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We investigate factor maps of higher-dimensional subshifts
of finite type. In particular, we are interested in how the
number of ergodic measures of maximal entropy behaves un-
der such factor maps. We show that this number is preserved
under almost invertible maps, but not in general under fi-
nite to one factor maps. One of our tools, which is of inde-
pendent interest, is a higher-dimensional characterization of
entropy-preserving factor maps that extends the well-known
one-dimensional characterization result.

1. Introduction.

In this paper we discuss some aspects of higher-dimensional subshifts of fi-
nite type. The book of Lind and Marcus ([4]) is an excellent introduction to
the theory of one-dimensional symbolic dynamics. It turns out however, as
is well-known, that the higher-dimensional theory is different from the one-
dimensional theory. In higher dimensions, new concepts arise that do not
have one-dimensional analogues. In addition, many one-dimensional results
are simply not true in higher dimensions. In this paper we address issues
of both types. An example of a new question without a one-dimensional
analogue is the behaviour of the number of ergodic measures of maximal
entropy under various types of factor maps. For an example of the second
type, we show that the one-dimensional characterization of entropy preserv-
ing factor maps (which says that under an obvious irreducibility condition,
entropy preservation is equivalent to the map being finite to one) must be
replaced by something different in higher dimensions. We also mention here
the recent paper [6] which contains a number of interesting results concern-
ing higher-dimensional subshifts of finite type.

Let us start with a description of the setup. Throughout, X denotes a d-
dimensional shift space with finite alphabet A(X), that is, X is a closed (in
the product topology) translation invariant subset of {A(X)}Zd

. A pattern
in X is the restriction of a configuration in X to a finite subset of Zd. The
restriction of a configuration x to a finite set A ⊆ Zd is denoted by πA(x).
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We write Bn for the box {−n, . . . , n}d and πn(x) for πBn(x). The collection
of all patterns {πn(x) : x ∈ X} is denoted by Bn(X).

For a countable set of forbidden patterns F = {F1, F2, . . . }, we write SF
for the shift space consisting of those configurations that do not contain any
of the patterns in F . We can and often will assume that for all i, Fi is a
pattern on a box. The size of a pattern on Bn is defined to be n. A shift
space X is called a subshift of finite type (SOFT) if X can be written as
X = SF , where F consists of only finitely many patterns.

Consider two shift spaces X and Y . Let, for some number α, Φ be a map
Φ : Bα(X) → A(Y ). We call Φ a block map. We can use this block map
to define a map φ : X → Y by putting

φ(x)z = Φ(πα(Tz(x)))

where Tz denotes translation by the vector z. Clearly φ commutes with
shifts. φ is called a factor map from X to Y . (Clearly φ is continuous in the
product topology and it is well-known that all shift commuting continuous
maps from X to Y are of this form.) The smallest α for which a given factor
map φ arises in this way is called the range of φ. All factor maps in this
paper are assumed to be onto, i.e., Y = φ(X). An invertible factor map
is called a conjugacy, and if there exists a conjugacy between X and Y ,
then X and Y are called conjugate. We will sometimes abuse notation and
write φ(x) where x ∈ Bn(X) for some n, that is, we view φ as a mapping
φ : Bn(X) → Bn−α(Y ).

If X is a shift space, let h(X) denote the topological entropy of X and
if µ is a translation invariant measure on X, let h(µ) denote the measure-
theoretical entropy of µ. See [9] for precise definitions. For a finite
partition P of a probability space (X, µ), we let hµ(P) be its entropy defined
to be −

∑
i µ(Pi) log µ(Pi) where the Pi’s denote the atoms of P. The set of

translation invariant probability measures on X is denoted by M(X). The
variational principle (see [5]) states that

h(X) = sup
µ∈M(X)

h(µ).

