeiθ)

}
is always either nonpositive or nonnegative. Hence Γ is a convex curve as
claimed.

Now we show that the diameter of Γ is bounded by D. With a fixed α
again, we can write

Φα(z) = eiα(f(z)− ζ0) + 2<{eiαh(ρ2/z)}.

Geometrically, this means that for every z ∈ A(ρ, 1) the value Φα(z)
can be obtained from the point eiα(f(z) − ζ0) by a horizontal shift by
2<{eiαh(ρ2/z)}. Recall dα, d, and Iα. We conclude that the ring do-
main Φα(A(ρ, 1)) is properly contained in a horizontal strip of width dβ,
β = π/2 − α, and with a slit along Iα. Let Sα and S be the horizontal
strips symmetric about R and of widths 2dβ and 2d respectively. Obvi-
ously, Φα(A(ρ, 1)) is a proper subset of Sα \ Iα, Sα \ Iα ⊂ S \ Iα, and
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S \ Iα is conformally equivalent to S \ [(mα −Mα)/2, (Mα −mα)/2]. Ob-
serve that the length of the boundary slit of the Grötzsch’s domain of
S \ [(mα −Mα)/2, (Mα −mα)/2] is tanh[π(Mα −mα)/(4d)]. Then

log(1/ρ) = M(A(ρ, 1)) < M(Sα \ Iα)
≤ M(S \ [(mα −Mα)/2, (Mα −mα)/2])
= µ(tanh[π(Mα −mα)/(4d)]).

Since µ is a decreasing function, we obtain

tanh[π(Mα −mα)/(4d)] < µ−1(log(1/ρ)),

or
Mα −mα <

4d
π

tanh−1
(
µ−1(log(1/ρ))

)
= D.

Note that α may be chosen so that d = Mα −mα. This concludes (a).
(b) Let Ω be the closed region bounded by the curve Γ defined in the

proof of (a). We show first that the area A(Ω) of Ω is at most πD2/4. By
[6, Theorem 54], Ω is contained in a convex region Ω′ of constant width
D in every direction. Then Cauchy’s theorem [6, p. 127] implies that
the perimeter of Ω′ is πD. But the area of Ω′ is at most πD2/4 by the
isoperimetric inequality [6, p. 108]. This proves our claim.

On the other hand,

A(Ω) =
1
2i

∫
|z|=ρ

h(z)h′(z) dz

=
1
2

∫ 2π

0

{ ∞∑
n=−∞

anρ
ne−inθ

}{ ∞∑
n=−∞

nanρ
neinθ

}
dθ

= π

{ ∞∑
n=1

n|an|2ρ2n −
∞∑

n=1

n|a−n|2ρ−2n

}
.

Therefore,
∞∑

n=1

n|an|2ρ2n −
∞∑

n=1

n|a−n|2ρ−2n < D2/4

and (b) follows. �

Next, we embark on proving that the analytic part of every harmonic
mapping in Hu(ρ,G) is a univalent close-to-convex function of D precom-
posed with a homeomorphism of A(ρ, 1) ∪ T onto a ring subdomain of D
that maps T homeomorphically onto itself. As above, it suffices to consider
harmonic mappings f ∈ H0(ρ,G).

Theorem 3.2. Suppose f ∈ H0(ρ,G) has form (2.2). Then there is a univa-
lent close-to-convex function H of D and a homeomorphism φ of A(ρ, 1)∪T
into D with φ(T) = T such that h = H ◦ φ.
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Observe that if f ∈ H0(ρ,G) is given by (2.2), then the dilatation of f is
given by (2.9).

The proof of the theorem needs two lemmas. The first states as follows.

Lemma 3.3. Fix p, p = 2, 3, . . . . Suppose f ∈ H0(ρ,G) has form (2.2) and
an unrestricted limit function that satisfies the following properties:

(i) f is a sense-preserving local homeomorphism of T onto ∂G.
(ii) f (p) exists and is absolutely continuous on T.
(iii) f ′ is nonvanishing on T.

Then
(a) h extends to A(ρ2, 1) such that h(eiθ) and h(ρ2eiθ) are continuously

(p− 1)-differentiable with

lim
z→reiθ

h(k)(z) = h(k)(reiθ), (z ∈ A(ρ2, 1)),(3.6)

where r is either 1 or ρ2.
(b) h′(eiθ) 6= 0 and h′(ρ2eiθ) 6= 0 for all θ.
(c) ω extends continuously to A(ρ, 1) such that ω(eiθ) 6= −1 and |ω(z)| ≤ 1

for z ∈ A(ρ, 1).

Proof. (a) If

h(z) =
∞∑

n=−∞
anz

n, (z ∈ A(ρ2, 1)),

then for z = reiθ, ρ < r < 1,

f(z) = ζ0 +
∑
n6=0

an[rn − (ρ2/r)n]einθ.(3.7)

Since f ′(eiθ) exists for all θ, [7, Theorem 55] gives

f(eiθ) = ζ0 +
∑
n6=0

cne
inθ(3.8)

where, by the bounded convergence theorem and (3.7),

cn =
1
2π

∫ 2π

0
f(eiθ)e−inθ dθ = lim

r→1

1
2π

∫ 2π

0
f(reiθ)e−inθ dθ

= lim
r→1

an[rn − (ρ2/r)n] = an(1− ρ2n).

Using this in (3.8), we obtain

f(eiθ) = ζ0 +
∑
n6=0

an(1− ρ2n)einθ.

