
Pacific
Journal of
Mathematics

NOVIKOV-TYPE INEQUALITIES FOR VECTOR FIELDS
WITH NON-ISOLATED ZERO POINTS

Huitao Feng and Enli Guo

Volume 201 No. 1 November 2001



PACIFIC JOURNAL OF MATHEMATICS
Vol. 201, No. 1, 2001

NOVIKOV-TYPE INEQUALITIES FOR VECTOR FIELDS
WITH NON-ISOLATED ZERO POINTS

Huitao Feng and Enli Guo

In this paper we prove some Novikov-type inequalities for
vector fields with non-isolated zero points, which generalize
some results of Shubin, 1996. As a consequence, we obtain an
analytic proof of Hopf index theorem for vector fields which
are nondegenerate in the sense of Bott.

1. Introduction.

In the article [5], Shubin presented a detailed treatment of the Novikov
inequalities for vector fields with isolated zero points, to which Novikov
sketched a proof in the appendix to [4]. As a consequence, a direct analytic
proof of the Hopf index theorem for these vector fields is given. On the other
hand, Braverman and Farber [2] obtained some Novikov-type inequalities
for closed 1-forms with non-isolated zero points. In [3], we extended some
results of Shubin [5] to a transversal section of a general oriented real vector
bundle with the same dimension as its base manifold by constructing a
super-twisted Dirac operator.

In this paper, we study the case of vector fields with non-isolated zero
points. More precisely, let X be a closed, oriented and connected Riemann-
ian manifold of dimension n and let v be a vector field on X. Set

Y = {y ∈ X | v(y) = 0}.
Then Y can be expressed as a finite disjoint union of closed and connected
subsets Yk, k = 1, 2, . . . , m. In this paper we assume that v satisfies the
following conditions for each k = 1, 2, . . . , m:
(C.1) Yk is a submanifold of X of dimension lk. In this case, the Lie deriv-

ative
Lv : TX|Yk

→ TX|Yk

is a homomorphism with kernel TYk.
(C.2)

Lv,k = PNkLvP
Nk : Nk → Nk

is an isomorphism, where Nk is the normal bundle of TYk in TX|Yk

with respect to the induced Euclidean inner product on TX|Y from that
on TX and PNk denotes the orthogonal projection from TX|Yk

to Nk.
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(C.3) For any Z ∈ Nk,
P TYkLv(Z) = 0,

where P TYk denotes the orthogonal projection from TX|Yk
to TYk.

In this paper, by using Witten’s deformation idea (cf. [7]) and Bismut-
Lebeau’s technique (cf. [1]), we establish certain Novikov-type inequalities
for vector fields verifying conditions (C.1)-(C.3) (Theorem 4.1). As a conse-
quence, we obtain an analytic proof of Hopf index theorem (Theorem 4.2)
for vector fields which are nondegenerate in the sense of Bott (in this case
the condition (C.3) need not be used). Our result may be seen as a gener-
alization of Shubin [5] and an analogue of Braverman and Farber [2] in the
case of vector fields. The key step in our approach is that on each Yk we
can define an index ind (v, Yk) and a line bundle oYk

(v) by using the result
of Shubin [5]. This line bundle has also played a role in the paper of Zhang
[8] on his counting formula for the real Kervaire semi-characteristic.

2. A deformed de Rham-Hodge operator DX
T .

In this section, we will define a deformed de Rham-Hodge operator DX
T by a

vector field v with the conditions (C.1)-(C.3) and discuss the local behavior
of DX

T near the zero points set Y of v as T → ∞. To do this, we need
to study the geometry of the submanifold Y and introduce some related
differential operators. Especially, we will define a line bundle on Y through
the behavior of v near Y , which is crucial to our problem.

Let gTX be the Riemannian metric on X and ∇TX be the associated
Levi-Civita connection. We have the standard de Rham-Hodge operator

DX = d + δ : Γ(Λ∗(T ∗X)) → Γ(Λ∗(T ∗X)),(1)

which is a first order self-adjoint elliptic operator. Set

DX
± : Γ(Λeven/odd(T ∗X)) → Γ(Λodd/even(T ∗X)).(2)

We have
ind DX

+ = χ(X),
where χ(X) denotes the Euler characteristic of X.

