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We consider the space, CRp(M), consisting of CR functions
which also lie in Lp(M) on a quadric submanifold M of Cn

of codimension at least one. For 1 ≤ p ≤ ∞, we prove that
each element in CRp(M) extends uniquely to an Hp function
on the interior of the convex hull of M . As part of the proof,
we establish a semi-global version of the CR approximation
theorem of Baouendi and Treves for submanifolds which are
graphs and whose graphing functions have polynomial growth.

1. Definitions and main results.

We will be working in Cn = Cm × Cd with coordinates

(w = u+ iv, z = x+ iy) ∈ Cm × Cd.

A bilinear form q : Cm × Cm 7→ Cd is said to be a quadric form if

q(w1, w2) = q(w2, w1) for w1, w2 ∈ Cm.

Note that this requirement implies that q(w,w) = q(w,w) ∈ Rd for all
w ∈ Cm. A submanifold M ⊂ Cn is said to be a quadric submanifold if
there exists a quadric form q such that

M = {(w, z) ∈ Cm × Cd; Re z = q(w,w)}.
The closed convex hull of M , denoted ch(M), can be identified with M + Γ
where

Γ = closed convex hull of {q(w,w); w ∈ Cm} ⊂ Rd.(1)

The set Γ can be identified with the convex hull of the image of the Levi
form of M at the origin (see [B1] or [BP] for details). We are interested in
the case where the interior of ch(M) is nonempty.

We say that F belongs to Hp(M + Γ) if F is holomorphic on the interior
of M + Γ and

||F ||Hp(M+Γ) = sup
x∈interior{Γ}

(∫
m∈M

|F (m+ x)|p dσ(m)
)1/p

is finite

where dσ(w, y) =
√

1 + |∇q(w,w)|2dλ(w) dy is the usual surface measure for
M (graphed over the y and w - variables and dλ(w) is Lebesgue measure on
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Cm). If p = ∞, then the integral on the right is replaced by supm∈M |F (m+
x)|. This definition can also be localized (yielding the space Hp

loc(M + Γ))
by restricting the domain of integration to a small open subset about any
given point in M . This definition of Hp for ch(M) = M + Γ is analogous to
the usual defintion of Hp for an open set D ⊂ Cn or a tube domain B+ iRn,
where B ⊂ Rn. In our context, M plays the role of the boundary of D or
iRn in the tube case.

In [BN], it was shown that for 1 ≤ p ≤ ∞, the space Hp
loc(M + Γ) is

isomorphic to the space of functions in Lp
loc(M) that satisfy the tangential

Cauchy-Riemann equations in the sense of distribution theory. In this pa-
per, we globalize these results for quadrics. The key new ingredient here is a
semi-global version of the CR approximation theorem (by entire functions) of
Baouendi and Treves [BT]. A global version of this approximation theorem
does not hold in general (see [BT], Examples 3.1 and 3.2). However a global
version does hold for tube-like CR manifolds (see [B2]). A semi-global ver-
sion for rigid submanifolds whose graphing function has polynomial growth
will be established in Section 2. The proof of our global CR extension the-
orem will follow from this approximation theorem and by an analytic disc
construction (Sections 3, 4 and 5).

To precisely state our theorem, we need the following definitions. For
1 ≤ p ≤ ∞, we define CRp(M) to be the space of functions in Lp(M) (with
respect to surface measure on M) satisfying the tangential Cauchy-Riemann
equations on M in the sense of distribution theory. We say that a subcone
Γ′ ⊂ Γ ⊂ Rd is smaller than Γ (and write Γ′ < Γ) if Γ′∩S ⊂⊂ interior{Γ}∩S
where S is the unit sphere in Rd. Our main result is the following.

Theorem 1. Suppose M is a quadric submanifold of Cn and suppose the
interior of the convex hull of the Leviform (i.e., interior{Γ}) is nonempty.
Let 1 ≤ p ≤ ∞ and suppose f ∈ CRp(M). Then there exists a unique
F ∈ Hp(M + Γ) which extends f in the sense that if Γ′ < Γ, then

lim
x∈Γ′, x7→0

∫
m∈M

|F (m+ x)− f(m)|p dσ(m) = 0 if 1 ≤ p <∞.(2)

If p = ∞, then

lim
x∈Γ′, x7→0

F (m+ x) = f(m) for almost all m ∈M.(3)

For 1 ≤ p ≤ ∞

||F ||Hp(M+Γ) = ||f ||Lp(M).(4)

Conversely, if F ∈ Hp(M + Γ), then there exists an f ∈ CRp(M) such that
(2), (3) and (4) hold.

Since Hp(M + Γ) ⊂ Hp
loc(M + Γ) all the local results in [BN] apply to

Hp(M + Γ). In particular, pointwise almost everywhere limits of F exist on



CR EXTENSION FOR Lp CR FUNCTIONS 3

M within admissible approach regions of M +Γ. These approach regions lie
within any smaller cone Γ′ < Γ and allow quadratically-tangential approach
along the complex tangent directions and nontangential approach along the
totally real tangent directions.

