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FLATNESS AND FUSION COEFFICIENTS

Vijay Kodiyalam and V.S. Sunder

This paper addresses the problem of how to directly read off
the ‘fusion coefficients’ (for the tensor-products of bimodules
arising in the ‘tower of the basic construction’) for a subfac-
tor, from the data of the associated paragroup. The solution
to this problem is closely related to a reformulation, which
is obtained here, of the flatness condition to be satisfied by
the connection on a paragroup; our reformulation is best de-
scribed by the phrase ‘1 ∗ flatness’, in contrast with Ocneanu’s
initial formulation as ‘4 ∗ flatness’ and Kawahigashi’s subse-
quent reformulation as ‘2 ∗ flatness’.

1. Introduction.

Ocneanu obtained — see [AO1], [AO2] — a combinatorial structure, which
he called a paragroup, as a complete isomorphism-invariant for the so-called
‘finite-depth subfactors of the hyperfinite II1 factor’, which has been quite
useful in various related considerations. As stated in the abstract, in this
paper, we obtain formulae for the fusion coefficients for tensor-products of
the four kinds of bimodules associated to a finite-depth hyperfinite subfactor.
Most existing computations of such fusion rules use only the principal and
dual principal graphs of the subfactor, by some ad hoc methods; but as
Bisch found — see [DB] — there exist five different fusion algebras that
are consistent with the graphs of the 3 +

√
3 subfactor. This is the reason

we wished to find a formula that derives the fusion coefficients using only
the standard invariant (which must necessarily involve the underlying flat
connection).

It should probably be mentioned that the literature contains various other
treatments of the fusion rule algebra of a subfactor — for instance, see [Iz],
[FRS], [Lo], [Lo1] (the endomorphism/sector approach), [DB], [DB1] (the
bimodule-shift-projection approach), [GW] (the shift-projection approach
in the special case of Hecke algebra subfactors), [SV] (the bimodule ap-
proach), etc. It should definitely be mentioned that the authors only became
aware of the work [Gne], which has nontrivial overlap with this paper, after
these results had been obtained.1

1We would like to thank Kawahigashi for pointing out this reference to us. (In fact, he
himself had initially acknowledged being unaware of any work along these lines until Sato
had brought this work to his notice.)
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The paper is organised as follows.

In §2, we recall the basic notions — connection on a suitable pair of
bipartite graphs, unitarity and ‘flip-invariance’ of the connection, flatness,
etc. — needed to describe paragroups. (It should be remarked, however,
that our description and notation for a paragroup vary somewhat from the
one most commonly found in the literature (as in [EK] or [YK]).)

In §3, we first deduce our ‘1 ∗ flatness’ condition from the (4 ∗) flatness
axiom on the paragroup, and then derive some consequences of this condi-
tion, including the fact that the ‘4 ∗ flatness’ axiom may be deduced from
the 1 ∗ version.

In §4, we show that a certain function that comes up naturally in the
context of ‘1 ∗ flatness’ is actually nothing but the fusion coefficients of the
associated subfactor. We recall various facts concerning path models which
are used in the proof of this assertion.

In §5, we show how one can directly (without having to go through the
associated subfactor and relying on the bijectivity of the pairing between
paragroups and ‘finite-depth hyperfinite subfactors’) show that the paragoup
gives rise to a pair of fusion algebras, as well as the known fact (see [EK])
that of the four graphs appearing in the definition of the paragroup, there
are natural isomorphisms between two pairs.

2. Paragroups.

We recall here what goes into Ocneanu’s paragroup. The basic ingredient
is a collection {V0, V1,H0,H1} of graphs (where we allow multiple bonds
between the same pair of vertices, but do NOT allow loops); we shall refer
to the Vi’s (resp., the Hj ’s) as the vertical (resp., horizontal) graphs, and
to edges in vertical (resp., horizontal) graphs as vertical (resp., horizontal)
edges.

The graphs are required to satisfy the following requirements:

Vertex requirements:

(i) (Vertex identifications):
Each of the four graphs is a finite, connected bipartite graph; further,

it is assumed that there are four sets {Bij : 0 ≤ i, j ≤ 1} such that the
decomposition of the vertex sets of V0 and V1 (resp., H0 and H1) are given
by B00

∐
B10 and B01

∐
B11 (resp., B00

∐
B01 and B10

∐
B11) respectively.

(Here and elsewhere, the symbol
∐

denotes ‘disjoint union’.)

(ii) (∗ vertices and α vertices):
There exist vertices ∗0 ∈ B00, ∗1 ∈ B11 and α01 ∈ B01, α10 ∈ B10 such

that:
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(a) ∗0 has degree 1 in V0 as well as H0; and α10 (resp., α01) is the only
vertex which is adjacent to ∗0 in V0 (resp., H0); and

(b) ∗1 has degree 1 in V1 as well as H1; and α01 (resp., α10) is the only
vertex which is adjacent to ∗1 in V1 (resp., H1).

Harmonicity:

There exists a function µ :
∐

i,j=0,1 Bij → (0,∞), and a scalar β > 0
which satisfy:

(i) µ(∗i) = 1 for i = 0, 1; and
(ii) let G denote any of the four graphs above. If AG denotes the adjacency

matrix of G (defined by letting AG(u, v) denote the number of edges joining
the vertices u and v), then∑

λ

AG(π, λ) µ(λ) = β µ(π)

for all vertices π of the graph.
(Thus β is the Perron-Frobenius eigenvalue — see [FRG], for instance —

of (the adjacency matrix of) each of the four graphs, and the corresponding
Perron-Frobenius eigenvectors (uniquely determined by the normalisation
(i) above) are required to be consistent with the vertex identifications, and
they ‘patch up’ to give the function µ.)

We shall henceforth use the ‘subscript convention’ whereby a symbol such
as γpq will always denote a vertex in Bpq; further, subscripts such as i, j, p, q
will always be assumed to range over {0, 1}.
The connection:

By a cell is meant a configuration of the form

γi,j τi γi,1−j

σj σ1−j

γ1−i,j τ1−i γ1−i,1−j

(2.1)

where it is assumed that (a) τp is an edge joining γp,j and γp,1−j in Hp,
for p = i, 1 − i; and (b) σq is an edge joining γi,q and γ1−i,q in Vq, for q =
j, 1− j.

The connection is a function, which assigns a complex number to each
cell as above; the number associated by the connection to the cell illustrated
in (2.1) will be denoted by either of the following symbols:

W
σjτ1−i
τiσ1−j =

γi,j
τi→ γi,1−j

σj ↓ ↓ σ1−j

γ1−i,j
τ1−i→ γ1−i,1−j

.(2.2)

(We shall refer to σjτ1−i and τiσ1−j as the south-west and north-east
paths, respectively, of the cell depicted in (2.1). The W -notation for the
connection is meant to indicate that this value of the connection is to be
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regarded as the entry of a matrix with rows indexed by appropriate south-
west paths and columns indexed by appropriate north-east paths.)

