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KNOTS
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Topological isotopic, non-Legendrian isotopic, Legendrian
knots in the standard contact space with equal Thurston-
Bennequin and Maslov numbers may have transverse isotopic
transverse approximations.

1. Introduction.

In this article, we consider Legendrian and transverse knots in the standard
contact space, that is in R3 with the contact structure globally given by
the 1-form o = ydx — dz. It is well-known that a little push of an oriented
Legendrian knot I' in the direction of its positive normal within the contact
structure changes it into a transverse knot I'*, whose natural orientation,
as determined by «, matches the chosen orientation of I'; pushing I' in the
direction of its negative normal produces the transverse knot I'” of the
opposite orientation.

Any transverse knot is transverse isotopic to I'" derived from some ori-
ented Legendrian knot I', and if Legendrian knots I', I are Legendrian iso-
topic, then I', " are transverse isotopic.

Besides their topological invariants, Legendrian and transverse knots have
classical invariants of contact origin: The Thurston-Bennequin number 73(T")
and the Maslov number p(I') for a Legendrian knot I' and the Thurston-
Bennequin number 75(I") for a transverse knot I'. Furthermore,

TB(IT) = 7A(T) + u(T),
TB(7) = 78(I') — pu(I).
(For details see Bennequin’s article [B].)

Question. If Legendrian knots I', TV have equal Thurston-Bennequin and
Maslov invariants, and if 't and I''* are transverse isotopic, then are I' and
I'" necessarily Legendrian isotopic?

It had not been possible to answer this question, at least negatively, be-
fore 1997, when new invariants of Legendrian knots were developed inde-
pendently by Yu. Chekanov [C] and Ya. Eliashberg [E1, E2], Eliashberg’s
work was based on his earlier joint work with H. Hofer. Chekanov and
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Eliashberg each constructed examples of topologically isotopic Legendrian
knots with equal Thurston-Bennequin and Maslov numbers, which are not
Legendrian isotopic. In particular, Eliashberg [E1] considered a family of
Legendrian knots F(k,l) (k > 0,1 > 0), which are given by their projections
onto the xz-plane (see Figure 1); we refer to the Legendrian knots E(k,[)
as FEliashberg knots. Obviously, E(k,l), E(k’,l") are topologically isotopic if
and only if k +1 =k +1'. An easy computation shows that u(FE(k,1)) =0,
independently of k,[, and that

1, if k+1is even

TB(E(k, 1)) = {3’ if k41 is odd.

Eliashberg proved that F(1,3) and E(2,2) are not Legendrian isotopic.

l k

crossings crossings

Figure 1. E(k,1).

Our results concern both Legendrian and transverse representations of
Eliashberg knots. First, we demonstrate that E(k,[)* are not all trans-
versely different.

Theorem 2.2. Ifl is even, then E(k,)* and E(k—1,14+1)" are transverse
isotopic; if 1 is odd, then E(k,1)™ and E(k—1,14+1)" are transverse isotopic.

Then, using the graded version of the linearization of Chekanov’s invari-
ant, we prove the following result.

Theorem 4.1. The Legendrian knots E(k,l) and E(K',l") are Legendrian
isotopic if and only if k=K, l=10 ork=10,1=Fk.

This result is also mentioned in [C], but some details of the computation
of Chekanov’s invariant are germane to our proof, and we present them
in Section 4. Together, these theorems answer the question above in the
negative.
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Conjecture. Ifl is odd, then E(k,1)" and E(k—1,l+1)" are not trans-
verse isotopic; if | is even, then E(k,l)” and E(k—1,l+1)" are not trans-
verse isotopic.

This conjecture, motivated solely by our inability to construct transverse
isotopies for these parities of [, implies that topologically isotopic transverse
knots with equal Thurston-Bennequin numbers are not necessarily trans-
verse isotopic.

We are grateful to Yura Chekanov and Yasha Eliashberg for their beautiful
breakthrough in contact topology. We also want to thank Yasha for his
generous and patient explanations of his published and unpublished results.

2. Eliashberg knots and transverse isotopies.

We recall that the projection of a generic Legendrian curve onto the zz-
plane is a smooth curve without vertical tangents and with no singularities
other than isolated cusps and transverse double crossings; this projection
completely determines the Legendrian curve. Closed curves as above are
projections of Legendrian knots, and we call them zz-diagrams. Two Leg-
endrian knots are Legendrian isotopic if and only if the xz-diagram of the
first may be transformed into the zz-diagram of the second through admis-
sible moves of the three kinds shown in Figure 2.

