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For a row finite directed graph E, Kumjian, Pask, and Rae-
burn proved that there exists a universal C∗-algebra C∗(E)
generated by a Cuntz-Krieger E-family. In this paper we
consider two density problems of invertible elements in graph
C∗-algebras C∗(E), and it is proved that C∗(E) has stable
rank one, that is, the set of all invertible elements is dense in
C∗(E) (or in its unitization when C∗(E) is nonunital) if and
only if no loop of E has an exit. We also prove that for a
locally finite directed graph E with no sinks if the graph C∗-
algebra C∗(E) has real rank zero (RR(C∗(E)) = 0), that is,
the set of invertible self-adjoint elements is dense in the set of
all self-adjoint elements of C∗(E) then E satisfies a condition
(K) on loop structure of a graph, and that the converse is
also true for C∗(E) with finitely many ideals. In particular,
for a Cuntz-Krieger algebra OA, RR(OA) = 0 if and only if
A satisfies Cuntz’s condition (II).

1. Introduction.

Given an n × n {0, 1}-matrix A with no zero row or column, a family of n
partial isometries Si satisfying the relation

(∗) S∗i Si =
n∑

j=1

A(i, j)SjS
∗
j

is called a Cuntz-Krieger A-family. In [CK], under a condition (I) on the
matrix A, it is proved that any two such families generate isomorphic C∗-
algebras, thus the Cuntz-Krieger algebra OA is well-defined. Furthermore
when A satisfies condition (II) which is stronger than (I) the ideal structure
of OA was analysed by Cuntz in [C].

As a generalization of Cuntz-Krieger algebras one may consider a C∗-
algebra generated by a family of partial isometries satisfying the relation
(∗) for some infinite {0, 1}-matrix A, provided every row of A contains only
finitely many 1’s, and this has been done in [KPRR] and [KPR] with
directed graphs. For any row finite directed graph E with countable vertices
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{v | v ∈ E0} and edges {e | e ∈ E1}, the associated graph C∗-algebra C∗(E)
is defined to be a universal C∗-algebra generated by a family of partial
isometries {se | e ∈ E1} and a family of mutually orthogonal projections
{pv | v ∈ E0} subject to the relations:

s∗ese = pr(e), pv =
∑

s(f)=v

sfs∗f ,

where r(e) (respectively, s(e)) denotes the range (respectively, source) vertex
of the edge e. If {A(e, f)} is the edge matrix of E then these relations give
a generalized form of (∗), that is, s∗ese =

∑
s(f)=r(e) A(e, f)sfs∗f .

If E has no sinks then there is a locally compact r-discrete groupoid
GE associated with E whose unit space GE

0 is identified with the infinite
path space of E. Furthermore it is shown in [KPRR], Theorem 4.2 that
the groupoid C∗-algebra C∗(GE) is isomorphic to C∗(E), and hence those
useful results on groupoid C∗-algebras in [Rn1] and [Rn2] could be used to
analyse the structure of C∗(E). One important therem in [KPRR] is about
the ideal structure of graph C∗-algebras; there is an inclusion preserving
one-to-one map of saturated hereditary vertex subsets of E into the ideals
of C∗(E) and moreover if E satisfies a condition (K) then the map is also
bijective.

A graph-theoretic condition (L) analogous to Cuntz-Krieger’s condition
(I) was given in [KPR], where it was shown that if E is a locally finite
directed graph with no sinks and satisfies (L) then a C∗-algebra generated
by a Cuntz-Krieger E-family of non-zero elements is isomorphic to C∗(E).
One interesting result among others in [KPR] is that C∗(E) is AF if and
only if E has no loops. It is also shown in [D] that every AF-algebra arises
as the C∗-algebra of a locally finite pointed directed graph in the sense of
[KPRR]. Recall that every AF algebra A has stable rank one (sr(A) = 1);
the set of invertible elements is dense in A (or Ã if A is nonunital). In
Section 3, we give a necessary and sufficient graph-theoretic condition on E
for the graph algebra C∗(E) to have stable rank one; sr(C∗(E)) = 1 if and
only if no loop of E has an exit.