Since f (p) is absolutely continuous, [7, Theorem 40] yields

an(1− ρ2n) = o(|n|−(p+1)).
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This gives for k = 1, 2, . . . , p− 1,

n(n− 1) · · · (n− k + 1)an = o(|n|−p+k−1) = o(|n|−2).(3.9)

Define, for r = 1 or ρ2,

h(reiθ) =
∞∑

n=−∞
anr

neinθ.

Observe that term by term differentiation of the latter series yields, by (3.9),
a uniformly convergent series. Now term by term integration of the resulting
series yields h(reiθ) continuously differentiable. Repeating the same pro-
cedure with h′(reiθ) yields h(reiθ) continuously 2-differentiable. Observe,
again because of (3.9), that the same procedure can be repeated p− 1 times
proving h(reiθ) continuously (p − 1)-differentiable. Using (3.9) once again,
together with the uniform convergence of k-th, k = 1, 2, . . . , p−1, derivatives
of h(reiθ) and the above Laurent’s series of h(z), yields (3.6).

(b) The Jacobian of f is given by

J(z) = [|zh′(z)|2 − |ρ2h′(ρ2/z)|2]/|z|2, (z ∈ A(ρ, 1)).

Since f is univalent in A(ρ, 1), Lewy’s theorem [13] yields J(z) > 0 for
z ∈ A(ρ, 1); that is,

ρ2|h′(ρ2/z)| < |zh′(z)|, (z ∈ A(ρ, 1)),

which implies h′(z) 6= 0 in A(ρ, 1). Using (a), we conclude

ρ2|h′(ρ2eiθ)| ≤ |h′(eiθ)|, (0 ≤ θ ≤ 2π).

We infer that if h′(eiθ) = 0 for some θ, then ρ2e2iθh′(ρ2eiθ) = 0. Note that

f ′(eiθ) = h′(eiθ) + ρ2e2iθh′(ρ2eiθ).(3.10)

Thus f ′(eiθ) = 0 which gives a contradiction. Hence h′(eiθ) 6= 0 for all θ.
On the other hand, Theorem 3.1 yields h′(ρeiθ) 6= 0 for all θ. This concludes
(b).

(c) It is immediate from (a), (b), and (2.9) that ω extends continuously
to A(ρ, 1). If ω(eiθ) = −1 for some θ, then (2.9) and (3.10) give f ′(eiθ) = 0
which leads to a contradiction. Now since f is univalent, Lewy’s theorem
[13] implies |ω(z)| < 1 for z ∈ A(ρ, 1). Using (2.9) once more, with (b),
gives |ω(z)| ≤ 1 for z ∈ A(ρ, 1). This completes the proof. �

Our second lemma is a weaker form of Theorem 3.2.

Lemma 3.4. Suppose f ∈ H0(ρ,G) has form (2.2), ∂G an analytic curve,
and f(eiθ) an infinite-differentiable function with a nonvanishing derivative.
Let Γ be the convex curve defined by Γ(θ) = h(ρeiθ), 0 ≤ θ ≤ 2π (see
Theorem 3.1(a)). Then h is a sense-preserving homeomorphism of Tρ onto
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Γ, and h = H ◦ φ where H is a univalent close-to-convex function of D and
φ is a homeomorphism of A(ρ, 1) ∪ T into D with φ(T) = T.

Proof. From Lemma 3.3, we infer that h(eiθ) is infinite-differentiable with a
nonvanishing derivative. Using (3.10) and Lemma 3.3(c), we can write

eiθh′(eiθ) =
eiθf ′(eiθ)
1 + ω(eiθ)

.(3.11)

Differentiation of both sides yields

<
{

1 + eiθ
h′′(eiθ)
h′(eiθ)

}
= <

{
1 + eiθ

f ′′(eiθ)
f ′(eiθ)

}
−<

{
eiθω′(eiθ)
1 + ω(eiθ)

}
.(3.12)

Denote by F a conformal map of D onto G. Since ∂G is an analytic curve,
F extends to a conformal map of D onto G. Using the bounded convergence
theorem and [18, p. 65], we obtain

<
{

1 + eiΘ
F ′′(eiΘ)
F ′(eiΘ)

}
≥ 0, (Θ ∈ (−∞,∞)).(3.13)

Observe that we can write f(eiθ) = F (eiΘ(θ)) where Θ(θ) is an increasing
differentiable function of (−∞,∞) such that Θ(θ + 2π) = Θ(θ) + 2π. It is
easy to verify that

<
{

1 + eiθ
f ′′(eiθ)
f ′(eiθ)

}
= Θ′(θ)<

{
1 + eiΘ

F ′′(eiΘ)
F ′(eiΘ)

}
.(3.14)

Thus ∫ 2π

0
<

{
1 + eiθ

f ′′(eiθ)
f ′(eiθ)

}
dθ =

∫ 2π

0
<

{
1 + eiΘ

F ′′(eiΘ)
F ′(eiΘ)

}
dΘ = 2π,(3.15)

and

<
{

1 + eiθ
f ′′(eiθ)
f ′(eiθ)

}
≥ 0, (θ ∈ (−∞,∞))(3.16)

since Θ′(θ) > 0. On the other hand, by Lemma 3.3(c), <[1 + ω(eiθ)] > 0.
Since

<
{
eiθω′(eiθ)
1 + ω(eiθ)

}
=

d

dθ
arg[1 + ω(eiθ)],

we conclude ∫ 2π

0
<

{
eiθω′(eiθ)
1 + ω(eiθ)

}
dθ = 0(3.17)

and, for θ1 ≤ θ2 < θ1 + 2π,∫ θ2

θ1

<
{

ω′(eiθ)
1 + ω(eiθ)