LN

I

II.

III. %

There exist direct ways of computing the Thurston-Bennequin and Maslov
numbers of a Legendrian knot given by an zz-diagram. In order to compute
7B(I"), we must orient I', although the final result does not depend on our
choice of orientation. If we count the number [ of left cusps, the number ¢; of
same-direction crossings X or ", and the number ¢ of opposite-direction
crossings X or X in the xz-diagram of I', then

Tﬁ(r)zcl—CQ—l.

I

I

N
A
>

Figure 2.
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The Maslov number of an oriented Legendrian knot I' is determined by the
formula .

plT) = 5 (d— ),
where d is the number of downward cusps and u is the number of upward
cusps in the xz-diagram of T' (see Figure 3). The Maslov number does
depend on the choice of orientation If —T" denotes I' with the opposite
orientation, then pu(—I") = —u(T

<<

downward upward
cusps cusps

Figure 3.

Applying this procedure to Figure 1, we easily get the result stated in the
introduction:

1, if k+11is even

TB(E(k,1)) = {_3, if k+ 1 is odd

H(E(k,1)) = 0

The zz-projection of a smooth transverse curve is always a smooth ori-
ented curve. The transversality condition (ydz — dz > 0) means that at a
point where the diagram is oriented to the right (dz > 0), the y-coordinate is
greater than the slope (dz/dz), and at a point where the diagram is oriented
to the left (dx < 0), the y-coordinate is less than the slope. In particular,
if, at a transverse crossing point of the xz-projection of a transverse curve,
the upward direction lies between two positive half-strands (dz > 0), then
the y-coordinate of the strand directed left is greater than the y-coordinate
of the strand directed right. Also, all vertical tangent vectors (dx = 0) are
directed downward (dz < 0).

We will present transverse knots by generic zz-diagrams, that is closed
smooth oriented curves with only double transverse crossings of non-vertical
strands and with no inflection points having vertical tangents. In space
with a right-handed orientation, if the z-axis is directed right and the z-
axis is directed up, then the y-axis will be directed away from the observer.
Therefore, at a crossing, the strand with the greater value of the y-coordinate
should be drawn as the lower strand. The properties of xz-projections of
transverse curves described above show that the configurations shown in
Figure 4 are never possible for generic xz-diagrams of transverse knots. On
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the other hand, a generic xz-diagram without the configurations of Figure 4
always determines a transverse isotopy class of a transverse knot.

()7

Figure 4.

The transition from a generic xzz-diagram of an oriented Legendrian knot
I' to a generic xz-diagram of the transverse knot I't is brought about by
the modifications shown in Figure 5.

XSS o
XL p )

Figure 5.

In general, there are many ways to construct an oriented Legendrian knot
I" from a transverse knot, whose xz-diagram A represents the transverse
isotopy class of I'. Those depicted in Figure 6, when followed by the
modifications in Figure 5, preserve the transverse isotopy type of A.

~ = XA A
<>X><X><X

Figure 6.
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As in the paper of one of the authors and Serge Tabachnikov [F'T], we
will apply two standard modifications to the xz-diagrams of oriented Legen-
drian knots within a topological isotopy class, which change their Legendrian
isotopy type. Namely, adding a zig means creating two new upward cusps
without cusps or crossings between them and adding a zag is doing the same
with downward cusps (see Figure 7). Inverse operations are removing zigs
or Temoving zags.

A
NN

adding a zig adding a zag
Figure 7.

We note that adding a zig or a zag decreases the Thurston-Bennequin
number by 1; adding a zig decreases the Maslov number by 1, and adding
a zag increases the Maslov number by 1. Hence, adding a zig to I' does not
affect the Thurston-Bennequin number of I'", and adding a zag to I' does
not affect the Thurston-Bennequin number of I'*.

In [FT], the authors prove that two topologically isotopic oriented Legen-
drian knots become Legendrian isotopic after adding sufficiently many zigs
and/or zags to each of them (in the terminology of [FT], sufficiently many
zigzags). The theorem below seems to be known to many people in contact
topology, but we were not able to trace it in the literature, and we give its
proof (which is similar to the proof of the above-mentioned result in [FT]).
For the sake of convenience, we introduce the following terminology.

We call two oriented Legendrian knots zig-isotopic, if they become Leg-
endrian isotopic after adding sufficiently many zigs to each of them; thus,
a zig-isotopy is a transformation of an oriented Legendrian diagram by the
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standard moves of Figure 2, along with the addition and removal of zigs. A
zag-isotopy is defined in a similar way.