Moreover, the supremum is achieved at some measure: Such a measure
is called a measure of maximal entropy. Let Mmax denote the set
of measures of maximal entropy. In one dimension, an irreducible SOFT
(precise definitions follow later) has a unique measure of maximal entropy,
the so-called Parry measure. In higher dimensions this is no longer true.
Burton and Steif ([1]) gave examples of strongly irreducible SOFT’s with
multiple ergodic measures of maximal entropy. It is well-known that the
set of extremal elements in Mmax is exactly the set of ergodic measures of
maximal entropy. This implies that Mmax is a face in the simplex M and
hence is also a simplex. Cardinality is denoted by | · | throughout.
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This paper is organized as follows: Section 2 contains all the non-standard
technical definitions, Section 3 contains our main results, and the last two
sections are devoted to the proofs of the results.

2. Further definitions and preliminaries.

In this section we give some technical definitions.

Definition 2.1. A shift space X is called strongly irreducible (s.i.) if
there is an s ≥ 0 such that whenever we have two (finite) patterns η1 on
A1 ⊂ Zd and η2 on A2 ⊂ Zd of X and the distance between A1 and A2 is
greater than s, then there is an η ∈ X that is an extension of both η1 and
η2.

We call the smallest such s with the above property the separation
distance of X.

Definition 2.2. X is called weakly irreducible if for every η1 and η2 as
above, and every z ∈ Zd, there is a u ∈ Zd on the halfline through z and
the origin, and an η, such that η extends both η1 and Tu(η2).

Remark 1. The definition of weak irreducibility in [1] is not satisfac-
tory: The one-dimensional SOFT with only one disallowed patterns (1, 0)
is weakly irreducible according to their definition. But clearly this is not
desirable, since all elements of this SOFT are of the form . . . 0000011111 . . .
In our definition this SOFT is not weakly irreducible.

Remark 2. If X is s.i. and φ : X → Y is a (onto) factor map, then it is
easy to see that Y is also s.i.

Definition 2.3. A factor map φ : X → Y is said to be finite to one if
every y ∈ Y has only finitely many pre-images.

For the definition of almost invertibility we need the concept of transitive
points. In one dimension, a point x ∈ X is called transitive if in x we see all
patterns of X in both directions. There are several ways to extend this idea
to higher dimensions. We choose for maybe the strongest possible definition,
in order to make the forthcoming Theorem 3.4 as strong as possible.

Definition 2.4. A point x in a shift space X is called transitive if for all
half-lines ` starting at the origin with rational direction, and all n ≥ 0, the
set {

πn(Tz(x)) : z ∈ Zd ∩ `
}

contains all patterns of X of size n.

Observe that this definition is stronger than requiring that the Zd-orbit
of x is dense in X, which is one of the usual definitions.



500 RONALD MEESTER AND JEFFREY E. STEIF

Definition 2.5. A factor map φ : X → Y is called almost invertible if
every transitive point in Y has only one pre-image.

In one dimension, an almost invertible factor map from an (weakly) irre-
ducible SOFT is necessarily finite to one (Proposition 9.2.2 in [4]). This is
no longer true in higher dimensions as the following example shows.

Example. Consider, in one dimension, a factor map φ : X → Y that is
almost invertible but not invertible and where X is s.i. (Such an example can
be given by sending the golden mean shift to the even shift (Examples 1.2.3
and 1.2.4 in [4]) induced by the block map 00 → 1, 01 → 0, 10 → 0.) Next,
define a two-dimensional shift space X ′ by the requirement that x ∈ X ′ if
for all k, (x(z,k), z ∈ Z) is an element of X. Y ′ is defined similarly. Define a
factor map φ′ : X ′ → Y ′ by just applying φ row by row. It is clear that φ′ is
not finite to one. On the other hand, if y′ ∈ Y ′ is transitive, the restriction
of y′ to a horizontal line is transitive in Y , and therefore has only one pre-
image in X. It follows that y′ has only one pre-image and we conclude that
φ′ is almost invertible.