For any vector field v, define in this paper

c(v) = ε(v)− ι(v), ĉ(v) = ε(v) + ι(v),(3)

where ε and ι are the standard exterior and interior multiplications on
Λ∗(T ∗X), respectively. Then for a vector field v on X with the conditions
(C.1)-(C.3), we can define a deformed de Rham-Hodge operator

DX
T = DX + T ĉ(v) : Γ(Λ∗(T ∗X)) → Γ(Λ∗(T ∗X)).(4)

Set

DX
T,± = DX

± + T ĉ(v) : Γ(Λeven/odd(T ∗X)) → Γ(Λodd/even(T ∗X)),(5)
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b±(v, T ) = ker dim DX
T,±.(6)

We have
b+(v, T )− b−(v, T ) = χ(X).

Lemma 2.1. For any open neighborhood U of Y , there exist constants a >
0, b > 0 and T0 > 0 such that for any s ∈ Γ(Λ∗(T ∗X)) with Supp s ⊂ X \U
and any T ≥ T0, we have the following estimate for Sobolev norms,

‖DX
T s‖2

0 ≥ a(‖s‖2
1 + (T − b)‖s‖2

0).(7)

Proof. Since DX
T is formally self-adjoint and

(DX
T )2 = (DX)2 + T [DX , ĉ(v)] + T 2|v|2,

we have

‖DX
T s‖2

0 = ‖DXs‖2
0 + T 〈[DX , ĉ(v)]s, s〉+ T 2〈|v|2s, s〉.

Since [DX , ĉ(v)] is a zero order operator, which can be verified easily, and
v 6= 0 on X \ U , there exist constants ã > 0, b̃ > 0, such that for T > 0 we
have

‖DX
T s‖2

0 ≥ ‖DXs‖2
0 + ãT 2‖s‖2

0 − b̃T‖s‖2
0.

By Garding’s inequality, there exist constants a > 0, c̃ > 0 such that

‖DXs‖2
0 ≥ a‖s‖2

1 − c̃‖s‖2
0.

Hence

‖DX
T s‖2

0 ≥ a‖s‖2
1 + (ãT 2 − b̃T − c̃)‖s‖2

0

≥ a(‖s‖2
1 + (T − b)‖s‖2

0)

for some constants b > 0, T0 > 0 and any T ≥ T0. �

By Lemma 2.1, we can localize our problem to a sufficiently small neigh-
borhood of Y . For simplicity, we always write Y instead of Yk and assume
dim Y = l. We have the following orthogonal decomposition

TX|Y = TY ⊕N,

where N denotes the normal bundle of TY in TX|Y . Denote the projection
N → Y by π and the orthogonal projection TX|Y → TY (resp. TX|Y → N)
by P TY (resp. PN ). Let ∇TX|Y denote the restriction of ∇TX to TX|Y . Set

∇TY = P TY∇TX|Y P TY , ∇N = PN∇TX|Y PN , ∇TX|Y ,⊕ = ∇TY ⊕∇N .

(8)

Set

A = ∇TX|Y −∇TX|Y ,⊕,(9)
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which is the second fundamental form of Y . In this paper we always use the
notation

{e1, . . . , el, fl+1, . . . , fn}(10)

to denote a local orthonormal frame for TX|Y with {e1, . . . , el} being an
orthonormal frame for TY and {fl+1, . . . , fn} an orthonormal frame for N.

Following Shubin [5] and Zhang [8], we can define a line bundle on Y
through the vector field v. Set

cα,β = 〈Lvfα, fβ〉, C = {cα,β}, |C| =
√

CtC.(11)

Then

L̂v = tr |C|+
n∑

α,β=l+1

cα,βc(fβ)ĉ(fα) : Λ∗(N∗) → Λ∗(N∗),(12)

is a well-defined bundle homomorphism. Set

ind (v, Y ) = sign det C, oY (v) = ker L̂v.(13)

Clearly, ind (v, Y ) and oY (v) are also well-defined. The following lemma is
an anologue of Proposition 2.21 in [5] and the (2.12), (2.13), (2.13)′ in [8,
Sect. 2.b].

Lemma 2.2. oY (v) is a one dimensional subbundle of Λ∗(N∗) over Y. More-
over,

oY (v) ⊂ Λeven(N∗), if ind (v, Y ) = 1,

oY (v) ⊂ Λodd(N∗), if ind (v, Y ) = −1.

