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For a row finite directed graph F, Kumjian, Pask, and Rae-
burn proved that there exists a universal C*-algebra C*(F)
generated by a Cuntz-Krieger FE-family. In this paper we
consider two density problems of invertible elements in graph
C*-algebras C*(E), and it is proved that C*(E) has stable
rank one, that is, the set of all invertible elements is dense in
C*(E) (or in its unitization when C*(FE) is nonunital) if and
only if no loop of E has an exit. We also prove that for a
locally finite directed graph E with no sinks if the graph C*-
algebra C*(FE) has real rank zero (RR(C*(E)) = 0), that is,
the set of invertible self-adjoint elements is dense in the set of
all self-adjoint elements of C*(FE) then FE satisfies a condition
(K) on loop structure of a graph, and that the converse is
also true for C*(E) with finitely many ideals. In particular,
for a Cuntz-Krieger algebra O,s, RR(O4) = 0 if and only if
A satisfies Cuntz’s condition (II).

1. Introduction.

Given an n x n {0, 1}-matrix A with no zero row or column, a family of n
partial isometries S; satisfying the relation

n
(%) SiSi=Y_ Ali,)S;S;
j=1
is called a Cuntz-Krieger A-family. In [CK], under a condition (I) on the
matrix A, it is proved that any two such families generate isomorphic C*-
algebras, thus the Cuntz-Krieger algebra O, is well-defined. Furthermore
when A satisfies condition (II) which is stronger than (I) the ideal structure
of O4 was analysed by Cuntz in [C].

As a generalization of Cuntz-Krieger algebras one may consider a C*-
algebra generated by a family of partial isometries satisfying the relation
(%) for some infinite {0, 1}-matrix A, provided every row of A contains only
finitely many 1’s, and this has been done in [KPRR] and [KPR] with
directed graphs. For any row finite directed graph E with countable vertices
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{v]v € E°} and edges {e¢|e € E'}, the associated graph C*-algebra C*(E)
is defined to be a universal C*-algebra generated by a family of partial
isometries {s.|e € F'} and a family of mutually orthogonal projections
{py | v € EY} subject to the relations:

5:56 = DPr(e)) Pv = Z st}a
s(f)=v
where 7(e) (respectively, s(e)) denotes the range (respectively, source) vertex
of the edge e. If {A(e, f)} is the edge matrix of E then these relations give
a generalized form of (%), that is, sis. = Zs(f):r(e) Ale, f)st’}.

If E has no sinks then there is a locally compact r-discrete groupoid
G associated with E whose unit space QEO is identified with the infinite
path space of E. Furthermore it is shown in [KPRR], Theorem 4.2 that
the groupoid C*-algebra C*(Gg) is isomorphic to C*(FE), and hence those
useful results on groupoid C*-algebras in [Rn1] and [Rn2] could be used to
analyse the structure of C*(E). One important therem in [KPRR] is about
the ideal structure of graph C*-algebras; there is an inclusion preserving
one-to-one map of saturated hereditary vertex subsets of E into the ideals
of C*(E) and moreover if F satisfies a condition (K) then the map is also
bijective.

A graph-theoretic condition (L) analogous to Cuntz-Krieger’s condition
(I) was given in [KPR], where it was shown that if E is a locally finite
directed graph with no sinks and satisfies (L) then a C*-algebra generated
by a Cuntz-Krieger E-family of non-zero elements is isomorphic to C*(FE).
One interesting result among others in [KPR] is that C*(E) is AF if and
only if E has no loops. It is also shown in [D] that every AF-algebra arises
as the C*-algebra of a locally finite pointed directed graph in the sense of
[KPRR/|. Recall that every AF algebra A has stable rank one (sr(A4) = 1);
the set of invertible elements is dense in A (or A if A is nonunital). In
Section 3, we give a necessary and sufficient graph-theoretic condition on £
for the graph algebra C*(E) to have stable rank one; sr(C*(E)) = 1 if and
only if no loop of E has an exit.