The connection is required to satisfy the following conditions:

Unitarity: For any pair γij , γ1−i,1−j of vertices, the matrix

W (γij , γ1−i,1−j) =
γi,j − ·
| |
· − γ1−i,1−j

,

with rows (resp., columns) indexed by south-west (resp., north-east) paths
from γij to γ1−i,1−j , is a unitary matrix.

Invariance under flips: With the notation of (2.2), we have:

γi,j
τi→ γi,1−j

σj ↓ ↓ σ1−j

γ1−i,j
τ1−i→ γ1−i,1−j

=

√
µ(γ1−i,j)µ(γi,1−j)
µ(γij)µ(γ1−i,1−j)

 γi,1−j
τi→ γi,j

σ1−j ↓ ↓ σj

γ1−i,1−j
τ1−i→ γ1−i,j

−

=

√
µ(γ1−i,j)µ(γi,1−j)
µ(γij)µ(γ1−i,1−j)

 γ1−i,j
τ1−i→ γ1−i,1−j

σj ↓ ↓ σ1−j

γi,j
τi→ γi,1−j

−

=
γ1−i,1−j

τ1−i→ γ1−i,j

σ1−j ↓ ↓ σj

γi,1−j
τi→ γi,j .

(The first two equations state ‘invariance’ of the connection under ‘horizon-
tal flips’ and ‘vertical flips’ respectively, while the third equation (which is
a consequence of the previous two) states a ‘rotational symmetry’ of the
connection.)

Before proceeding to the final — and most crucial — ‘flatness’ requirement
to be satisfied by a connection, we need to make some comments about paths
and larger rectangles.

Recall that a path of length k in a graph is a sequence

σ = (v0, σ1, v1, · · · , vr−1, σr, vr, · · · , vk−1, σk, vk),

where σr is an edge joining vr−1 and vr, for 1 ≤ r ≤ k. We shall say that σ
starts at v0 and ends at vk. We shall also use the notation σo to denote the
opposite or reversed path (which starts at vk and finishes at v0).

The symbol τ (resp., σ) will be reserved for a horizontal (resp., vertical)
path.
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We shall use the following notation: The symbol PH
l (π, λ) (resp., PV

k (π, λ))
will denote the collection of horizontal (resp., vertical) paths of length l
(resp., k) between the vertices π and λ. Also, we shall write |σ| for the
length of σ, as well as PV

k (π,−) for the set of vertical paths of length k

starting at π, and PV (π, λ) for the set of vertical paths of arbitrary length
between π and λ, as well as corresponding ‘horizontal’ versions.

We shall need to work with the following generalised cells, which we follow
Ocneanu in calling macro-cells:

γpr τp γps

σr σs

γqr τq γqs

,(2.3)

where (a) τi is a horizontal path from γir to γis and σj is a vertical path
from γpj to γqj , for j ∈ {r, s}, i ∈ {p, q}, and (b) |τp| = |τq|, and |σr| = |σs|.

When dealing with a macro-cell as above, we shall always regard the
horizontal paths as ‘going from left to right’ and the vertical paths as ‘going
from top to bottom’.

Given such a macro-cell, we associate a connection-value, denoted by

W
σrτq
τpσs =

γpr
τp→ γps

σr ↓ ↓ σs

γqr
τq→ γqs

,

as follows.
Rather than giving the general definition, we shall describe it in a special

case. Consider the case when the horizontal paths have length 3 and the
horizontal paths have length 2; then, we define

ν
τ ′1→ ν1

τ ′2→ ν2
τ ′3→ ρ

σ1 ↓ ↓ σ′1
γ γ′

σ2 ↓ ↓ σ′2
π

τ1→ π1
τ2→ π2

τ3→ λ

=
∑
γ1,γ2

∑
eτ1,eτ2,eτ3

∑
eσi

j :1≤i,j≤2

ν
τ ′1→ ν1

τ ′2→ ν2
τ ′3→ ρ

σ1 ↓ σ̃1
1 ↓ σ̃2

1 ↓ ↓ σ′1

γ
eτ1→ γ1

eτ2→ γ2
eτ3→ γ′

σ2 ↓ σ̃1
2 ↓ σ̃2

2 ↓ ↓ σ′2
π

τ1→ π1
τ2→ π2

τ3→ λ

,

where:
(i) γ1 is any vertex that is simultaneously a ‘horizontal neighbour’ of γ as

well as a ‘vertical neighbour’ of both ν1 and π1;
(ii) γ2 is any vertex that is simultaneously a ‘horizontal neighbour’ of both

γ1 and γ′, as well as a ‘vertical neighbour’ of both ν2 and π2;
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(iii) the τ̃i’s are edges of horizontal graphs and the σ̃i
j ’s are edges of vertical

graphs, with end-points as indicated;
(iv) the value of the totally labelled ‘2 × 3’ rectangle in the second line

of the displayed equation above, is interpreted as the product of the values
assigned by the connection to each of the six ‘1× 1’ subrectangles.

It is true, and not very hard to verify, that for the configuation described
by the general macro-cell shown in (2.3), with |τp| = |τq| = l (say), and |σr| =
|σs| = k (say), if we consider the matrix Wkl(γpr, γqs) = ((W σrτq

τpσs )), with
rows indexed by ‘south-west paths of type (k, l)’ (through arbitrary γqr) and
columns indexed by ‘north-east paths of type (l, k)’ (through arbitrary γps),
from γpr to γqs, then this matrix is unitary; and further, this extension of the
connection to ‘macro-cells’ also satisfies an appropriately amended version
of the ‘invariance under flips’ condition, as follows:

γi,j
τi→ γi,r

σj ↓ ↓ σr

γp,j
τp→ γp,r

=

√
µ(γp,j)µ(γi,r)
µ(γi,j)µ(γp,r)

 γi,r
τo
i→ γi,j

σr ↓ ↓ σj

γp,r

τo
p→ γp,j


−

=

√
µ(γp,j)µ(γi,r)
µ(γi,j)µ(γp,r)

 γp,j
τp→ γp,r

σo
j ↓ ↓ σo

r

γi,j
τi→ γi,r


−

=
γp,r

τo
p→ γp,j

σo
r ↓ ↓ σo

j

γi,r
τo
i→ γi,j

.

We are now ready for the ‘flatness’ condition.

Flatness axiom:
Let ∗ denote either ∗0 or ∗1 (in all occurrences of ∗ below). Then, for any

(necessarily even) positive integers k, l, and vertical paths σ, σ′ ∈ PV
k (∗, ∗)

and horizontal paths τ, τ ′ ∈ PH
l (∗, ∗), we have:

∗ τ→ ∗
σ ↓ ↓ σ′

∗ τ ′→ ∗
= δσ,σ′δτ,τ ′ .(2.4)

Definition 2.1. A coupled system is the data (V0, V1,H0,H1;W ) consist-
ing of a collection of four finite, connected, bipartite graphs and a connection
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W defined on them, which satisfy the six requirements that we have termed
vertex identification, ∗ vertices and α vertices, harmonicity, unitarity, invari-
ance under flips, and the flatness axiom.

It is possible to define an equivalence relation on the class of coupled
systems; this involves changing the graphs up to graph isomorphisms (which
‘patch up’ well) and changing the connection up to a ‘coboundary’. We shall
not make this any more precise, since we will not need the exact definition.
(The interested reader may consult [AO1], [EK] or [JS].)