}
dθ = arg

{
1 + ω(eiθ2)
1 + ω(eiθ1)

}
> −π.(3.18)
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Using (3.12), with (3.15) and (3.17), we get∫ 2π

0
<

{
1 + eiθ

h′′(eiθ)
h′(eiθ)

}
dθ = 2π,(3.19)

and, with (3.16) and (3.18), we get∫ θ2

θ1

<
{

1 + eiθ
h′′(eiθ)
h′(eiθ)

}
dθ > −π, (θ1 ≤ θ2 < θ1 + 2π).(3.20)

Using Lemma 3.3(b) and (3.19), the argument principle gives∫ 2π

0
<

{
1 + ρeiθ

h′′(ρeiθ)
h′(ρeiθ)

}
dθ = 2π.(3.21)

This, together with Theorem 3.1(a), implies

<
{

1 + ρeiθ
h′′(ρeiθ)
h′(ρeiθ)

}
≥ 0(3.22)

for all θ, and consequently the convex curve Γ is positively-oriented.
Now let Ω be the convex domain bounded by Γ. Since h is a sense-

preserving homeomorphism of T onto Γ, Schoenflies theorem [18, p. 25] ex-
tends h to a local homeomorphism of D which maps the closed disc bounded
by Tρ homeomorphically onto Ω. Let W be the image surface of h in D.
Note that W is a simply connected hyperbolic covering of C. Hence, by the
Uniformization theorem, there is a locally univalent function H of D with
image surface W . Define φ = H−1 ◦ h; φ is obviously a conformal map of
A(ρ, 1) onto a ring subdomain of D that extends conformally between the
unit circles. Write φ(eiθ) = eiτ , 0 ≤ θ, τ ≤ 2π. Observe that H(eiτ ) is
infinite-differentiable with H ′(eiτ ) 6= 0, since both h and φ are, and that
=[eiθφ′(eiθ)/φ(eiθ)] = 0 for all θ. Then direct computation yields

<
{

1 + eiτ
H ′′(eiτ )
H ′(eiτ )

}
dτ = Re

{
1 + eiθ

h′′(eiθ)
h′(eiθ)

}
dθ,

which, with (3.19), gives∫ 2π

0
<

{
1 + eiτ

H ′′(eiτ )
H ′(eiτ )

}
dτ = 2π,

and, with (3.20), gives∫ θ2

θ1

<
{

1 + eiτ
H ′′(eiτ )
H ′(eiτ )

}
dτ > −π, (θ1 ≤ θ2 < θ1 + 2π).

It follows from Kaplan’s proof [11, Theorem 2] that H is a univalent close-
to-convex function. This completes the proof. �
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Proof of Theorem 3.2. Using the ideas in the paragraph succeeding the
statement of Theorem 2.2, there exists a sequence {fn} of functions in
H0(ρ,G) with form (2.4) such that each fn(eiθ) is an infinite-differentiable
function in T, and fn → f and hn → h locally uniformly in A(ρ, 1) and
A(ρ2, 1) respectively. Let Γ be the convex curve defined by Γ(θ) = h(ρeiθ),
0 ≤ θ ≤ 2π, and let Ω be the convex domain bounded by Γ. Also, let
Γn be the convex curve defined by the function hn(ρeiθ), 0 ≤ θ ≤ 2π. By
Lemma 3.4, each hn is a sense-preserving homeomorphism of Tρ onto Γn

with

<
{

1 + ρeiθ
h′′n(ρeiθ)
h′n(ρeiθ)

}
≥ 0

for all θ; see (3.22). Using this, with Lemma 2.2(a) and Theorem 3.1(a),
we conclude that h satisfies (3.22) and, consequently, h is also a sense-
preserving homeomorphism of Tρ onto Γ. Also, by Lemma 3.4, we have
each hn univalent in A(ρ, 1). Hence, by Hurwitz’s theorem, h is also a
univalent function on A(ρ, 1) or else f is a constant. Define W as above,
Ωn as the convex domain bounded by Γn, and Wn = hn(A(ρ, 1))

⋃
Ωn. It is

immediate that W and each Wn are simply connected domains in C. Fix a
point % ∈ Ω. We show that

Wn →W as n→∞ with respect to %(3.23)

in the sense of Carathéodary’s kernel convergence [18, pp. 13-15]. Let w0 ∈
W . We show first that w0 ∈Wn for sufficiently large n. Let γ be a separating
Jordan curve in A(ρ, 1) with w0 in the interior domain of h(γ). Since hn → h
uniformly on γ, w0 belongs to the interior domain of the Jordan curve hn(γ)
for sufficiently large n. Since each Wn is simply connected, w0 ∈ Wn for
sufficiently large n. Now let w0 ∈ ∂W . We show that w0 is the limit
point of a sequence {wn} where wn ∈ ∂Wn. Suppose that this is false.
Then there is an increasing sequence of positive integers {nν} and an open
neighborhood V of w0 such that ∂Wnν

⋂
V = Ø. Also, choose V so that

Ω
⋂
V = Ø ; this is possible since Γn → Γ. It follows that, for each nν ,

either V
⋂
Wnν = Ø or V ⊂ Wnν . Suppose that the first case happens

infinitely often, say, without loss of generality, for all ν. Then hnν (z) 6∈ V
for z ∈ A(ρ, 1). Since hnν (z) → h(z), h(A(ρ, 1))

