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In this paper we construct families of hyperbolic knots with
free genus one, whose complements have arbitrarily large vol-
ume. This implies that these knots have free genus one but
arbitrarily large canonical genus.

0. Introduction.

A Seifert surface for a knot K in the 3-sphere is an embedded orientable
surface Σ, whose boundary equals the knot K. In 1934, Seifert [Se] gave a
very simple algorithm for constructing a Seifert surface for a knot, from a
diagram, or projection, D of the knot. Thus every knot has a Seifert surface.

Seifert’s algorithm always builds a surface whose complement is a han-
dlebody, something which is known as a free Seifert surface. The minimal
genus among all free Seifert surfaces for K is called the free genus gf (K) of
K, while the minimal genus of a surface built by Seifert’s algorithm applied
to a projection of the knot K is called the canonical genus gc(K) of K.
(In keeping with this terminology, we will call a surface built by Seifert’s
algorithm canonical.) The above considerations immediately imply that, for
any knot, gf (K) ≤ gc(K). It was shown by Kobayashi and Kobayashi [KK]
that these numbers can be distinct; for K the connected sum of n copies of
the double of a trefoil knot, gf (K) = 2n and gc(K) = 3n.

An unusual feature of these examples is that the free genus minimizing
surfaces are all compressible. We were interested in finding examples where
the free and canonical genera differ, but the free genus minimizing surfaces
were incompressible. In doing so, we were led in a natural way to consider
hyperbolic knots, in order to exploit a relationship between canonical genus
and volume.

In a previous paper [Br] we showed that hyperbolic knots with bounded
canonical genus have complements with bounded volume. The bound on
volume can in fact be chose to be linear in the canonical genus. In this
paper we show, by contrast, that there is no corresponding bound in terms
of the free genus of the knot.

Theorem. There exist hyperbolic knots with free genus one and arbitrarily
large hyperbolic volume.
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These two results together show that there are free genus one hyperbolic
knots with arbitrarily large canonical genus. Since a free genus one Seifert
surface for a nontrivial knot is always incompressible, the knots we build also
provide examples of knots with incompressible free Seifert surfaces which
cannot be built by applying Seifert’s algorithm to a projection of the knot.
We should also note that a knot with free genus one has genus one, and so
we immediately obtain the following corollary.

Corollary. There exist hyperbolic knots with genus one and arbitrarily large
hyperbolic volume.

1. Building free genus one knots.

It is easy to build knots with free genus (at most) one, simply by building a
genus one surface whose spine is an unknotted graph in the 3-sphere. The
complement of the surface is homeomorphic to the complement of the graph,
and so is a handlebody. Consequently, the boundary of the surface has a
genus 1 free Seifert surface, and so has free genus at most one. The best
examples of this (and the starting point for our examples) are the 2-bridge
knots (Figure 1) corresponding to the continued fractions [2u,2v] (see [HT]
for notation). These surfaces are in fact isotopic to canonical surfaces for
different projections of these knots.

This gives an infinite family of free genus one knots. However, since all of
these knots can be built by doing 1/u (and 1/v) Dehn surgeries on two of the
unknotted components of the Borromean rings (Figure 1), these knots have
hyperbolic volume smaller than the hyperbolic volume of the link [Th1],
and so have bounded volume.

In order to insure that our free genus one knots will have large volume, we
will rely on a result of Adams [Ad], which states that a complete hyperbolic
manifold with r cusps must have volume at least rV0, where V0 is the volume
of a regular ideal tetrahedron. We will therefore build our knots by doing
1/ni Dehn surgeries on the (unknotted) components of a hyperbolic link
with r components. By a result of Thurston [Th1], for large values of the
ni, the resulting knots will also be hyperbolic and have volume close to that
of the link. What we shall see is that for the particular link we choose, the
resulting knots can also be seen to have free genus one Seifert surfaces, and
so have free genus (at most) one.

The basic idea is to take one of the knots K in Figure 1 and throw an
extra loop K1 around the ‘waist’ of the Seifert surface F ; see Figure 2. This
loop K1 lies on a 2-sphere S bounding a 3-ball B; B ∩F is a disk and S ∩F
consists of four arcs. If we look at M0 = B\int(N(F )), it is a genus four
handlebody which has the structure of a sutured manifold, where the sutures
are the four loops S∩∂(N(F )). There are four obvious product disks for this
sutured manifold (sitting in the plane of the paper, in the figure), so that,
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Figure 1.

Figure 2.

as a sutured manifold, M0 is a product sutured manifold (four-punctured
sphere)×I. In particular, the four-punctured sphere B ∩ ∂N(F ) is isotopic,
in M0, to S\int(N(F )).

If we now do 1/n Dehn surgery on K1, then since K1 is unknotted, the
resulting manifold will be a 3-sphere, and so the image of K will be a knot
K ′ in the 3-sphere. By Kirby calculus (see [Ro]), K ′ can be obtained from
K by cutting K along a disk D spanning K1, giving the resulting strands n
right-handed twists, and regluing. Similarly, the Seifert surface for K gives
a Seifert surface F ′ for K ′, by cutting, twisting, and regluing.