We see from [KPR] that if F is a cofinal graph with no sinks and satisfies
(L) then the universal C*-algebra C*(F) is simple and it is either AF or
purely infinite. It is also well-known that all AF algebras and purely infinite
simple C*-algebras have real rank zero, that is, every self-adjoint element
can be arbitrarily closely approximated by invertible self-adjoint elements
(or in the unitized algebra for a nonunital C*-algebra). So it would be
interesting to know when a non-simple graph C*-algebra can have real rank
zero, and we prove in Section 4 that for a locally finite directed graph E with
no sinks if the graph algebra C*(FE) has real rank zero (RR(C*(E)) = 0)
then the graph must satisfy condition (K). Conversely we also show that
for any locally finite graph E with no sinks if F satisfies condition (K) and
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C*(E) has finitely many ideals then RR(C*(FE)) = 0. In particular, if E
is a locally finite graph with no sinks and has finitely many vertices then
RR(C*(E)) = 0 if and only if F satisfies condition (K). Therefore, for a
Cuntz-Krieger algebra 04 associated with a {0, 1}-matrix A satisfying (I),
RR(O4) = 0 if and only if A satisfies condition (II) since A can be viewed
as a vertex matrix of a finite graph E which has no sinks and satisfies (L)
and that the finite graph E satisfies condition (K) is equivalent to that its
vertex matrix A satisfies condition (II).

2. Preliminaries.

We recall some definitions and notations from [KPR| and [KPRR] on di-
rected graphs, graph C*-algebras, and groupoids associated with graphs. A
directed graph E = (EY, E',r, s) consists of countable sets E° of vertices and
E' of edges, and the range, source maps 7, s : B! — EY. E is row finite
(locally finite) if for each vertex v € E°, s71(v) is (both r~1(v) and s~!(v)
are) finite. We call a locally finite graph E finite if E° is finite. If eq,..., e,
(n > 2) are edges with r(e;) = s(e;t1), 1 < i < n — 1, then we can form a
(finite) path a = (eq,...,ey) of length |a] = n, and extend the maps r, s by
r(a) =r(en), s(a) = s(ey).
Let E™ be the set of all finite paths of length n and

E* = Up,>oE", r(v) =s(v) =v for v € E,
E* = {(ai)Z]a € BY (i) = s(ai) )
A vertex v € E? with s71(v) = () is called a sink.
Given a row finite directed graph F, a Cuntz-Krieger E-family consists of

aset {P, |v € EY} of mutually orthogonal projections and a set {S. | e € E'}
of partial isometries satisfying the relations

Se*Se = Pr(ey; € € Fl' and P, = Z S.S.*, v e s(Eh.
s(e)=v
From these relations, one can show that every non-zero word in S, P, and S;‘Z

is a partial isometry of the form S,5% for some «, 8 € E* with r(a) = r(f)
([KPR], Lemma 1.1).

Theorem 2.1 ([KPR, Theorem 1.2]). For a row finite directed graph E =
(E°, EY), there exists a C*-algebra C*(E) generated by a Cuntz-Krieger E-
family {se,py |v € E°,e € E'} of non-zero elements such that for any Cuntz-
Krieger E-family {Se, P, |v € E° e € E'} of partial isometries acting on a
Hilbert space 'H, there is a representation w : C*(E) — B(H) such that

7(se) = Se, and 7w(py) = P,

for alle € E',v € E°.
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A finite path o with |a| > 0 is called a loop at v if s(a) = r(a) = v. If
the vertices {r(a;) |1 <1i < |a|} are distinct, the loop « is simple.

E is said to satisfy a condition (L) if every loop in E has an exit, and a
condition (K) if for any vertex v on a loop there exist at least two distinct
loops a, 3 based at v, that is, r(a) = r(8) = s(a) = s(8) = v, r(a;) # v for
1 <i < laf, and 7(8;) # v for 1 < j < |B|. Note that the condition (K) is
stronger than (L) and if £ has no loops then the two conditions are trivially
satisfied.