If Γ = Rd, then M+Γ = Cn and so the extension, F , is an entire function
with a uniform bound on ||F ||Lp(M+x) for all x ∈ Rd. If 1 ≤ p < ∞, then
this F must be zero. If p = ∞, then F must be constant. Thus, we have
the following corollary.

Corollary 1. If M is a quadric submanifold of Cn with Γ = Rd, then there
are no nonzero elements in CRp(M) for 1 ≤ p <∞. Any function belonging
to CR∞(M) is constant.

2. The approximation theorem.

In [BT], Baouendi and Treves proved that continuous CR functions can be
locally approximated by entire functions. As already mentioned, a global
version of this theorem does not hold in general. In this section, we prove a
semi-global approximation theorem in the Lp - norm for rigid CR manifolds,
whose graphing function has polynomial growth. This class of submanifolds
includes the quadric submanifolds (whose graphing function grows quadrat-
ically) which is our main interest. The key idea in the proof uses Baouendi
and Treves’ technique of convolving the CR function against a kernel along
a slice that passes through a variable point (in a Radon transform-like fash-
ion) and then using Stokes Theorem to show that the slice can be fixed
(independent of the point in question). The new ingredient here is the use
of a different exponential kernel which takes into account the polynomial
growth of the graphing function to M . Some additional technicalities are
needed to handle the Lp - norm.

Theorem 2. Suppose M = {(w = u + iv, z); Re z = h(u, v)} where h :
Cm 7→ Rd is a smooth function with the following polynomial growth esti-
mate:

|(Dh)(u, v)| ≤ C|w|N for all w ∈ Cm

where D is any first-order derivative and where C and N are uniform pos-
itive integers. Suppose f is an element of CRp(M) for 1 ≤ p < ∞. Then
there exists a sequence of entire functions Fk such that for each compact
set K ⊂ M , Fk 7→ f in Lp(K) as k 7→ ∞. If p = ∞, then Fk converges
pointwise almost everywhere on M to f .

For 1 ≤ p ≤ ∞ and for each compact set K ⊂M , there is a constant CK

such that ||Fk||Lp(K) ≤ CK ||f ||Lp(K) for all k = 1, 2, . . . .



4 ALBERT BOGGESS

Proof. M is parameterized by the following function H : Rm ×Rm ×Rd 7→
Cm × Cd

H(u, v, y) = (u+ iv, h(u, v) + iy) for u, v ∈ Rm y ∈ Rd.

For fixed u ∈ Rm, let

Mu = {H(u, t, s); t ∈ Rm, s ∈ Rd}.
For any point (w, z) = (u + iv, z) ∈ M , Mu is an n = m + d-dimensional
real slice of M that passes through (w, z).

For ζ = (ζ1, . . . , ζn) ∈ Cn and any positive integer q let

(ζ)q = ζq
1 + · · ·+ ζq

n.

Note that if ζ ∈ Rn and q is even then (ζ)q ≈ |ζ|q. For η ∈ Cd and ζ ∈ Cm,
define

E(η, ζ) =
1
C1
e(ζ)2−(η)4N

where C1 is a constant chosen so that∫
t∈Rm, s∈Rd

E(it, is) dt ds = 1.(5)

We have the following lemma.

Lemma 1. Suppose f ∈ Lp(M) (not necessarily CR). For (w, z) = (u +
iv, x+ iy) ∈M ⊂ Cn = Cm+d and for ε > 0, define

Gε(f)(w, z) =
1
inεn

∫
(η,ζ)∈Mu

f(η, ζ)E
(
w − η

ε
,
z − ζ

ε

)
dη ∧ dζ(6)

where dη = dη1 ∧ · · · ∧ dηm and dζ = dζ1 ∧ · · · ∧ dζd. Then, Gε(f)(w, z) is
well-defined for almost all (w, z) ∈M . If 1 ≤ p <∞, then for any compact
set K ⊂M , ||Gε(f)− f ||Lp(K) 7→ 0 as ε 7→ 0.

If p = ∞, then a subsequence Gεk
converges to f pointwise almost every-

where on M . If f ∈ CRp(M), 1 ≤ p ≤ ∞, and if K ⊂ M is a compact set,
then there is a constant CK such that ||Gε(f)||Lp(K) ≤ CK ||f ||Lp(K).

Proof of the Lemma. The principal term in the kernel of the operator Gε

looks like a convolution operator. Therefore, the proof of this lemma pro-
ceeds in three steps. We first use a change of variables, which is typical
for analyzing convolution operators. Then we estimate the remainder terms
and complete the proof.

Step 1. Change of Variables. For (w = u + iv, z) ∈ M and (η, ζ) ∈ Mu,
we write

(w, z) = (u+ iv, h(u, v) + iy) and (η, ζ) = (u+ it, h(u, t) + is).

So

w − η = i(v − t) and z − ζ = (h(u, v)− h(u, t) + i(y − s)).
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We obtain

Gε(f)(w, z) =
1

C1εn

∫
t,s
f(H(u, t, s))eJε(u,v,y,t,s) dt ds(7)

where

Jε(u, v, y, t, s) =
1
ε2

[h(u, v)− h(u, t) + i(y − s)]2 − (v − t)4N

ε4N
.