However, from the point of view of the ball B (or, more precisely, a
ball slightly smaller than B), nothing has really happened; we have cut
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Figure 3.

the ball open along a disk, given one half of it n full twists, and reglued
by the identity map. Consequently, B\int(N(F ′)) ∼= B\int(N(F )) is also a
product sutured manifold, and so B ∩ ∂N(F ′) is isotopic, in B\int(N(F ′)),
to S\ int(N(F ′)) = S\ int(N(F )). Therefore, S3\ int(N(F ′)) ∼= S3\(int(B∪
N(F ′))) = S3 \(int(B∪N(F ))) ∼= S3 \ int(N(F )) is also a handlebody. F ′ is
therefore a free genus one Seifert surface for K ′. Note that we could in fact
have chosen any loop on S to base this construction on; it would still bound
a disk in the 3-ball B, and so the argument above would go through without
change. A more complicated loop would, however, unnecessarily complicate
our arguments below.

More generally, we can throw many extra loops Ki around F , on con-
centric 2-spheres, alternating which direction around the waist of F we go
(Figure 3), and do 1/ni Dehn surgeries on each of them. Since without K
these loops would together form a trivial link - they lie on disjoint 2-spheres
- the resulting manifold will again be the 3-sphere, and so K will be taken
to a new knot K ′ in the 3-sphere. By working inductively out from the
centermost 2-sphere, cutting along disks, twisting, and regluing, we can also
see that our Seifert surface F will be taken to a free Seifert surface for K ′; at
each step the argument is identical to the one given above. We therefore can
produce knots with free genus at most one by this iterative construction, as
well.

What we do not yet know is that these knots K ′ are hyperbolic, or that
they have large volume. What we will show, however, is that the links Ln

= K ∪ K1 ∪ . . .Kn are all hyperbolic. By the result of Adams, for large n
they therefore have large volume, and so when the ni are all large, K ′ will
have large volume (and, in particular, is therefore nontrivial, hence has free
genus exactly one). This will complete the proof of our theorem.
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2. The links Ln are hyperbolic: Preliminaries.

We now demonstrate that the links Ln have hyperbolic complement; that is,
the compact manifolds Mn=X(Ln)=S3\int(N(Ln)) have hyperbolic interior
of finite volume. By Thurston’s Geometrization Theorem [Th2], we must
show that

(1) X(Ln) is irreducible,
(2) X(Ln) is ∂-irreducible, i.e., ∂X(Ln) is incompressible in X(Ln),
(3) X(Ln) is atoroidal, i.e., an incompressible torus T in X(Ln) is parallel

to ∂X(Ln), and
(4) X(Ln) is anannular, i.e, any properly embedded incompressible annu-

lus A in X(Ln) is ∂-parallel.

In this section we will set up a few additional assumptions and prove some
preliminary results, which will allow us to develop the machinery to prove
these assertions. The basic idea is that, since this is a proof by construction,
we can (and will) make whatever assumptions we feel are necessary to bring
a wide array of different tools to bear on the problem, from standard cut
and paste arguments to homological intersection numbers to normal forms
for words in a free group.

The main assumption we will need to make, in order to prove that the
links Ln are hyperbolic, is that our underlying 2-bridge knot K, given by the
continued fraction [2u, 2v], lying at the center of the links Ln has |u|, |v| ≥ 2.
Experimental evidence (finding hyperbolic structures using SnapPea [We])
suggests that in fact the links are always hyperbolic, without this added
assumption, but some of our arguments will not go through in greater gen-
erality. We will also assume that n ≥ 3, since this will, in the end, make
the verification of condition (4) almost immediate. Again, experimental
evidence suggests that this is not a necessary assumption.

Central to our proof that the knots obtained by 1/ni surgeries have free
genus at most one was that the Seifert surface F for the knot K is disjoint
from all of the added components Ki. In fact, each loop Ki bounds a disk Di

in S3 which meets F in an arc αi (Figure 4). We will assume that we have
pushed these disks slightly off of one another, so that if i−j is even, then Di

and Dj are disjoint. When i−j is odd and j < i, then Dj∩Di consists of an
arc βji contained in the interior of Di. In particular, Dj ∩Ki is empty, and
Di∩Kj consists of two points. Also, for each i, Di∩ (F ∪D1∪ . . .∪Di−1) is
a finite tree, consisting of parallel arcs βji each pierced by the arc αi exactly
once (see Figure 4). The surface F is two-sided; we will arbitrarily assign it
a normal orientation, and call one side of the surface F+ and the other side
F−. (Formally, we should think of this as being the two sides of ∂N(F ) in
X(Ln), but we won’t really make such a distinction.)

An important point to notice is that not only is S3 \ F a handlebody (of
genus 2), since F is a free Seifert surface, but S3 \ (F ∪ Di ∪ . . . ∪ Dn) is
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a handlebody (of genus 2), as well. This is because Ai=Di\intN(F ∪D1 ∪
. . . ∪ Di−1) is an annulus. Therefore, Xi=S3\intN(F ∪ D1 ∪ . . . ∪ Di) is
homeomorphic to Xi−1=S3\intN(F ∪D1 ∪ . . . ∪Di−1); Xi−1 \Xi is a solid
torus neighborhood of Ai, so Xi−1 is obtained from Xi by gluing this solid
torus to ∂Xi, along an annulus. Pushing ∂Xi to ∂Xi−1 through this solid
torus gives an isotopy in Xi−1 from Xi to Xi−1.

This fact will allow us to take an inductive approach to our proof of
property (3). We will start with an alleged essential torus T , and argue
that we can find a (possibly different) torus disjoint first from F , and then,
inductively, from each of the disks Di. After we are done we will have an
essential torus disjoint from all of them, which therefore sits in a handlebody.
But since a handlebody is atoroidal, this will give us our contradiction.