If E has no sinks then E*° # () and we have the following groupoid
associated with E

Ge ={(z,k,y) € E®® X Z x E* | x; = y;4+ for sufficiently large i }

(:kaay)_l = (yv _k7$)7
(x, k,y) - (y, 1, 2) :i= (z, k + 1, 2).

Then the range and source maps 7, s : Gg — Gg° are given by

T.(x? k? y) = a""? 8($7 k? y) = y‘

Gr is a locally compact r-discrete groupoid with respect to a suitable topol-
ogy and G is identified with E*. Furthermore the groupoid algebra
C*(Gg) is isomorphic to the graph C*-algebra C*(E) by Theorem 4.2 of
[KPRR].

3. Stable rank of C*(FE).

Recall that a C*-algebra A has stable rank one (sr(A4) = 1) if the set At

of all invertible elements is dense in A (in A if A is non-unital). One can
show that every C*-algebra A with sr(A) = 1 is stably finite, and so there
is no infinite projection in A. If two C*-algebras A and B are strong Morita
equivalent, in particular if they are stably isomorphic, then sr(A) = 1 if and
only if sr(B) =1 ([BP2], [Rf]).

Lemma 3.1 ([BP2, Proposition 6.4]). Let I be an ideal of a C*-algebra A.
Then sr(A) = 1 if and only if sr(I) = sr(A/I) =1 and every invertible
element lifts (that is, (A/I)~1 = A=1/T).

We say that a subgraph H of E has no exit if e € E', s(e) € H® implies
e€ H.

Lemma 3.2 ([KPR, Proposition 2.1]). If H is a subgraph of a directed
graph E with no exit then
I :=span{sys3” |, B € E*,r(a) =7(B) € H%}

is a closed ideal of C*(E) strong Morita equivalent to the hereditary C*-
subalgebra B :=span{s,sj|a,3 € H*}.
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We call a vertex v cofinal if for any infinite path z = (1, 22,...) € E®
there is a finite path o € E* with s(a) = v and r(a) = s(x,) for some n
([KPRR]). A directed graph F is said to be cofinal if every vertex is cofinal.

Theorem 3.3. Let E = (E°, E',r,s) be a row finite directed graph. Then
E has no loop with an exit if and only if sr(C*(E)) = 1.

Proof. If E has no loops then C*(E) is AF and so sr(C*(E)) = 1. Assume
that F has loops and every loop has no exit. Let H be the subgraph of F
consisting of all the loops. Since H has no exit, by Lemma 3.2,

I :W{Sﬁs’y* ‘/3’,7 € E*7 T(ﬂ) = T(fy) € HO}

is an ideal of C*(E) which is strong Morita equivalent to the hereditary
subalgebra B = span{sgs,*|(,7 € H*}. Let a be a simple loop in E,
then v = s(a) is cofinal in the subgraph H, consisting only of «, and H,
has no sinks. Thus C*(H,) = C*(Gy,) ([KPRR], Theorem 4.2). Let
N = {z € H® | s(x) = v}, and Gy, % be the reduction of G, to N. Then
by [KPRR], Theorem 3.1, C*(Gy, N) is isomorphic to the full corner of
C*(Gm,), so they are strong Morita equivalent. Since N consists of only
one path, say =, and Gy N = {(z,kn,z)|k € Z} = Z, C*(H,) is strong
Morita equivalent to the group C*-algebra C*(Z) = C(T). Since C(T) has
stable rank 1, it follows that sr(C*(H,)) = 1, and so sr(B,) = 1, where
B, :=span{sgs,*|3,v € H.}, because B, is a quotient algebra of C*(H,).
Thus sr(ly) = sr(By) = 1, where

I :=span{sgs,"| 8,7 € E*, r(8) = r(y) € HY}.