We now make the change of variables:

t = v − εt′ s = y − εs′

and obtain

Gε(f)(w, z) =
1
C1

∫
t′,s′

f(H(u, v − εt′, y − εs′))eJε(u,v,y,v−εt′,y−εs′) dt′ds′

=
1
C1

∫
t′,s′

f(H(u, v − εt′, y − εs′))

exp

{
−
(
s′ − i

[
h(u, v)− h(u, v − εt′)

ε

])2

− (t′)4N

}
dt′ ds′.(8)

Step 2. Estimate of Terms. The real part of the exponent of the integrand
in (8) is

Re Jε(u, v, y, v − εt′, y − εs′) = −|s′|2 − (t′)4N +
(
h(u, v − εt′)− h(u, v)

ε

)2

.

(9)

Since |(Dh)(u, v)| ≤ C(|u|N + |v|N ), we have (by Mean Value)

|h(u, t)− h(u, v)| ≤ C(|u|N + |v|N + |v − t|N )|v − t|.
Therefore∣∣∣∣h(u, v − εt′)− h(u, v)

ε

∣∣∣∣2 ≤ C(|u|2N + |v|2N + ε2N |t′|2N )|t′|2.

For a compact set K, there is a constant CK such that C(|u|2N + |v|2N ) ≤
CK for all (u, v) belonging to K, and so∣∣∣∣h(u, v − εt′)− h(u, v)

ε

∣∣∣∣2 ≤ CK |t′|2 + Cε2N |t′|2N+2.(10)

From (9) and (10), we obtain

Re Jε(u, v, y, v − εt′, y − εs′) ≤ −|s′|2 − (t′)4N + CK |t′|2 + Cε2N |t′|2N+2

for (u, v) ∈ K. There exists an ε0 > 0 and RK > 0 (depending only on K)
such that for 0 ≤ ε ≤ ε0 and for t′ ∈ Rm with |t′| ≥ RK ,

−(t′)4N + CK |t′|2 + Cε2N |t′|2N+2 ≤ −(1/2)(t′)4N .
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Therefore

Re Jε(u, v, y, v − εt′, y − εs′) ≤ −(1/2)(t′)4N − |s′|2

for s′ ∈ Rd, t′ ∈ Rm with |t′| ≥ RK and (u, v) ∈ K. This inequality together
with (8) implies

||Gε(f)||Lp(K) ≤ C̃K ||f ||Lp(K)(11)

for some constant C̃K depending only on K.

Step 3. Proof that Gε(f) 7→ f . We return to Gε(f) as given in (8). We
first assume f is continuous with compact support. We have shown that for
(w, z) in the compact set K ⊂M , the integrand in (8) is dominated by

C̃K

(
sup |f |e−(1/2)(t′)4N−|s′|2

)
for t′ large and ε small where C̃K is a constant depending only on K. The
right side is integrable in (t′, s′) ∈ Rm×Rd. By the Dominated Convergence
Theorem, we obtain

lim
ε7→0

Gε(f)(w, z) =
f(H(u, v, y))

C1

∫
t′,s′

e−(s′−iDvh(u,v)·t′)2−(t′)4N
dt′ds′(12)

uniformly for (w, z) ∈ K ⊂M .
To evaluate the integral on the right, consider the following function de-

fined on the set, Mm×m, consisting of m×m complex-valued matricies:

I(Z) =
1
C1

∫
t′,s′

e−(s′+Z·t′)2−(t′)4N
dt′ds′ for Z ∈Mm×m.

Since the integrand is exponentially decreasing in t′ and s′, I(Z) is an entire
function of Z. When Z has real entries, I(Z) = 1, which can be seen by using
the change of variables ŝ = s′ + Z · t′ and t̂ = t′ together with the choice
of constant C1 (see (5)). By the identity theorem for analytic functions,
I(Z) = 1 for all Z ∈Mm×m. Therefore by (12),

lim
ε7→0

Gε(f)(w, z) = f(H(u, v, y)) = f(w, z)

and this limit is uniform in (w, z) = H(u, v, y) ∈ K ⊂ M . This completes
the proof of the lemma in the case where f is continuous with compact
support.

If f belongs to Lp(M) and 1 ≤ p < ∞, then f can be approximated in
Lp(M) by a continuous, compactly supported f̃ . We then have

||Gε(f)− f ||Lp(K) ≤ ||Gε(f − f̃)||Lp(K) + ||Gε(f̃)− f̃ ||Lp(K) + ||f̃ − f ||Lp(K)

≤ (C̃K + 1)||f̃ − f ||Lp(K) + ||Gε(f̃)− f̃ ||Lp(K) by (11).

The right side can be made as small as desired since we have already shown
Gεf̃ approximates a continuous f̃ .
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If f ∈ L∞, then f also belongs to L1
loc and the above arguments show that

Gε(f) 7→ f in L1(K). Thus, there is a subsequence, Gεk
(f), which converges

to f pointwise almost everywhere. This completes the proof of the lemma.

The integrand defining Gε(f)(w, z) is analytic in both z and w (see (6)).
However, the domain of integration (Mu) depends on w (since u = Re(w))
and therefore Gε(f)(w, z) is not necessarily holomorphic in w. The next
lemma states that if f is CR on M , then the domain of integration in
Gε(f)(w, z) can be chosen to be independent of (w, z) and thus Gε(f) is
an entire function. This next lemma will then complete the proof of the
approximation theorem.