In the rest of this section we collect together several lemmas which will
tell us that certain kinds of intersections of a torus with F and with the
disks Di are not possible.

Lemma 1. For every i, there is no essential embedded annulus A in
S3\ intN(F ∪Ki) with one ∂-component on F± and the other ∂-component
on ∂N(Ki).

Proof. This is easiest to see using a slightly different picture of F (see
Figure 5). π1(F+), π1(F−), and π1(S3\intN(F )) = π1(H) are all free
groups of rank two; using one of the bases depicted in Figure 5b (depend-
ing upon which of F+, F− we work with), we can see that, as subgroups of
π1(H) = F (a, b), π1(F+) is generated by au and abv, and π1(F−) is gener-
ated by bv and bau. On the other hand, Ki can be represented by either ab
or ab−1, depending on the parity of i.

From the point of view of homotopy theory, an annulus described in the
statement of the lemma gives a free homotopy from a loop representing a
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power of ab±1 to a loop representing an element of π1(F±), and so from the
point of view of fundamental groups, (ab±1)n, for some n, is conjugate in
F (a, b) to a word in the subgroup generated by {au, abv} or {aub−1, bv}.

Conjugation preserves exponent sums in a free group, and so in the first
case the exponent sum for b will be ±n = kv, so v divides n, while in the
second case the exponent sum for a will be n = k′u, so u divides n. Since by
our earlier hypothesis both |u| and |v| are greater than 2, we have |n| ≥ 2, or
n=0. (This is essentially the only place in our proofs where these hypotheses
on u and v will be used.)

But n=0 implies that A meets ∂N(Ki) in a meridian loop (since the
boundary is embedded), and so, capping A off with a meridian disk produces
a disk D with boundary on F±, meeting Ki in a single point. Since F± is
incompressible, ∂D bounds a disk in F which, together with D forms a 2-
sphere in S3 meeting Ki in a single point, a contradiction (since a 2-sphere
separates S3). Therefore, |n| ≥ 2.

A word in the free group F (a, b) is said to be in normal form [MKS] if the
letters a and a−1, and the letters b and b−1, do not occur side by side. Every
element of the free group F (a, b) has a unique normal form, which can be
obtained by starting with a word representing the element and continually
cancelling such adjacent pairs.
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But the word x(ab±1)nx−1, when put into normal form, must, since |n| ≥
2, contain one of the strings

abab, baba, ab−1ab−1, b−1ab−1a,

b−1a−1b−1a−1, a−1b−1a−1b−1, ba−1ba−1, or a−1ba−1b.

For example, for x(ab)nx−1 with n ≥ 2, one of the first two strings must
appear. This can be proved by induction on the length of the normal word
representing x. If we assume x is written in normal form, the only way the
initial string abab of the center word, or the final abab, can be altered as we
shorten our word to normal form is if x ends in a−1, or x−1 begins with b−1.
But then either x−1 begins with a or x ends with b, and so we can write

x(ab)nx−1 = ya−1(ab)nay−1 = y(ba)ny−1 or

x(ab)nx−1 = (z−1b)(ab)n(b−1z) = z−1(ba)nz.

Then by induction (since the word length of the conjugating element has
decreased), we are done; the base case x=1 is obvious. The fact that in
the inductive step ab became ba is not a problem, since our conclusion is
symmetric in a and b; we simply imagine making our initial statement sym-
metric in a and b as well. The other pairs of possibilities listed above occur
for the other combinations of exponent of b and sign of n. Consequently, the
normal form for our word x(ab±1)nx−1 contains both an a±1 surrounded on
both sides by b’s, and a b±1 surrounded on both sides by a’s.

This word is, by our argument above, contained in one of the (free) sub-
groups generated by {au, abv} or {bau, bv} . But this is impossible, because
u and v are both at least 2. In the first case, every occurrence of the letter
b will come in the form (bv)k, since au contains no b’s, and so it is impos-
sible to have a single b surrounded by a’s in the normal form for the word.
In the second case, every occurrence of the letter a will come in the form
(au)k, since bv contains no a’s, and so it is impossible to have a single a
surrounded by b’s in the normal form for the word. Consequently, there can
be no annulus running from ∂N(Ki) to F±. �

Lemma 2. For every i 6= j, there is no essential annulus properly embedded
in X(Ln) with one ∂-component on ∂N(Ki) and the other ∂-component on
∂N(Kj).

Proof. Suppose we have such an annulus A; consider A ∩ F ⊆ A. Since
F∩∂A = ∅ and A∩∂F = ∅, this intersection consists of loops. Since F is
incompressible, any loops which are trivial in A can be removed by disk
swapping. Any remaining loops must all be parallel to ∂A; if there are
any, then an outermost such loop cuts off an annulus from A with one
∂-component on ∂N(Ki) or ∂N(Kj) and the other ∂-component on F±,
contradicting Lemma 1. So A∩F = ∅. There are now two cases to consider:
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Case 1: i− j is odd.