Therefore sr(I) = 1 since I is the direct sum of the ideals 1.
Now, let D be the C*-subalgebra of C*(E) generated by

{sele€ B'\H'}U{p,|ve E"},

which is a Cuntz-Krieger G-family for the subgraph G = (E°, E' \ H') of
E. Thus by Theorem 2.1 there is a *-homomorphism from C*(G) onto D.
Since G has no loops at all, C*(G) is an AF algebra having stable rank one,
so we have sr(D) =1 by Lemma 3.1.

It is clear that under the canonical projection 7 : C*(E) — C*(E)/I
the subalgebra D of C*(E) maps onto C*(E)/I and hence the stable rank
of C*(E)/I is one as a homomorphic image of an algebra of stable rank

one. Also, every invertible element in the AF algebra 7(D)(= C/'*_ZE) /1)

—_——

is connected to the unit, whence it lifts to an invertible element in C*(E).
Then by Lemma 3.1, sr(C*(E)) = 1.

Conversely, suppose that E has a simple loop a = (aq,...,a,) with an
exit at v = s(a). It is easy to see that the projection p, is infinite, so the
algebra C*(FE) is not stably finite, whence sr(C*(E)) # 1.
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Lemma 3.4. IfV is the set of all sinks in E then
I :=span{sasj|a, € E*,r(a) = r(f) = v for somev € V'}
is a closed two-sided ideal of C*(E). With E*(v) = {a € E*|r(a) = v}, we

have
12 @uevK(C(E*(v))).
Proof. For each v € V| let
I, :=span{sqsg” |a, B € E*,r(a) = r(5) = v}.
Then by Corollary 2.2 of [KPRY], I, is a closed ideal of C*(E) and isomorphic
to K(C2(E*(v))). If B,y € E*, with r(8) = v;, () = vj, then sjsy = 0 when
i # j, whence the ideals are mutually orthogonal.

If a (locally finite) directed graph E has sinks then it might not contain
any infinite paths so that we can not directly apply results on groupoid
C*-algebras since the groupoid Gg associated with F was invented to have
its unit space consisting of infinite paths in F. In case E has no sinks,
in [KPRR], an isomorphism of lattice of saturated hereditary subsets V'
of EY into the lattice of ideals I(V) in C*(E)(= C*(Gg)) was established
and it is shown that the quotient algebra C*(E)/I(V) is isomorphic to the
graph algebra C*(@G) for a certain subgraph G of E. The proof applies the
results on ideal structure of groupoid algebras obtained in [Rnl, Rn2]. See
Section 4 for this isomorphism. In the following we show a similar assertion
when V is the set of all sinks in F. For this, we need to recall that a vertex
subset H of E° is saturated if whenever v € E? emits only edges e with
r(e) € H, we have v € H. The smallest saturated vertex subset containing
V is called the saturation of V.

Theorem 3.5. Let E = (E°, E',r,s) be a locally finite directed graph with
the set V' of sinks. Then there is a subgraph G = (E°\ H,{e € E' | r(e) ¢
H}) of E with no sinks such that C*(E)/I1(V) is isomorphic to C*(G), where
H is the saturation of V and I(V) = span{sasg™ | a, 5 € E*, r(a) =r(B) €
V1

Proof. Note that the ideal I(= I(V')) contains the projections p,, for v € V.

If e € E',r(e) = v for some v € V then s. € I because s, = 5.5."5. =
sepy € I. For an edge e € E' with 7(e) ¢ V we have

Se = SePr(e) = Z SGSfo*pr(e) c]l
s(f)=r(e)
whenever the vertex r(e) emits only edges f with sy € I. If r(e) emits an
edge f with sy ¢ I then sps;* ¢ I (sp = spsy*sy). From sg*se = pye) >
spsg* ¢ I, we see that s.*s. ¢ I, so s ¢ 1. Thus