Lemma 2. Suppose f ∈ Lp(M) and suppose K, E and Gε(f) are given as
in Lemma 1. For any fixed u0 ∈ Rm, define

Fε(f)(w, z) =
1
inεn

∫
(η,ζ)∈Mu0

f(η, ζ)E
(
w − η

ε
,
z − ζ

ε

)
dη ∧ dζ

where dζ = dζ1 ∧ · · · ∧ dζd, dη = dη1 ∧ · · · ∧ dηm. There exists u0 ∈ Rm such
that Fε(f)(w, z) is a well-defined, entire function of (w, z). If in addition,
f satisfies the tangential Cauchy-Riemann equations on M , then for each ε,
Fε(f)(w, z) = Gε(f)(w, z) for almost all (w, z) ∈M .

Proof. The proof involves two steps. First, we assume f is C1 and CR. The
proof in this case will follow from Stokes Theorem. When f is not C1 some
additional technicalities are involved.

Step 1. Suppose f ∈ C1 ∩ CRp(M). Fix any u0 ∈ Rm. As shown in the
proof of Lemma 1, the kernel E(w − η, z − ζ) is exponentially decreasing
in Im (η) and Im (ζ). Thus, Fε(f)(w, z) is a well-defined, entire function of
(w, z). If f satisfies the tangential Cauchy-Riemann equations, then we will
show that Fε(f) = Gε(f) on M by using the Stokes Theorem argument as
in [BT] (see also [B1]). For any (w, z) ∈ M , we connect u = Re (w) to u0

by a smooth path γu(r), 0 ≤ r ≤ 1 in Rm with γu(0) = u0 and γu(1) = u.
Define

M̃u = {H(γu(r), v, y); y ∈ Rd, v ∈ Rm, 0 ≤ r ≤ 1}.

M̃u is an m+d+1 = n+1-dimensional manifold whose (manifold) boundary
is Mu and Mu0 . By Stokes Theorem,

Fε(f)(w, z)−Gε(f)(w, z)

=
1
inεn

∫
(η,ζ)∈fMu

d

{
f(η, ζ)E

(
w − η

ε
,
z − ζ

ε

)
dη ∧ dζ

}
for (w, z) ∈M . Since the form on the right involves the (n, 0)-form dη ∧ dζ,
the d on the right is really just ∂. If f satisfies the tangential Cauchy-
Riemann equations then the form on the right is ∂-closed because E(η, ζ) is
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holomorphic in both η and ζ. Thus, the right side is zero and so Fε(f)(w, z)
= Gε(f)(w, z) for every (w, z) ∈M . This completes the proof in the case f
is C1.

Step 2. Suppose that f ∈ CRp(M) but not C1. Fix any (w, z) ∈M . For
u ∈ Rm, let

F (u) =
∫

(η,ζ)∈Mu

f(η, ζ)E
(
w − η

ε
,
z − ζ

ε

)
dη ∧ dζ.

Since f belongs to Lp(M) and E((w − η)/ε, (z − ζ)/ε) is exponentially de-
creasing as (η, ζ) 7→ ∞ along Mu, F is locally integrable on Rm. For almost
every lower dimensional slice, the restriction of F is locally integrable along
that slice. We are particularly interested in one-dimensional slices where F
is integrable. In the following lemma, we shall show that along any such
slice, F is almost everywhere constant provided f satisfies the tangential
Cauchy-Riemann equations.

Sublemma 1. Suppose f satisfies the tangential Cauchy-Riemann equa-
tions (in the sense of distribution theory). Let L be a one-dimensional slice
of Rm such that F |L is locally integrable on L. If u0 and u1 belong to the
Lebesgue set of F |L, then F (u0) = F (u1).

Proof of Sublemma. Without loss of generality, suppose L is the u1-axis,
u1 = 0 (the origin) and u0 = (u0

1, 0, . . . , 0) with u0
1 > 0.

For r > 0, let ψr be an approximation to the identity with the following
properties:

1. ψr is a smooth, even and nonnegative function defined on the real line.
2.
∫
ψr(x) dx = 1.

3. The support of ψr ⊂ [−r, r].
These properties imply that ψr converges weakly (in the sense of distri-

bution theory) to δ0 (the delta function centered at the origin). Recall that
if g : R 7→ R is locally integrable and if x0 belongs to the Lebesgue set of g,
then

lim
r 7→0

∫
R
f(x)ψr(x− x0) dx = f(x0)

(see [SW]).
Let φr satisfy

φ′r(x) = ψr(x)− ψr(x− u0
1).

Graphs of ψr(x) − ψr(x − u0
1) and φr(x) are given in Figures 1 and 2, re-

spectively. If 0 and u0
1 belong to the Lebesgue set of F (u1, 0 . . . 0), then the

following limits hold:

lim
r 7→0

∫
φ′r(u1)F (u1, 0, . . . , 0) du1 = F (0, . . . , 0)− F (u0

1, 0, . . . , 0).(13)
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0
u

1
0

height=1

Figure 1. Graph of φ′r(x) = ψr(x)− ψr(x− u0
1).