A paragroup is an equivalence class of coupled systems.

Remark 2.2. It must be noted that we only discuss finite paragroups here.
Also, all other structure of the paragroup (such as the ‘global contragredient
axiom’) will be shown to be consequences of our definition — at least in this
finite case.

In fact, more general ‘unitarity statements’ (than in the paragraph pre-
ceding the flatness axiom) hold for any connection which satisfies the uni-
tarity condition; we need to set up a little notation in order to state this
generalisation.

Fix a positive integer n; we shall use the phrase admissible tuple of size
n to mean an ordered pair (k, l), where

k = (k1, k2, · · · , kn) , l = (l1, l2, · · · , ln)

and the ki and lj are all nonnegative integers, of which only k1 and ln may
be zero. An admissible tuple (k, l) of size n determines a planar walk on the
(planar) lattice by the following prescription: Start at the origin; take k1

steps to the south; then take l1 steps east; then take k2 steps south; then take
l2 steps east; and so on, until a total of

∑
i(ki + li) steps have been taken.

(The possibility, that such a walk may not have an initial southward step or
a final eastward step, is the reason for the peculiar ‘nonzero’ assumptions in
the definition of an admissible tuple.)

Given such an admissible tuple, we shall use the expression ‘path of type
(k, l) from a vertex ν to a vertex λ’ to mean a sequence

(σ1, τ1, · · · , σi, τi, · · · , σn, τn),

where (i) each σi (resp., τi) is a vertical (resp., horizontal) path of length ki

(resp., li), (ii) σ1 starts at ν and τn finishes at λ, and (iii) for each i, σi

finishes where τi starts, and τi finishes where σi+1 starts.
Given two admissible tuples (k, l), (k′, l′), of possibly different sizes, we

shall say that (k, l) ≥ (k′, l′) if the following conditions are satisfied:
(i)

∑
i ki =

∑
i′ k

′
i′ and

∑
i li =

∑
i′ l
′
i′ ; and

(ii) for each 1 ≤ j ≤
∑

i(ki + li), the number of southward steps taken in
the first j steps of the planar walk corresponding to (k, l) is at least as large
as the corresponding number for (k′, l′).



184 VIJAY KODIYALAM AND V.S. SUNDER

(This just says that the walk for (k, l) is always ‘below’ the walk for
(k′, l′).)

If (k, l) ≥ (k′, l′) are admissible tuples, and if ν and λ are arbitrary
vertices, consider the matrix W(k,l),(k′,l′)(ν, λ) = ((W ξ

η )) , with rows (resp.,
columns) indexed by paths ξ (resp., η) of type (k, l) (resp., (k′, l′)) from ν
to λ, whose typical matrix entry is defined as follows: (i) If it so happens
that there exists 1 ≤ j ≤

∑
i(ki + li) such that the initial and final points

(on the lattice) of the j-th step in the planar walk for (k, l) agree with the
corresponding points for the walk for (k′, l′), then W ξ

η = 0 unless the j-th
edge in the path ξ is the same as the j-th edge in the path η; and (ii) W ξ

η

is defined as the sum of products of values of the connection on 1 × 1 sub-
rectangles, exactly as in the case of macro-cells (which correspond to the
specialisation (k, l) = (k, l) , (k′, l′) = ((0, k), (l, 0))).

We state the desired generalisation of unitarity as a lemma below, for
convenience of reference; we omit the proof of this well-known fact. (See,
for instance, [AO2] or [EK].)

Lemma 2.3. Suppose (k, l) ≥ (k′, l′) ≥ (k′′, l′′) are admissible tuples; and
suppose ν ∈ Bpq, λ ∈ Brs are such that

∑
i ki − (r − p) and

∑
i li − (s − q)

are even.
(a) Then W(k,l),(k′,l′)(ν, λ) is a unitary matrix; and
(b) W(k,l),(k′,l′)(ν, λ) W(k′,l′),(k′′,l′′)(ν, λ) = W(k,l),(k′′,l′′)(ν, λ).

3. 1 ∗ flatness.

We would like to use the phrase ‘4 ∗ flatness’ to refer to what we have termed
the flatness axiom above. This is because it is known — see [EK] — that
this requirement can be shown to be equivalent to another one of a pair of
equivalent requirements, that should analogously be termed ‘2 ∗ flatness’.

We wish to talk about ‘1 ∗ flatness’ — which, besides being equivalent to
the ‘4 ∗ flatness’ condition, has the advantage of being intimately connected
with the ‘fusion coefficients’ between the four kinds of bimodules associated
with the subfactor corresponding to the paragroup.

Definition 3.1. Let ∗ = ∗i, i = 0, 1. Fix positive integers k, l, a vertex
λ ∈ Bp,r, and paths σ ∈ PV

k (∗,−) and τ ∈ PH
l (∗,−), where it is assumed

that p − i − l and r − i − k are even. Suppose σ and τ finish at π and ρ,
respectively.

We shall write A(σ, τ, λ) for the matrix, with rows and columns indexed
by τ ′ ∈ PH

l (π, λ) and σ′ ∈ PV
k (ρ, λ) respectively, defined by

A(σ, τ, λ)τ ′
σ′ =

∗ τ→ ρ
σ ↓ ↓ σ′

π
τ ′→ λ

.
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(It must be noted that in order for A(σ, τ, λ) to be a nonzero matrix, it is
necessary that there exist (necessarily uniquely defined) i, p, r ∈ {0, 1} such
that ∗ = ∗i, ρ ∈ Bir, π ∈ Bpi and λ ∈ Bpr.)

Proposition 3.2 (1 ∗ flatness). Suppose σi are vertical paths starting at ∗
and τi are horizontal paths starting at ∗, for i = 1, 2, 3, which satisfy:

(i) τ1 and τ2 end at the same vertex, say ρ1;
(ii) |σ1| = |σ2|;
(iii) σ2 and σ3 end at the same vertex, say π2; and
(iv) |τ2| = |τ3|.

Then,

A(σ1, τ1, λ)A(σ2, τ2, λ)∗A(σ3, τ3, λ) = δσ1,σ2δτ2,τ3A(σ3, τ1, λ).(3.1)

(It should be noted that the assumptions (i)-(iv) are precisely what are needed
to ensure that the matrices above are ‘multipliable’.)

Proof. Suppose |σ1| = |σ2| = k1, |σ3| = k2, and |τ1| = l1, |τ2| = |τ3| = l2;
and suppose σ1 and τ3 finish at π1 and ρ3 respectively.