⋂
V = Ø and we have

a contradiction. Now suppose, without loss of generality, that V ⊂ Wnν

for all ν. Then the inverse function ψnν (w) = h−1
nν

(w) is analytic in V with
|ψnν (w)| < 1. By Montel’s theorem, we can find a subsequence of {ψnν} that
converges locally uniformly in V . Suppose, without loss of generality, that
{ψnν} converges locally uniformly in V . Then the limit function ψ satisfies
ρ ≤ |ψ(w)| ≤ 1 for w ∈ V . By Hurwitz’s theorem, either ψ is a constant or
is a univalent function in V . We show that the latter holds. To do so, we
show first that {ψnν} converges locally uniformly in h(A(ρ, 1)) even though
these functions may not be defined in h(A(ρ, 1)) in the proper sense. Let
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∆ be a closed Jordan region in h(A(ρ, 1)), and let K be a compact subset
of the interior ∆. Since h is univalent, h−1(∆) is a closed Jordan region
in A(ρ, 1) whose interior contains h−1(K). Since hnν → h uniformly on
h−1(∆), an argument using Rouche’s theorem implies thatK ⊂ hnν ◦h−1(∆)
or K ⊂ hnν (A(ρ, 1)) for sufficiently large nν . A compactness argument also
yields the same conclusion for any compact subset K of h(A(ρ, 1)). So,
for a given compact subset K of h(A(ρ, 1)), the functions ψnν are defined
on K for sufficiently large nν . Since the range of each ψnν is A(ρ, 1), the
sequence {ψnν} is a normal family in h(A(ρ, 1)). Since V

⋂
h(A(ρ, 1)) 6=

Ø, ψnν → ψ in h(A(ρ, 1)). Recall the above curve γ. If ψ is constant,
then ψnν (h(γ)) admits an arbitrarily small diameter for large nν which is
impossible since each curve ψnν (γ) separates A(ρ, 1). Hence ψ is univalent
in V and ρ < |ψ(w)| < 1 for w ∈ V , in particular ψ(w0) ∈ A(ρ, 1). It follows
that {hnν} converges locally uniformly near ψ(w0). Since ψnν (w0) → ψ(w0)
and w0 = hnν ◦ ψnν (w0), we conclude w0 = h(ψ(w0)). This contradicts
w0 ∈ ∂W and (3.23) holds.

Now define H as above but with the additional conditions H(0) = % and
H ′(0) > 0. Also, let Hn be the conformal map of D onto Wn satisfying
Hn(0) = % and Hn

′(0) > 0. By Carathéodary’s kernel theorem [18, pp. 13-
15], Hn → H locally uniformly in D. Since, by Lemma 3.4, each Hn is
a univalent close-to-convex function, H is also a univalent close-to-convex
function. Letting φ = H−1 ◦ h. It is easily seen that φ satisfies the desired
properties. This ends the proof. �

4. Univalent Harmonic Mappings onto Punctured Convex
Domains.

Let f be the Dirichlet solution in A(ρ, 1) of a function f∗ of ∂A(ρ, 1) de-
fined on T be a sense-preserving quasihomeomorphism into ∂G satisfying
cof∗(Ẽ(f∗)) = G, and on Tρ by a constant ζ ∈ G. Theorem 2.2 asserts that
f belongs to Hu(ρ,G) if ζ = ζ0, where ζ0 is the average of f∗ on Tρ given
by (1.3). Recently however, Duren and Hengartner [5, Example 1] observed
that this condition is not necessary, and showed that the harmonic mapping

F (z) = (z − ρ2/z)/(1− ρ2) + 2c log |z|, (z ∈ A(ρ, 1)),(4.1)

belongs to Hu(ρ,D) with f(0) = 2c log ρ if |c| < ρ/(1 − ρ2). Note that the
boundary function of F is the identity map on T and the constant 2c log ρ
on Tρ. In view of this, Hengartner [2, Problem 15] suggested the problem
of finding the set of values ζ ∈ G that yields f : A(ρ, 1) → G \ {ζ} a
homeomorphism.

Now, let f∗ be a sense-preserving quasihomeomorphism of T into ∂G
with cof∗(Ẽ(f∗)) = G. Denote by H(ρ, f∗) the class of Dirichlet solutions
in A(ρ, 1) of functions of ∂A(ρ, 1) defined on T by f∗ and on Tρ by some
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constant ζ ∈ G. Also, denote by Hu(ρ, f∗) the subclass of H(ρ, f∗) of
univalent mappings. Of interest shall be the set K(ρ, f∗) of values ζ ∈ G
for which a function f ∈ H(ρ, f∗) belongs to Hu(ρ, f∗).

Our first result in this section states that K(ρ, f∗) is compact. In view of
Proposition 3.1, the class H(ρ, f∗) yields an analytic function h in A(ρ2, 1),
unique up to an additive constant, such that every f ∈ Hu(ρ, f∗) is of the
forms (3.1) and (3.2). In our second result, we characterize in terms of h
and f∗ the boundary points of K(ρ, f∗) in a manner leading to a univalence
criterion for functions f ∈ H(ρ, f∗). Finally, we provide sufficient conditions
on ρ, G, and f∗ that warrant a nonempty interior for K(ρ, f∗).

Theorem 4.1. K(ρ, f∗) is a nonempty compact subset of G.

Proof. Let ζ0 be the average of f∗ on T. It is immediate from Theorem 2.2
that ζ0 ∈ K(ρ, f∗). Hence K(ρ, f∗) 6= Ø.