We see from [KPR] that if E is a cofinal graph with no sinks and satisfies
(L) then the universal C∗-algebra C∗(E) is simple and it is either AF or
purely infinite. It is also well-known that all AF algebras and purely infinite
simple C∗-algebras have real rank zero, that is, every self-adjoint element
can be arbitrarily closely approximated by invertible self-adjoint elements
(or in the unitized algebra for a nonunital C∗-algebra). So it would be
interesting to know when a non-simple graph C∗-algebra can have real rank
zero, and we prove in Section 4 that for a locally finite directed graph E with
no sinks if the graph algebra C∗(E) has real rank zero (RR(C∗(E)) = 0)
then the graph must satisfy condition (K). Conversely we also show that
for any locally finite graph E with no sinks if E satisfies condition (K) and



STABLE RANK AND REAL RANK OF GRAPH C∗-ALGEBRAS 333

C∗(E) has finitely many ideals then RR(C∗(E)) = 0. In particular, if E
is a locally finite graph with no sinks and has finitely many vertices then
RR(C∗(E)) = 0 if and only if E satisfies condition (K). Therefore, for a
Cuntz-Krieger algebra OA associated with a {0, 1}-matrix A satisfying (I),
RR(OA) = 0 if and only if A satisfies condition (II) since A can be viewed
as a vertex matrix of a finite graph E which has no sinks and satisfies (L)
and that the finite graph E satisfies condition (K) is equivalent to that its
vertex matrix A satisfies condition (II).

2. Preliminaries.

We recall some definitions and notations from [KPR] and [KPRR] on di-
rected graphs, graph C∗-algebras, and groupoids associated with graphs. A
directed graph E = (E0, E1, r, s) consists of countable sets E0 of vertices and
E1 of edges, and the range, source maps r, s : E1 → E0. E is row finite
(locally finite) if for each vertex v ∈ E0, s−1(v) is (both r−1(v) and s−1(v)
are) finite. We call a locally finite graph E finite if E0 is finite. If e1, . . . , en

(n ≥ 2) are edges with r(ei) = s(ei+1), 1 ≤ i ≤ n − 1, then we can form a
(finite) path α = (e1, . . . , en) of length |α| = n, and extend the maps r, s by
r(α) = r(en), s(α) = s(e1).

Let En be the set of all finite paths of length n and

E∗ := ∪n≥0E
n, r(v) = s(v) = v for v ∈ E0,

E∞ := {(αi)∞i=1|αi ∈ E1, r(αi) = s(αi+1)}.

A vertex v ∈ E0 with s−1(v) = ∅ is called a sink.
Given a row finite directed graph E, a Cuntz-Krieger E-family consists of

a set {Pv | v ∈ E0} of mutually orthogonal projections and a set {Se | e ∈ E1}
of partial isometries satisfying the relations

Se
∗Se = Pr(e), e ∈ E1, and Pv =

∑
s(e)=v

SeSe
∗, v ∈ s(E1).

From these relations, one can show that every non-zero word in Se, Pv and S∗f
is a partial isometry of the form SαS∗β for some α, β ∈ E∗ with r(α) = r(β)
([KPR], Lemma 1.1).

Theorem 2.1 ([KPR, Theorem 1.2]). For a row finite directed graph E =
(E0, E1), there exists a C∗-algebra C∗(E) generated by a Cuntz-Krieger E-
family {se, pv | v ∈ E0, e ∈ E1} of non-zero elements such that for any Cuntz-
Krieger E-family {Se, Pv | v ∈ E0, e ∈ E1} of partial isometries acting on a
Hilbert space H, there is a representation π : C∗(E) → B(H) such that

π(se) = Se, and π(pv) = Pv

for all e ∈ E1, v ∈ E0.
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A finite path α with |α| > 0 is called a loop at v if s(α) = r(α) = v. If
the vertices {r(αi) | 1 ≤ i ≤ |α|} are distinct, the loop α is simple.

E is said to satisfy a condition (L) if every loop in E has an exit, and a
condition (K) if for any vertex v on a loop there exist at least two distinct
loops α, β based at v, that is, r(α) = r(β) = s(α) = s(β) = v, r(αi) 6= v for
1 ≤ i < |α|, and r(βj) 6= v for 1 ≤ j < |β|. Note that the condition (K) is
stronger than (L) and if E has no loops then the two conditions are trivially
satisfied.

