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Using the representation formulas obtained earlier, new
comparison theorems for elliptic boundary value problems are
developed. Properties of support function of convex domain
are applied for proofs and for obtaining nonexistence theorems
for solutions of capillary problems in the absence of gravity.

Let D0 and D1 (D0 ⊂ D1) be plane convex figures. Denote by Ai and
pi the area and the perimeter of figure Di (i = 0, 1). Let’s suppose that
the inequality

(1)
A1

p1
>

A0

p0

holds. In the present paper, using (1), we shall obtain the comparison
theorems for some elliptic boundary value problems (Sections 1-3). Proofs
of these theorems were based on representation formulas, obtained earlier.
The general steps of proving one of these are given in the Appendix. Further
(Section 4) we will formulate the sufficient condition for (1) in terms of
mixed area and will use these results to prove some nonexistence theorems
for solutions of capillary problems in the absence of gravity (Section 5).

1. The comparison theorem for solutions of second boundary
value problem for Helmholtz equation.

Let D be a convex planar domain with C2,α boundary Γ. Hereinafter we
denote by n the outward normal to Γ. Let u(x, y) be a solution to the
following problem

(2) ∆u = ku inD, un|Γ = R > 0.

In [7] we have proved the following:

Theorem 1. Let u be the solution to problem (2), and z be a solution of
second boundary value problem for the Poisson equation

(3) ∆z =
Rp

A
inD, zn|Γ = R,

485

http://pjm.math.berkeley.edu/pjm
http://dx.doi.org/10.2140/pjm.2001.200-2


486 A.A. KOSMODEM’YANSKII JR.

such that ∫
D

∫
z dxdy = 0.

Then the solution of problem (2) can be represented as

(4) u =
Rp

kA
+ z + ω,

where ω satisfies the inequality max |ω| < C|k| in D.

Let ui be the solution to (2) in the domain Di. From (4) we immediately
obtain:

Theorem 2. Let domains D0 and D1 be such that the conditions of Theo-
rem 1 and inequality (1) hold. Then there exists a number k0 > 0 such that
for any positive number k < k0 the inequality u0 > u1 holds in the domain
D0.

The result of Theorem 2 we had anounced in [6].

2. The comparison theorem for solutions of the third boundary
value problem for Poisson equation.

In the third boundary value problem it is required to find a solution of the
equation

(5) ∆u = −1

in domain D with the boundary conditions

(6) u + β
∂u

∂n
= 0 (β > 0).

The solution of this problem satisfies the theorem of representation ([5], [8]).

Theorem 3. Let the boundary Γ of plane convex domain D belongs to the
class C2,α and its curvature is separated from zero. Then

(7) u =
βA

p
+ u∞ + ω,

where u∞ is the solution of Equation (5) such that

∂u∞
∂n

= −A

p
,

∫
Γ

u∞ ds = 0,

and function ω satisfies the inequality max |ω| < Cβ−1 in D.

Let ui be the solutions of the third boundary value problems in domains
Di. From representation (7) we immediately obtain:
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Theorem 4. Let the domains D0 and D1 be such that the conditions of
Theorem 3 and inequality (1) hold. Then there exists β0 > 0 such that for
any β > β0 the inequality u1 > u0 holds in D0.

3. The comparison theorem of capillary surfaces heights in case
of small gravity.

It is well-known (see [3]) that the searching of the form of liquid free surface
in cylindrical tube under capillary forces and force of gravity is equivalent
to the following boundary value problem. It is required to find the solution
of the equation

(8) divTu = ku

in domain D with boundary condition

(9) (Tu, n) = cos γ, (Tu = ∇u/
√

1 + |∇u|2).

In the absence of gravity, the equation of liquid free surface takes the form

(10) divTu =
p cos γ

A
,

but boundary condition remains in form (9).
Below we consider M. Miranda question ([3], Sec. 5.3, 5.4): Does a liquid

in a “wide” capillary tube rise lower than in a “narrow” one. This question is
equivalent to the following problem: Let u0 and u1 be solutions of Equation
(8) in domains D0 and D1 (D0 ⊂ D1) with boundary conditions (9) on
boundaries Γ0 and Γ1. Is it right that u0 > u1 in D0?

In [3] some conditions for an affirmative answer are given, and also an
example for which the answer is negative.

D. Siegel has proved in [13] for plane domain with C2,α boundary the
following:

Theorem 5. Let there exists a solution z to the problem (10)-(9). Then
solution u of the problem (8)-(9) can be represented as

(11) u =
p cos γ

kA
+ z + ω

while the function ω satisfies the inequality max |ω| < C|k| in D.