0

u
1
0

Figure 2. Graph of φr(x).

Let

M̃1 = {H(u1, 0, . . . 0, v, y); u1 ∈ R, v ∈ Rm, y ∈ Rd}.

M̃1 is a d+m+ 1 = n+ 1 real-dimensional slice of M and M̃1 contains M0

and Mu0 . Since f is CR on M , we have

d [f(η, ζ) dη ∧ dζ] = 0

as currents on M . Since f |fM1
is locally integrable, this equation also holds

as currents on M̃1. Using the notation 〈, 〉 for the pairing between currents
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and forms on M̃1, we have

0 =
〈
f, d

[
φr(η, ζ)E

(
w − η

ε
,
z − ζ

ε

)
dη ∧ dζ

]〉
.

Since E is holomorphic in both η and ζ, this equation becomes

0 =
∫

fM1

φ′r(u1)f(η, ζ)E
(
w − η

ε
,
z − ζ

ε

)
du1 ∧ dη ∧ dζ.

In view of Equation (13), the right side converges to∫
M0

f(η, ζ)E
(
w − η

ε
,
z − ζ

ε

)
dη ∧ dζ

−
∫

Mu0

f(η, ζ)E
(
w − η

ε
,
z − ζ

ε

)
dη ∧ dζ = F (0)− F (u0).

Thus, F (u0) = F (0), as claimed, and the sublemma is now proved.

As mentioned earlier, F is locally integrable along almost every one di-
mensional subspace of Rm. Along any such subspace, L, the Lebesgue set of
F |L is a set of full measure within L. Therefore, we can find a set U ⊂ Rm,
whose complement is a set of measure zero with the following property:

• If (u0
1, . . . , u

0
m) belongs to U , then for each 1 ≤ i ≤ m, the function

ui 7→ F (u0
1, . . . , u

0
i−1, ui, u

0
i+1, . . . , u

0
m)

is integrable and u0
i belongs to the Lebesgue set of this function.

By throwing out a set of measure zero, we can assume that the intersection
of U with any one-dimensional line that is parallel with one of the coordinate
axis is either empty or a set of full one-dimensional measure.

By a translation, assume that the origin, 0, belongs to U . We claim that
F (0) = F (u) for almost every u ∈ Rm. Indeed, Sublemma 1 implies

F (0, . . . , 0) = F (u1, 0, . . . , 0)

for every (u1, 0, . . . , 0) belonging to U (i.e., for almost every u1). For each
(u1, 0, . . . , 0) ∈ U , Sublemma 1 implies

F (u1, 0, . . . , 0) = F (u1, u2, 0, . . . , 0)

for each (u1, u2, 0, . . . , 0) which belongs to U . Continuing in this way, we
conclude that F (0) = F (u) on the set

Ũ = {(u1, . . . , um) ∈ Rm; (u1, . . . , ui, 0, . . . , 0)

belongs to U for each 1 ≤ i ≤ m}.

The complement of Ũ is a set of measure zero in Rm. Therefore, we conclude
that if u0 = 0, then Fε(f)(z, w) = Gε(f)(z, w) for almost all (z, w = u+iv) ∈
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Mu and for almost all slices Mu ⊂ M . The proof of Lemma 2 is now
complete.

By taking an increasing sequence of compact sets Kk ⊂M , k = 1, 2, . . . ,
and using Lemma 1, we can find a subsequence Fk = Fεk

which converges
to f as k 7→ ∞, in Lp(K), for any compact set K ⊂ M . The proof of
Theorem 2 is now complete.

3. Analytic discs for quadrics.

Now we return to the class of quadric submanifolds M = {(w, z) ∈ Cm ×
Cd; Re (z) = q(w,w)} where q : Cm × Cm 7→ Cd is a quadric form. In this
section, we summarize the results of analytic discs in [BP] and a related
subaveraging estimate given in [BN].

Lemma 3. Suppose α0, α1, · · · ∈ Cm are given with
∑∞

j=0 |αj | < ∞ and
suppose y ∈ Rm is given. Let W : {|ζ| ≤ 1} 7→ Cm and G : {|ζ| ≤ 1} 7→ Cd

be analytic discs defined by

W (ζ) =
∞∑

j=0

αjζ
j

G(ζ) =
∞∑

k=0

q(αk, αk) + 2
∑

j>k≥0

q(αj , αk)ζj−k + iy.

Then A(ζ) = (W (ζ), G(ζ)) is an analytic disc with values in Cn = Cm×Cd

whose boundary lies in M . The center of this disc is the point

A(ζ = 0) =

(
α0,

∞∑
k=0

q(αk, αk) + iy

)
.

The set of disc-centersA(α0, α1, . . . , y)(ζ = 0); αj ∈ Cm, with
∞∑

j=0

|αj | <∞, y ∈ Rd


is the closed convex hull of M .

Sketch of Proof. This lemma appears in [BP]. The boundary of A is con-
tained in M because

q(W (ζ),W (ζ)) = q

 ∞∑
j=0

αjζ
j ,

∞∑
k=0

αkζk


=

∞∑
k=0

q(αk, αk) + 2Re
∑

j>k≥0

q(αj , αk)ζj−k

= Re (G(ζ)).
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The center of A is

A(ζ = 0) =

(
α0,

∞∑
k=0

q(αk, αk) + iy

)
.