Suppose that a sequence {ζn}∞n=1 in K(ρ, f∗) converges to ζ ∈ G. We
show that ζ ∈ K(ρ, f∗). Clearly, there is a unique function fn ∈ Hu(ρ, f∗)
such that fn(Tρ) = ζn. By Proposition 3.1, we can find an analytic function
h in A(ρ2, 1), unique up to an additive constant, such that

fn(z) = h(z)− h(ρ2/z) + ζn + 2cn log(|z|/ρ), (z ∈ A(ρ, 1)),(4.2)

where cn = (ζn − ζ0)/(2 log ρ). Obviously, cn → c = (ζ − ζ0)/(2 log ρ) as
n → ∞. Using h and c, we define the harmonic mapping f as in (1.2). If
c = 0, then ζ = ζ0 ∈ K(ρ, f∗) by Theorem 2.2. So, suppose that c 6= 0. Then
fn → f (locally) uniformly in A(ρ, 1). It is easy to see that the Jacobian of
fn is given by

Jn(z) = [|zh′(z) + cn|2 − |(ρ2/z)h′(ρ2/z) + cn|2]/|z|2, (z ∈ A(ρ, 1)).
(4.3)

Since fn is univalent and sense-preserving, Jn(z) > 0, and consequently
|zh′(z) + cn| 6= 0 for z ∈ A(ρ, 1). But zh′(z) + cn → zh′(z) + c uniformly in
A(ρ, 1). Hence, by Hurwitz’s theorem, either zh′(z) + c 6= 0 or zh′(z) = 0
for z ∈ A(ρ, 1). If the latter holds, then h′(z) = −c/z which contradicts the
analyticity of h in A(ρ, 1). Hence zh′(z) + c 6= 0. The Jacobian of f is now
given by

J(z) = [|zh′(z) + c|2 − |(ρ2/z)h′(ρ2/z) + c|2]/|z|2, (z ∈ A(ρ, 1)).

Clearly, Jnz → J(z). Since Jn(z) > 0, J(z) ≥ 0. Thus

|(ρ2/z)h′(ρ2/z) + c| ≤ |zh′(z) + c|, (z ∈ A(ρ, 1)).

We prove that this inequality must be strict. Suppose that equality holds
for some z. Then the maximum principle yields that the dilatation of f
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given by

ω(z) =
(ρ2/z)h′(ρ2/z) + c

zh′(z) + c
, (z ∈ A(ρ, 1)),(4.4)

is a unimodular constant e2iα for some real α. That is,

(ρ2/z)h′(ρ2/z) + c = e2iα(zh′(z) + c), (z ∈ A(ρ, 1)).(4.5)

Since h is analytic in A(ρ2, 1), (4.5) holds for z ∈ A(ρ2, 1). In particular, for
all θ,

ρeiθh′(ρeiθ) + c = e2iα[ρeiθh′(ρeiθ) + c].
This means that the function zh′(z) maps Tρ into the straight-line passing
through −c in the direction of e−iα. We conclude that h(z) maps Tρ to a
straight-line in the direction of ei(π/2− α). This contradicts Theorem 3.1.
Therefore,

|(ρ2/z)h′(ρ2/z) + c| < |zh′(z) + c| (z ∈ A(ρ, 1)).

This yields J(z) > 0 for z ∈ A(ρ, 1), and consequently f is locally univalent
function by Lewy’s theorem [13]. Since each fn is univalent and fn → f
uniformly in A(ρ, 1), f is univalent in A(ρ, 1). Using this, with the fact
cof∗(Ẽ(f∗)) = G, we infer, by Remark 2.2, that f : A(ρ, 1) → G \ {ζ} is a
homeomorphism. Therefore ζ ∈ K(ρ, f∗) and the proof is complete. �

Our second result is Theorem 4.2.

Theorem 4.2. Let f ∈ Hu(ρ, f∗) be of form (3.1), where f∗ : T → ∂G is
a twice-differentiable function with nonvanishing derivative and absolutely
continuous second derivative. Then the dilatation of f and zh′(z)+cζ extend
continuously to A(ρ, 1)∪T such that eiθh′(eiθ) + cζ 6= 0 for all θ. Moreover,
we have:

(a) If ζ ∈ ∂K(ρ, f∗), then either ρeiθ1h′(ρeiθ1) + cζ = 0 for some θ1, or
|ω(eiθ2)| = 1 for some θ2.

(b) If |ω(eiθ)| = 1 for some θ, then ζ ∈ ∂K(ρ, f∗).
(c) If in (a) and (b) the function |ω(eiθ)| is replaced by the function

2<
{
eiθh′(eiθ) + cζ
eiθf ′(eiθ)

}
,

then (a) and (b) continue to hold.

Regarding (a), a result of Hengartner and Szynal [10, Theorem 3.1] asserts
that if ζ ∈ ∂K(ρ, f∗) then ρeiθ1h′(ρeiθ1) + cζ has at most one zero which is
of order one.