If E has no sinks then E∞ 6= ∅ and we have the following groupoid
associated with E

GE = {(x, k, y) ∈ E∞ × Z× E∞ |xi = yi+k for sufficiently large i }

(x, k, y)−1 := (y,−k, x),

(x, k, y) · (y, l, z) := (x, k + l, z).

Then the range and source maps r, s : GE → GE
0 are given by

r(x, k, y) = x, s(x, k, y) = y.

GE is a locally compact r-discrete groupoid with respect to a suitable topol-
ogy and GE

0 is identified with E∞. Furthermore the groupoid algebra
C∗(GE) is isomorphic to the graph C∗-algebra C∗(E) by Theorem 4.2 of
[KPRR].

3. Stable rank of C∗(E).

Recall that a C∗-algebra A has stable rank one (sr(A) = 1) if the set A−1

of all invertible elements is dense in A (in Ã if A is non-unital). One can
show that every C∗-algebra A with sr(A) = 1 is stably finite, and so there
is no infinite projection in A. If two C∗-algebras A and B are strong Morita
equivalent, in particular if they are stably isomorphic, then sr(A) = 1 if and
only if sr(B) = 1 ([BP2], [Rf]).

Lemma 3.1 ([BP2, Proposition 6.4]). Let I be an ideal of a C∗-algebra A.
Then sr(A) = 1 if and only if sr(I) = sr(A/I) = 1 and every invertible
element lifts (that is, (Ã/I)−1 = Ã−1/I).

We say that a subgraph H of E has no exit if e ∈ E1, s(e) ∈ H0 implies
e ∈ H1.

Lemma 3.2 ([KPR, Proposition 2.1]). If H is a subgraph of a directed
graph E with no exit then

I := span {sαsβ
∗ |α, β ∈ E∗, r(α) = r(β) ∈ H0}

is a closed ideal of C∗(E) strong Morita equivalent to the hereditary C∗-
subalgebra B := span {sαs∗β |α, β ∈ H∗}.
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We call a vertex v cofinal if for any infinite path x = (x1, x2, . . . ) ∈ E∞

there is a finite path α ∈ E∗ with s(α) = v and r(α) = s(xn) for some n
([KPRR]). A directed graph E is said to be cofinal if every vertex is cofinal.

Theorem 3.3. Let E = (E0, E1, r, s) be a row finite directed graph. Then
E has no loop with an exit if and only if sr(C∗(E)) = 1.

Proof. If E has no loops then C∗(E) is AF and so sr(C∗(E)) = 1. Assume
that E has loops and every loop has no exit. Let H be the subgraph of E
consisting of all the loops. Since H has no exit, by Lemma 3.2,

I = span {sβsγ
∗ |β, γ ∈ E∗, r(β) = r(γ) ∈ H0}

is an ideal of C∗(E) which is strong Morita equivalent to the hereditary
subalgebra B = span {sβsγ

∗ |β, γ ∈ H∗}. Let α be a simple loop in E,
then v = s(α) is cofinal in the subgraph Hα consisting only of α, and Hα

has no sinks. Thus C∗(Hα) ∼= C∗(GHα) ([KPRR], Theorem 4.2). Let
N = {x ∈ H∞

α | s(x) = v}, and GHα
N
N be the reduction of GHα to N . Then

by [KPRR], Theorem 3.1, C∗(GHα
N
N ) is isomorphic to the full corner of

C∗(GHα), so they are strong Morita equivalent. Since N consists of only
one path, say x, and GHα

N
N = {(x, kn, x)|k ∈ Z} ∼= Z, C∗(Hα) is strong

Morita equivalent to the group C∗-algebra C∗(Z) ∼= C(T). Since C(T) has
stable rank 1, it follows that sr(C∗(Hα)) = 1, and so sr(Bα) = 1, where
Bα := span {sβsγ

∗|β, γ ∈ H∗
α}, because Bα is a quotient algebra of C∗(Hα).

Thus sr(Iα) = sr(Bα) = 1, where

Iα := span {sβsγ
∗ |β, γ ∈ E∗, r(β) = r(γ) ∈ H0

α}.