Note that Λ∗(T ∗Y ) ⊗ oY (v) is a bundle twisted by an Euclidean flat
line bundle oY (v). Let ∇ be the Euclidean connection on oY (v) induced
by the orthogonal projection from Λ∗(N∗) to oY (v). Clearly, for any local
orthonormal section ρ of oY (v), we have ∇ρ = 0. We can define a twisted
de Rham-Hodge operator by

DY =
l∑

i=1

c(ei)∇̃Y
ei

: Γ(Λ∗(T ∗Y )⊗ oY (v)) → Γ(Λ∗(T ∗Y )⊗ oY (v)),(14)

where ∇̃Y = ∇TY ⊗ 1 + 1⊗∇. Set

DY
± = DY : Γ(Λeven/odd(T ∗Y )⊗ oY (v)) → Γ(Λodd/even(T ∗Y )⊗ oY (v)).

Then DY
− is the formal adjoint of DY

+ . By Hodge theory, we have

ind DY
+ = χ(Y ) = dim Heven(Y, oY (v))− dim Hodd(Y, oY (v)).(15)

To have a good understanding about the local behavior of the operator
DX

T near Y, we need study the geometry of Y and the Taylor expansion of
v near Y .
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For y ∈ Y and Z ∈ Ny, let

t ∈ R → xt = exp X
y (tZ) ∈ X,(16)

be the geodesic in X such that x0 = y, dx/dt|t=0 = Z. For ε > 0, set

Bε = {Z ∈ N | |Z| < ε}.(17)

Since X and Y are compact, there exists an ε0 > 0 such that for 0 < ε < ε0,
the map (y, Z) ∈ N → exp X

y (Z) ∈ X is a diffeomorphism from Bε to a
tubular neighborhood Uε of Y in X. From now on, we will identify Bε with
Uε and use the notation x = (y, Z) instead of x = exp X

y (Z).
Let dσX , dσY and dσNy be the volume elements of X, Y , and fiber Ny at

y, respectively. Let k(y, Z) be the smooth positive function defined on Bε0

by the equation

dσX(y, Z) = k(y, Z)dσY (y)dσNy(Z).(18)

The function k has a positive lower bound on U ε0
2
. Clearly if y ∈ Y , then

k(y) = 1. Let dN denote the exterior differential along the fibres of N .
Then for any y ∈ Y, Z ∈ Ny, we have the following formula from [1, Sect.
8, (8.25)]

dNk(Z) = −

〈
l∑

i=1

A(ei)ei, Z

〉
.(19)

Let E (resp. E) be the set of smooth sections of π∗Λ∗(T ∗X|Y ) (resp.
Λ∗(T ∗X)). If s1, s2 ∈ E have compact supports, we define (cf. [1, Definition
8.15])

〈s1, s2〉 =
∫

Y

(∫
Ny

〈s1, s2〉(y, Z)dσNy(Z)

)
dσY (y).(20)

By the trivialization of Λ∗(T ∗X) on Uε along the geodesics (16), if s ∈
E has compact support in Bε0 , we can consider s as a smooth section of
Λ∗(T ∗X) with compact support in Bε0 . Let Eε (resp. Eε) be the set of
smooth sections of Λ∗(T ∗X) (resp. π∗(Λ∗(T ∗X|Y ))) with compact support in
Bε. One verifies easily that k

1
2 DXk

−1
2 acts as a formal self-adjoint operator

on Eε with respect to the inner product (20).
Using the connection ∇N , we can split the tangent bundle TN as

TN = TH ⊕ T V N,

where THN is the horizontal vector bundle and T V N is the vertical vec-
tor bundle which can be identified with N naturally. Let eH

i denote the
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horizontal lifting of ei. By the frame (10) we define

DH =
l∑

i=1

c(ei)π∗∇TX|Y ,⊕
eH
i

: E → E,(21)

DN =
n∑

α=l+1

c(fα)π∗∇TX|Y ,⊕
fα

: E → E.(22)

Clearly, the definitions of DH , DN are independent of the choice of the
frames (10), so DH , DN are two well-defined first order differential opera-
tors acting on E. Moreover, the operator DN acts along the fibres Ny, and
that DH , DN and DH + DN are self-adjoint with respect to the L2 inner
product (20). Particularly, the operator DH + DN is also a self-adjoint
elliptic operator. (cf. [1, Sect. 8.h]).