First, deduce from the invariance under flips, for the connection value on
‘macro-cells’, that

(A(σ2, τ2, λ)∗)eσeτ =

 ∗ τ2→ ρ1

σ2 ↓ ↓ σ̃

π2
eτ→ λ


−

(3.2)

=

√
µ(π2)µ(ρ1)
µ(λ)µ(∗)

 ρ1
τo
2→ ∗

σ̃ ↓ ↓ σ2

λ
eτo

→ π2


and that

A(σ3, τ3, λ)eτ
σ′ =

∗ τ3→ ρ3

σ3 ↓ ↓ σ′

π2
eτ→ λ

(3.3)

=
λ

eτo

→ π2

σ′o ↓ ↓ σo
3

ρ3
τo
3→ ∗

.
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Hence we see that

(A(σ1, τ1, λ)A(σ2, τ2, λ)∗A(σ3, τ3, λ))τ ′

σ′(3.4)

=
∑

eσ∈PV
k1

(ρ1,λ)

∑
eτ∈PH

l2
(π2,λ)

A(σ1, τ1, λ)τ ′eσ (A(σ2, τ2, λ)∗)eσeτ A(σ3, τ3, λ)eτ
σ′

=
∑

eσ∈PV
k1

(ρ1,λ)

∑
eτ∈PH

l2
(π2,λ)

 ∗ τ1→ ρ1

σ1 ↓ ↓ σ̃

π1
τ ′→ λ


·

√
µ(π2)µ(ρ1)

µ(λ)

 ρ1
τo
2→ ∗

σ̃ ↓ ↓ σ2

λ
eτo

→ π2


 λ

eτo

→ π2

σ′o ↓ ↓ σo
3

ρ3
τo
3→ ∗



=
∑
eσ,eτ

√
µ(π2)µ(ρ1)

µ(λ)


∗ τ1→ ρ1

τo
2→ ∗

σ1 ↓ σ̃ ↓ ↓ σ2

π1
τ ′→ λ

eτo

→ π2

σ′o ↓ ↓ σo
3

ρ3
τo
3→ ∗


=

√
µ(π2)µ(ρ1)

µ(λ)
(
W((k1,k2),(l1,l2)), ((0,k1+k2),(l1+l2,0))(∗, ∗)

)(σ1,τ ′,σ′o,τo
3 )

(τ1,τo
2 ,σ2,σo

3)
,

where we have used Equations (3.2) and (3.3) in the second step above,
and we have used the notation of Lemma 2.3 in the last step. In the same
notation, let us write k = k1 + k2, l = l1 + l2, and

(k, l) = ((k), (l)), (k′, l′) = ((k1, k2), (l1, l2)), (k′′, l′′) = ((0, k), (l, 0))

and

W1 = W(k,l),(k′,l′)(∗, ∗), W2 = W(k′,l′),(k′′,l′′)(∗, ∗).

Then, we may deduce from Lemma 2.3(b) and the flatness axiom (i.e.,
what we refer to as the 4 ∗ flatness condition) that

(W1W2)
(σ1,σ′o3 ,τ ′1,τo

3 )

(τ1,τo
2 ,σ2,σo

3) = δ
τ ′1
τ1δ

τ3
τ2δ

σ1
σ2

δ
σ′3
σ3 ;

and since the Wi, i = 1, 2 are unitary, it follows that

(W2)
(σ1,τ ′,σ′o,τo

3 )

(τ1,τo
2 ,σ2,σo

3) = δσ1
σ2

δτ2
τ3

(
(W1)

(σ1,σo
3 ,τ1,τo

3 )

(σ1,τ ′,σ′o,τo
3 )

)−
.(3.5)
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We finally conclude — from yet another application of flip-invariance —
that

δσ1
σ2

δτ2
τ3 A(σ3, τ1, λ)τ ′

σ′

= δσ1
σ2

δτ2
τ3

 ∗ τ1→ ρ1

σ3 ↓ ↓ σ′

π2
τ ′→ λ


= δσ1

σ2
δτ2
τ3

 ∗ τ1→ ρ3

σ3 ↓ ↓ σ′

π1
τ ′→ λ


= δσ1

σ2
δτ2
τ3

√
µ(π1)µ(ρ3)

µ(λ)

 π1
τ ′→ λ

σo
3 ↓ ↓ σ′o

∗ τ1→ ρ3


−

=

√
µ(π1)µ(ρ3)

µ(λ)
δσ1
σ2

δτ2
τ3

(
(W1)

(σ1,σo
3 ,τ1,τo

3 )

(σ1,τ ′,σ′o,τo
3 )

)−
=

√
µ(π1)µ(ρ3)

µ(λ)
(W2)

(σ1,τ ′,σ′o,τo
3 )

(τ1,τo
2 ,σ2,σo

3)

= (A(σ1, τ1, λ)A(σ2, τ2, λ)∗A(σ3, τ3, λ))τ ′

σ′ ,

as desired. (We have used Equations (3.5) and (3.4) in the last two steps of
the above array of equations.) �

We wish to show, among other things, that ‘4 ∗ flatness’, which was used
in the above derivation of ‘1 ∗ flatness’, can also be deduced as a consequence
of ‘1 ∗ flatness’. So, in what follows, we assume that we are working with
the modified definition of a paragroup, where we have replaced the flatness
axiom by the above proposition; and we will deduce various consequences
of the above ‘1 ∗ flatness’ condition.

In the sequel, we shall assume, unless explicitly indicated otherwise, that
the symbols ∗, π, ρ, λ, σ, τ, k, l always satisfy the following relationship:

There exist i, p, r ∈ {0, 1} such that

∗ = ∗i, π ∈ Bpi, ρ ∈ Bir, λ ∈ Bpr, σ ∈ PV
k (∗, π), τ ∈ PH

l (∗, ρ).

Proposition 3.3. A(σ,τ, λ) is a partial isometry (possibly equal to 0), whose
‘inital and final projections’ have the following properties:

(i) The projection E(σ, ρ, λ) = A(σ, τ, λ)∗A(σ, τ, λ) is independent of the
path τ (and, in particular, of its length); and

(ii) the projection F (π, τ, λ) = A(σ, τ, λ)A(σ, τ, λ)∗ is independent of the
path σ (and, in particular, of its length).
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Proof. Setting σi = σ, τi = τ for all i in Equation (3.1), we see that the
matrix A(σ, τ, λ) satisfies the equation AA∗A = A, which is the defining
characteristic of a partial isometry.

Let σ1, σ3 ∈ PV (∗, π) and τ1, τ2 ∈ PH(∗, ρ) be arbitrary (with possibly
different lengths); set σ2 = σ1 and τ3 = τ2, and deduce from Equation (3.1)
that

range A(σ3, τ1, λ) ⊂ range A(σ1, τ1, λ), ker A(σ3, τ1, λ) ⊃ ker A(σ3, τ3, λ);

by symmetry, we see that ranA(σ, τ, λ) (resp., ker A(σ, τ, λ)) is independent
of σ (resp., τ), as desired. �

Proposition 3.4. (a) Suppose that σ, σ′ are vertical paths of the same
length starting at ∗ (whose finishing points π and π′ may be distinct),
and that τ, τ ′ are paths of possibly different lengths between ∗ and ρ.
Then

A(σ, τ, λ)A(σ′, τ ′, λ)∗ = δσ,σ′ V (τ, τ ′, π′, λ),(3.6)

where V (τ, τ ′, π, λ) is a partial isometry with initial projection F (π, τ ′,
λ) and final projection F (π, τ, λ).