Proof. The Jacobian of f is given by

J(z) = [|zh′(z) + cζ |2 − |(ρ2/z)h′(ρ2/z) + cζ |2]/|z|2, (z ∈ A(ρ, 1)).
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Since f is univalent and sense-preserving, Lewy’s theorem [13] yields J(z) >
0 . This implies zh′(z) + cζ 6= 0 for z ∈ A(ρ, 1). By Lemma 3.3, h has a
continuously differentiable extension to A(ρ2, 1) such that h′(eiθ) 6= 0 and
h′(ρ2eiθ) 6= 0 for all θ. It follows that J has a continuous extension to A(ρ, 1)
such that

J(eiθ) = |eiθh′(eiθ) + cζ |2 − |ρ2eiθh′(ρ2eiθ) + cζ |2,

and J(eiθ) ≥ 0 for all θ. If for some θ, eiθh′(eiθ)+cζ = 0, then ρ2eiθh′(ρ2eiθ)+
cζ = 0, and consequently

eiθf ′(eiθ) = eiθh′(eiθ)− ρ2eiθh′(ρ2eiθ) = 0

which gives a contradiction. Hence, eiθh′(eiθ) + cζ 6= 0 for all θ.
It also follows that the dilatation of f given by

ω(z) =
(ρ2/z)h′(ρ2/z) + cζ

zh′(z) + cζ
, (z ∈ A(ρ, 1)),

extends continuously to A(ρ, 1) ∪ T such that

|ω(eiθ)| =
∣∣∣∣ρ2eiθh′(ρ2eiθ) + cζ

eiθh′(eiθ) + cζ

∣∣∣∣ .(4.6)

(a) We proceed to prove (a) by contrapositivity. Suppose that |ω(eiθ)| < 1
for all θ. Then

|ρ2eiθh′(ρ2eiθ) + cζ | < |eiθh′(eiθ) + cζ |.

By the compactness of T, we can find δ > 0 such that

|ρ2eiθh′(ρ2eiθ) + cζ | < |eiθh′(eiθ) + cζ | − δ

for all θ. It follows that, for |η − ζ| < δ log(1/ρ) and any θ,

|ρ2eiθh′(ρ2eiθ) + cη| < |eiθh′(eiθ) + cη|(4.7)

where cη = (η − ζ0)/(2 log ρ) (see (5.4)).
Suppose now that ρeiθh′(ρeiθ) + cζ 6= 0 for all θ. Then, in view of the

above, zh′(z) + cζ 6= 0 for z ∈ A(ρ, 1). Since A(ρ, 1) is compact, there
is σ > 0 such that |zh′(z) + cζ | > σ for z ∈ A(ρ, 1). It follows that, for
|η − ζ| < 2σ log(1/ρ),

|zh′(z) + cη| > 0, (z ∈ A(ρ, 1)).(4.8)

Then (4.7) and (4.8) hold for every η satisfying

|η − ζ| < τ = min{2δ log(1/ρ), 2σ log(1/ρ)}.

For each such η, let

fη(z) = h(z)− h(ρ2/z) + η + 2cη log(|z|/ρ), (z ∈ A(ρ, 1)).
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Then fη is a harmonic mapping whose dilatation is given by

ωη(z) =
(ρ2/z)h′(ρ2/z) + cη

zh′(z) + cη
, (z ∈ A(ρ, 1)).

Clearly, by (4.7) and (4.8), ωη is an analytic function that extends con-
tinuously to A(ρ, 1) such that |ωη((eiθ))| < 1 and |ωη(ρ(eiθ))| = 1 for all
θ. Hence, by the maximum principle, |ωη(z)| < 1. This yields, because of
(4.8), that the Jacobian of fη is positive in A(ρ, 1), and consequently fη is
a univalent sense-preserving harmonic mapping. Now, by invoking Theo-
rem 2.1 and Remark 2.2, we conclude that each fη : A(ρ, 1) → G \ {η} is
a homeomorphism. Since this holds whenever |η − ζ| < τ , ζ is an interior
point of K(ρ, f∗) and we have a contradiction. This proves (a).

(b) Suppose that |ω(eiθ1)| = 1 for some θ1. Then the Möbius transforma-
tion

T (z) =
ρ2eiθ1h′(ρ2eiθ1) + z

eiθ1h′(eiθ1) + z

satisfies |T (cζ)| = 1. Since, by (5.4), η − ζ = 2(cη − cζ) log ρ , any open
neighborhood of ζ contains an η such that |T (cη)| > 1, or equivalently,
ωη(eiθ1) > 1 where ωη is as defined above. Therefore, η 6∈ K(ρ, f∗) and
ζ ∈ ∂K(ρ, f∗).

(c) Since eiθh′(eiθ) + cζ 6= 0 for all θ, using (3.1), we obtain

eiθf ′(eiθ) = [eiθh′(eiθ) + cζ ]− [ρ2eiθh′(ρ2eiθ) + cζ ]

= [eiθh′(eiθ) + cζ ]

×
[
1− [ρ2eiθh′(ρ2eiθ) + cζ ]/[eiθh′(eiθ) + cζ ]

]
.

Since f ′(eiθ) 6= 0 for all θ, we obtain

eiθh′(eiθ) + cζ
eiθf ′(eiθ)

=
1

1− [ρ2eiθh′(ρ2eiθ) + cζ ]/[eiθh′(eiθ) + cζ ]
.

This implies that

2<
{
eiθh′(eiθ) + cζ
eiθf ′(eiθ)

}
= 1

for some θ if and only if |ω(eiθ)| = 1; see (4.6). This proves (c). �

We apply Theorem 4.2 to a function f ∈ Hu(ρ, f∗) of form (2.2). In this
case, ζ is the average ζ0 of f∗ on T, cζ = 0, ρeiθh′(ρeiθ) 6= 0 for all θ by
Theorem 3.1(a), and |ω(eiθ)| = 1 for some θ if and only if ρ2|h′(ρ2eiθ)| =
|h′(eiθ)|. We conclude the following Corollary 4.1.