In this case, F , Ki, and Kj are as in Figure 6. There is a loop γ in F
which has homological linking numbers (in S3) 2 with Ki and 0 with Kj .
∂A∩∂N(Ki) is a curve of some slope ai/bi on ∂N(Ki), and ∂A∩∂N(Kj) is a
curve of slope aj/bj on ∂N(Kj). Since A∩F = ∅, we have A∩γ = ∅, and so
A represents a homology in the complement of γ between its two boundary
curves. These boundary curves represent the homology classes bi[Ki] = 2bi

and bj [Kj ] = 0bj = 0 in H1(S3 \ γ), so bi = 0. Similarly, a curve γ′ can
be found with the appropriate linking numbers, showing that bj = 0. This
implies that both ∂-components of A are meridian loops; capping off with
meridian disks gives us a 2-sphere in S3 meeting each of the loops Ki,Kj

exactly once, a contradiction. Therefore, the annulus A cannot exist.

Case 2: i− j is even.

We may assume j < i, and so, setting k = i − 1, j < k < i. We then
have a situation like in Figure 7. Consider A ∩ Dj ⊆ Dj . There is an arc
of F ∩ Dj = αj between the two points of K ∩ Dj , and since A misses F ,
it misses αj . A ∩ Dj therefore consists of trivial arcs, trivial loops, and
loops surrounding the arc αj . Innermost trivial loops can be removed by
disk swapping with the corresponding disk in A, and outermost trivial arcs
can be removed since A is ∂-incompressible. Note that this implies that
A∩∂N(Kj) misses ∂Dj , and so represents a longitude of ∂N(Kj).

This leaves loops travelling around αj ; they must all be parallel to ∂Dj =
Kj , and therefore all parallel to one another. These loops must be nontrivial
on A, since otherwise we can use the disk bounded by an innermost trivial
loop on A, together with the annulus in Dj that the loop cuts off to build a
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disk D′ disjoint from F with ∂D′ = Kj . But this contradicts the fact that
Kj has homological intersection number 2 with one of the two loops γ, γ′

from Figure 6. Then we can use the loop in A closest to the ∂-component
on ∂N(Ki), cutting off an annulus from A, together with the annulus in Dj

that it cuts off, to build a new annulus A′ between ∂N(Ki) and ∂N(Kj).
Since both boundary components are essential, and lie on distinct ∂-tori, A′

is essential. We can then push this annulus off of Dj to make them disjoint.
Setting A = A′, we can therefore assume that A ∩Dj = ∅.

Technically, this new annulus might hit some of the loops Kr for r < j;
what we will actually show, therefore, is that there can be no essential
annulus in X(K ∪Kj ∪Kk ∪Ki) = X. This will suffice, since our original
annulus A would be essential in this manifold, as well; any compressing disk
for A in X could be pushed off of F by disk swapping, since A ∩ F = ∅,
giving us a disk D′ as in the previous paragraph, a contradiction. Since
A has its ∂-components on distinct ∂-tori, there can be no ∂-compressing
disks, either.

Now consider A∩Dk (Figure 8). A is disjoint from ∂Dk = Kk, and since
Kj meets Dk in a pair of points, and A∩∂N(Kj) is a longitude, A ∩ Dk

consists of circles plus a single arc α joining the two points of Kj ∩ Dk.
Thinking of this arc as being in the annulus Dk\intN(F∪Dj), it is ∂-parallel,
and so simply goes to the right or left around the tree Dj ∩ (F ∪ Dj), say
right.

But in A, α is ∂-parallel, since it joins a component of ∂A to itself, and
so cuts off a disk ∆ from A, which is therefore disjoint from F (since A is).
∆ ∩ ∂N(Kj) is an arc of a longitude, running above or below the disk Dk,
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say above. But from the figure, ∂∆ has linking number 1 with a loop γ in
F ; this loop would therefore have to meet the disk ∆, a contradiction. �

3. The links Ln are hyperbolic: Proofs.

We now verify the four properties needed to show that the links Ln are
hyperbolic. We work under the assumptions that n ≥ 3, and the base knot
K has u, v ≥ 2.

Proposition 1. X(Ln) is irreducible: Every embedded 2-sphere bounds a
3-ball.

Proof. Suppose S is a reducing sphere for X(Ln). S ⊆ X(Ln) ⊆ S3, and in
S3, S bounds a 3-ball B1, B2 on each side. So we must have Ln ∩Bi 6= ∅ for
each i, otherwise Bi ⊆ X(Ln). One of these 3-balls contains K, say B1.

F ⊆ X(Ln) is incompressible, since a compressing disk for F in X(Ln)
would be a compressing disk in X(K). By a standard argument, we can
then make S disjoint from F : For any innermost loop of S ∩ F in F , we
can surger S along the corresponding disk in F , creating a pair of 2-spheres,
at least one of which must still be a reducing sphere for X(Ln), with fewer
circles of intersection with F . Therefore, F ⊆ B1, since ∂F=K ⊆ B1. But
each component Ki of Ln has nonzero linking number with some loop γ on F
(Figure 8); in particular, Ki∪γ is a nonsplit link. But Ki∪γ is disjoint from
S, and so is completely contained in either B1 or B2. Since γ ⊆ F ⊆ B1,
we have Ki ⊆ B1 for each i. Therefore, Ln ⊆ B1, and so Ln ∩ B2 = ∅, a
contradiction. So no reducing spheres exist. �
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Proposition 2. X(Ln) is ∂-irreducible: ∂X(Ln) is incompressible in
X(Ln).