Theorem 2.1. LetI',T" be oriented Legendrian knots. The transverse knots
[T, I are transverse isotopic if and only if U, T are zag-isotopic. Similarly,
=, T~ are transverse isotopic if and only if T',T" are zig-isotopic.

Proof. The zig and zag parts of Theorem are completely similar, so we re-
strict our attention to zags. We need to prove two things:

(i) The addition of a zag to I" does not change the transverse isotopic type
of I't.
(ii) If T, I are transverse isotopic, then I', T” are zag-isotopic.
Part (i) is simple. Adding a zag to I' results in a modification of the
diagram of I'", which is removable by a transverse isotopy (see Figure 8).

Figure 8.

To prove part (ii), we consider oriented Legendrian knots I',T” presented
by generic zz-diagrams. Generic zz-diagrams of I'",I'" can be obtained
from those of I, I by the modifications shown in Figure 5. Since I'", I+
are transverse isotopic, then the diagram of I'"™ can be smoothly deformed
into the diagram of I'* with finitely many violations of genericity, as defined
above; namely, for finitely many values of the parameter, the diagram will
have one of the following four kinds of singularities:

A. A triple point (with the three crossing strands being transverse and
non-vertical).

B. A point of first-order self-tangency (of non-vertical strands).

C. A (non-crossing) inflection point with a vertical tangent.

D. A crossing of a vertical and a non-vertical strand (with no inflection
point on the vertical strand).
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Let I'" = Ap,Aq,...,A, =TT be a sequence of generic diagrams from
the deformation with precisely one non-removable singularity of the types A-
D between A;_1,A; (i =1,...,n). Let g =T,T, =", and let I'y,..., T
be obtained from Aq,...,A,_1 as shown in Figure 6. We need to prove that
;1,1 are zag-isotopic for each 1.

First, we remark that the indeterminacy of the constructions in Figure 6
does not really matter. Legendrian zz-diagrams obtained from the same
transverse xz-diagram by different modifications allowed by Figure 6 are
zag-isotopic; this is proved in Figure 9. (Here and on, we assume that the
isotopy is constant outside a neighborhood of the singularity.)

Figure 9.

Thus, we may take generic transverse xz-diagrams A, A’, such that A
can be smoothly deformed into A’ with one non-removable singularity of
the types A-D and convert A, A’ into generic zz-diagrams I', I by the mod-
ifications allowed by Figure 6. If the latter is not unique, we can choose one
that is more convenient to us. Finally, we prove that I',I” are zag-isotopic.
We will have to consider each of the cases of the types A—D separately; these
cases will be split into subcases corresponding to the different direction of
strands, etc.

Case A. This case requires the greatest amount of work. We order the
three strands of the triple point by decreasing slope. Let y; be the value
of the y-coordinate at the crossing point of the i-th strand. We introduce
the permutation (i1,72,43) by the condition v;, < yi, < vi, and set d; = 1,
if the ¢-th strand is directed right and d; = —1, if it is directed left. The
permutation (i1, 42,43) and the numbers dy, da, d3 specify the 48 subcases of
Case A, 14 of which are prohibited by the following condition derived from
Figure 4:

(%) It is impossible that s < t,is <, ds = 1,dy = —1.

Fortunately, we can avoid considering the remaining 34 cases separately. We
note that at the intersection of strands labelled as s-th and ¢-th with s <t
the Legendrian diagram acquires a pair of cusps if and only if i5 < i; (see
Figure 6).
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If i3 = 3 and d3 = 1, then no matter what 41,2, d1, do are, a zag-isotopy
between I' and TV may be performed as shown in Figure 10. The case of
i1 =1 and d; = —1 is treated in a similar way.

Figure 10.

If i3 = 3 and d3 = —1, then the condition (x) implies that dy = dy = —1.
Since the case 717 = 1 has been already considered, we may set i; = 2 and
19 = 1. In this case, I and I'” are Legendrian isotopic, as shown in Figure 11,
and thus zag-isotopic. The case of 11 = 1 and d3 = 1 is treated in a similar

555
555

Figure 11.

It remains to consider the cases for which i; # 1 and i3 # 3. These are
the cases in which (i1, 1i9,13) = (2,3,1),(3,1,2), or (3,2,1). For the first two
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permutations, the corresponding Legendrian diagram has only one pair of
cusps, and the Legendrian isotopy is obvious (see Figure 12 for an example).