Se € I <= either r(e) € V or r(e) emits only edges f with sy € I.
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Now let 7w : C*(E) — C*(E)/I be the canonical surjective homomorphism.
Then 7(C*(E)) is generated by m(sf), sy ¢ I. Let G be the subgraph of £
obtained from FE by deleting the vertices w with p,, € I and edges f with
sy € I, that is,

(%) weG'<=p,¢I, ecG <= s.¢1I

Then 7(C*(E)) is generated by m(sf), f € GL. Let w € G°. Then w ¢ V
and hence w emits edges eq,...,e, in E. If w is a sink in G then s, €
I,i=1,...,m,and so py, = ), Se;S¢;,” € I, a contradiciton. Therefore the
subgraph G has no sinks.

Let w(sf) # 0, then f appears in G by (xx). If the vertex w = r(f) emits
edges e1,...,¢€k,..., ey in E such that s ,...,se, ¢ I, and s¢; ;... 5, €
I then

m(sp)m(sy) =7 Z SeSs

= ZW(SQ)W(S@@')* = Z W(Sg)ﬂ'(sg)*,
=1 s(g)=w=r(f)
geGT
which means that the partial isometries {7 (ss)|f € G'} is a Cuntz-Krieger
G-family in 7(C*(E)) = C*(E)/I. Therefore there exists a homomorphism
¢ : C*(G) — C*(E)/I such that

gb(tf) = W(Sf)af € Gl and ¢(Qw) = W(pw)a w e GO’

where {t¢, g} is a Cuntz-Krieger G-family generating C*(G). On the other
hand, one can form a Cuntz-Krieger E-family in C*(G) by adding t. = 0
for e € E'\ G', and ¢, = 0 for v € E°\ G to the family {ts, q,}. Then we
have a homomorphism p : C*(E) — C*(G) such that

p(se) = te, p(pv) =(qy, €E El, v E EO.
Clearly, I C Ker(p). Now let z = > Ao gsasj € Ker(p). Then

™ (Z Aa,ﬁ%ﬁ%) =¢ (Z )\aﬂtatﬁ) =¢op(z)=0.

Thus x € Ker(mw) = I. Therefore Ker(p) = I and the map p induces an
isomorphism from C*(E)/I onto C*(G).

Recall that a C*-algebra A is said to be purely infinite if every non-zero
hereditary C*-subalgebra of A has an infinite projection.

If an r-discrete groupoid G is essentially free and locally contracting then
C*(G) is purely infinite ([A], Proposition 2.4). From Lemma 3.4 of [KPR],
we see that the groupoid G associated with a locally finite graph E with
no sinks is essentially free if and only if E satisfies condition (L). It is also
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known from the same paper that if every vertex connects to a loop with
an exit then Gg is locally contracting, so that C*(E)(= C*(Gg)) is purely
infinite. Moreover there is a dichotomy for simple graph C*-algebras.

Proposition 3.6 ([KPR, Corollary 3.11]). Let E be a locally finite graph
which has no sinks, is cofinal, and satisfies condition (L). Then C*(E) is
stmple, and

(i) if E has no loops, then C*(E) is AF;

(ii) if E has a loop, then C*(E) is purely infinite.

Proposition 3.7. Let E be a locally finite directed graph. If E is cofinal
then either sr(C*(G)) =1 or it is purely infinite simple.

Proof. If E has no loop with an exit then sr(C*(E)) = 1 by Theorem 3.3.
Suppose F has a loop with an exit. Since E is cofinal, F' can not have a sink.
If E has precisely one loop then F satisfies (L) and so C*(FE) is purely infinite
simple by the previous proposition. Let E have two distinct loops, «, . If
v is a loop of E then consider the infinite path z = aa---a = (1, 22,...)
assuming v # «. Since E is cofinal the vertex v = s(-y) connects to x by a
finite path, and this shows that the loop = has an exit. Therefore F satisfies
(L) and C*(F) is purely infinite simple by Proposition 3.6.

From the proof of the above proposition, we see that for a cofinal graph
E with no sinks C*(F) is simple unless E has precisely one loop and the
loop has no exit.