Therefore sr(I) = 1 since I is the direct sum of the ideals Iα.
Now, let D be the C∗-subalgebra of C∗(E) generated by

{se | e ∈ E1 \H1} ∪ {pv | v ∈ E0 },

which is a Cuntz-Krieger G-family for the subgraph G = (E0, E1 \ H1) of
E. Thus by Theorem 2.1 there is a ∗-homomorphism from C∗(G) onto D.
Since G has no loops at all, C∗(G) is an AF algebra having stable rank one,
so we have sr(D) = 1 by Lemma 3.1.

It is clear that under the canonical projection π : C∗(E) → C∗(E)/I
the subalgebra D of C∗(E) maps onto C∗(E)/I and hence the stable rank
of C∗(E)/I is one as a homomorphic image of an algebra of stable rank

one. Also, every invertible element in the AF algebra π(D̃)(= C̃∗(E)/I)

is connected to the unit, whence it lifts to an invertible element in C̃∗(E).
Then by Lemma 3.1, sr(C∗(E)) = 1.

Conversely, suppose that E has a simple loop α = (α1, . . . , αn) with an
exit at v = s(α). It is easy to see that the projection pv is infinite, so the
algebra C∗(E) is not stably finite, whence sr(C∗(E)) 6= 1.
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Lemma 3.4. If V is the set of all sinks in E then

I := span {sαs∗β |α, β ∈ E∗, r(α) = r(β) = v for some v ∈ V }
is a closed two-sided ideal of C∗(E). With E∗(v) = {α ∈ E∗ | r(α) = v}, we
have

I ∼= ⊕v∈VK(`2(E∗(v))).

Proof. For each v ∈ V , let

Iv := span {sαsβ
∗ |α, β ∈ E∗, r(α) = r(β) = v}.

Then by Corollary 2.2 of [KPR], Iv is a closed ideal of C∗(E) and isomorphic
to K(`2(E∗(v))). If β, γ ∈ E∗, with r(β) = vi, r(γ) = vj , then s∗βsγ = 0 when
i 6= j, whence the ideals are mutually orthogonal.

If a (locally finite) directed graph E has sinks then it might not contain
any infinite paths so that we can not directly apply results on groupoid
C∗-algebras since the groupoid GE associated with E was invented to have
its unit space consisting of infinite paths in E. In case E has no sinks,
in [KPRR], an isomorphism of lattice of saturated hereditary subsets V
of E0 into the lattice of ideals I(V ) in C∗(E)(∼= C∗(GE)) was established
and it is shown that the quotient algebra C∗(E)/I(V ) is isomorphic to the
graph algebra C∗(G) for a certain subgraph G of E. The proof applies the
results on ideal structure of groupoid algebras obtained in [Rn1, Rn2]. See
Section 4 for this isomorphism. In the following we show a similar assertion
when V is the set of all sinks in E. For this, we need to recall that a vertex
subset H of E0 is saturated if whenever v ∈ E0 emits only edges e with
r(e) ∈ H, we have v ∈ H. The smallest saturated vertex subset containing
V is called the saturation of V .

Theorem 3.5. Let E = (E0, E1, r, s) be a locally finite directed graph with
the set V of sinks. Then there is a subgraph G = (E0 \H, {e ∈ E1 | r(e) /∈
H}) of E with no sinks such that C∗(E)/I(V ) is isomorphic to C∗(G), where
H is the saturation of V and I(V ) = span {sαsβ

∗ |α, β ∈ E∗, r(α) = r(β) ∈
V }.

Proof. Note that the ideal I(= I(V )) contains the projections pv, for v ∈ V .
If e ∈ E1, r(e) = v for some v ∈ V then se ∈ I because se = sese

∗se =
sepv ∈ I. For an edge e ∈ E1 with r(e) /∈ V we have

se = sepr(e) =
∑

s(f)=r(e)

sesfsf
∗pr(e) ∈ I

whenever the vertex r(e) emits only edges f with sf ∈ I. If r(e) emits an
edge f with sf /∈ I then sfsf

∗ /∈ I (sf = sfsf
∗sf ). From se

∗se = pr(e) ≥
sfsf

∗ /∈ I, we see that se
∗se /∈ I, so se /∈ I. Thus

se ∈ I ⇐⇒ either r(e) ∈ V or r(e) emits only edges f with sf ∈ I.
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Now let π : C∗(E) → C∗(E)/I be the canonical surjective homomorphism.
Then π(C∗(E)) is generated by π(sf ), sf /∈ I. Let G be the subgraph of E
obtained from E by deleting the vertices w with pw ∈ I and edges f with
sf ∈ I, that is,

(∗∗) w ∈ G0 ⇐⇒ pw /∈ I, e ∈ G1 ⇐⇒ se /∈ I.