Corollary 4.1. Let f ∈ Hu(ρ, f∗) be of form (2.2), where f∗ is as in The-
orem 4.2. Then the following statements are equivalent:

(a) ζ0 ∈ ∂K(ρ, f∗).
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(b) ρ2|h′(ρ2eiθ)| = |h′(eiθ)| for some θ.
(c) 2<{h′(eiθ)/f ′(eiθ)} = 1 for some θ.

The arguments used in the proof of Theorem 4.2 yield at once sufficient
conditions for the univalence of functions in H(ρ, f∗) where f∗ is as in The-
orem 4.2.

Theorem 4.3. Let f ∈ H(ρ, f∗) be of form (3.1), where f∗ be smooth as in
Theorem 4.2. Then f ∈ Hu(ρ, f∗) if zh′(z) + cζ 6= 0 for z ∈ A(ρ, 1), and if
one of the following two inequalities holds for all θ:

(a) |ω(eiθ)| ≤ 1.
(b)

2<
{
eiθh′(eiθ) + cζ
eiθf ′(eiθ)

}
≥ 1.

We remark that f∗ as defined in Theorem 4.2 yields, by Lemma 3.3,
zh′(z) 6= 0 for z ∈ A(ρ, 1). This makes the above sufficiency condition,
zh′(z) + cζ 6= 0 for z ∈ A(ρ, 1), easily achievable for functions f ∈ H(ρ, f∗)
with appropriately small cζ .

Finally, we prove the existence of a large family of triplets, 0 < ρ < 1,
Gρ, f∗, where Gρ is a bounded convex domain and f∗ρ : T → ∂Gρ is a sense-
preserving homeomorphism, such that K(ρ, f∗) has a nonempty interior
containing the average of f∗.

Theorem 4.4. Let Ω be a bounded convex domain, and let h be a homeo-
morphism of D onto Ω that maps D conformally onto Ω. Suppose that h′′ is
continuous on D, h′′(eiθ) is absolutely continuous, and

<
{

1 + eiθ
h′′(eiθ)
h′(eiθ)

}
> 0(4.9)

for all θ. Then there exists δ > 0 such that for each 0 < ρ < δ we can find
a bounded convex domain Gρ such that the harmonic mapping

fρ(z) = h(z)− h(ρ2/z), (z ∈ A(ρ, 1)),(4.10)

satisfies the following properties:

(i) fρ : T → ∂Gρ is a sense-preserving homeomorphism.
(ii) fρ is continuously twice-differentiable on A(ρ, 1).
(iii) fρ ∈ H0(ρ,Gρ).
(iv) There is σ > 0, depending on ρ, such that for any |ζ| < σ the function

fζ(z) = h(z)− h(ρ2/z) + ζ + 2cζ log(|z|/ρ)(4.11)

belongs to Hu(ρ,Gρ).
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Remark 4.1. (i) Without (4.9), the hypothesis of the theorem yields the
following weaker form of (4.9):

<
{

1 + eiθ
h′′(eiθ)
h′(eiθ)

}
≥ 0.(4.12)

To see this, observe that zh′(z) is a univalent starlike function in D which
gives

<
{

1 + z
h′′(z)
h′(z)

}
> 0, (z = reiθ ∈ D).(4.13)

Now, because h′′ extends continuously to D, the integral∫ z

0
h′′(ζ) dζ, (z ∈ D),

where the differentiable path of integration from 0 to z lies in D, yields, by
Cauchy’s theorem, the continuous extension of h′(z) to D. On the other
hand, since zh′(z) is univalent in D and maps the origin to itself, zh′(z) 6= 0
for z ∈ D. Then (4.12) follows at once by letting r → 1 in (4.13).

(ii) Using Kellogg and Warschawski [18, Theorem 3.6, p. 49], the hypoth-
esis that h′′(z) admits a continuous extension to D with absolutely contin-
uous h′′(eiθ) follows if ∂G has a parametrization w(t), 0 ≤ t ≤ 2π, whose
first derivative is nonvanishing and second derivative is Lipschitz of order α,
0 < α < 1.

Proof of Theorem 4.4. By the compactness of T, there is q > 0 such that

<
{

1 + eiθ
h′′(eiθ)
h′(eiθ)

}
> q(4.14)

for all θ. For a fixed 0 < ρ < 1, let

kρ(z) = h(z)− h(ρ2z), (z ∈ D).(4.15)

Then kρ is an analytic function in D with kρ(0) = 0. We can write

1 + eiθ
k′′ρ(eiθ)
k′ρ(eiθ)

= 1 + eiθ
h′′(eiθ)
h′(eiθ)

+ eiθqρ(eiθ),(4.16)

where

qρ(eiθ) = ρ2eiθ
h′(ρ2eiθ)h′′(eiθ)− ρ2h′(eiθ)h′′(ρ2eiθ)

h′(eiθ)[h′(eiθ)− ρ2h′(ρ2eiθ)]
.

Let m1 = minθ |h′(eiθ)|, M1 = maxθ |h′(eiθ)|, M2 = maxθ |h′′(eiθ)|, and

δ = min
{√

m1

2M1
,
m1

2

√
q

M1M2

}
.
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Then for 0 < ρ < δ, it is easy to verify that |qρ(eiθ)| < q which gives
<qρ(eiθ) > −q. Using (4.14) and (4.16), we obtain

<

{
1 + eiθ

k′′ρ(eiθ)
k′ρ(eiθ)

}
> 0.(4.17)

Using (4.15), we conclude that k′ and k′′ extend continuously to D. More-
over, since zh′(z) is univalent and 0 < ρ < δ, k′(z) 6= 0 for z ∈ D. It follows
by the maximum principle and (4.17) that

<
{

1 + z
k′′ρ(z)
k′ρ(z)

}
> 0, (z ∈ D).