4. Real rank of C*(E).

Recall that a unital C*-algebra A is said to have real rank zero (RR(A) =
0) if every self-adjoint element can be arbitrarily closely approximated by
invertible self-adjoint elements, that is, A is dense in Ay,. For a nonunital
C*-algebra A, we say that A has real rank zero if A has real rank zero
([BP1]). Then RR(A) = 0 if and only if RR(A ® K) = 0. Also it is well-
known that RR(A) = 0 is equivalent to that A satisfies a condition (FS),
that is, the set of self-adjoint elements with finite spectra is dense in Ag,,
so RR(A) = 0 implies that A contains fairly many projections so that the
linear span of its projections is dense in A. Graph C*-algebras C*(F) are
basically generated by their partial isometries, and thus they would have
plenty of projections and one might expect that most of them have real
rank zero. In fact, if C*(FE) is simple then it is either AF or purely infinite
simple and in both cases it is well-known that these algebras have real rank
zero; for real rank of a purely infinite simple C*-algebra, see [Z].

In this section, we first find a necessary condition for a graph C*-algebra
C*(E) to have real rank zero. We need to review the ideal theory of a graph
C*-algebra C*(E) for a directed graph E with no sinks. Recall that C*(E)
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can be identified with its infinite path space groupoid model C*(G) and
C*(G) = C*(G) since the groupoid associated with a locally finite directed
graph E is amenable ([KPRR], Corollary 5.3). A subset H of the vertex
set EC is hereditary if v € H and w € E° with s(a) = v, r(a) = w for some
a € E* then w € H.

For a hereditary and saturated vertex set H C EY, let

U(H) ={x € E*|r(z,) € H for some n}.

Then U(H) is an open invariant subset of E*° (which is identified with the
unit space G° of the groupoid G associated with the graph E). The map H
U(H) is an isomorphism between the lattices of saturated hereditary subsets
of EY and open invariant subsets O(G) of E* ([KPRR], Lemma 6.5). On
the other hand, for each open invariant subspace U C E*(= G°), the space

C’c(gg) = {f € C.(G) :supp f C g{}}

is an ideal of C.(G), hence its closure is an ideal I(U) of C*(G). We see from
[Rn1], Proposition 4.5 that the correspondence U — I(U) is a one-to-one
order preserving map between O(G) and the lattice of ideals J(C*(G)) of
C*(G). Thus H — I(U(H)) is an order preserving isomorphism from the
lattice of hereditary saturated vertex subsets into J(C*(G)). It is proved
in the proof of [KPRR|, Theorem 6.6 that the ideals I(H) and I(U(H))

coincide, where
I(H) :=span{ly(ap |, B € E¥,r(a) =r(B) € H},

and 1z, g) is the characteristic function on the compact open subset Z(a, 3)
of the groupoid G.

The isomorphism from C*(G) onto C*(F) obtained in [KPRR| maps the
functions 1z, ) (o, 8 € E*, r(a) = r(B8) € H) onto sasj. Therefore we
have

I(H) =span{sasg™ |, € E*, r(a) =7(B) € H}.
Furthermore the following is known.

Theorem 4.1 ((KPRR, Theorem 6.6], or [P, Theorem 2.2]). Let E be a
locally finite directed graph with no sinks. Then the map H — I(H) de-
scribed above is injective, and the quotient algebra C*(E)/I(H) is isomor-
phic to C*(F) of the directed graph F = (E°\ H,{e|r(e) ¢ H}). The
ideal I(H) is strong Morita equivalent to C*(K) of the directed graph K :=
(H,{e|s(e) € H}). Moreover, if E satisfies the condition (K) then the map
H — I(H) is surjective.