L2-estimate of ω was received in [7].
Now the comparison theorem is immediately following from representation

(11).

Theorem 6. Let 0 < γ < π/2, the inequality (1) holds and there exist the
solutions of the problem (10)-(9) in domains D0 and D1, then exists k0 > 0
such that for any 0 < k < k0 the inequality u0 > u1 holds in D0.
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We note, that for special cases of domains Di (D1 is a disk or D0 is a disk
of sufficiently small radius), the comparison Theorems 2, 4 and 6 have been
obtained by other methods for arbitrary positive k and β in [3], [12], [5].

On the other hand, it is evident that if the inequality reverse (1) holds,
then u0 < u1 in D0.

4. Geometrical theorem.

Let us obtain now a sufficient condition under which the inequality (1) holds.
We have proved the same implication in [6], where we assume sufficient
smoothness of a boundaries. In present paper this result is reduced in Ex-
ample 3.

Let A01 be the mixed area of figures D0 and D1.

Theorem 7. Let figures D0 and D1 be such that

(12) (p0 + p1)A1 ≥ 2A01p1.

Then the inequality (1) holds.

Proof. We shall use the formulas from standard manuals ([1], [11]) on the
geometry of convex figures.

Let Dθ = (1 − θ)D0 + θD1 be the linear family of convex figures. It is
well-known that the area Aθ of the figure Dθ is given by formula

(13) Aθ = (1− θ)2A0 + 2θ(1− θ)A01 + θ2A1,

and its perimeter pθ is given by formula

(14) pθ = (1− θ)p0 + θp1.

We note that inequality (1) immediately follows from (12) and the Frobenius
inequality

2A01 ≥
A0p1

p0
+

A1p0

p1
.

We shall give another proof whose details give additional information.
Let us consider the function

f(θ) =
Aθ

pθ
.

We shall prove that this function is concave in the segment [0, 1] and its
left derivative f ′(1) is positive because of (12). Hence we shall prove that
the function f(θ) monotonically increases. Using formulas (13) and (14), we
obtain

f(θ) =
(1− θ)2A0 + 2θ(1− θ)A01 + θ2A1

(1− θ)p0 + θp1
.

On the other hand

(1− θ)f(0) + θf(1) = (1− θ)
A0

p0
+ θ

A1

p1
.
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After elementary algebraic transformations we see that the concavity con-
dition for f(θ)

f(θ) ≥ (1− θ)f(0) + θf(1)
is equivalent to Frobenius inequality . If we calculate the left derivative

f ′(1) = lim
ε→0

f(1)− f(1− ε)
ε

,

using formulas (13) and (14), we obtain

f(1)− f(1− ε) =
F1

p1
− ε2F0 + 2ε(1− ε)F01 + (1− ε)2F1

εp0 + (1− ε)p1
(15)

= ε
(p0 + p1)A1 − 2A01p1

p2
1

+ O(ε2).

It is evident that the derivative f ′(1) (the coefficient of ε in (15)) is nonneg-
ative because of (12).

Theorem 7 has been proved.
If coefficient of ε in (15) is negative then inequality opposite (12) holds.

This means that between figures Dθ there exists the figure such that f(θ) >
f(1).

On the other hand we shall obtain the condition for inequality opposite
(1) if we calculate the right derivative of the function f(θ) in zero.

Theorem 8. Let
2A01 ≤

p0 + p1

p0
A0.

Then
A1

p1
<

A0

p0
.

Let us consider three important special cases.

Example 1. Let D1 be a disk with radius R1. In this case we have 2A01 =
R1p0. It is evident that p0 < 2πR1, hence

R1p02πR1 < (p0 + 2πR1)πR2
1,

and inequality (12) holds.

Example 2. Let D0 be a disk with radius

r <
A1

p1

1

1− 2πA1

p2
1

.

We know that 2A01 = rp1. After algebraic transformations we obtain

r(p2
1 − 2πA1) < A1p1,

or
rp1p1 < (2πr + p1)A1,
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hence inequality (12) holds.

We note that from isoperimetric inequality
A1

p1

1

1− 2πA1

p2
1

≤ 2A1

p1

(equality holds only if D1 is a disk), hence, using Example 1, we can to
improve the previous result: Let D0 ⊂ D1 and D0 is contained in the disc
of radius R0 < 2A1/p1 then inequality (1) holds.

Example 3. Let domain D1 has smooth boundary, whose curvature K1

satisfies the inequality

(16) 0 < K1 ≤
p1

A1
.

Then inequality (12) holds.