3. Results.

We first discuss two known basic facts concerning conjugacies between
SOFT’s. They are not related to our results but we give them for the
sake of the reader. Theorem 2.1.10 in [4] shows that conjugacies preserve
SOFTness in one dimension. Their proof does not extend to higher dimen-
sions. The following extension of this result is due to Klaus Schmidt and
reported in [7].

Theorem 3.1. Let X and Y be two d-dimensional shift spaces, and suppose
that X is a SOFT and that X and Y are conjugate. Then Y is also a SOFT.

A nearest neighbor SOFT is a SOFT all whose forbidden patterns are
between nearest neighbors, that is, all forbidden patterns are on sets of the
form {x, x + ei} for x ∈ Zd and where the ei’s denote the unit vectors. The
following result is proved in [10].

Theorem 3.2. Every SOFT is conjugate to a nearest neighbor SOFT.

We now consider measures of maximal entropy. In particular, we are
interested in what happens with the number of ergodic measures of maximal
entropy under factor maps. Without any assumption, there is no hope for
an interesting result, as indicated by the following examples.

Example. Let, for positive integers N and M , XN,M be the following
nearest neighbor SOFT. The alphabet A(XN,M ) is the set {−N, . . . , −1,
1, . . . , M}. The forbidden patterns are all neighboring pairs of the form
(a, b) with ab ≤ −2, i.e., a positive number cannot sit next to a negative
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number unless they both have absolute value 1. These SOFT’s were studied
in [1] and [2]. In [1], it was shown that when N = M and M is sufficiently
large, then X has exactly two ergodic measures of maximal entropy which
we call µ+ and µ−. If we have a configuration chosen according to µ+,
flipping all coordinates (i.e., multiplying them by minus one) leads to a
choice distributed according to µ−. In [2], it was shown that if N = M − 1
and M is sufficiently large, then XN,M has only one measure of maximal
entropy. We can now define a factor map φ : XM,M+1 → XM,M simply
by changing all the M + 1’s to M . When M is large enough, our previous
comments imply that this is a factor map that maps a space with a unique
measure of maximal entropy onto a space with two ergodic measures of
maximal entropy. On the other hand, mapping XM,M onto the full M -shift
by taking absolute values coordinatewise leads, for large M , to a factor map
that maps a space with two ergodic measures of maximal entropy onto a
space with a unique measure of maximal entropy.

In both of the last two mappings, the image shift space has strictly lower
entropy than the domain space and so let us see what happens when entropy
is preserved. We shall write φµ for the push-forward of the measure µ under
φ, that is, φµ(A) = µ(φ−1A), for all Borel sets A.

Theorem 3.3. Let X and Y be shift spaces with h(X) = h(Y ) and let
φ : X → Y be a factor map. Then:

(i) Every µ ∈Mmax(Y ) is the push-forward of a measure ν in Mmax(X),
i.e., µ = φν for some ν ∈Mmax(X);

(ii) If X is a strongly irreducible SOFT and µ ∈ M(X), then h(φµ) =
h(µ). In particular, if µ ∈ Mmax(X), then φµ ∈ Mmax(Y ) and so φ
takes Mmax(X) to Mmax(Y ) and is surjective by (i).

The question of whether the induced mapping from Mmax(X) to
Mmax(Y ) when h(X) = h(Y ) is injective will arise in Theorems 3.4 and 3.5.
We note here the obvious fact that if φ is a conjugacy from X to Y , then
the induced mapping φ from Mmax(X) to Mmax(Y ) is an isomorphism of
simplices; in particular, the number of ergodic measures of maximal entropy
are the same.

Remark 3. Note that all statements in Theorem 3.3 are false without
the entropy condition. The first example preceding Theorem 3.3 shows that
(i) cannot generally be true, since we can map from a space with a unique
measure of maximal entropy onto a space with two ergodic measures of
maximal entropy. The second example preceding Theorem 3.3 shows that
(ii) is false without the entropy condition since it is not hard to see that the
image of µ+ is not i.i.d. uniform, the unique measure of maximal entropy
on the full M–shift. (In fact, it is not even i.i.d.)
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Next we investigate what happens when the factor map is not quite in-
vertible. We start with almost invertible.