Letting α0 = w ∈ Cm, we obtain

A(ζ = 0) = (w, q(w,w) + iy) +

(
0,

∞∑
k=1

q(αk, αk)

)
.

The first term on the right parameterizes M (as (w, y) range over Cm×Rd).
The second term on the right parameterizes Γ, the closed convex hull of the
map w ∈ Cm 7→ q(w,w) as in (1). Since the convex hull of M equals M +Γ,
the proof of the lemma is complete.

Lemma 4. Suppose Γ′ < Γ is the convex hull of

q(a1, a1), . . . , q(aN , aN )

for some choice of vectors a1, . . . , aN ∈ Cm. Let sj ≥ 0 for 1 ≤ j ≤ N and
let y ∈ Rd and w ∈ Cm be given. Let

W (ζ) = w +
N∑

j=1

sjajζ
j(14)

G(ζ) = q(w,w) + 2
N∑

j=1

sjq(aj , w)ζj +
N∑

k=1

s2kq(ak, ak)(15)

+ 2
∑

N≥j>k≥1

sjskq(aj , ak)ζj−k + iy.

Then A = (G,W ) has boundary contained in M and

A(ζ = 0) = (w, q(w,w) + iy) +

(
0,

N∑
k=1

s2kq(ak, ak)

)
(16)

which parameterizes M + Γ′ as y, w and sj vary.

This lemma follows from Lemma 3 by letting α0 = w, αj = sjaj for
1 ≤ j ≤ N and αj = 0 for j > N .

For a point m ∈M and δ > 0, let B(m, δ) be the nonisotropic ball in M
centered at m of radius δ. B(m, δ) is an ellipsoid of Euclidean length δ > 0
in the m-complex tangent directions to M at m and of Euclidean length
δ2 in the d-totally real tangent directions. Details of the construction of
these balls are given in [NSW]. Now we summarize the basic subaveraging
estimate in [BN] (see Lemma 5.5).
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Lemma 5. Suppose Γ′ < Γ. There exist constants C1 and C2 such that for
any (w0, z0) ∈M + Γ′, there exists a neighborhood V of (w0, z0) in Cn such
that if F is an entire function then

sup
V
|F | ≤ C1

|B(m0, C2

√
δ)|

∫
B(m0,C2

√
δ)
|F |dσ(17)

where δ is the Euclidean distance from (w0, z0) to the point m0 = (w0,

q(w0, w0) + iy0) ∈M .

Sketch of Proof. The point of this lemma is that the values of F at points
(w, z) ∈M + Γ′ can be controlled by the L1-norm of F over a nonisotropic
ball in M whose radius is roughly equal to the square root of the dis-
tance from (w, z) to M . This lemma holds more generally for nonnegative
plurisubharmonic functions in M + Γ that are continuous up to M . This
lemma is proved by first estimating the value of F (w0, z0) by subaveraging
over a small ball V ′ ⊂ M + interior{Γ} centered at (w0, z0). Each point
in V ′ can be realized as the center of an analytic disc A with boundary
in M . From (16), we see that the Euclidean distance from the center of
the analytic disc A to (w, q(w,w) + iy) ∈ M is proportional to |s|2 where
s = (s1, . . . , sN ). In order to hit points a distance of δ away from M by the
center of such a disc, we must have |s| ≈

√
δ. From (14) and (15), it can

be shown that the boundary of A lies in an ellipsoid of Euclidean radius |s|
in the complex-tangent directions and of Euclidean radius |s|2 in the totally
real directions. By subaveraging along these discs, the L1-norm of F over
V ′ can be dominated by the L1-norm of F on the union of the boundaries of
these discs, which in turn can be estimated by the L1-norm over B(m,C

√
δ)

for an appropriate constant C. We refer the reader to Lemma 5.5 in [BN]
for details.

4. Proof of the main theorem.

If f belongs to CRp(M), 1 ≤ p ≤ ∞, Theorem 2 produces a sequence of
entire functions, Fk, with Fk 7→ f in Lp(K) for each compact subset K ⊂M
(or pointwise almost everywhere if p = ∞). In particular, Fk converges to
f in L1 on each compact subset K ⊂ M . Applying Lemma 5 to Fk − Fj ,
we see that the sequence Fj is uniformly Cauchy on a neighborhood of each
point in M + interior{Γ}. Therefore this sequence converges uniformly to
an analytic function F on the compact subsets of the interior of M + Γ.

To prove the Theorem 1 for 1 ≤ p ≤ ∞, we need to show the following
two facts:
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A. For any x ∈ interior{Γ},∫
m∈M

|F (m+ x)|p dσ(m) ≤ ||f ||pLp(M) if 1 ≤ p <∞(18)

|F (m+ x)| ≤ ||f ||∞ a.e. m if p = ∞.(19)

B. Suppose Γ′ < Γ,

lim
x 7→0, x∈Γ′

∫
m∈M

|f(m)− F (m+ x)|p dσ(m) = 0 if 1 ≤ p <∞(20)

lim
x7→0, x∈Γ′

|f(m)− F (m+ x)| = 0 a.e. m if p = ∞.(21)

These estimates all follow a similar pattern. The point m+x is expressed
as the center of an analytic disc. Then the approximating sequence, Fk,
is subaveraged along the boundary of this disc which is contained in M .
The estimate then follows by taking the limit as k 7→ ∞. The details when
1 ≤ p <∞ differ from p = ∞, so we isolate both cases.