Indeed, let hi(φ) be the support function of the domain Di. Then the
following formulas are valid ([1])

2A01 =

2π∫
0

(h0h1 − h′0h
′
1)dφ,

1
K1

= h′′1 + h1,

p =

2π∫
0

h dφ, 2A =

2π∫
0

(h2 − h′2) dφ.

Using the inequality (16) we obtain

2A01 =

2π∫
0

h0(h′′1 + h1)dφ

=

2π∫
0

(h0 − h1)(h′′1 + h1)dφ +

2π∫
0

(h2
1 − h′21 )dφ

≤ 2A1 −
A1

p1
(p1 − p0)

=
A1(p1 + p0)

p1
.

Hence the inequality (12) holds.
Examples stated above show that condition (12) can be used for checking

inequality (1).
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5. The nonexistence theorems for solutions of capillary problem
in the absence of gravity.

Let us return to the problem (10)-(9). If γ = 0 the important condition of
the existence of solution for this problem in the domain D1 is the following:
Let D0 be an arbitrary subdomain of D1 then if the solution of the problem
(9)-(10) exists then inequality (1) holds. ([2]).

Giusti has proved ([4]) that for convex domains the sufficient condition
of the existence is the inequality (16). Moreover ([3]), if the solution of the
problem (10)-(9) exists for γ = 0 then it exists for any 0 < γ ≤ π/2. Using
this statements and our previous speculations we can reformulate the result
[2] as sufficient condition of nonexistence for problem (10)-(9).

Theorem 9. Let exists such convex subdomain D0 of domain D1 that the
inequality opposite (12) holds. Then if γ = 0 then a solution of (10)-(9) does
not exist.

Proof. Really, if inequality opposite (12) holds then there exists a domain
D ⊂ D1 in linear family Dθ = (1− θ)D0 + θD1 such that

A

p
>

A1

p1
.

In particular, (10)-(9) has no solutions, if D1 is a regular polygon. Indeed,
we can put as D0 the disk inscribed into D1 .

Using results of Section 4, we can add the following simple condition of
nonexistence of solutions for (10)-(9) in case of γ = 0.

Theorem 10. Let we can inscribe into D1 the disk of radius

(17) r >
p1A1

p2
1 − 2πA1

.

Then in case of γ = 0 the solution of the problem (10)-(9) does not exist.

Proof. We immediately obtain from (17)

(18) rp1 >
2πr + p1

p1
A1.

We can take a disk of radius r as the domain D0. It is evident that the
inequality (18) is the inequality opposite (12), hence we can apply Theo-
rem 9.

Let us obtain now the generalization of Theorem 10.

Theorem 11. Let we can inscribe in domain D1 the disc of radius r such
that inequality (17) holds. Then problem (10)-(9) has no solutions for any
contact angle γ satisfying the inequality

(19) cos γ >
A1

rp1

(
1 +

√
4π(p1r − πr2 −A1)

p2
1 − 4πA1

)
.
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Proof. We remind the general idea of nonexistence proofs: If we can find
subdomain D ⊂ D1 such that

(20)
A1

p1
<

A cos γ

p
,

then problem (10)-(9) has no solution ([3]).
We shall find the subdomain D in a certain linear family Dθ. We can

reformulate the nonexistence condition in the following form: Let there exist
a subdomain D0 ⊂ D1 and number θ ∈ (0, 1) such that

(21) f(1) < f(θ),

then the problem (10)-(9) has no solutions.
Let us construct the corresponding linear family.
Let the convex domain D0 ⊂ D1 be such that

(22) 2A01p0 > (p0 + p1)A0, 2A01p1 > (p0 + p1)A1.

It follows from Theorems 7 and 8, that function f(θ) reaches its maximum
value in the interval (0, 1). Let us find this value. We represent the function
f(θ) in the form

f(θ) = −Eθ

∆p
+

S

(∆p)2
− G

(∆p)2(θ∆p + p0)
,

where

E = 2A01 −A0 −A1, S = 2p1(A01 −A0) + p0(A0 −A1),

G = 2p0p1A01 − p2
1A0 − p2

0A1, ∆p = p1 − p0.

It follows from the Frobenius inequality that G > 0, and inequalities (22)
shows that E > 0.

After calculations we see that function f(θ) reaches its maximum value
in the point

θ =
1

∆p

(√
G

E
− p0

)
,

and this value is equal to

(23) f(θ) =
2

(∆p)2
(
(p0 + p1)A01 − p1A0 − p0A1 −

√
GE
)
.