Theorem 3.4. Let X be a strongly irreducible SOFT and let φ : X →
Y be almost invertible. Then h(X) = h(Y ) and the induced mapping φ :
Mmax(X) → Mmax(Y ) is bijective. In particular, since this mapping is
convex and continuous, it is an isomorphism of these simplices and hence
the number of ergodic measures of maximal entropy for the two systems are
the same.

Note that we do not assume that Y is a SOFT.

Another relaxation of invertibility is to require the factor map to be finite
to one. The following theorem tells us that as far as measures of maximal
entropy are concerned, finite to one is very different from almost invertibility.

Theorem 3.5. There exists a strongly irreducible SOFT X and a shift space
Y with the same entropy, together with a two to one factor map φ from X
onto Y such that X has two ergodic measures of maximal entropy and Y
has a unique measure of maximal entropy.

In our proofs of the above results we shall need a higher-dimensional
characterization of entropy preserving factor maps. For one-dimensional
irreducible SOFT’s, preservation of entropy under factor maps is character-
ized by the requirement that the factor map is finite to one (Theorem 8.1.16
in [4]). This is no longer true in higher dimensions. For instance, one can
map the full 2–dimensional 2-shift onto itself via the block map Φ of range
1 given by

Φ((xij)i,j∈{−1,0,1}) = x00 + x10(mod 2).

(Note that this map operates row by row.) Clearly this map preserves
entropy but it is not finite to one.

Remark 4. It follows from Theorem 3.3 that a mapping between spaces of
equal entropy can never be from a space with a unique measure of maximal
entropy to a space with multiple ergodic measures of maximal entropy. The
reader should compare this with Theorem 3.5.

For a factor map φ from X onto Y , a diamond of φ is a set of two el-
ements x 6= x′ in X which differ in only finitely many coordinates and for
which φ(x) = φ(x′). (The name “diamond” comes from the one-dimensional
graphical representation of these objects.) The proper analogue of Theorem
8.1.16 in [4] in higher dimensions is given by the following theorem. We
remark that the equivalence of (a) and (b) follows from Theorem 3.2 in [6]
together with the fact that a strongly irreducible SOFT is automatically en-
tropy minimal; see the forthcoming Lemma 4.1. We will need (in particular)
characterization (c) below, and since the proof of the equivalence of (c) with
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the other statements depends on the proof of (a) ⇔ (b), we include a full
proof of the theorem.

Theorem 3.6. Let X be a strongly irreducible SOFT and let φ : X → Y be
a factor map based on a block map Φ : Bα(X) → A(Y ). Then the following
six statements are equivalent:

(a) h(X) > h(Y ).
(b) φ has a diamond.
(c) There exist y ∈ Y , a positive constant k1 and a constant c1 > 1 such

that for infinitely many n we have

|{x ∈ Bn(X) : φ(x) = πn−α(y)}| ≥ k1c
(2n+1)d

1 .

(d) There exist y ∈ Y , a positive constant k2 and a constant c2 > 1 such
that for infinitely many n we have∣∣πn(φ−1(y))

∣∣ ≥ k2c
(2n+1)d

2 .

(e) There exist y ∈ Y , a positive constant k3 and a constant c3 > 1 such
that for all n ≥ 0 we have

|{x ∈ Bn(X) : φ(x) = πn−α(y)}| ≥ k3c
(2n+1)d

3 .

(f) There exist y ∈ Y , a positive constant k4 and a constant c4 > 1 such
that for all n ≥ 0 we have∣∣πn(φ−1(y))

∣∣ ≥ k4c
(2n+1)d

4 .