(b) Dually, if σ, σ′ ∈ PV (∗, π), if τ ∈ PH(∗, ρ), τ ′ ∈ PH(∗, ρ′) and if |τ | =
|τ ′|, then

A(σ, τ, λ)∗A(σ′, τ ′, λ) = δτ,τ ′ U(σ, σ′, ρ′, λ),(3.7)

where U(σ, σ′, ρ′, λ) is a partial isometry with initial projection E(σ′, ρ,
λ) and final projection E(σ, ρ, λ).

Proof. (a) Note that the matrix products make sense under the hypothe-
ses, and that the fact that A(σ′, τ ′, λ)∗ is a partial isometry, coupled with
Equation (3.1), shows that

A(σ, τ, λ)A(σ′, τ ′, λ)∗ = A(σ, τ, λ)A(σ′, τ ′, λ)∗A(σ′, τ ′, λ)A(σ′, τ ′, λ)∗

= δσ,σ′A(σ′, τ, λ)A(σ′, τ ′, λ)∗;

and the desired conclusion follows from the following observation (which
applies in this case): If V, V ′ are partial isometries with the same initial
space, then V (V ′)∗ is a partial isometry whose initial (resp., final) projection
is the same as the final projection of V ′ (resp., V ).

The proof of (b) is identical. �

Proposition 3.5. (a) If τ and τ ′ are distinct horizontal paths of the same
length starting at ∗ (with possibly different end-points), then, for any
vertex π, the projections F (π, τ, λ) and F (π, τ ′, λ) are mutually orthog-
onal.

(b) If σ and σ′ are distinct vertical paths of the same length starting at ∗
(with possibly different end-points), then, for any vertex ρ, the projec-
tions E(σ, ρ, λ) and E(σ′, ρ, λ) are mutually orthogonal.
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Proof. (a)

F (π, τ, λ)F (π, τ ′, λ) = A(σ, τ, λ)A(σ, τ, λ)∗A(σ, τ ′, λ)A(σ, τ ′, λ)∗

= δττ ′A(σ, τ, λ)A(σ, τ ′, λ)∗

= 0.

The proof of (b) is similar. �

Proposition 3.6. (a) ∑
τ∈PH

l (∗,−)

F (π, τ, λ) = IPH
l (π,λ),

where we write IX to denote the identity matrix with rows and columns
indexed by the set X.

(b) ∑
σ∈PV

k (∗,−)

E(σ, ρ, λ) = IPV
k (ρ,λ).

Proof. (a) Arbitrarily choose and fix some σ ∈ PV
k (∗, π). Then, by the

unitarity axiom in a paragroup, we have, for each τ ′ ∈ PH
l (π, λ),

1 =
∑
τ,σ′

∣∣∣∣∣
∗ τ→ ·

σ ↓ ↓ σ′

π
τ ′→ λ

∣∣∣∣∣
2

.(3.8)

Summing over τ ′ ∈ PH
l (π, λ), we find that

|PH
l (π, λ)| =

∑
τ ′∈PH

l (π,λ)

∑
τ,σ′

∣∣∣∣∣
∗ τ→ ·

σ ↓ ↓ σ′

π
τ ′→ λ

∣∣∣∣∣
2

=
∑

τ ′∈PH
l (π,λ)

∑
τ,σ′

|A(σ, τ, λ)τ ′
σ′ |2

=
∑

τ∈PH
l (∗,−)

‖A(σ, τ, λ)‖2
2

=
∑

τ∈PH
l (∗,−)

Tr F (π, τ, λ).

(Above, and in the sequel, we use the symbols ‖ · ‖2 and ‘Tr’ to denote the
Hilbert-Schmidt norm and the usual trace on any matrix algebra.)

Since, by Proposition 3.5, {F (π, τ, λ) : τ ∈ PH
l (∗,−)} is a collection of

mutually orthogonal projections in MatPH
l (π,λ)(C), the desired conclusion

follows.
The proof of (b) is similar. �
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Remark 3.7. On the one hand,

‖A(σ, τ, λ)‖2
2 = Tr(A(σ, τ, λ)A(σ, τ, λ)∗) = Tr(F (π, τ, λ))

is independent of σ; on the other,

‖A(σ, τ, λ)‖2
2 = Tr(A(σ, τ, λ)∗A(σ, τ, λ)) = Tr(E(σ, ρ, λ))

is independent of τ . Hence we see that ‖A(σ, τ, λ)‖2 is independent of σ and
τ (and hence of k and l), and depends only on π, ρ, λ. We define

f(π, ρ, λ) = ‖A(σ, τ, λ)‖2
2.

Lemma 3.8. Let i, p, r ∈ {0, 1} be arbitrary.
(a) For any π ∈ Bpi and ρ ∈ Bir, there exists at least one λ ∈ Bpr such

that f(π, ρ, λ) > 0.
(b) For any π ∈ Bpi and λ ∈ Bpr, there exists at least one ρ ∈ Bir such

that f(π, ρ, λ) > 0.

Proof. (a) Choose some σ ∈ PV (∗, π), τ ∈ PH(∗, ρ). The unitarity axiom
implies the existence of a λ and σ′ ∈ PV

|σ|(ρ, λ), τ ′ ∈ PH
|τ |(π, λ) such that

π
τ ′→ λ

σo ↓ ↓ σ′o

∗ τ→ ρ

6= 0.

Then, by flip-invariance, we see that

A(σ, τ, λ)τ ′
σ′ =

∗ τ→ ρ
σ ↓ ↓ σ′

π
τ ′→ λ

=

√
µ(π)µ(ρ)

µ(λ)

 π
τ ′→ λ

σo ↓ ↓ σ′o

∗ τ→ ρ


−

6= 0.

The proof of (b) is similar. �

Proposition 3.9. (a)

∗ τ→ ∗
σ ↓ ↓ σ′

∗ τ ′→ ∗
= δσ,σ′δτ,τ ′ .

(b) For any π ∈ Bpi and ρ ∈ Bir,∑
λ∈Bpr

f(π, ρ, λ) µ(λ) = µ(π)µ(ρ).(3.9)
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Proof. First of all, note that we must have

|σ| = |σ′| = 2m, |τ | = |τ ′| = 2n

for some integers m,n. So we may write σ = σ1σ2, σ
′ = σ′1σ

′
2 and τ =

τ1τ2, τ
′ = τ ′1τ

′
2, where |σi| = |σ′i| = m, |τi| = |τ ′i | = n, for i = 1, 2. (Here and

elsewhere, we shall denote concatenation of paths by merely juxtaposing the
symbols; thus, the symbol σ1σ2 denotes the path obtained by first travers-
ing the path σ1 and then going on to traverse the path σ2; this naturally
demands that σ1 finishes where σ2 starts.)