Theorem 4.2 ([BP1]). Let A be a C*-algebra and I be an ideal of A.
(a) If RR(A) =0 then RR(I) = RR(A/I) = 0.
Suppose RR(I) = RR(A/I) =0. Then we have the following.
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(b) RR(A) = 0 if and only if every projection in A/I lifts to a projection
in A. In particular if K1(I) =0 then every projection lifts.

(c) If B is a C*-subalgebra of A with RR(B) = 0 and A = B + I then
RR(A) =0.

Now, we can prove our first theorem on real rank of graph C*-algebras.

Theorem 4.3. Let E be a locally finite directed graph with no sinks. If
RR(C*(E)) = 0 then E satisfies condition (K).

Proof. Suppose there is a simple loop a with no exit in E. Then the
subgraph H, consisiting of a has no exit and generates an ideal I stably
isomorphic to C(T), that is, I®K = C(T)®K, as in the proof of Theorem 3.3.
Since RR(C(T)) # 0 it follows that RR(C*(E)) # 0 by Theorem 4.2(a), a
contradiction, which shows that E satisfies condition (L).

To prove condition (K), let v be a vertex such that there is only one loop
at v. Let 0 = (f1,02,...,0n) be the loop and let V' be the set of vertices
w € V such that w = r(e) for an exit e of 5 and H be the smallest hereditary
and saturated vertex set containing V. Then V # () because E satisfies (L).
Moreover, H is a proper subset of E° since vertices on the loop 3 are not
elements in H. Thus there exists a proper ideal I(H) in C*(FE), and the
quotient algebra C*(E)/I(H) is isomorphic to C*(F’) of the directed graph
F = (E°\H, {e|r(e) ¢ H}). Hence F has a loop 3 with no exit in F and by
the argument in the first paragraph of the proof RR(C*(F)) # 0. Therefore
RR(C*(E)) # 0 by Theorem 4.2(a).

Corollary 4.4. Let E be a locally finite directed graph with no sinks. If
sr(C*(E)) =1 and RR(C*(E)) =0 then C*(E) is AF.

Proof. By Theorem 3.3 and Theorem 4.3, F has no loops, and the assertion
follows from Theorem 2.4 in [KPR].

Proposition 4.5. Let E be a locally finite directed graph with no sinks.
Then C*(E) is simple if and only if E is cofinal and satisfies (K).

Proof. Suppose FE is cofinal and satisfies condition (K) then C*(E) is simple
by the proof of [KPRR], Corollary 6.8.

Since the converse has not been proved there in the same proof, we provide
one for reader’s convenience. To prove the converse, suppose F is not cofinal.
Then there exist an infinite path  and a vertex v which cannot connect to x
by a finite path. Let H; be the set of all vertices w which can be connected
from v, that is, there is a finite path a € E* with s(«) = v, r(a) = w. Then
H; is the smallest hereditary vertex set containing v. Let H be the set of all
vertices w satisfying that for any path « € E¥*UE* with s(a) = w, if « € E*
then there is another path § € E* such that s(8) = r(«) and r(3) € Hy,
if @« € E* then r(a;) € H; for some j. Then clearly v € Hi C H. We
show that H is a saturated hereditary vertex set which does not contain
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vertices on the infinite path x. Suppose a vertex w emits edges eq,..., e,
and r(e;) € H for all i. If o is a path with s(a) = w then aq = e; for
some j and o = e;v for some path with s(y) = r(e;) € H. Since v is a
path with s(y) = r(e;) € H, if v € E* then we can find a path § € E*
such that s(3) = r(v) and r(8) € Hy. If v € E* then r(v;) € H; for
some 7, and hence r(a;41) € Hy. Thus w € H, and H is saturated. Now
let u be a vertex connected by a finite path 8 from some vertex w € H,
that is, s(8) = w,r(f#) = u. Then for any path a with s(a) = u, the path
Ba starts from w, and it is easy to see that w € H, and H is hereditary.
Obviously the infinite path = does not meet any vertex in H;, hence H is
a proper saturated hereditary subset of E°. Therefore C*(FE) is not simple
by Theorem 4.1.