Remark 5. The proof readily shows that the implication from (a) to (b)
above is true for any SOFT X.

4. Factor maps and entropy: Proofs.

In this section, we prove Theorem 3.6. We shall need the following lemma.

Lemma 4.1. Let X be a strongly irreducible SOFT, and consider a pattern
p that occurs in X. If we add this pattern to the list of forbidden patterns,
obtaining a new SOFT X ′, then h(X ′) < h(X).

Proof. Our proof uses measures, which might appear a little strange since the
statement is purely topological. Let µ be a measure of maximal entropy for
X ′. If h(X) = h(X ′) then it would follow that µ is also a measure of maximal
entropy for X. Now every measure of maximal entropy has so called uniform
conditional probabilities (see [2], Proposition 1.20), that is, the conditional
distribution of patterns on a finite set A given any configuration η on the
outside of A is uniform over all compatible configurations on A that extend
η.
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Let the size of p be M . Next let N > M + s (where s is the separation
distance of X) and consider an allowed configuration on the external bound-
ary ∂BN of BN . Since X is s.i., the extra forbidden pattern p, when placed
in BM , is compatible with this boundary condition, and by the property of
uniform conditional probabilities, there is positive µ probability to see p in
BM . But this is a contradiction since µ concentrates on X ′ in which p does
not occur. �

Proof of Theorem 3.6. (a) ⇒ (b): The factor map φ is based on a block
map Φ : Bα(X) → A(Y ) for some α. We choose m so large that m > 2α, 2`
where ` is the size of the largest forbidden pattern in X. Observe that φ
maps patterns of size n + m onto patterns of size n + m − α. From the
definition of entropy we have that

|Bn+m(X)| = e(2n+1)d(h(X)+o(1)),(1)

and

|Bn+m−α(Y )| = e(2n+1)d(h(Y )+o(1)),(2)

as n → ∞. Denote the set of patterns of X in the annulus Bn+m\Bn by
E(n, m). It is clear that the cardinality of E(n, m) is bounded above by
eC(2n+1)d−1

, for some suitable positive constant C (which depends on m).
For η ∈ E(n, m), we denote by P(η) the set of all extensions of η in Bn+m

that occur in X. Let ε > 0 such that h(X) > h(Y ) + 2ε. From (1) it follows
that for n large enough there exists a η0 ∈ E(n, m) such that

|P(η0)| ≥ e(2n+1)d(h(X)−ε)−C(2n+1)d−1
.

From (2) we see that φ(P(η0)) contains for large n at most
exp

(
(2n + 1)d(h(Y ) + ε)

)
elements. It follows (since h(X) > h(Y ) + 2ε)

that for n large enough, there exists at least one element y0 in Bn+m−α(Y )
which has two pre-images in P(η0). We denote these two pre-images by
z(1) and z(2). Since z(1) and z(2) agree on Bn+m\Bn and m > 2`, we can
extend z(1) and z(2) so that they are also equal outside of Bn+m. Since also
m > 2α, it follows that the two extensions have the same image under φ
and therefore form a diamond.

(b) ⇒ (a): Assume there is a diamond {x(1), x(2)} and assume that x(1)
and x(2) differ inside the box Bn only. Let m be large (we shall see later
how large), and construct a new shift space X(m) as follows. The alphabet
of X(m) consists of all elements of Bm(X). An element η ∈ {Bm(X)}Zd

is in
X(m) if the configuration obtained by centering each ηz at location (2m+1)z
is an element of X. There is a natural one-to-one correspondence (which is
not a conjugacy!) between X and X(m): Cutting a configuration of X into
appropriate disjoint translates of Bm leads to an element in X(m) and this
process is reversible. It is easy to see that X(m) is a s.i. SOFT and that its
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entropy is equal to (2m+1)dh(X). A similar construction leads to the shift
space Y (m), whose entropy is equal to (2m + 1)dh(Y ).