The Case 1 ≤ p <∞. We must show (18) and (20).
To prove (18), suppose

x =
N∑

j=1

q(aj , aj) ∈ interior{Γ}

for some choice of a1, . . . , aN ∈ Cm. Let A(w, y)(ζ) be the analytic disc
given in Lemma 3, with α0 = w, αj = aj for 1 ≤ j ≤ N and αj = 0 for
j > N . Here, w and y are treated as parameters. By Lemma 3, the center
of this disc is

A(w, y)(ζ = 0) = (w, q(w,w) + x+ iy).(22)

Fix any R > 0. By subaveraging over this disc, and then integrating y and
w over {|y|, |w| ≤ R}, we have∫

|w|,|y|≤R
|Fk(w, q(w,w) + x+ iy)|p dσ(w, y)(23)

≤
∫
|w|,|y|≤R

∫ 1

0
|Fk(A(w, y)(e2πit))|p dt dσ(w, y).

The set

{A(w, y)(e2πit); |w|, |y| ≤ R, 0 ≤ t ≤ 1}
is contained in a compact set in M . Using the Approximation Theorem
(Theorem 2), we let k 7→ ∞ and replace Fk by f on the right side of (23).
This, in turn, is dominated by ||f ||pLp(M). We therefore obtain∫

|w|,|y|≤R
|F (w, q(w,w) + x+ iy)|p dσ(w, y) ≤ ||f ||pLp(M).
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Letting R 7→ ∞ yields (18).

It suffices to prove (20) for a Γ′ of the form given in Lemma 4. We
use the analytic disc A(y, w, s)(ζ) = (W (ζ), G(ζ)) given in Lemma 4 with
A(y, w, s)(ζ = 0) = (w, q(w,w) + x+ iy). Fix any R > 0. As in the proof of
(18), we subaverage around the boundary of these discs, then integrate w, y
to obtain∫

|w|,|y|≤R
|Fk(w, q(w,w) + iy)− Fk(w, q(w,w) + x+ iy)|p dσ(w, y)

≤
∫ 1

0

∫
|w|,|y|≤R

|Fk(w, q(w,w) + iy)− Fk(A(y, w, s)(e2πit))|p dt dσ(w, y).

We then let k 7→ 0 (using Theorem 2) and then let R 7→ ∞ (in that order)
to obtain∫

y,w
|f(w, q(w,w) + iy)− F (w, q(w,w) + x+ iy)|p dσ(w, y)(24)

≤
∫ 1

0

∫
w,y

|f(w, q(w,w) + iy)− f(A(s, y, w)(e2πit))|p dt dσ(w, y).

We must show the right side converges to zero as s 7→ 0 (i.e., as x ∈ Γ′ 7→ 0).
Using (14) and (15), we can rewrite A as

A(y, w, s)(ζ) = (w, q(w,w) + iy) +

0, 2
N∑

j=1

sjq(aj , w)ζj


+ (W0(s)(ζ), G0(s)(ζ))

where

|W0(s)(ζ)| ≤ C|s| and |G0(s)(ζ)| ≤ C|s|2 for |ζ| ≤ 1(25)

where C is a uniform constant independent of y and w.
The Jacobian determinant of the change of variables

ŵ = w and ŷ = y + 2Im


N∑

j=1

sjq(aj , w)ζj


is 1. After this change of variables, the right side of (24) only involves

Â(y, w, s)(e2πit) = (w, q(w,w) + iy) + (W0(s)(e2πit) , G0(s)(e2πit)).

In view of (25), the right side of (24) converges to zero as s 7→ 0, because f
belongs to Lp(M). The proof of (20) is complete.

The Case p = ∞. For (19), fix any w0 ∈ Cm, y0 ∈ Rd and x0 ∈ Γ′. As in
the case when p < ∞, we use Lemma 3 to write (w, q(w,w) + x0 + iy) =
A(w, y)(ζ = 0) for each w and y in a ball B(r) ⊂ Cm×Rd centered at (w0, y0)



16 ALBERT BOGGESS

of radius r > 0. Since f is locally integrable on M , we can subaverage over
the boundary of this disc and then integrate (w, y) over B(r) to obtain

1
|B(r)|

∫
B(r)

|Fk(w, q(w,w) + x+ iy)| dy dλ(w)

=
1

|B(r)|

∫
B(r)

|Fk(A(w, y)(ζ = 0))| dy dλ(w)

≤ 1
|B(r)|

∫
B(r)

∫ 1

0
|Fk(A(w, y)(e2πit))| dt dy dλ(w)

where |B(r)| is the measure of B(r). Since |Fk| is dominated on the compact
set

{A(w, y)(e2πit); 0 ≤ t ≤ 1, (w, y) ∈ B(r)}

by CK ||f ||∞ (Theorem 2) and since Fk|M converges pointwise (a.e.) to f ,
we obtain

1
|B(r)|

∫
B(r)

|F (w, q(w,w) + x+ iy)| dy dλ(w)

≤ 1
|B(r)|

∫
B(r)

∫ 1

0
|f(A(w, y)(e2πit))| dt dy dλ(w)

≤ ||f ||∞.