Then π(C∗(E)) is generated by π(sf ), f ∈ G1. Let w ∈ G0. Then w /∈ V
and hence w emits edges e1, . . . , em in E. If w is a sink in G then sei ∈
I, i = 1, . . . ,m, and so pw =

∑
i seisei

∗ ∈ I, a contradiciton. Therefore the
subgraph G has no sinks.

Let π(sf ) 6= 0, then f appears in G by (∗∗). If the vertex w = r(f) emits
edges e1, . . . , ek, . . . , em in E such that se1 , . . . , sek

/∈ I, and sek+1
, . . . , sem ∈

I then

π(s∗f )π(sf ) = π

 ∑
s(e)=r(f)=w

ses
∗
e


=

k∑
i=1

π(sei)π(sei)
∗ =

∑
s(g)=w=r(f)

g∈G1

π(sg)π(sg)∗,

which means that the partial isometries {π(sf )|f ∈ G1} is a Cuntz-Krieger
G-family in π(C∗(E)) = C∗(E)/I. Therefore there exists a homomorphism
φ : C∗(G) → C∗(E)/I such that

φ(tf ) = π(sf ), f ∈ G1 and φ(qw) = π(pw), w ∈ G0,

where {tf , qw} is a Cuntz-Krieger G-family generating C∗(G). On the other
hand, one can form a Cuntz-Krieger E-family in C∗(G) by adding te = 0
for e ∈ E1 \G1, and qv = 0 for v ∈ E0 \G0 to the family {tf , qw}. Then we
have a homomorphism ρ : C∗(E) → C∗(G) such that

ρ(se) = te, ρ(pv) = qv, e ∈ E1, v ∈ E0.

Clearly, I ⊂ Ker(ρ). Now let x =
∑

λα,βsαs∗β ∈ Ker(ρ). Then

π
(∑

λα,βsαs∗β

)
= φ

(∑
λα,βtαt∗β

)
= φ ◦ ρ(x) = 0.

Thus x ∈ Ker(π) = I. Therefore Ker(ρ) = I and the map ρ induces an
isomorphism from C∗(E)/I onto C∗(G).

Recall that a C∗-algebra A is said to be purely infinite if every non-zero
hereditary C∗-subalgebra of A has an infinite projection.

If an r-discrete groupoid G is essentially free and locally contracting then
C∗(G) is purely infinite ([A], Proposition 2.4). From Lemma 3.4 of [KPR],
we see that the groupoid GE associated with a locally finite graph E with
no sinks is essentially free if and only if E satisfies condition (L). It is also
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known from the same paper that if every vertex connects to a loop with
an exit then GE is locally contracting, so that C∗(E)(∼= C∗(GE)) is purely
infinite. Moreover there is a dichotomy for simple graph C∗-algebras.

Proposition 3.6 ([KPR, Corollary 3.11]). Let E be a locally finite graph
which has no sinks, is cofinal, and satisfies condition (L). Then C∗(E) is
simple, and

(i) if E has no loops, then C∗(E) is AF;
(ii) if E has a loop, then C∗(E) is purely infinite.

Proposition 3.7. Let E be a locally finite directed graph. If E is cofinal
then either sr(C∗(G)) = 1 or it is purely infinite simple.

Proof. If E has no loop with an exit then sr(C∗(E)) = 1 by Theorem 3.3.
Suppose E has a loop with an exit. Since E is cofinal, E can not have a sink.
If E has precisely one loop then E satisfies (L) and so C∗(E) is purely infinite
simple by the previous proposition. Let E have two distinct loops, α, β. If
γ is a loop of E then consider the infinite path x = αα · · ·α = (x1, x2, . . . )
assuming γ 6= α. Since E is cofinal the vertex v = s(γ) connects to x by a
finite path, and this shows that the loop γ has an exit. Therefore E satisfies
(L) and C∗(E) is purely infinite simple by Proposition 3.6.

From the proof of the above proposition, we see that for a cofinal graph
E with no sinks C∗(E) is simple unless E has precisely one loop and the
loop has no exit.