In the final case, there are no cusps at all, and the Legendrian isotopy is
simply the third move of Figure 2.

S

Figure 12.

.

Case B.  On transverse diagrams, this case corresponds to the birth or
the death of two crossings. Depending on the directions of the strands and
the orderings of y-coordinates, there are 8 possible subcases, 2 of which
are prohibited by the second condition of Figure 4. In the remaining 6
subcases, the zag-isotopy between the two Legendrian diagrams is the same
up to reflections in the z- and z-axes: Simply, a zag is created on one strand,
after which one of the cusps passes through the other strand (see Figure 13
for an example).

~— 7 e L7 %
/_\jg/_\_, Hb<

Figure 13.

Case C. This case is especially easy, since it involves only one strand.
The birth or the death of a pair of points with vertical tangents directed
downward obviously corresponds to the addition or deletion of a zag (see
Figure 8).

Figure 14.
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Case D. On a transverse diagram, this case corresponds to the passing of a
point with a downward vertical tangent through a non-vertical strand. There
are 8 subcases, depending on the direction of concavity of the vertical strand,
the direction of the non-vertical strand, and the order of the y-coordinates.
None are prohibited by the conditions of Figure 4. The zag-isotopies between
the Legendrian diagrams in all the subcases are very similar; an example is
shown in Figure 14.

Theorem 2.2. Let E(k,l) be the oriented Legendrian knot depicted in the
introduction (see Figure 1). If | is even, then the transverse knots E(k,1)*,
E(k+1,1—1)" are transverse isotopic. Ifl is odd, then the transverse knots
E(k,1)",E(k+1,l — 1)~ are transverse isotopic.

Proof. Depending on the parity of I, we need to construct either a zag-
isotopy or a zig-isotopy between E(k,l) and E(k—1,l+1). The case of even
[ is shown in Figure 15; the case of odd [ is similar.

( (
k-1
l k :
ross 4 > % T RS N N R e c.ross
i . Cross- ings
S S
e e ings
Y

Figure 15.
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3. Chekanov-Eliashberg invariants.

Let I be an oriented Legendrian knot represented by a generic zy-diagram.
At any crossing x, the two strands form four angles, of which two are deemed
positive and two negative. The positive crossings of x are bounded on the
right by the upper strand and on the left by the lower strand (see Figure 16).

—- |+

+ —

Figure 16.

For n > 0, we fix a convex planar domain P,, bounded by a piecewise
smooth curve II,, of n 4+ 1 vertices, which are denoted in a counterclockwise
direction as ug, uy, ..., uy; when n > 2, P, may be a regular (n+1)-gon. We
now consider orientation preserving immersions f of P, into the xy-plane,
which map II,, into the diagram of I" in such a way that each u; is mapped
to a crossing. Thus, f(II,) changes strands at f(u;). Two such immersions
are isotopic, if they can be connected by a regular isotopy within the class
of immersions defined above.

We restrict our attention to only those immersions, whose images of ver-
tices form a single positive angle at f(ug). For any n, the set of isotopy
classes of such immersions f with f(up) = x is denoted as Imm,(x). We
define the function h on each crossing of I' to be the absolute value of the
difference of the z-coordinates of the points above the crossing.

Proposition 3.1 ([C]). For any f € Imm,(x),
h(x) = > h(f(u)) > 0.
i=1

Proof. Since T' is Legendrian, the difference on the left hand side of the
inequality is equal to the area of the image of f, that is, to || pf *(dz N dy),
which is positive.

Corollary 3.2 ([C]). For any x, |, Imm,(x) is finite.

Let A denote the differential Zs-algebra, which is defined as the free
associative algebra generated by the crossings of the xy-diagram of I', whose
differential d: A — A satisfies the product rule and is given by the formula

dx) =" > flw)... flun).

n=0 felmmy, (x)
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Technically, the following two theorems constitute the main results of
Chekanov and Eliashberg.

Theorem 3.3 ([C, E1]). For d as above, d*> = 0.

Theorem 3.4 ([C, E1]). Let H = Kerd/Imd, then dimH is a Legendrian
isotopy tnvariant of T'.

Chekanov’s paper [C] contains a potentially stronger result. For a dif-
ferential Zs-algebra B, let SB denote the differential Zs-algebra, which is
obtained from B by adding two free generators a and b and by extending
the differential d by d(a) = b and d(b) = 0. We say that B and B’ are
stably isomorphic, if S"B is isomorphic as a differential Zs-algebra to S™B’
for some n, m.