Suppose that σ1 and σ′1 finish at π and π′ respectively, and that τ1 and
τ ′1 finish at ρ and ρ′ respectively. Now, compute thus:

∗ τ1→ ρ
τ2→ ∗

σ1 ↓ ↓ σ′1
π π′

σ2 ↓ ↓ σ′2

∗
τ ′1→ ρ′

τ ′2→ ∗

=
∑

λ

∑
ν1,ν2,ν3,ν4

∗ τ1→ ρ
τ2→ ∗

σ1 ↓ ν1 ↓ ↓ σ′1
π

ν4→ λ
ν2→ π′

σ2 ↓ ν3 ↓ ↓ σ′2

∗
τ ′1→ ρ′

τ ′2→ ∗

=
∑

λ

∑
ν1,ν2,ν3,ν4

A(σ1, τ1, λ)ν4
ν1

√
µ(λ)

µ(ρ)µ(π′)

(
A(σ′1, τ

o
2 , λ)νo

2
ν1

)−
· A(σ′o2 , τ ′o2 , λ)νo

2
νo
3

√
µ(λ)

µ(ρ′)µ(π)

(
A(σo

2, τ
′
1, λ)ν4

νo
3

)−
=

∑
λ

µ(λ)√
µ(π)µ(π′)µ(ρ)µ(ρ′)

×

· Tr (A(σ1, τ1, λ)A(σ′1, τ
o
2 , λ)∗A(σ′o2 , τ ′o2 , λ)A(σo

2, τ
′
1, λ)∗)

=
∑

λ

µ(λ)√
µ(π)µ(π′)µ(ρ)µ(ρ′)

δσ1,σ′1
δτ2,τ ′2

Tr(A(σ′o2 , τ1, λ)A(σo
2, τ

′
1, λ)∗)

=
∑

λ

µ(λ)√
µ(π)µ(π′)µ(ρ)µ(ρ′)

δσ1,σ′1
δτ2,τ ′2

δσ2,σ′2
Tr V (τ1, τ

′
1, π, λ)(∗)

=
∑

λ

µ(λ)√
µ(π)µ(π′)µ(ρ)µ(ρ′)

δσ1,σ′1
δτ2,τ ′2

δσ2,σ′2
δτ1,τ ′1

Tr F (τ1, π, λ)(∗∗)

= δσ,σ′δτ,τ ′ K(π, ρ),
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where we have used: (a) Proposition 3.4 in step (∗) (and used the two
Kronecker deltas to ensure that the hypotheses of that proposition are indeed
satisfied), (b) Proposition 3.5 (a) and the fact that a partial isometry with
mutually orthogonal initial and final spaces must necessarily have 0 trace,
in step (∗∗) and (c) the notation

K(π, ρ) =
∑

λ

µ(λ)
µ(π)µ(ρ)

f(π, ρ, λ)

in the last step.
It is clear that K(π, ρ) ≥ 0; but, in fact, it follows from Lemma 3.8

that K(π, ρ) > 0. It follows, therefore, that A(σ, τ, ∗) is a partial isometry
which has the positive entry K(π, ρ) in the (τ, σ) entry and has all other
entries equal to 0; hence we see that

K(π, ρ) = ‖A(σ, τ, ∗)‖ = 1

(since the norm of a partial isometry is 0 or 1, and we know that K(π, ρ) >
0).

The truth of both parts of the proposition is seen to follow. �

4. Derivation of the formula.

Suppose one starts with a ‘finite-depth hyperfinite subfactor’ R0 ⊂ R1; then
for the associated paragroup, the set Bij can be identified with the collection
of (isomorphism classes of) irreducible Ri−Rj bimodules that ‘occur in the
tower of the basic construction’ — see [AO1] or [VJ]. In this case, we
have ∗i = RiL

2(Ri)Ri and αi,1−i = RiL
2(R1)R1−i for i = 0, 1. Further, it is

true that if Xij is such a bimodule, then, we have

µ(Xij) =
√

dim(RiX) dim(XRj ),

where dim(P X) (resp., dim(XP )) denotes the P -dimension of the left (resp.,
right) P -module X.

A vertical edge starting at ρ ∈ Bir and finishing at γ ∈ B1−i,r corresponds
to a member of a maximal family (chosen and fixed once and for all) of
R1−i − Rr linear coisometries from α1−i,i ⊗Ri ρ to γ; while the same edge,
when thought of as starting from γ and finishing at ρ is identified with the
image, under a suitable (‘left flip’) Frobenius reciprocity map (cf. [EK]), of
the intertwiner corresponding to the ‘unreversed edge’. Similar comments
apply to horizontal graphs, which correspond to tensoring on the right, just
as the vertical graphs correspond to tensoring on the left. (Making a different
choice of the ‘maximal sets of co-isometric intertwiners’ corresponds exactly
to replacing the connection by an equivalent one.)

The point we wish to make here is that f(π, ρ, λ) is now nothing but the
fusion coefficient 〈π ⊗Ri ρ, λ〉.
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Theorem 4.1. With the foregoing notation, if π0 ∈ Bpi, ρ0 ∈ Bir and λ0 ∈
Bpr, then f(π0, ρ0, λ0) is nothing but the the fusion coefficient 〈π0⊗Ri ρ0, λ0〉,
i.e., the ‘multiplicity with which the bimodule λ0 features in π0 ⊗Ri ρ0’.

Proof. We shall ignore the ‘tensor-product’ symbol, and simply write such
symbols as (α01α10)m to denote appropriate tensor-products; thus, for in-
stance,

(α01α10)2 = α01 ⊗R1 α10 ⊗R0 α01 ⊗R1 α10.

Let us write

Xk =
{

(αi,1−iα1−i,i)m if k = 2m
α1−i,i(αi,1−iα1−i,i)m if k = 2m + 1

and

Yl =
{

(αi,1−iα1−i,i)m if l = 2m
αi,1−i(αi,1−iα1−i,i)m if l = 2m + 1 .

Fix a positive integer k (resp., l) such that: (i) PV
k (∗i, π0) 6= ∅ (resp.,

PH
l (∗i, ρ0) 6= ∅), and (ii) k (resp., l) is at least as large as the distance,

in Vi (resp., Hi) from ∗i to any vertex in Bpi (resp., Bir). It then follows
that PV

k (∗i, π) 6= ∅ ∀π ∈ Bpi (resp., PH
l (∗i, ρ) 6= ∅ ∀ρ ∈ Bir).

Note that Xk is an Rp−Ri bimodule and Yl is an Ri−Rr bimodule. For
the sake of typographical convenience, let us write

A00 = End Ri(L
2(Ri))Ri = C,

Ak0 = End Rp(Xk)Ri ,

A0l = End Ri(Yl)Rr ,

Akl = End Rp(Xk ⊗Ri Yl)Rr .

We will be interested in the square

C ⊂ A0l

∪ ∪
Ak0 ⊂ Akl

,(4.1)

where the inclusion map in the second row (resp., column) is given by S 7→
S ⊗Ri idYl

(resp., T 7→ idXk
⊗Ri T ).

It will be necessary to use the ‘path-model’ — see [JS] for instance — for
the above algebras; for this, we shall consider the admissible tuples given
by (k, l) = ((k), (l)) and (k′, l′) = ((0, k), (l, 0)), and we will find it con-
venient to use the notation PV H

kl (∗i, λ) (resp., PHV
lk (∗i, λ)) to denote the

set of all (south-west) paths of type (k, l) (resp., (north-east) paths of type
(k′, l′)) from ∗i to λ. We shall also consistently use the notation f(ξ) to
denote the vertex where a path ξ finishes. When we want to consider paths
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with possibly differing finishing points, we shall also use the (abbreviated)
symbols

PV H =
∐

λ∈Bpr

PV H
kl (∗i, λ), PHV =

∐
λ∈Bpr

PHV
lk (∗i, λ).