Next we define a second SOFT X(m)∗ which is obtained from X(m) by dis-
allowing those elements of the alphabet Bm(X) that have a copy of πn(x(1))
in the middle. It follows from Lemma 4.1 that h(X(m)∗) < h(X(m)). The
map φ induces a factor map φ(m) from X(m) to Y (m) and a map φ(m)∗ from
X(m)∗ to Y (m) which satisfies all the conditions of a factor map except per-
haps being surjective. We claim that this latter map is onto. To see this,
just note that if y(m) ∈ Y (m) has a pre-image x(m) ∈ X(m)\X(m)∗, then y(m)

also has a pre-image in X(m)∗ which is obtained by replacing all “middle
copies” of πn(x(1)) in x(m) by a copy of πn(x(2)), provided m is sufficiently
large. This leads to the inequality h(X(m)∗) ≥ h(Y (m)). Putting everything
together we obtain

h(X) =
1

(2m + 1)d
h(X(m)) >

1
(2m + 1)d

h(X(m)∗)

≥ 1
(2M + 1)d

h(Y (m)) = h(Y ),

which is what we wanted to prove.
(b) ⇒ (f): Assume there is a diamond {x(1), x(2)} and assume that they

differ inside the box Bn only. Let m as above be such that m > 2α, 2`,
where ` denotes the size of the largest forbidden pattern in X. Consider a
regular rectangular grid of translates of Bn+m, where any two such boxes
are separated by a distance s, the separation distance of the SOFT. We can
‘fill’ each of these boxes by the appropriate translate of πn+m(x(1)). By
strong irreducibility and compactness, we can extend this configuration to
a configuration x0 ∈ X. Define y0 = φ(x0). Next, we want to replace any
of the patterns πn+m(x(1)) in one of the boxes of the grid by πn+m(x(2)).
We claim that this can be done, in that the new configuration is still in
X. To see this, note that x(2) ∈ X and therefore contains no forbidden
pattern. Hence, the only possibility for a forbidden pattern to be created by
the replacement of πn+m(x(1)) by πn+m(x(2)) is that this forbidden pattern
intersects both the translate of πn+m(x(2)) and the complement of that
translate. But since m > 2` and x(1) and x(2) agree on Bn+m\Bn, this is
impossible. It follows by construction, using that m > 2α, that the image
under φ has not changed by this replacement. Since we can do this in any
of the boxes in the grid, it follows straightforwardly that y0 satisfies the
requirement in (f).

(f) ⇒ (d): This is obvious.
(d) ⇒ (c): This is obvious.
(f) ⇒ (e): This is obvious.
(e) ⇒ (c): This is obvious.
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(c) ⇒ (b): (This is similar to the proof that (a) ⇒ (b).) Choose m so
large that m > 2α, 2`. Since the number of configurations in Bn+m\Bn is
of order c(2n+1)d−1

(as m is fixed), there exists η0 defined on Bn+m\Bn such
that

{x ∈ Bn+m(X) : x = η0 on Bn+m\Bn, φ(πn(x)) = πn−α(y)} ≥ k1c
(2n+1)d

1 .

In particular, there exist x1 6= x2 in the above set. Since m > 2`, we
can extend x1 and x2 to x̃1 and x̃2 in X such that they agree outside of
Bn+m (and hence outside of Bn). Since m > 2α, φ(x̃1) = φ(x̃2) yielding a
diamond. �

5. Factor maps and measures of maximal entropy: Proofs.

For the proof of Theorem 3.3 we need the following lemma which comes from
[3]. In fact, there is a small detail missing in their proof. When applying
the Hahn-Banach Theorem, one should require that the extension also has
norm one so that one can then use the fact (see [8], p. 116) that an operator
of norm 1 on C(X) which sends 1 to 1 is a positive operator. It is then
necessarily given by integration against some probability measure.