Theorem 3.5 ([C]). The stable isomorphism type of A is a Legendrian
isotopy tnvariant of I.

Obviously, Theorem 3.5 implies Theorem 3.4.

It is not known whether the invariants described in Theorems 3.4 and
3.5 are actually new invariants of Legendrian isotopy classes. However,
Chekanov’s and Eliashberg’s invariant has a graded version, which is known
to distinguish Legendrian isotopy classes not distinguished by earlier invari-
ants. This graded version is especially useful when the Maslov number u of
I'is 0.

In order to introduce a grading, we need to fix an orientation of I, al-
though the degrees degx, defined below, do not depend on this orientation.
For a point z € T', let ®(z) denote the angle (measured counterclockwise)
from the positive direction of the -z-axis to the xy-projection of the positive
tangent to I' at . The function ® is multivalued; ®(x) is defined up to the
addition of integral multiples of 27. If ;1 = 0, then ® has a continuous branch
p: ' = R. If p # 0, then ® has a continuous branch ¢: I' — R/27|u|Z.

Let x be a crossing of the zy-diagram of I' and z1,22 € I' be the two
points above x. Let «(x) be the measure of the positive angle at x (thus,
0 < a(x) < m). We also suppose that z; lies below xo, that is, the z-
coordinate of x9 is less than that of 7.

Proposition 3.6. The number

p(x1) — p(r2) — (x)
s an integral multiple of .

Proof. The difference ¢(x1) — ¢(x2) is congruent modulo 27 to the coun-
terclockwise angle from the positive direction of the upper strand at x
to the positive direction of the lower strand at x. As seen in Figure 16,
this angle is equal either to the positive angle or to twice the positive an-
gle plus the negative angle. In other words, this angle is either a(x) or
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2a(x) +7—a(x) = a(x) + . Hence, p(z1) — p(z2) — a(x) is congruent mod
27 to either O or .

Definition. )
deg(x) = —(p(21) — p(22) — a(x)).

Z if =
deg(x)e {20 B H=:
Loy, if p#0.

Using this definition, we introduce a Z- or a Zy,-grading in A:

deg(xy...xy,) = deg(x1) + - - - + deg(xy).

Obviously,

Proposition 3.7. The differential d: A — A is homogeneous of degree —1.

For a proof, see [C], Lemma 7.4.
Proposition 3.7 shows that the cohomology H is graded:
H=PH, oo H= H H,.
rEZL reZ/2|u|Z

The following theorem is an extension of Theorem 3.4.

Theorem 3.8 ([C, E1]). The dimensions dimH, are Legendrian isotopy
invariants of I

Remark. Usually, we organize these dimensions into the Poincaré series or
polynomial:

Poi(H) =Y (dimH,)t" or Y (dimH,)t"

reZ reZ/2|p|Z
(in the second case, we assume that t2#l = 1).

Theorem 3.5 also has a graded version, which we omit here.
We will also need a coarser invariant, developed by Chekanov.

Definition. An algebra homomorphism e: A — Zs is called an augmenta-
tion, if e o d = 0. An augmentation ¢ is called graded, if €(a) = 0 for any
homogeneous a € A, such that dega # 0.

It should be noted that augmentations do not exist for all Legendrian

diagrams.
Let ¢ : A — 7Zs be an augmentation. Let Ag = Kere and AIS =
Ag-----Ay. Since d(a) € Kere = Ay for a € A, then
S ——
k

k
E ai...a;i—1d(a;)ait1 - .. ap € Ag,
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for any aq,...,ar € Ag. Thus,
d(Ak) c A},
In particular, this gives rise to a map
de: Aog/A§ — Ag/Af,

for which d? = 0. This is a “linearization” of the differential d.

For a crossing x, we set x° = x + £(x) € A. Obviously, x° € Kere = Ay.
Moreover, the correspondence x — x° defines an isomorphism between the
vector space A spanned by the crossings of the zy-diagram and Ag /Ag.
Hence, d. can be regarded as a differential in 4. If the augmentation ¢ is
graded, then d. is homogeneous of degree —1.

In practice, d.: A — A is calculated as follows. We take the formula for
d(a) and replace all the crossings x in the polynomial on the right hand
side of the formula by x°. The resulting polynomial will have zero constant
term, since e od = (. Then, we erase all monomials of degree > 1; the result
will be a linear combination of crossings, which is d.(a).