Using inequality (21), we can reformulate the sufficient condition of nonexis-
tence of solution to the problem (10)-(9): Let there exist a convex subdomain
D0 of the domain D1 such that inequalities (22) holds, then for any contact
angle γ, satisfying inequality

(24) cos γ >
A1(∆p)2

2p1((p0 + p1)A01 − p1A0 − p0A1 −
√

GE)
,

problem (10)-(9) has no solutions.
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Let D0 be the the disk, which radius r satisfies the inequality (17). Then

A0 = πr2, p0 = 2πr, 2A01 = rp1,

G = πr2(p2
1 − 4πA1), E = rp1 − πr2 −A1.

Note that the second of inequalities (22) holds because of (17) and the first
one holds automatically. Substituting last formulas in inequality (24) we
obtain Theorem 11 after algebraic transformations.

Example. Let domain D1 be the regular n -polygon circumscribed around
a circle of radius r. Then the inequality (19) takes the form

cos γ >
1
2

(
1 +

√
π

n tan π
n

)
.

For large n we can write more simple formula

γ <
π

n
√

6
.

We see that this estimate is weaker than the exact one ([3], Th. 6.2):
γ < π/n, but it holds the same form in case of smoothed angles.

Appendix.

Let us consider now the general steps for proof Theorem 1. Hereafter we
denote by C (with subscripts or without them) the constants depending on
geometrical characteristics of domain D.

It is evident that in convex domain D Poincaré inequality holds∫
D

∫
u2 dxdy ≤ 1

A

 ∫
D

∫
u dxdy

2

+ µ

∫
D

∫
|∇u|2 dxdy.

Let
v = u− Rp

kA
.

Function v satisfies the equation

(25) ∆v = kv +
Rp

A

and vn = R on Γ. Let us integrate (2) over D . It is easy to see that∫
D

∫
v dx dy = 0.

We subtract Equation (3) from Equation (25). We obtain

∆(v − z) = k(v − z) + kz.

Denote ω = v − z. Then

(26) ∆ω = kω + kz.
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We multiply (26) on ω and integrate over D. We obtain

(27)
∫
D

∫
∆ωω dx dy =

∫
D

∫
kω2 dx dy +

∫
D

∫
zω dx dy.

We transform the left side of (27) by well-known formulas, taking into
account that ωn = 0. We obtain

−
∫
D

∫
|∇ω|2 dx dy =

∫
D

∫
kω2 dx dy +

∫
D

∫
kzω dx dy.

Taking into account that

(28)
∫
D

∫
ω dx dy = 0

we use the Poincaré inequality(
k +

1
µ

)
‖ω‖2

L2
≤ k‖ω‖2

L2
+
∫
D

∫
|∇ω|2 dx dy

≤ k

∫
D

∫
ω2 dx dy +

∫
D

∫
|∇ω|2 dx dy,

and the Cauchy-Schvarz-Bunyakovskii inequality

−k

∫
D

∫
ωz dx dy ≤ |k|

 ∫
D

∫
z2 dx dy

1/2 ∫
D

∫
ω2 dx dy

1/2

.

We obtain after algebraic transformations

(29) ‖ω‖L2 ≤
µ|k|

1 + µk
‖z‖L2 .

By S.L. Sobolev embedding theorem:

(30)
(

max
D

ω

)2

≤ C1‖∇2ω‖2
L2

+ C2‖ω‖2
L2

.

L2 - norm of second derivitives of ω in plane convex domain is estimated
from L2 - norm of operator ∆ω. The detailed proof of this estimate for
solution of the first boundary value problem is given in [10]. The same proof
yields the same estimate for solutions of second boundary value problem as
well. Indeed, let g = ωxxωyy − ω2

xy. It is evident that

ω2
xx + 2ω2

xy + ω2
yy = (∆ω)2 − 2g.
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Using the identity

2
∫
D

∫
g dxdy =

∫
Γ

(ωxωxy − ωyωxx)dx− (ωxωyy − ωyωxy)dy,

we obtain because of boundary condition of problem (2) and convexity of
domain D

2
∫
D

∫
g dxdy =

∫
Γ

K|∇ω|2 ds > 0

and the estimate is proved.
Furthermore, we obtain from (26)

‖∇2ω‖2
L2
≤ ‖∆ω‖2

L2
≤ 2k2(‖ω‖2

L2
+ ‖z‖2

L2
).

The statement of Theorem 1 follows from the substitution of the latter
estimate in (30) using (29).

Remark. Analyzing the proof of Theorem 1, we can see that requirement
to convexity of domain D is excessive. Indeed, we can require only the
realizability of the Poincaré inequality, S.L. Sobolev embedding theorem and
the possibility to estimate ||∇2u||L2 by means of ||∆u||L2 . These conditions
are contained in [10].
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