Lemma 5.1. Let X and Y be shift spaces and let φ : X → Y be a factor
map. Let µ be a probability measure on Y . Then there exists at least one
measure ν on X such that µ is the push-forward of ν under φ, i.e., µ = φν.
If in addition µ is stationary, then ν can also be taken to be stationary.

Proof of Theorem 3.3. (i) This follows straightforwardly from Lemma 5.1,
the fact that factor maps cannot increase measure-theoretic entropy and
the variational principle.

(ii) This is more involved and we use an argument based on conditional
entropy. We write µ′ = φµ. Since h(X) = h(Y ) it will be enough (using the
variational principle) to show that h(µ) = h(µ′). The first thing to do is to
write h(µ′) in terms of µ and a partition on X. Let Pn(Y ) be the partition
of Y that specifies all coordinates in Bn, and denote by Pn(X) the partition
of X that specifies all coordinates in Bn. Finally, Qn+α(X) is the partition
of X that specifies the projection on Bn of the image under φ. Note that
Pn+α(X) refines Qn+α(X). We now write

h(µ′) = lim
n→∞

hµ′(Pn(Y ))
(2n + 1)d

= lim
n→∞

−
∑

y∈Bn(Y ) µ(φ−1(y)) log µ(φ−1(y))

(2n + 1)d

= lim
n→∞

hµ(Qn+α(X))
(2n + 2α + 1)d

.

(Here φ−1(y) are the elements in Bn+α(X) which map to y.)
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We can write the entropy h(µ) as follows:

h(µ) = lim
n→∞

hµ(Pn+α(X))
(2n + 2α + 1)d

= lim
n→∞

{
hµ(Qn+α(X))
(2n + 2α + 1)d

+
hµ(Pn+α(X) | Qn+α(X))

(2n + 2α + 1)d

}
= h(µ′) + lim

n→∞

hµ(Pn+α(X) | Qn+α(X))
(2n + 2α + 1)d

.

Therefore, we need to show that the limit in the last expression is equal
to zero. The numerator inside the limit is by definition equal to∑

q∈Qn+α(X)

µ(q)

− ∑
p∈Pn+α(X)

µ(p ∩ q)
µ(q)

log
µ(p ∩ q)

µ(q)

 .(3)

Clearly, the term between the curly brackets is itself the entropy of a par-
tition with respect to a probability measure and therefore bounded above
by the logarithm of the number of elements in this partition which have
positive probability. By Theorem 3.6, we know that for all y ∈ Y , ε > 0, for
n large enough we have that

|{x ∈ Bn+α(X) : φ(x) = πn(y)}| ≤ eε(2(n+α)+1)d
.(4)

Let N(y) = Nε(y) be the smallest number k so that (4) holds for all n ≥ k.
There exists a number N such that

µ′({y : N(y) ≤ N}) = µ({φ−1{y : N(y) ≤ N}}) ≥ 1− ε.

This implies that up to at most an ε-portion, all atoms of the partition
QN+α contain less than exp

(
ε(2(N + α) + 1)d

)
elements. The remaining

atoms contain (by the previous remark) at most |A(X)|(2(N+α)+1)d
elements.

Hence the expression in (3) is bounded above by

ε(2(N + α) + 1)d + ε(2(N + α) + 1)d log |A(X)|,
and the proof is complete. �

For the proof of Theorem 3.4 we need the following lemma.

Lemma 5.2. Let X be a strongly irreducible SOFT, and let T (X) be the set
of transitive points of X. For every µ ∈Mmax(X), we have µ(T (X)) = 1.

Proof. Fix a half-line ` as in the definition of transitivity, and a pattern p
of size n. Consider a collection of translates B(1), B(2), . . . of Bn centered
at vertices on ` and such that any two boxes in this collection are sepa-
rated by at least s (the separation distance of the shift space). By strong
irreducibility, the pattern p has positive µ-probability. Hence there is posi-
tive µ-probability to see p in B(1). By the property of uniform conditional
probabilities (explained in the proof of Lemma 4.1) and the fact that the
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distances between the different translates is at least s, it is easy to see that
there exists δ = δ(n) such that for all k and for any conditioning of the
configuration on ∪k

i=1B(i), the conditional probability to see p in B(k + 1)
is at least δ. This easily implies that µ-a.s. we see p in some box B(k).