By the parallel transport of the frame (10) along the geodesics (16), we
get a local orthonormal frame for TX|Uε

{eτ
1 , . . . , eτ

l , f
τ
l+1, . . . , f τ

n}.
Let (zl+1, . . . , zn) be the coordinate on the fibre Ny with respect to {fl+1,
. . . , fn}. Then the vector field v has an expression near Y :

v =
l∑

i=1

vie
τ
i +

n∑
α=l+1

vαf τ
α .

Set

vY =
l∑

i=1

vie
τ
i , vN =

n∑
α=l+1

vαf τ
α .(23)

Clearly, the definitions of vY and vN are independent of the choice of the
frame (10). Set

vY,1(y, Z) =
l∑

i=1

n∑
α=l+1

∂vi

∂zα
(y)zαeτ

i (y, Z),(24)

vY,2(y, Z) =
1
2

l∑
i=1

n∑
α,β=l+1

∂2vi

∂zα∂zβ
(y)zαzβeτ

i (y, Z),(25)

vN,1(y, Z) =
n∑

α=l+1

n∑
β=l+1

∂vα

∂zβ
(y)zβf τ

α(y, Z),(26)

vN,2(y, Z) =
1
2

n∑
α=l+1

n∑
β,γ=l+1

∂2vα

∂zβ∂zγ
(y)zβzγf τ

α(y, Z).(27)
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One also verifies easily that the definitions of vY,1, vY,.2, vN,1, vN,2 are inde-
pendent of the choices of the frames (10). By the condition (C.3), we have
vY,1 = 0 easily and

v(y, Z) = vY,2 + vN,1 + vN,2 + O(|Z|3).(28)

By the definition (11) of cα,β, we have

vN,1(y, Z) =
n∑

α=l+1

n∑
β=l+1

cα,β(y)zβf τ
α(y, Z).

We can also define a vector field vY on Y by

vY =
1
4
∇TX|Y

fα
C−tC−1

(
∇TX

fτ
α

)t
vY ,(29)

where
∇TX|Y

fα
= (∇TX|Y

fl+1
, . . . ,∇TX|Y

fn
),

and
(
∇TX

fτ
α

)t
is the transpose of the formal matrix (∇TX

fτ
l+1

, . . . ,∇TX
fτ

n
). One

sees easily that vY is independent of the choice of frames (10). Therefore,
the vector field vY ∈ Γ(TY ) is well-defined. Let

sl+1(y), sl+2(y), . . . , sn(y)(30)

be the eigenvalues of |C(y)|. For a suitable orthonormal frame of N , we
have

|C(y)| = diag(sl+1, . . . , sn), with si > 0.(31)

Then the vector field vY can be expressed locally as

vY =
l∑

i=1

n∑
α=l+1

1
s2
α

∂2vi

∂z2
α

ei.(32)

Now we can define some deformed operators as following

DY
v = DY + ĉ(vY ) : Γ(Λ∗(T ∗Y )⊗ oY (v)) → Γ(Λ∗(T ∗Y )⊗ oY (v)),(33)

DH
T = DH + T ĉ(vY,2),(34)

DN
T = DN + T ĉ(vN,1).(35)

Set

(36) DY
v,± = DY

± + ĉ(vY ) : Γ(Λeven/odd(T ∗Y )⊗ oY (v))

→ Γ(Λodd/even(T ∗Y )⊗ oY (v)),

b±(v, Y ) = dim ker DY
v,±.(37)

Then we have χ(Y ) = b+(v, Y )− b−(v, Y ).
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Note that DN
T is actually a deformed de Rham-Hodge operator acting

fibre-wisely on Γ(π∗Λ∗(N∗)). An easy computation shows that

(DN
T )2 = −

n∑
α=l+1

(
π∇TX|Y ,⊕

fα

)2
+ T 2〈|C|Z, |C|Z〉 − T tr |C|+ T L̂v.(38)

By the spectral theory of harmonic oscillators, we get the following lemma
which is an analogue of Corollary 2.22 of Shubin [5] and Lemma 2.3 of Zhang
[8]:

Lemma 2.3. Take T > 0. Then for any y ∈ Y , the operator (DN
T )2 acting

on Γ(Λ∗(N∗
y )) over Ny is nonnegative with kernel being one dimensional and

generated by

exp
(
−T

2
〈|C|Z, |C|Z〉

)
ρ(y),(39)

where ρ(y) is a generator of ker L̂v(y) with unit length, ρ(y) ∈ Λeven(N∗
y )

if det C(y) > 0, and ρ(y) ∈ Λodd(N∗
y ) if det C(y) < 0. Furthermore, the

nonzero eigenvalues of (DN
T )2 are all ≥ TA for some positive constant A

which can be chosen to be independent of y.

Now similar to Theorem 8.18 in [1], we can give the following lemma
which describes the local behavior of DX

T as T →∞.

Lemma 2.4. As T →∞, we have the following asymotopic formula on Eε:

k1/2DX
T k−1/2 = DH

T + DN
T + T ĉ(vN,2) + Q + RT ,(40)

where

Q = −1
2

l∑
i,j=1

n∑
α=l+1

〈A(ei)ej , fα〉c(ei)ĉ(ej)ĉ(fα),(41)

RT = O(|Z|∂H + |Z|2∂N + |Z|+ T |Z3|),(42)

and ∂H , ∂N represent horizontal and vertical differential operators, respec-
tively.

Proof. Note that near Y we have

DX
T =

l∑
i=1

c(ei)∇TX
eτ
i

+
n∑

α=l+1

c(fα)∇TX
fτ

α
+ T ĉ(v).
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Similar to the proof of Theorem 8.18 in [1], we have

k1/2DX
T k−1/2 = DH

T + DN
T + T ĉ(vN,2)−

1
2

n∑
α=l+1

dNk(fα)c(fα)

+
l∑

i=1

c(ei)π∗A(eH
i ) + RT .

By an easy computation and (19), we have
l∑

i=1

c(ei)π∗A(eH
i ) =

1
2

n∑
α=l+1

dNk(fα)c(fα) + Q.

Hence we have

k1/2DX
T k−1/2 = DH

T + DN
T + T ĉ(vN,2) + Q + RT .

�

3. Various estimates on the DT,j’s as T →∞.

In this section, we will give a suitable decomposition of DX
T as

∑4
j=1 DT,j and

establish some estimates about DT,j as T → ∞ by using Bismut-Lebeau’s
techniques ([1, Sect. 9]).

For any µ ≥ 0, let Eµ (resp. Eµ, resp. Fµ) be the set of sections of
Λ∗(T ∗X) on X (resp. of π∗Λ∗(T ∗X|Y ) on the total space of N , resp. of
Λ∗(T ∗Y ) ⊗ oY (v) on Y) which lie in the µ-th Sobolev spaces. Let ‖ ‖Eµ

(resp. ‖ ‖Eµ , resp. ‖ ‖Fµ) be the Sobolev norm on Eµ (resp. Eµ, resp. Fµ)
Let γ : R → [0, 1] be a smooth even function with γ(a) = 1 if |a| ≤ 1

2 and
γ(a) = 0 if |a| ≥ 1. Set

γε(y, Z) = γ

(
|Z|
ε

)
(43)

for any y ∈ Y , Z ∈ Ny and ε ∈ (0, ε0), where ε0 is chosen as in Section 2.
When there is no confusion, we denote it by γε(Z).

For any T > 0 and y ∈ Y , set

αT (y) =
∫

Ny

γ2
ε (Z)|det C(y)|exp (−T 〈|C(y)|Z, |C(y)|Z〉)dσNy(Z),(44)

GT (y, Z) = α
− 1

2
T (y)γε(Z)

√
det |C(y)|exp

(
−T

2
〈|C(y)|Z, |C(y)|Z〉

)
.(45)

For µ ≥ 0, T > 0, define linear maps IT : Fµ → Eµ and JT : Fµ → Eµ by

IT u = GT π∗u, JT u = k−1/2IT u(46)

for any u ∈ Fµ. It is easy to see that IT , JT are isometries from F0 onto
their images. For µ ≥ 0, T > 0, let Eµ