Proof. Suppose D is a compressing disk for ∂X(Ln). Since K is a nontrivial
knot, ∂X(K) is incompressible in X(K), and so ∂D must lie on ∂N(Ki) for
some i. It therefore represents a curve of slope ai/bi on ∂N(Ki). Since F
is incompressible and disjoint from N(Ki), D and F meet in loops trivial
on both, and so we can make D and F disjoint by disk swapping. But
then D is disjoint from the loop γ of the previous proof, and so ∂D is null-
homologous in the complement of γ. Since ∂D represents bi[Ki] = bi in
H1(X(γ)), we have bi = 0, so ∂D is a meridian loop on ∂N(Ki). Capping
off with a meridian disk, we get a 2-sphere in S3 meeting Ki in a single
point, a contradiction. So D does not exist. �

Proposition 3. X(Ln) is atoroidal: Every incompressible torus in X(Ln)
is ∂-parallel.

Proof. Suppose T is an incompressible torus in X(Ln), and suppose, by way
of contradiction, that it is not ∂-parallel. Since F is incompressible in X(K)
and disjoint from Ln, it is also incompressible in X(Ln), and by a standard
disk swapping argument we can make T∩F consist of loops that are essential
on both T and F .

Consider T ∩ F ⊆ F . The loops fall into two types: Those that are
parallel to ∂F , and those that are not (which are all parallel to one another,
however, since F is a once-punctured torus). We begin by showing that we
can use T to find a different, essential, torus disjoint from F .

Of the ∂-parallel loops, the outermost (i.e., ∂F -most) loop cobounds an
annulus A with ∂F , and we can use this annulus to isotope T (in S3; in fact,
in X(Ln \K)) across ∂F=K to a torus T ′ ⊆ X(Ln) (see Figure 9).

Lemma 3. T ′ is incompressible and not ∂-parallel in X(Ln).

Proof. If this is not the case, then one of two things is true:
(1) T ′ is ∂-parallel.

In this case, if T ′ is parallel to ∂N(K), then the ‘dual’ annulus A′ joining T ′

to ∂N(K) (Figure 9) would cut the product region between T ′ and ∂N(K)
into a solid torus. By pushing T ′ back across K using A′, we can then see
that our original T bounds a solid torus, a contradiction. But if T ′ is parallel
to ∂N(Ki), then A′ lies outside of the product region, and the annulus A′

together with an annulus in ∂N(K) and an annulus A′′ in the product region
between T ′ and ∂N(Ki) can be stitched together to form an annulus between
∂N(K) and F . This annulus might meet F in it’s interior, that is, in the
interior of A′′. But every loop of intersection will either be trivial in A′′, and
so trivial in F by incompressibility, and so can be removed by isotopy of A′′,
or is parallel to ∂A′′, and so a ∂N(Ki)-most such loop cuts off an annulus
between ∂N(K) and F , missing F in its interior. In the absence of any such
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loops, our original annulus misses F in its interior. But the existence such
an annulus will contradict Lemma 1. So this case cannot occur.

(2) T ′ is compressible in X(Ln), via a compressing disk D.
Compressing T ′ along D produces a 2-sphere S ⊆ X(Ln). Since X(Ln)
is irreducible by Proposition 1, S bounds a 3-ball in X(Ln). This 3-ball
either contains T ′, or its interior is disjoint from T ′. Therefore, T ′ either
lies in a 3-ball B0 containing D, or bounds a solid torus M0 containing D
(Figure 10). Also, since T ′ ⊆ X(Ln) ⊆ S3, T ′ separates X(Ln).

The dual annulus A′ is incompressible in X(Ln)\T ′, since ∂A′∩∂N(K) is
an essential loop in ∂N(K), hence in X(Ln). If D and A′ lie on the same side
of T ′, then D∩A′ ⊆ A′ consists of loops and arcs. Since A′ is incompressible,
all of the loops are trivial, and since D is disjoint from ∂N(K), no arc joins
the two ∂-components of A′, and so all are ∂-parallel. By disk-swapping,
we can remove the loops of intersection, and by using the disk cut off by
an outermost arc, we can ∂-compress D to two disks, at least one of which
must still be a compressing disk. After replacing D by one of these disks
and continuing, we can eventually find a compressing disk disjoint from A′,
which we will still call D.

If T ′ bounds M0, then since M0 must be disjoint from K it is also disjoint
from the interior of A′ (Figure 10), i.e., A′ lies outside of M0. The loop
∂A′ ∩T ′ must represent a generator of π1(M0); otherwise the loop is merid-
ional and so A′ together with a meridian disk of M0 form a compressing
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disk for ∂N(K) in X(Ln), a contradiction, or the loop represents a non-
trivial multiple of the generator, and so A′ represents an isotopy of K to
a nontrivial cable of the core of the solid torus M0, contradicting the fact
[HT] that, for |u|, |v| ≥ 2, the 2-bridge knots with continued fraction [2u, 2v]
are hyperbolic. Therefore, when we push T ′ back to T along A′, we see that
T is parallel to ∂N(K), a contradiction.