Now suppose FE is cofinal but does not satisfy condition (K). Since for a
cofinal graph two conditions (K) and (L) are equivalent, E has a loop with
no exit. We have already seen from the proof of Theorem 3.3 that such a
loop generates an ideal strong Morita equivalent to C(T). Thus C*(E) can
not be simple.

We prove the converse of Theorem 4.3 when C*(E) has finitely many
ideals.

Theorem 4.6. Let E be a locally finite directed graph with no sinks which
satisfies condition (K). If C*(E) has only finitely many ideals then
RR(C*(E)) = 0. In particular, if E is a finite graph then RR(C*(E)) = 0.

Proof. Let n be the number of non-zero ideals in C*(E). We prove our
assertion by induction on n.

For n =1, C*(F) is simple and RR(C*(FE)) = 0 since C*(F) is either AF
or purely infinite simple.

Let n > 1. Let I(H) be a maximal ideal of C*(E) for some hereditary
saturated vertex subset H of E. By Theorem 4.1 and induction hypothesis,
I(H) and the simple C*-algebra C*(E)/I(H) have real rank zero. We show
that C*(E) = I(H) + B for some C*-subalgebra B isomorphic to C*(F) for
a directed subgraph F (possibly with sinks) of E such that RR(C*(F)) =0
and then apply Theorem 4.2(c). According to Theorem 4.1, C*(E)/I(H) =
C*(F), where F = (E°\ H,{e | r(e) ¢ H}). Let

V :={ve H|v=r(e) for some edge e € E! with s(e) € F* = E°\ H}.

If V=0, then C*(E) 2 I(H) ® C*(F), and therefore RR(C*(E)) = 0 since
two direct summands have real rank zero by induction hypothesis. If V' # ()
we set

F=(FOuV, FLu{feE'|r(f) €V, s(f) € F}).
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Then V is the set of all sinks of F. By Theorem 3.5, C*(F)/I(V) is isomor-
phic to the simple C*-algebra C*(F'), where

I(V) = span{sash|a, B € F*,r(a) =r(8) € V}.
Thus RR(C*(F)/I(V)) = RR(C*(F)) = 0. The ideal
I(V) = @uev K(E(E* (v)))

also has real rank zero. Furthermore since K1 (I(V)) = 0, by Theorem 4.2(b),
RR(C*(F)) = 0. Let B be the C*-subalgebra of C*(E) generated by the
family of nonzero elements {p,,sf | v € (F)°, f € (F)'}. Then this
is a Cuntz-Krieger F-family and hence B is a quotient of C*(F). Thus
RR(B) = 0. Now, it is not hard to see that C*(E) = B + I(H), and this
completes the proof.

Let A be a {0, 1}-matrix with no zero row or column. Then A can be
viewed as a vertex matrix of a finite graph E with no sinks. If A satisfies
Cuntz-Krieger’s condition (I) in [CK] then it clearly follows that E satisfies
(L) (or, equivalently condition (I) introduced for graphs in [KPR]) from
their definitions. By Proposition 4.1 of [KPRR], the graph algebra C*(FE)
is also generated by a Cuntz-Krieger A-family of partial isometries, hence
the Cuntz-Krieger algebra O 4 is isomorphic to the graph algebra C*(E). On
the other hand, the graph algebra C*(F) is known to be isomorphic to the
Cuntz-Krieger algebra Op associated with the edge matrix B of E. There-
fore those three algebras are all isomorphic. Furthermore by Theorem 4.3,
4.6, and Lemma 6.1 of [KPRR], we have the following corollary.

Corollary 4.7. Let A be a {0,1}-matriz with no zero row or column. Sup-
pose A satisfies Cuntz-Krieger’s condition (1) and let E be the finite graph
having A as its vertex matrixz. Then the following are equivalent:

(i) RR(O4) =0,

(ii) A satisfies Cuntz’s condition (II),

(iii) FE satisfies condition (K).
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