Finally, we note that there are only countably many halflines ` and count-
ably many patterns to check. This shows that the µ-probability to see all
patterns on every half-line with rational direction is equal to one. �

Proof of Theorem 3.4. The proof of Proposition 9.2.2 in [4] does not depend
on the dimension and implies that φ has no diamonds, which implies by
Theorem 3.6 that h(X) = h(Y ). In view of Theorem 3.3, it suffices to show
that if µ, ν ∈Mmax(X) with µ 6= ν, then φµ 6= φν.

According to Lemma 5.2, both µ and ν live on T (X). Since it is immediate
to check that φ maps T (X) into T (Y ), it follows that φµ and φν both live
on T (Y ). If µ 6= ν, then there exists a cylinder set A such that µ(A) 6= ν(A).
Note that φ(A) is measurable, since it is the continuous image of a compact
set. We claim that

φµ(φ(A)) 6= φν(φ(A)),(5)

which implies that φµ 6= φν. To do this, we first observe that

A ⊆ φ−1φ(A) ⊆ A ∪ (X\T (X)).(6)

The first inclusion is obvious. For the second, suppose that x ∈ φ−1φ(A) and
x ∈ T (X). Since the image of a transitive point is automatically transitive
(as is easily verified), φ(x) ∈ T (Y ) and by the almost invertibility of φ,
φ(x) has only one pre-image. This unique pre-image must then be x, and
it follows that x ∈ A. Since by definition µ(φ−1φ(A)) = φµ(φ(A)), we take
the µ-measure in (6), giving

µ(A) ≤ φµ(φ(A)) ≤ µ(A) + µ(X\T (X)) = µ(A),

where the last equation follows from Lemma 5.2. Hence all inequalities in
the last equation are in fact equalities. A similar statement is true when we
replace µ by ν and we finally obtain (5). �

Proof of Theorem 3.5. Let X be the SOFT XM,M defined in Section 3, and
take M so large that X has exactly two ergodic measures of maximal entropy.
Denote a block of size 1 by {bi,j : −1 ≤ i, j ≤ 1}. Define the following block
map Φ : B1(X) → {A(X)}8:

Φ({bi,j}−1≤i,j≤1) = sgn(b0,0) (b−1,1, b0,1, b1,1, b−1,0, b1,0, b−1,−1, b0,−1, b1,−1) ,

and denote by φ the factor map on X based on Φ. Finally, we write Y =
φ(X).
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We first claim that φ is two to one. To see this fix y ∈ Y . Suppose
x is a pre-image of y. Given the value of y in the origin, we know the
absolute value of the values of x in the set B1\(0, 0); in addition, we know
which of these values have the same sign. This leaves us with exactly two
possibilities. Choose one of these. If we shift the block one unit to the right,
say, then we know from the value of y at (1, 0) what the absolute value of x
is at the origin. But given our previous choice, we have no freedom in the
sign anymore. Continue in this way; it is then clear that our initial choice
exhausts all potential freedom, and y has at most two pre-images. As it is
clear that φ(x) = φ(y), every point has exactly two pre-images.

Now, one observes that h(X) = h(Y ) as easily follows from the argument
in the previous paragraph. We next claim that Y has a unique measure
of maximal entropy. It follows from Theorem 3.3 that every measure of
maximal entropy for Y must be a push forward of a measure of maximal
entropy for X. However, since the two ergodic measures of maximal entropy
µ+ and µ− are obtained from each other by flipping coordinates, we see that
φµ+ = φµ−. This last measure is therefore the only measure of maximal
entropy for Y . �
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