If T ′ is contained in a 3-ball B0, then since K is disjoint from B0, D and
A′ lie on the same side of T ′, and so we may assume, by the above argument,
that they are disjoint. But then when we push T ′ back across ∂N(K) via
A′, the compressing disk D persists, so T is compressible, a contradiction.
So this case also cannot occur. �

Therefore, pushing T across A to T ′ will always result in another incom-
pressible, non-∂-parallel torus in X(Ln). Continuing for all of the ∂-parallel
loops of T ∩ F , we arrive at a new essential torus, which we will still call
T , having no loops of intersection with F parallel to ∂F , i.e., all loops of
intersection are nonseparating on F . These loops cut T into annuli, and F
into annuli and a once-punctured annulus. Since T is separating, none of
the annuli in F run from one side of T to the other. One of the boundary
components of the once-punctured annulus is the longitude of ∂N(K). Note
that F and T cannot meet in a single loop γ; since such a loop is nonsepa-
rating on F , a loop in F meeting γ in a single point is a loop meeting T in a
single point, implying that T is not separating. In fact, this implies that F
and T meet in an even number of loops, since otherwise the same loop will
meet T in an odd number of points, implying they have nonzero homological
intersection number, so T is nontrivial in H2(S3), a contradiction. F \ T
therefore consists of an odd number of annuli and a once-punctured annulus.
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Because X(K) is hyperbolic, T , thought of as sitting in X(K), must be
either compressible or ∂-parallel. It cannot be ∂-parallel, however, since
then the once-punctured annulus component P of F |T would have to live
in the product region T × I between T and ∂N(K). P must therefore be
compressible in T×I (since its fundamental group, being nonabelian, cannot
inject), implying that F is compressible in X(K), a contradiction.

We also know that since T ⊆ X(Ln) ⊆ X(K) ⊆ S3, T bounds a solid
torus M0 in S3. In fact, T must either bound a solid torus in X(K), or
K must lie in a 3-ball in a solid torus with boundary T . For if not, then
T cannot bound a solid torus on both sides (K would be disjoint from one
of them). T is therefore the boundary of a neighborhood of a nontrivial
knot, and so is incompressible on the side away from M0. Therefore K lies
in M0 and T is incompressible on the side away from K. But K is not
isotopic in M0 to the core C of M0, since T is not ∂-parallel in X(K), and
C is a nontrivial knot (since T is the incompressible boundary of X(C)). So
either T is incompressible in X(K)∩M0 = M0\intN(K), so K is a satellite
knot (and therefore not hyperbolic, a contradiction), or T is compressible in
X(K)∩M0, and so K misses a meridian disk for M0 (the only compressing
disk we could have). So either M0 ⊆ X(K), or K ⊆ M0 and misses a
meridian disk for M0.

If M0 ⊆ X(K) and T ∩ F 6= ∅, then there must be at least one annulus
of F \ T in M0, so there exists an outermost such annulus A. If we split T
open along A and glue two parallel copies of A onto the resulting annuli, we
obtain two new tori T1 and T2 in X(Ln), with T1 (say) disjoint from F , each
bounding a solid sub-torus in X(K) (see Figure 11), and joined to F by ‘dual’
annuli A1 and A2. Neither of these tori can be ∂-parallel in X(Ln), otherwise
the argument of Lemma 3 will find an annulus contradicting Lemma 1. If
T1 is compressible, by a compressing disk D1, then since T1 is disjoint from
F we can by the usual disk-swapping process make D1 disjoint from F as
well.

But then, as in Lemma 3, either T1 bounds a solid torus M1 in X(Ln), and
A1 lies on the opposite side of T1 (since F does), or T1 lies in a 3-ball B1, and
D1 and A1 lie on the same side of T1. In the first case, this solid torus must
then be identical to the one we see inside of M0 in Figure 11, and so we can
use this solid torus to isotope the annulus of T \F in T1 across F , reducing
the number of components of T ∩ F . In the second case, if D1 and A1 lie
on the same side of T1, then D1 ∩ A1 ⊆ A1 does not contain an essential
loop, since otherwise the sub-annulus cut off in A1 parallel to F together
with the the subdisk cut off in D1 would give a (singular) compressing disk
for F , a contradiction. Therefore by the same process used in the proof of
Lemma 3, we can make D1 disjoint from A1 as well. But then D1, A1, and
an annulus in T1 between their ∂-components together form a compressing
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disk for F , a contradiction. Therefore, when M0 ⊆ X(K), we can always
reduce the number of components of T ∩ F .

If K ⊆ M0 and misses a meridian disk D for M0, and T ∩F 6= ∅, then by
the incompressibility of F and the irreducibility of X(K) we can isotope D
rel ∂D to remove any circles of intersection with F . D ∩ F must still then
be nonempty, since otherwise D together with an annulus in T between ∂D
and a component of T ∩ F gives a compressing disk (in X(K)) for F . In
particular, the loops of T ∩F are not meridians for M0; otherwise, by isotopy
we could make ∂D (and therefore D) disjoint from F . By an isotopy of F
in X(Ln), we can assume that these loops meet ∂D minimally.

If T ∩ F has only two components, then F ∩ M0 consists of a once-
punctured annulus P , with two ∂-components on ∂M0, and the other ∂-
component equal to K. Loops of P ∩ D ⊆ D can be removed by disk
swapping, since P ⊆ F is incompressible in X(K)∩M0; P∩∂M0 consists of
loops essential in F . Then P ∩D consists of arcs; an outermost such arc α
must join distinct ∂-components of P together, since T \P consists of a pair
of annuli, each of whose ∂-components come from distinct components of
∂P . But then the outermost disk this arc cuts off, together with the annulus
in T , can be used to build a disk D′ with ∂D′ ⊆ F (Figure 12). Since F is
incompressible, ∂D′ bounds a disk in F . But since α joins distinct compo-
nents of ∂P , α cuts P into an annulus, one of whose ∂-components is ∂D′,
implying that F is a disk, a contradiction. So T ∩ F must have more than
two components.
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If T ∩F consists of more than two components, then there is at least one
annulus component of F ∩M0. An outermost such annulus cuts a solid torus
M1 off from M0. If M1 does not contain K, then we can apply the argument
given above for the case that M0 ⊆ X(K) to show that we can reduce the
number of components of T ∩ F by an isotopy of T . If M1 does contain K,
then it also contains P , and so we have a situation identical to the one in
the previous two paragraphs; the meridian disk for M1 is a sub-disk of D,
and so misses K. This will lead us to the same contradiction.