4. Real rank of C∗(E).

Recall that a unital C∗-algebra A is said to have real rank zero (RR(A) =
0) if every self-adjoint element can be arbitrarily closely approximated by
invertible self-adjoint elements, that is, A−1

sa is dense in Asa. For a nonunital
C∗-algebra A, we say that A has real rank zero if Ã has real rank zero
([BP1]). Then RR(A) = 0 if and only if RR(A ⊗ K) = 0. Also it is well-
known that RR(A) = 0 is equivalent to that A satisfies a condition (FS),
that is, the set of self-adjoint elements with finite spectra is dense in Asa,
so RR(A) = 0 implies that A contains fairly many projections so that the
linear span of its projections is dense in A. Graph C∗-algebras C∗(E) are
basically generated by their partial isometries, and thus they would have
plenty of projections and one might expect that most of them have real
rank zero. In fact, if C∗(E) is simple then it is either AF or purely infinite
simple and in both cases it is well-known that these algebras have real rank
zero; for real rank of a purely infinite simple C∗-algebra, see [Z].

In this section, we first find a necessary condition for a graph C∗-algebra
C∗(E) to have real rank zero. We need to review the ideal theory of a graph
C∗-algebra C∗(E) for a directed graph E with no sinks. Recall that C∗(E)



STABLE RANK AND REAL RANK OF GRAPH C∗-ALGEBRAS 339

can be identified with its infinite path space groupoid model C∗(G) and
C∗(G) ∼= C∗r (G) since the groupoid associated with a locally finite directed
graph E is amenable ([KPRR], Corollary 5.3). A subset H of the vertex
set E0 is hereditary if v ∈ H and w ∈ E0 with s(α) = v, r(α) = w for some
α ∈ E∗ then w ∈ H.

For a hereditary and saturated vertex set H ⊂ E0, let

U(H) = {x ∈ E∞ | r(xn) ∈ H for some n}.

Then U(H) is an open invariant subset of E∞ (which is identified with the
unit space G0 of the groupoid G associated with the graph E). The map H 7→
U(H) is an isomorphism between the lattices of saturated hereditary subsets
of E0 and open invariant subsets O(G) of E∞ ([KPRR], Lemma 6.5). On
the other hand, for each open invariant subspace U ⊂ E∞(= G0), the space

Cc(GU
U ) :=

{
f ∈ Cc(G) : supp f ⊂ GU

U

}
is an ideal of Cc(G), hence its closure is an ideal I(U) of C∗(G). We see from
[Rn1], Proposition 4.5 that the correspondence U 7→ I(U) is a one-to-one
order preserving map between O(G) and the lattice of ideals J (C∗(G)) of
C∗(G). Thus H → I(U(H)) is an order preserving isomorphism from the
lattice of hereditary saturated vertex subsets into J (C∗(G)). It is proved
in the proof of [KPRR], Theorem 6.6 that the ideals I(H) and I(U(H))
coincide, where

I(H) := span {1Z(α,β) |α, β ∈ E∗, r(α) = r(β) ∈ H},

and 1Z(α,β) is the characteristic function on the compact open subset Z(α, β)
of the groupoid G.

The isomorphism from C∗(G) onto C∗(E) obtained in [KPRR] maps the
functions 1Z(α,β) (α, β ∈ E∗, r(α) = r(β) ∈ H) onto sαs∗β. Therefore we
have

I(H) = span {sαsβ
∗ |α, β ∈ E∗, r(α) = r(β) ∈ H}.

Furthermore the following is known.

Theorem 4.1 ([KPRR, Theorem 6.6], or [P, Theorem 2.2]). Let E be a
locally finite directed graph with no sinks. Then the map H 7→ I(H) de-
scribed above is injective, and the quotient algebra C∗(E)/I(H) is isomor-
phic to C∗(F ) of the directed graph F := (E0 \ H, {e | r(e) /∈ H}). The
ideal I(H) is strong Morita equivalent to C∗(K) of the directed graph K :=
(H, {e | s(e) ∈ H}). Moreover, if E satisfies the condition (K) then the map
H 7→ I(H) is surjective.

Theorem 4.2 ([BP1]). Let A be a C∗-algebra and I be an ideal of A.
(a) If RR(A) = 0 then RR(I) = RR(A/I) = 0.