Let H. = Kerd./Imd,; this is a finite dimensional vector space, which is
Loy, -graded, if the augmentation ¢ is graded.

Let I be the set of nonnegative integers dim H,. computed for all possible
augmentations €: A — Zo, and let I, be the set of all Poincaré polynomials
of H. computed for all possible graded augmentations €: A — Zo.

Theorem 3.9 ([C]). I and I are Legendrian isotopy invariants.

4. Computing Chekanov-Eliashberg invariants for Eliashberg
knots.

We will show how the invariant I, can be used to prove the result stated in
the introduction.

Theorem 4.1. The Legendrian knots E(k,l) and E(k',l') are Legendrian
isotopic if and only if k =K, l=1 ork=1,1=F.

Our proof relies on a partial computation of Iy (E(k,l)). In order to
make this computation, we translate the xz-diagram in Figure 1 into an
xy-diagram. A crossing in the zy-projection corresponds to a pair of points
in the zz-projection, (z1,21) and (2, 22), such that x1 = z2 and slope at
x1 = slope at xo. We will call such a pair of points a gate. Since we
will not allow multiple crossings, we must shift the gates off each other
by modifying the xz-diagram in Figure 1 to produce the Legendrian iso-
topic one shown in Figure 17. The gates are labeled in this picture as
ai,...,ag, bi,...,bj,c1,c2,d1,da,d3, dy, €1, €2, €3, €4, f7p17 -+ PE A1,
q-
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Figure 17.

The zy-projection of E(k,l) is presented in Figure 18.

Figure 18.
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We recall that the Chekanov-Eliashberg algebra, corresponding to a gen-
eric xzy-diagram of a Legendrian knot, is generated by the crossings of this
diagram. A calculation based on the diagram in Figure 18 yields the results
below.

Proposition 4.2. The grading in the Chekanov-Eliashberg complezx is as
follows:

deg(a;) = 1,deg(b;) = 1,deg(f) = 1;
deg(p;) = 0,deg(q;) = 0;
deg(c1) = k —l,deg(ca) =1 — k;
deg(dy) =1+1, deg(d2) =1+ 1, deg(ds) =k + 1, deg(ds) =k + 1;

deg(e1) = k + 2, deg(ez) = k, deg(es) =1, deg(eq) =1+ 2.

Proposition 4.3. The following formulas hold for the differential in the
Chekanov-Eliashberg complex, corresponding to our diagram.

d(a;) = 1+ p1 + creapr, d(b1) =1+ q1 + czc1q1,
d(ag) =1+ pip2, d(b2) =1+ qiqo,

dlag) =1+ pr_1pr (if k> 1), d(b) =1+ q_1q (if I > 1);
d(c1) =0, d(c2) =0,  d(p;) =0, d(q;) = 0;
d(f) = pr. + q-

Remark. The formulas for d(d;), d(e;) are much more complicated; see
[M] for details.

Next, we consider augmentations of the Chekanov-Eliashberg complex.

Proposition 4.4. For any k,l the Chekanov-Eliashberg algebra of our dia-
gram has at least one graded augmentation.

Proof. We set ¢(p;) = e(q;) = 1, e(x) = 0 for x # p;,q; and extend ¢ to
a ring homomorphism of the Chekanov-Eliashberg algebra to Zs. It follows
from Propositions 4.2 and 4.3, that if deg(x) # 0, then £(d(x)) = 0. Hence,
€ is a graded augmentation.

Remark. If k¥ # [, then the graded augmentation above is unique; if k = [,
then there are two more graded augmentations.

Proposition 4.5. If k # [, then any polynomial in I E(k,1) has precisely
one term of negative degree, namely t=/*=U; if k =1, then no polynomial in
I E(K,1) has a term of negative degree.
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Proof. According to Proposition 4.2, all crossings of our diagram, with the
possible exception of ¢, cy have nonnegative degrees. If k # [, then one of
the crossings c1, co has negative degree, namely, —|k — [|; if £ = [, then all
the degrees are nonnegative. Since d(c;) = 0, this proves the proposition.

Proof of Theorem 4.1. Unless k+1 = k' +1I', E(k,l) and E(K',l’) are not even
topologically isotopic, and hence not Legendrian isotopic. If k =1' and [ =
k', then a rigid rotation of E(k,l) produces E(k’,1"). Finally, Proposition 4.5
shows that if |k — | # K — |, then Iy (E(k,l)) # Ig(E(K,1')). This
completes our proof.
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