Therefore, we can either replace T with an essential torus T1 disjoint from
F , or reduce the number of components of T∩F by an isotopy of T in X(Ln).
Eventually, therefore, we can find an essential torus T with T ∩ F = ∅.

Once we have found an essential torus T with T ∩ F = ∅, we turn our
attention to T ∩ D1, where D1 is the disk of Section 1 bounding K1 ⊆
Ln. Since T is disjoint from F and K1, after removing trivial circles of
intersection in D1, which are therefore trivial on T , as well, T ∩D1 consists
of loops which miss the arc F ∩ D1, so all of the loops are parallel, in D1,
to ∂D1=K1. The outermost such loop cuts off an annulus A1 from D1

(Figure 13), which we use as in Lemma 3 to push T across K1 to a new
torus T ′ in X(Ln).

Lemma 4. T ′ is incompressible and not ∂-parallel in X(Ln).

Proof. Most of our arguments follow the same line as the proof of Lemma 3.
If T ′ is parallel to ∂N(Ki), then if i 6= 1, we can use the dual annulus A′

1

from T ′ to ∂K1 together with an annulus in the product region to build an
annulus in X(Ln) between ∂N(K1) and ∂N(Ki), contradicting Lemma 2.
If T ′ is parallel to ∂N(K), then A′

1 together with an annulus in the product
region and an annulus in ∂N(K) gives an annulus in X(Ln) between ∂X(K1)
and F , contradicting Lemma 1. And if T ′ is parallel to ∂N(K1), then the
dual annulus A′

1 splits the product region into a solid torus; pushing T ′ back
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to T along A′
1 essentially preserves this solid torus, implying that T bounds

a solid torus in X(Ln), a contradiction. So T ′ is not ∂-parallel.
If T ′ is compressible, then either T ′ bounds a solid torus M1, or T ′ is

contained in a 3-ball B1 in X(Ln). If T ′ bounds M1, then as before M1

is disjoint from the interior of A′
1. Note also that M1 is disjoint from F ,

since T ∩ F = ∅ and M1 does not meet ∂F=K. As before, ∂A′
1 ∩M0 = γ1

must represent a generator of π1(M1). Otherwise, either γ is a meridian
M1, and a meridian disk together with A′

1 gives a disk with boundary K1

disjoint from F , implying that K1 has linking number zero with every loop
in F , a contradiction, or γ1 represents a nontrivial multiple of the core C
of M1, so γ1, and therefore K1, is homologous to a multiple r of C in the
complement of F , implying that K1 has linking number a multiple of r with
every loop in F , contradicting the fact that it has linking number one with
some loops (e.g., the γ of Figure 8 above). But now when we push T ′ back
to T using A′

1, K1 is pushed to the core of the solid torus M1, implying that
T is ∂-parallel, a contradiction.

Finally, if T ′ and its compressing disk D lie in a 3-ball B1 (the only
remaining possibility), then D and A′

1 lie on the same side of T ′, and so,
as in Lemma 3, we can make D disjoint from A′

1. Then when we push T ′

back to T across A′
1, the compressing disk persists, so T is compressible, a

contradiction. So T ′ must be incompressible and not ∂-parallel. �

We can apply this argument to each loop of T ∩ D1 in turn, pushing
them across K1 to obtain a new essential torus. After carrying this out
for all loops of intersection, we can then assume that T ∩ F and T ∩ D1

are both empty. We then turn our attention to T ∩ D2, which as before
consists of loops in D2 parallel to ∂D2=K2. By the same process as in
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Lemma 4, we remove these loops of intersection as well. Continuing, we
eventually find an essential torus T which is disjoint from F and all of the
disks Di, i = 1, . . . , n. T therefore lives in S3\int(F ∪ D1 ∪ · · · ∪ Dn),
which as we remarked in Section 2, is a handlebody H. But every torus
in a handlebody is compressible (π1(T ) is not free, so it cannot inject into
π1(H)). This compressing disk misses F and all of the Di, and so it lives in
X(Ln). Therefore T is compressible in X(Ln), a contradiction. So no such
(original) torus can exist; X(Ln) is atoroidal. �

Proposition 4. For n ≥ 3, X(Ln) is anannular: Every incompressible an-
nulus is ∂-parallel.

Proof. The argument here is standard, we simply use the facts that X(Ln) is
irreducible and atoroidal, and has at least four ∂-components (since n ≥ 3).

If A is an incompressible annulus, then if A runs between distinct ∂-
components T1, T2, then T=∂N(A ∪ T1 ∪ T2) \ (T1 ∪ T2) is a torus which
separates pairs of ∂-components of X(Ln), so cannot be ∂-parallel, and
must therefore be compressible. But a compressing disk will split T into
a 2-sphere which also separates components of Ln, implying that X(Ln)
is reducible, a contradiction. So ∂A is contained in a single ∂-component
T1. Then T=∂N(A ∪ T1) \ T1 is a torus which separates T1 from at least
three other ∂-components. So if T is ∂-parallel, it is parallel to T1, so A
lives in a product T × I, and so is ∂-parallel. If T is compressible, then the
compressing disk splits T into a 2-sphere separating T1 from at least three
other ∂-components, giving a reducing sphere for X(Ln), a contradiction.