Let Gρ = kρ(D). We conclude that Gρ is a bounded convex domain, and
that kρ is a sense-preserving homeomorphism of D onto Gρ that maps D
conformally onto Gρ. Now define fρ as in (4.10). Then, by (4.15), fρ(eiθ) =
kρ(eiθ) which yields (i) and (ii). Furthermore,

0 = fρ(ρeiθ) =
1
2π

∫ 2π

0
fρ(eiθ) dθ.

Then (iii) follows at once from Theorem B. On the other hand, by the
definition of δ, we obtain

ρ2|h′(ρ2eiθ)| < ρ2M1 < δ2M1 ≤
m1

2
≤ |h′(eiθ)|.

This implies f ′(eiθ) 6= 0. Since h′′(eiθ) is absolutely continuous, f ′′(eiθ) is
also absolutely continuous. Now an application of Corollary 4.1 implies (iv).
This completes the proof. �

5. Nitsche’s Question Revisited.

In this section, we determine explicitly all harmonic mappings f ∈ Hu(ρ,G)
whose analytic parts extend analytically throughout D. As a consequence,
we conclude that the function f defined by (1.1) is the only harmonic map-
ping, up to rotation, in H0(ρ,D), (here G is taken as D), of A(ρ, 1) onto
A(0, 1) whose analytic part is analytic in D. This somehow justifies Nitsche’s
question above.

Definition 5.1. Let f ∈ Hu(ρ,G). Then, by Theorem 2.1, the unrestricted
limit function of f coincides with a sense-preserving quasihomeomorphism
f∗ except possibly on a countable subset of T. We call the value ζ0 given by
(1.3) the average of f on T. Denote by f0 the Dirichlet solution in A(ρ, 1) of
the boundary function which coincides with f∗ on T and is the constant ζ0
on Tρ. (By virtue of Theorem 2.2, f0 ∈ H0(ρ,G).) We call f0 the average
associate of f .

The result of this section is Theorem 5.1.
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Theorem 5.1. Suppose f ∈ Hu(ρ,G) has form (1.2) with ζ0 the average of
f on T. If h is analytic in D, then

f(z) =
∞∑

n=1

λnbn
1− ρ2n

[zn − (ρ2/z)n] + ζ + 2cζ log(|z|/ρ)(5.1)

=
∞∑

n=1

λnbn
1− ρ2n

[zn − (ρ2/z)n] + ζ0 + 2cζ log |z|,(5.2)

where bn, n = 1, 2, . . . , is the n-th coefficient of the conformal map

F (z) = ζ0 +
∞∑

n=1

bnz
n(5.3)

of D onto G satisfying F (0) = ζ0, and

cζ =
ζ − ζ0
2 log ρ

.(5.4)

Proof. By virtue of Proposition 3.1, it suffices to prove the theorem for the
average associate f0 of f . Using the proposition, we write

f0(z) = h(z)− h(ρ2/z) + ζ0, (z ∈ A(ρ, 1)).(5.5)

Since h is analytic in D, the function

q(z) = h(z)− h(ρ2z) + ζ0(5.6)

is analytic in D, maps the origin to ζ0, and satisfies

lim
|z|→1

[f0(z)− q(z)] = lim
|z|→1

[h(ρ2z)− h(ρ2/z)] = 0.(5.7)

This implies that f0 and q have the same cluster set at each ξ ∈ T. But
C(f0, ξ) ⊂ ∂G for ξ ∈ T. Hence, by [18, Corollary 2.10], q, and consequently
f0 by (5.7), has a continuous extension to D that assumes every value of G
exactly m times in D. It follows that f0(ei(t)) = F (eiϕ(t)) where ϕ is a
continuous increasing function of (−∞,∞) with ϕ(t + 2π) = ϕ(t) + 2mπ.
Using Theorem 2.1(v), we conclude m = 1. This implies that q, like F , is a
conformal map of D onto G with q(0) = ζ0. By Schwarz’s lemma,

q(z) = F (λz)(5.8)

for some unimodular constant λ.
Suppose

h(z) = a0 +
∞∑

n=1

anz
n, (z ∈ D).

Then (5.3), (5.6) and (5.8) yield

q(z) = ζ0 +
∞∑

n=1

an(1− ρ2n)zn = ζ0 +
∞∑

n=1

λnbnz
n.
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This gives

an =
λnbn

1− ρ2n
(n = 1, 2, . . . ).

Using (5.5), we obtain

f0(z) = ζ0 +
∞∑

n=1

λnbn
1− ρ2n

[zn − (ρ2/z)n].

This completes the proof. �

If G = D, then Theorem 5.1 yields Corollary 5.1 by taking

F (z) =
z + ζ0

1 + ζ0z
= ζ0 + (1− |ζ0|2)

∞∑
n=2

(−ζ0)n−1zn.

Corollary 5.1. Suppose f ∈ Hu(ρ,D) has form (1.2) with ζ0 the average
of f on T and h analytic in D. Then there is a unimodular constant λ such
that

f(z) = λ(1− |ζ0|2)

{
z − ρ2/z

1− ρ2
+

∞∑
n=2

(−λζ0)n−1

1− ρ2n
[zn − (ρ2/z)n]

}
+ζ + 2cζ log(|z|/ρ), (z ∈ A(ρ, 1)).

In particular, if ζ0 = 0, then

f(z) = λ
z − ρ2/z

1− ρ2
+ 2cζ log |z|, (z ∈ A(ρ, 1)).
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