Suppose RR(I) = RR(A/I) = 0. Then we have the following.



340 J.A. JEONG, G.H. PARK, AND D.Y. SHIN

(b) RR(A) = 0 if and only if every projection in A/I lifts to a projection
in A. In particular if K1(I) = 0 then every projection lifts.

(c) If B is a C∗-subalgebra of A with RR(B) = 0 and A = B + I then
RR(A) = 0.

Now, we can prove our first theorem on real rank of graph C∗-algebras.

Theorem 4.3. Let E be a locally finite directed graph with no sinks. If
RR(C∗(E)) = 0 then E satisfies condition (K).

Proof. Suppose there is a simple loop α with no exit in E. Then the
subgraph Hα consisiting of α has no exit and generates an ideal I stably
isomorphic to C(T), that is, I⊗K ∼= C(T)⊗K, as in the proof of Theorem 3.3.
Since RR(C(T)) 6= 0 it follows that RR(C∗(E)) 6= 0 by Theorem 4.2(a), a
contradiction, which shows that E satisfies condition (L).

To prove condition (K), let v be a vertex such that there is only one loop
at v. Let β = (β1, β2, . . . , βn) be the loop and let V be the set of vertices
w ∈ V such that w = r(e) for an exit e of β and H be the smallest hereditary
and saturated vertex set containing V . Then V 6= ∅ because E satisfies (L).
Moreover, H is a proper subset of E0 since vertices on the loop β are not
elements in H. Thus there exists a proper ideal I(H) in C∗(E), and the
quotient algebra C∗(E)/I(H) is isomorphic to C∗(F ) of the directed graph
F = (E0\H, {e | r(e) /∈ H}). Hence F has a loop β with no exit in F and by
the argument in the first paragraph of the proof RR(C∗(F )) 6= 0. Therefore
RR(C∗(E)) 6= 0 by Theorem 4.2(a).

Corollary 4.4. Let E be a locally finite directed graph with no sinks. If
sr(C∗(E)) = 1 and RR(C∗(E)) = 0 then C∗(E) is AF.

Proof. By Theorem 3.3 and Theorem 4.3, E has no loops, and the assertion
follows from Theorem 2.4 in [KPR].

Proposition 4.5. Let E be a locally finite directed graph with no sinks.
Then C∗(E) is simple if and only if E is cofinal and satisfies (K).

Proof. Suppose E is cofinal and satisfies condition (K) then C∗(E) is simple
by the proof of [KPRR], Corollary 6.8.

Since the converse has not been proved there in the same proof, we provide
one for reader’s convenience. To prove the converse, suppose E is not cofinal.
Then there exist an infinite path x and a vertex v which cannot connect to x
by a finite path. Let H1 be the set of all vertices w which can be connected
from v, that is, there is a finite path α ∈ E∗ with s(α) = v, r(α) = w. Then
H1 is the smallest hereditary vertex set containing v. Let H be the set of all
vertices w satisfying that for any path α ∈ E∗∪E∞ with s(α) = w, if α ∈ E∗

then there is another path β ∈ E∗ such that s(β) = r(α) and r(β) ∈ H1,
if α ∈ E∞ then r(αj) ∈ H1 for some j. Then clearly v ∈ H1 ⊂ H. We
show that H is a saturated hereditary vertex set which does not contain
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vertices on the infinite path x. Suppose a vertex w emits edges e1, . . . , en

and r(ei) ∈ H for all i. If α is a path with s(α) = w then α1 = ej for
some j and α = ejγ for some path with s(γ) = r(ej) ∈ H. Since γ is a
path with s(γ) = r(ej) ∈ H, if γ ∈ E∗ then we can find a path β ∈ E∗

such that s(β) = r(γ) and r(β) ∈ H1. If γ ∈ E∞ then r(γi) ∈ H1 for
some i, and hence r(αi+1) ∈ H1. Thus w ∈ H, and H is saturated. Now
let u be a vertex connected by a finite path β from some vertex w ∈ H,
that is, s(β) = w, r(β) = u. Then for any path α with s(α) = u, the path
βα starts from w, and it is easy to see that u ∈ H, and H is hereditary.
Obviously the infinite path x does not meet any vertex in H1, hence H is
a proper saturated hereditary subset of E0. Therefore C∗(E) is not simple
by Theorem 4.1.