The only possibility which does not lead to a contradiction, therefore, is
that A is ∂-parallel. Therefore, X(Ln) is anannular. �

4. Concluding remarks.

With this we have finished our proof that the links Ln are hyperbolic. By
applying the construction of Section 1, we can therefore build infinitely
many (distinct) knots with free genus one and volume larger than any fixed
constant. We find it both amusing and embarrassing to note that we can,
however, not exhibit a single explicit example of this phenomenon, for any
fixed constant. Existence of our examples is guaranteed only by Thurston’s
hyperbolic Dehn surgery theorem, which provides no explicit estimate the
sizes of coefficients ni sufficient to guarantee hyperbolicity of the knots we
build. And while there are estimates of the volume of a hyperbolic manifold
after Dehn filling (see, e.g., [NZ]), these are asymptotic estimates, giving
no explicit lower bounds in terms of the ni.

It is clear that similar constructions can be carried out starting with free
genus one knots other than the [2u, 2v] 2-bridge knots. All that is really
needed to carry over our proofs is an analogue to Lemma 1. Our interest
here was in finding hyperbolic knots with free genus one; we should note that
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Figure 14.

Ozawa [Oz] has, on the other hand, determined all of the satellite knots with
free genus one. In that paper, he conjectures that any free genus one knot
whose exterior contains an essential closed surface must also have tunnel
number one. His paper essentially consists of a proof of this conjecture
when the exterior contains an essential torus. This, together with a result
of Goda and Teragaito [GT], gives the required characterization.

A free Seifert surface remains free after stabilization, i.e., after adding a
trivial 1-handle the surface (see Figure 14). It is easy to see that a canon-
ical surface stabilizes to a canonical one; stabilization can be thought of
as boundary connected sum with a canonical surface for the unknot (Fig-
ure 14), and the connected sum of a diagram for K and a diagram for the
unknot is a diagram for K. It would be interesting to determine whether
or not any two free Seifert surfaces are stably equivalent, i.e., they become
isotopic after a sufficient number of stabilizations. (Since the effect, on the
complement, of a stabilization is to boundary-connect sum with two solid
tori, you need to start with handlebody complement in order to get handle-
body complement.) This is probably not unreasonable, since this operation
is very similar to the stabilization of Heegaard decompositions (see, e.g.,
[AM]), where stable equivalence is known.

This stabilization process raises several further interesting possibilities.
Can every free Seifert surface be stabilized to a canonical one? In particular,
might it be the case that any free Seifert surface, if it is stabilized to have
genus equal to (or greater than) the canonical genus, must then always be
canonical? This would imply that if the free genus equals the canonical
genus, then every free Seifert surface is canonical. The standard conjecture
in the theory of Heegaard decompositions (see, e.g., [Ki, Problem 3.89])
seems to be that for any pair of Heegaard decompositions of a 3-manifold,
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they are equivalent after stabilizing to a genus one higher than the larger of
the two. Perhaps a similar result is true for free Seifert surfaces, as well.
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[Se] H. Seifert, Über das Geschlecht von Knoten, Math Annalen, 110 (1934), 571-592.

[Th1] W. Thurston, The Geometry and Topology of 3-manifolds, Notes from lectures at
Princeton University, 1978-80.

[Th2] , Three-dimensional manifolds, Kleinian groups and hyperbolic geometry,
Bull. Amer. Math. Soc., 6 (1982), 357-381, MR 83h:57019, Zbl 496.57005.

[We] J. Weeks, SnapPea, a program for creating and studying hyperbolic 3-manifolds,
available for download from www.geom.umn.edu.

Received June 24, 1999. This research was supported in part by NSF grant #DMS−9704811.

http://www.ams.org/mathscinet-getitem?mr=89k:22020
http://www.emis.de/cgi-bin/MATH-item?627.57013
http://www.ams.org/mathscinet-getitem?mr=90k:57017
http://www.emis.de/cgi-bin/MATH-item?695.57011
http://www.ams.org/mathscinet-getitem?mr=2000j:57011
http://www.emis.de/cgi-bin/MATH-item?939.57009
http://www.ams.org/mathscinet-getitem?mr=86g:57003
http://www.emis.de/cgi-bin/MATH-item?602.57002
http://www.ams.org/mathscinet-getitem?mr=1470751
http://www.ams.org/mathscinet-getitem?mr=97d:57008
http://www.emis.de/cgi-bin/MATH-item?859.57009
http://www.ams.org/mathscinet-getitem?mr=34:7617
http://www.emis.de/cgi-bin/MATH-item?138.25604
http://www.ams.org/mathscinet-getitem?mr=87j:57008
http://www.emis.de/cgi-bin/MATH-item?589.57015
http://www.ams.org/mathscinet-getitem?mr=2000b:57012
http://www.emis.de/cgi-bin/MATH-item?941.57010
http://www.ams.org/mathscinet-getitem?mr=58:24236
http://www.emis.de/cgi-bin/MATH-item?339.55004
http://www.ams.org/mathscinet-getitem?mr=83h:57019
http://www.emis.de/cgi-bin/MATH-item?496.57005


82 MARK BRITTENHAM

Department of Mathematics
University of Nebraska
Lincoln, NE 68588-0323
E-mail address: mbritten@math.unl.edu

mailto:mbritten@math.unl.edu