T (resp. Eµ) be the image of Fµ in Eµ
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(resp. Eµ) under IT (resp. JT ) and let E0,⊥
T (resp. E0,⊥

T ) be the orthogonal
complement of E0

T (resp. E0
T ) in E0 (resp. E0) and let pT , p⊥T (resp. pT , p⊥T )

be the orthogonal projection operators from E0 (resp. E0) onto E0
T ,E0,⊥

T

(resp. E0
T ,E0,⊥

T ), respectively. Set

Eµ,⊥ = Eµ ∩ E0,⊥
T .(47)

Then E0 splits orthogonally into

E0 = E0
T ⊕ E0,⊥

T .(48)

Since the map s ∈ E0 → k−1/2s ∈ E0 is an isometry, we see that the
map s → k−1/2s identifies the Hilbert space E0

T and E0
T . According to the

decomposition (48) we set:

DT,1 = pT DX
T pT , DT,2 = pT DX

T p⊥T , DT,3 = p⊥T DX
T pT , DT,4 = p⊥T DX

T p⊥T .

(49)

Then

DX
T = DT,1 + DT,2 + DT,3 + DT,4.(50)

Let q denote the orthogonal projection from π∗Λ∗(T ∗X|Y ) on
π∗(Λ∗(T ∗Y )⊗ oY (v)).

In the following we will estimate DT,j . Similar to Theorem 9.8 in [1], we
have the following lemma.

Lemma 3.1. The following formula holds on Γ(Λ∗(T ∗Y )⊗ oY (v)) as T →
+∞

J−1
T DT,1JT = DY

v + O

(
1√
T

)
,(51)

where O( 1√
T

) is a first order differential operator with smooth coefficients

dominated by C/
√

T .

Proof. For any u ∈ F = Γ(Λ∗(T ∗Y )⊗ oY (v)), we have

J−1
T DT,1JT u = I−1

T pT k1/2DX
T k−1/2pT IT u

= I−1
T pT (DH

T + DN
T + T ĉ(vN,2) + Q + RT )GT (y, Z)π∗u.

The only different term here from the proof of Theorem 9.8 in [1] in com-
putations is

I−1
T pT DH

T (GT (y, Z)π∗u)

= I−1
T pT DHGT (y, Z)π∗u + TI−1

T pT ĉ(vY,2)GT (y, Z)π∗u.

Similar to [1, Theorem 9.8], we have

I−1
T pT DHGT (y, Z)π∗u = DY u.(52)
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By the definitions of pT , GT (y, Z) and ĉ(vY,2), we have

I−1
T pT ĉ(v)π∗u =

1
2
I−1
T

l∑
i=1

GT (y, Z)π∗(ĉ(ei)u)I1,

where

I1 =
1

αT

∫
Ny

γ2
ε (|Z ′|)det |C(y)|exp (−T 〈|C(y)|Z ′, |C(y)|Z ′〉)

n∑
µ,ν=l+1

∂2vi

∂z′µ∂z′ν
(y)z′µz′νdσNy(Z

′).

By (31) and the symmetry of the integral I1, we get

I1 =
1

αT

n∏
β=l+1

sβ

∫
Ny

γ2
ε (|Z|)exp

(
−T

n∑
α=l+1

s2
αz2

α

)

·
n∑

λ=l+1

∂2vi

∂z2
λ

(y)z2
λdzl+1 · · · dzn.

Set zα = sαzα. We find that

I1 =
1

2T

1
αT

n∑
λ=l+1

1
s2
λ

∂2vi

∂z2
λ

(y)

·

(∫
Ny

γ2
ε e−T |Z |2dσNy +

∫
Ny

e−T |Z |2 ∂γ2
ε

∂zλ
zλdσNy

)
.

Note that
1

αT

∫
Ny

γ2
ε e−T |Z |2dσNy = 1,

1
2T

1
αT

n∑
λ=l+1

1
s2
λ

∂2vi

∂z2
λ

(y)
∫

Ny

exp (−T |Z|2)∂γ2
ε

∂zλ
zλdσNy = O

(
1

T 3/2

)
,

we have

I−1
T pT ĉ(vY,2)(GT (y, Z)π∗u)(53)

=
1

4T

l∑
i=1

ĉ

(
n∑

λ=l+1

1
s2
λ

∂2vi

∂z2
λ

(y)ei

)
u + O

(
1

T 3/2

)
u.