It is then true — see [JS], for instance — that we can find two subsets Bkl

and Blk of Akl, given by:

Bkl = {(ξ+, ξ−) : ξ± ∈ PV H , and f(ξ+) = f(ξ−)}
and

Blk = {(η+, η−) : η± ∈ PHV , and f(η+) = f(η−)},
which have the following properties:

(a) Both Bkl and Blk are systems of ‘generalised matrix units for Akl’, mean-
ing:

(i) They are both (vector space) bases for Akl;
(ii) (ξ+, ξ−)∗ = (ξ−, ξ+) and (ξ+

1 , ξ−1 ) · (ξ+
2 , ξ−2 ) = δξ−1 ,ξ+

2
(ξ+

1 , ξ−2 );
(iii) (η+, η−)∗ = (η−, η+) and (η+

1 , η−1 ) · (η+
2 , η−2 ) = δη−1 ,η+

2
(η+

1 , η−2 ).

(b) The basis Bkl is well-behaved with respect to the tower A00 ⊂ Ak0 ⊂
Akl in the following sense: If σ± ∈ PV

k (∗i,−) satisfy f(σ+) = f(σ−),
then (σ+τ, σ−τ) ∈ Bkl whenever τ ∈ PH

l (f(σ+),−); in fact, if we define

(σ+, σ−) =
∑

τ∈PH
l (f(σ+),−)

(σ+τ, σ−τ),

and

Bk0 = {(σ+, σ−) : σ± ∈ PV
k (∗i,−) and f(σ+) = f(σ−)},

then Bk0 is a ‘system of generalised matrix units for Ak0’.

(c) The basis Blk is well-behaved with respect to the tower A00 ⊂ A0l ⊂
Akl in the following sense: If τ± ∈ PH

l (∗i,−) satisfy f(τ+) = f(τ−),
then (τ+σ, τ−σ) ∈ Blk whenever σ ∈ PV

k (f(τ+),−); in fact, if we define

(τ+, τ−) =
∑

σ∈PV
k (f(τ+),−)

(τ+σ, τ−σ),

and

B0l = {(τ+, τ−) : τ± ∈ PH
l (∗i,−) and f(τ+) = f(τ−)},

then B0l is a ‘system of generalised matrix units for A0l’.

(d) The two bases are related via the connection, as follows:

(ξ+, ξ−) =
∑

η±∈PHV
lk (∗i,f(ξ+))

W ξ+

η+ W ξ−

η− (η+, η−),(4.2)
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for all (ξ+, ξ−) ∈ Bkl.

It is seen from the above statements regarding ‘generalised matrix units’
that a basis vector (ξ+, ξ−) ∈ Bkl is a projection if and only if ξ+ = ξ−; and
that, further, if we define pk0(π) to be the sum of all the projections in Bk0

which ‘finish’ at π, then {pk0(π) : π ∈ Bpi} is the set of (all the) minimal
central projections of Ak0. In fact, pk0(π) is nothing but the projection
onto the isotypical sub-bimodule of Xk of type π. It should be clear that
analogous statements, with (π, k0) replaced by (ρ, 0l) and (λ, kl), are valid.

Now let us fix a σ0 ∈ PV
k (∗i, π0) and a τ0 ∈ PH

l (∗i, ρ0), and let us
write p0

k0 = (σ0, σ0) (∈ Bk0) and p0
0l = (τ0, τ0) (∈ B0l). The facts stated

above, concerning ‘generalised matrix units’, imply that p0
k0 (resp., p0

0l) is a
minimal projection in Ak0pk0(π0) (resp., A0lp0l(ρ0)), and hence that ran p0

k0

(resp., ran p0
0l) is a model of the irreducible bimodule of type π0 (resp., ρ0).

The definitions, and a moment’s thought reveal that the fusion coeffi-
cient 〈π0 ⊗Ri ρ0, λ0〉 is exactly that number N such that (p0

k0p
0
0l)pkl(λ0) is

a sum of N minimal projections in Aklpkl(λ0). Hence, it follows that if φ
denotes any faithful positive tracial functional on Akl, then

〈π0 ⊗Ri ρ0, λ0〉 =
φ(p0

k0 p0
0l pkl(λ0))
φ(q)

,(4.3)

for any minimal projection q ∈ Akl pkl(λ0).
However, if ‘tr’ denotes the so-called Markov trace on Akl, then there

exists a constant C > 0 such that if φ = C tr, then φ is a faithful positive
tracial functional on Akl, and further,

φ((η+, η−)) = δη+,η− µ(f(η+)), ∀(η+, η−) ∈ Blk.(4.4)

Now deduce from the definitions and from Equation (4.2) that

φ(p0
k0 p0

0l pkl(λ0))

=
∑

τ∈PH
l (π0,λ0)

∑
σ∈PV

k (ρ0,λ0)

φ ((σ0τ, σ0τ)(τ0σ, τ0σ)pkl(λ0))

=
∑

τ∈PH
l (π0,λ0)

∑
σ∈PV

k (ρ0,λ0)

∑
η±∈PHV

lk (∗i,λ0)

φ
(
W σ0τ

η+ W σ0τ
η− (η+, η−)(τ0σ, τ0σ)

)
=

∑
τ∈PH

l (π0,λ0)

∑
σ∈PV

k (ρ0,λ0)

∑
η+∈PHV

lk (∗i,λ0)

W σ0τ
η+ W σ0τ

τ0σ φ
(
(η+, τ0σ)

)
=

∑
τ∈PH

l (π0,λ0)

∑
σ∈PV

k (ρ0,λ0)

∑
η+∈PHV

lk (∗i,λ0)

W σ0τ
η+ W σ0τ

τ0σ δη+,τ0σ µ(λ0)

= µ(λ0)
∑

τ∈PH
l (π0,λ0)

∑
σ∈PV

k (ρ0,λ0)

W σ0τ
τ0σ W σ0τ

τ0σ



196 VIJAY KODIYALAM AND V.S. SUNDER

= µ(λ0)
∑

τ∈PH
l (π0,λ0)

∑
σ∈PV

k (ρ0,λ0)

|W σ0τ
τ0σ |2

= µ(λ0)
∑

τ∈PH
l (π0,λ0)

∑
σ∈PV

k (ρ0,λ0)

|A(σ0, τ0, λ0)τ
σ|2

= µ(λ0) ‖A(σ0, τ0, λ0)‖2
2;

and hence, by Equations (4.3) and (4.4), we see that if η ∈ PHV
lk (∗i, λ0),

then

〈π0 ⊗Ri ρ0, λ0〉 =
φ(p0

k0 p0
0l pkl(λ0))

φ((η, η))

=
µ(λ0) f(π0, ρ0, λ0)

µ(λ0)
= f(π0, ρ0, λ0),

and the proof is complete. �

5. The fusion algebras.

We first proceed toward showing how the ‘contragredient’ (in the sense of
bimodules) can be read off from the paragroup.