Now suppose E is cofinal but does not satisfy condition (K). Since for a
cofinal graph two conditions (K) and (L) are equivalent, E has a loop with
no exit. We have already seen from the proof of Theorem 3.3 that such a
loop generates an ideal strong Morita equivalent to C(T). Thus C∗(E) can
not be simple.

We prove the converse of Theorem 4.3 when C∗(E) has finitely many
ideals.

Theorem 4.6. Let E be a locally finite directed graph with no sinks which
satisfies condition (K). If C∗(E) has only finitely many ideals then
RR(C∗(E)) = 0. In particular, if E is a finite graph then RR(C∗(E)) = 0.

Proof. Let n be the number of non-zero ideals in C∗(E). We prove our
assertion by induction on n.

For n = 1, C∗(E) is simple and RR(C∗(E)) = 0 since C∗(E) is either AF
or purely infinite simple.

Let n > 1. Let I(H) be a maximal ideal of C∗(E) for some hereditary
saturated vertex subset H of E0. By Theorem 4.1 and induction hypothesis,
I(H) and the simple C∗-algebra C∗(E)/I(H) have real rank zero. We show
that C∗(E) = I(H) + B for some C∗-subalgebra B isomorphic to C∗(F̃ ) for
a directed subgraph F̃ (possibly with sinks) of E such that RR(C∗(F̃ )) = 0
and then apply Theorem 4.2(c). According to Theorem 4.1, C∗(E)/I(H) ∼=
C∗(F ), where F = (E0 \H, {e | r(e) /∈ H}). Let

V := {v ∈ H | v = r(e) for some edge e ∈ E1 with s(e) ∈ F 0 = E0 \H}.

If V = ∅, then C∗(E) ∼= I(H)⊕C∗(F ), and therefore RR(C∗(E)) = 0 since
two direct summands have real rank zero by induction hypothesis. If V 6= ∅
we set

F̃ = (F 0 ∪ V, F 1 ∪ {f ∈ E1 | r(f) ∈ V, s(f) ∈ F 0}).
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Then V is the set of all sinks of F̃ . By Theorem 3.5, C∗(F̃ )/I(V ) is isomor-
phic to the simple C∗-algebra C∗(F ), where

I(V ) = span {sαs∗β |α, β ∈ F̃ ∗, r(α) = r(β) ∈ V }.

Thus RR(C∗(F̃ )/I(V )) = RR(C∗(F )) = 0. The ideal

I(V ) ∼= ⊕v∈VK(`2(E∗(v)))

also has real rank zero. Furthermore since K1(I(V )) = 0, by Theorem 4.2(b),
RR(C∗(F̃ )) = 0. Let B be the C∗-subalgebra of C∗(E) generated by the
family of nonzero elements {pv, sf | v ∈ (F̃ )0, f ∈ (F̃ )1}. Then this
is a Cuntz-Krieger F̃ -family and hence B is a quotient of C∗(F̃ ). Thus
RR(B) = 0. Now, it is not hard to see that C∗(E) = B + I(H), and this
completes the proof.

Let A be a {0, 1}-matrix with no zero row or column. Then A can be
viewed as a vertex matrix of a finite graph E with no sinks. If A satisfies
Cuntz-Krieger’s condition (I) in [CK] then it clearly follows that E satisfies
(L) (or, equivalently condition (I) introduced for graphs in [KPR]) from
their definitions. By Proposition 4.1 of [KPRR], the graph algebra C∗(E)
is also generated by a Cuntz-Krieger A-family of partial isometries, hence
the Cuntz-Krieger algebra OA is isomorphic to the graph algebra C∗(E). On
the other hand, the graph algebra C∗(E) is known to be isomorphic to the
Cuntz-Krieger algebra OB associated with the edge matrix B of E. There-
fore those three algebras are all isomorphic. Furthermore by Theorem 4.3,
4.6, and Lemma 6.1 of [KPRR], we have the following corollary.

Corollary 4.7. Let A be a {0, 1}-matrix with no zero row or column. Sup-
pose A satisfies Cuntz-Krieger’s condition (I) and let E be the finite graph
having A as its vertex matrix. Then the following are equivalent:

(i) RR(OA) = 0,
(ii) A satisfies Cuntz’s condition (II),
(iii) E satisfies condition (K).
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