Combine (52) and (53) and by the definition (33) of DY
v , we have

I−1
T pT ĉ(vY,2)(GT (y, Z)π∗u) = DY

v u + O

(
1√
T

)
u.

�
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Similar to the proofs of Theorem 9.10, Theorem 9.11 and Theorem 9.14 in
[1, Sect. 9], we can prove the following lemma without any new difficulties.

Lemma 3.2. There exists C1 > 0, C2 > 0 and T0 > 0 such that for any
T ≥ T0, s ∈ E1,⊥

T and s′ ∈ E1
T , we have

‖DT,2s‖E0 ≤ C1

(
‖s‖E1√

T
+ ‖s‖E0

)
(54)

‖DT,3s
′‖E0 ≤ C1

(
‖s′‖E1√

T
+ ‖s′‖E0

)
(55)

‖DT,4s‖E0 ≥ C2(‖s‖E1 +
√

T‖s‖E0).(56)

4. The proofs of the main results.

In this section, we will prove the main results in this paper by using the
techniques of Bismut and Lebeau (cf. [1, Sect. 9.c)-f)]).

Denote the spectum of DY
v by Spec(DY

v ). Choose c > 0 such that

Spec (DY
v ) ∩ [−2c, 2c] = {0}.(57)

Let Ec(T ) denote the direct sum of the eigenspaces of DX
T with eigenvalues

lying in [−c, c]. Then Ec(T ) is a finite dimensional subspace of E0. Using
the estimates for DT,j in Lemmas 3.1, 3.2 and proceeding as in ([1, pp.
117-125]) (also compare with Tian-Zhang [6, Sect. 4, Lemma 4.6, 4.7]), we
have the following:

Proposition 4.1. There exists T0 > 0 such that for any T ≥ T0, we have

dim Ec(T ) = dim ker DY
v .(58)

Set

Ec,+(T ) = Ec(T ) ∩ Γ(Λeven(T ∗X)),(59)

Ec,−(T ) = Ec(T ) ∩ Γ(Λodd(T ∗X)).(60)

Then by the definition (37) of b±(v, Yk), we have

dim Ec,±(T ) =
∑

ind (v,Yk)=1

b±(v, Yk) +
∑

ind (v,Yk)=−1

b∓(v, Yk),(61)

for c > 0 and T ≥ T0 > 0 in Proposition 4.1.

Now we get the following Novikov-type inequalities for vector fields v with
the conditions (C.1)-(C.3).
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Theorem 4.1 (Novikov-type inequalities). There exists T0 ≥ 0 such that
for any T ≥ T0, the following inequalities hold

b±(v, T ) ≤
∑

ind (v,Yk)=1

b±(v, Yk) +
∑

ind (v,Yk)=−1

b∓(v, Yk).(62)

Proof. Since
b±(v, T ) = dim ker DX

T,± ≤ dim Ec,±,

we get (62) by (61). �

Let v ∈ Γ(TX) be a vector field which is nondegenerate in the sense of
Bott. We can deform v near its zero points set Y such that Y , ind (v, Y ) and
oY (v) are unchanged under the deformation and the resulting v satisfies the
conditions (C.1)-(C.3). So we can prove the following Hopf index theorem
analytically.

Theorem 4.2 (Hopf index theorem). Let v be a nondegenerate vector field
in the sense of Bott. Then we have

χ(X) =
m∑

k=1

ind (v, Yk)χ(Yk).(63)

Proof. We have

χ(X) = ind DX
T,+

= ind {DX
T : Ec,+(T ) → Ec,−(T )}

= dim Ec,+(T )− dim Ec,−(T )

=
∑

ind (v,Yk)=1

(b+(v, Yk)− b−(v, Yk))

+
∑

ind (v,Yk)=−1

(b−(v, Yk)− b+(v, Yk))

=
m∑

k=1

ind (v, Yk)χ(Yk).

�

Remark 4.1. In the case of vY,2 = 0, the Novikov-type inequalities (62)
take the forms:

b±(v, T ) ≤
∑

ind (v,Yk)=1

dim Heven/odd(Yk, oYk
(v))

+
∑

ind (v,Yk)=−1

dim Hodd/even(Yk, oYk
(v)).
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