The estimate in (19) with m = (w0, q(w0, w0) + iy0) ∈ M now follows by
letting r 7→ 0 (so B(r) shrinks to the point (w0, y0)) in the above estimate.

To establish (21), fix any m0 ∈ M and apply Lemma 5 to the entire
function F̃k(w, z) := f(m0)− Fk(w, z), Letting k 7→ ∞, we obtain

|f(m0)− F (m0 + x)|

≤ C1

|B(m0, C2

√
|x|)|

∫
B(m0,C2

√
|x|)

|f(m0)− f(m)|dσ(m)

for x ∈ Γ′. As x 7→ 0, the right side converges to zero for almost all m0

by the Maximal Function Theorem applied to the class of nonisotropic balls
(see [NSW]). This completes the proof of the first part of Theorem 1 (i.e.,
extending f to F ).

The second part of Theorem 1 (constructing f from F ∈ Hp(M + Γ))
follows from Theorem 5.3 in [BN]. In that theorem, f(m) is locally con-
structed as the Lp

loc(M +Γ)-limit of F (m+x) as x 7→ 0. If F ∈ Hp(M +Γ),
then it follows that f belongs to Lp(M) and satisfies the tangential Cauchy
Riemann equations in the sense of distribution theory. The proof of Theo-
rem 1 is now complete.
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5. Uniqueness.

The requirement that ||F ||Hp(M+Γ) = ||f ||Lp(M) implies that the extension,
F , of f in Theorem 1 is unique. However, we can prove uniqueness without
this estimate. This is the content of the following theorem.

Theorem 3. Suppose M is a quadric submanifold of Cn and suppose
interior {Γ} is not empty. Let 1 ≤ p < ∞ and suppose F ∈ Hp(M + Γ)
with

lim
x∈Γ′, x7→0

∫
m∈M

|F (m+ x)|p dσ(m) = 0(26)

for each Γ′ < Γ. Then F = 0 on M + interior {Γ}.

Proof. Pick any x0 ∈ interior{Γ} and let y0 ∈ Rd and w0 ∈ Cm be given.
Choose a family of analytic discs A(w, y)(·), with boundary in M , for w and
y near w0 and y0 as in Lemma 3. We have

A(w, y)(ζ = 0) = (0, x0) + (w, q(w,w) + iy) ∈M + interior{Γ}.

We need the following lemma. Let Q : U 7→M , Q(w, y) = (w, q(w,w) + iy)
be the graphing function for M .

Lemma 6. There exists a cone Γ′ < Γ and a neighborhood, U ⊂ Cm ×Rd,
of (w0, y0) such that A(w, y)(ζ) belongs to Q{U} + Γ′ ⊂ M + Γ′ for all
(w, y) ∈ U .

Assume the lemma for the moment. Since F is holomorphic in M +
interior{Γ} and the image of the analytic disc A(w, y)(·) is contained in
M + interior{Γ}, |F (A(w, y)(ζ))|p is a subharmonic function of ζ for |ζ| ≤ 1
and (w, y) ∈ U . Therefore, the following expression

Fr =
∫

(w,y)∈U

∫ 1

0
|F (A(w, y)(re2πit))|p dt dσ(w, y)

is monotonically increasing in r for 0 ≤ r < 1. Since the image of A(w, y)(·)
is contained in M+Γ′ (in view of Lemma 6), (26) implies that limr 7→1− Fr =
0. Therefore, Fr = 0 for 0 ≤ r < 1. In particular,

F ((0, x0) + (w0, q(w0, w0) + iy0)) = F (A(w0, y0)(ζ = 0)) = F0 = 0

as desired.

Proof of Lemma 6. Let S be the set of all linear functionals on Rd which
define the convex cone Γ (i.e., x belongs to Γ if and only if `(x) ≥ 0 for all



18 ALBERT BOGGESS

` ∈ S). Write

A(ζ) = (W (ζ), G(ζ))

=
(
0, Re{G(ζ)} − q(W (ζ),W (ζ))

)
+
(
W (ζ), q(W (ζ), W (ζ)) + iIm{G(ζ)}

)
.

The second term on the right belongs to M . Therefore, it suffices to show
that there is a constant η > 0 such that

− `
(
Re{G(ζ)} − q(W (ζ),W (ζ))

)
≤ −η(1− |ζ|)(27)

for all |ζ| ≤ 1 and all ` ∈ S of unit norm.
Using the bilinearity of q and the definition of S, it is easy to show that

the left side of (27) is a subharmonic function of ζ. In addition, the left side
of (27) is zero on |ζ| = 1 (since the boundary of A is contained in M) and
is strictly negative when ζ = 0 (since ReG(ζ = 0)− q(w,w) = x0 belongs to
the interior of Γ). Therefore, the estimate in (27) follows from the Maximum
Principle and the Hopf Lemma for subharmonic functions.
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