Proposition 5.1. Let π ∈ Bpi, ρ ∈ Bir, λ ∈ Bpr, and let k, l be positive
integers such that (p− i)− k and (r − i)− l are even; then

∑
ρ′∈Bir

f(π, ρ′, λ) |PH
l (∗i, ρ

′)| = |PH
l (π, λ)|;

∑
π′∈Bpi

f(π′, ρ, λ) |PV
k (∗i, π

′)| = |PV
k (ρ, λ)|.

Proof. Fix a σ ∈ PV (∗, π). Deduce from the unitarity axiom that if τ ′ ∈
PH

l (π, λ), then

1 =
∑

τ∈PH
l (∗,−)

∑
σ′∈PV

k (f(τ),λ)

|A(σ, τ, λ)τ ′
σ′ |2,

where we have used the notation f(τ) to denote the vertex at which τ
finishes.
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Now sum over τ ′ ∈ PH
l (π, λ) to find that

|PH
l (π, λ)| =

∑
τ ′∈PH

l (π,λ)

∑
τ,σ′

|A(σ, τ, λ)τ ′
σ′ |2

=
∑

τ

f(π, f(τ), λ)

=
∑
ρ′

f(π, ρ′, λ) |PH
l (∗, ρ′)|.

The proof of the second identity is similar. �

The identities of the last proposition show that the function f contains
the information of the four graphs.

Corollary 5.2. For any γij ∈ Bij, we have:

AHj (γjj , γj,1−j) = f(γjj , αj,1−j , γj,1−j) = f(γj,1−j , α1−j,j , γjj);
AVj (γjj , γ1−j,j) = f(α1−j,j , γjj , γ1−j,j) = f(αj,1−j , γ1−j,j , γjj).

Proof. The first identity follows immediately from specialising the first iden-
tity of Proposition 5.1 to the case i = j, π = γjj , λ = γj,1−j , (and to the
case i = 1 − j, π = γj,1−j , λ = γjj) and l = 1, and noting that αi,1−i is
the unique horizontal neighbour of ∗i, and that PH

1 (u, v) = AH(u, v) for an
appropriate horizontal graph H.

The second identity follows analogously from the second identity of Propo-
sition 5.1. �

Proposition 5.3. (a) For each vertex π ∈ Bpi, there exists a unique ver-
tex π ∈ Bip such that f(π, π, ∗p) > 0; and, in fact, f(π, π, ∗p) = 1.

(b) Further, it is true that π = π, and that for all l, k,

|PH
l (∗i, π)| = |PH

l (∗p, π)|;(i)

|PV
k (∗p, π)| = |PV

k (∗i, π)|.(ii)

Proof. We see from Lemma 3.8 that there exists at least one vertex π ∈ Bip

such that f(π, π, ∗p) > 0. Fix positive integers k, l which are (i) both even
(resp., odd) if i = p (resp., i 6= p), and (ii) at least as large as the maximum
distance between any two vertices on any of the four graphs. Since the
graphs are connected, the assumptions (i) and (ii) show that PV

k (∗i, π) 6= ∅
and PH

l (∗i, ρ) 6= ∅ for all ρ ∈ Bip.
Since f(π, ρ, λ) ∈ Z+, we deduce from Proposition 5.1 that

|PH
l (∗p, π)| = |PH

l (π, ∗p)|(5.1)

=
∑

ρ

f(π, ρ, ∗p) |PH
l (∗i, ρ)|

≥ |PH
l (∗i, π)|.
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On the other hand, for any τ ∈ PH
l (∗i, π), σ ∈ PV

k (∗i, π), note that by
‘rotational symmetry’ of the connection, we have the identity

A(σ, τ, ∗p)τ ′
σ′ = A(σ′o, τ ′o, ∗i)τo

σo ,

which implies that

|PV
k (∗i, π)| |PH

l (∗i, π)| f(π, π, ∗p)(5.2)

=
∑

σ∈PV
k (∗i,π)

∑
τ∈PH

l (∗i,π)

 ∑
σ′∈PV

k (π,∗p)

∑
τ ′∈PH

l (π,∗p)

|A(σ, τ, ∗p)τ ′
σ′ |2


=

∑
σ′o∈PV

k (∗p,π)

∑
τ ′o∈PH

l (∗p,π)

 ∑
σo∈PV

k (π,∗i)

∑
τo∈PH

l (π,∗i)

|A(σ′, τ ′, ∗i)τ
σ|2


= |PV

k (∗p, π)| |PH
l (∗p, π)| f(π, π, ∗i);

it follows that f(π, π, ∗i) > 0. Hence, we deduce, exactly as in the case of
Inequality (5.1) that we also have

|PH
l (∗i, π)| ≥ |PH

l (∗p, π)|,(5.3)

and hence that, in fact,

|PH
l (∗i, π)| = |PH

l (∗p, π)|.(5.4)

This equation, and the manner in which Inequality (5.1) was obtained,
imply that

f(π, ρ, ∗p) = δρ,π,

and (a) is completely proved.
The uniqueness assertion of (a), coupled with Equation (5.2), Equation

(5.4) and its vertical counterpart (which is proved similarly), shows that
we must have π = π, and that (b)(i) and (ii) must hold at least when k, l
satisfy the additional hypotheses (i) and (ii) stated in the first paragraph of
the proof.

On the other hand, note that both sides of (b)(i) (resp., (ii)) are zero
unless l (resp., k) satisfies the condition stated in (i) of the initial paragraph
and is, in addition, at least as large as the length of the shortest horizontal
path joining ∗i and π (resp., vertical path joining ∗i and π). Conversely, if k
and l satisfy the two conditions of the last sentence, then the left-side (and
hence the right side) of Equation (5.2) is nonzero, and we may deduce the
validity of (b)(i) and (ii) (as in the special case earlier considered). �

Corollary 5.4.

µ(π) = µ(π) ∀π.
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Proof. Let π ∈ Bpi. We consider the cases i = p and i 6= p separately.

Case 1. i = p.
Let A be the matrix, with rows and columns indexed by Bii, defined

by A(π, γ) = |PH
2 (π, γ)|. This may be viewed as the adjacency matrix of a

connected graph with vertex set Bii. The equation in Proposition 5.3(b)(i),
when l = 2n, may be re-written as:

An(∗, π) = An(∗, π) ∀π.(5.5)

On the other hand, it is seen that if v is the vector defined by v(π) = µ(π),
then Av = β2v; and it now follows from the Perron-Frobenius theorem that

lim
n→∞

An

β2n
= Pv,

where Pv denotes the projection onto the one-dimensional subspace spanned
by the Perron-Frobenius eigenvector v of A. It follows therefore that, if we
write w =

∑
π∈Bii

µ(π)2, then

µ(π)µ(∗)
w

= Pv(∗, π)

= lim
n→∞

1
β2n

An(∗, π)

= lim
n→∞

1
β2n

An(∗, π)

= Pv(∗, π)

=
µ(π)µ(∗)

w
,

as desired.

Case 2. i 6= p.
In this case, let Ai denote the matrix with rows and columns indexed

by Bi,1−i and defined by Ai(π, γ) = |PH
2 (π, γ)|. Note that there is an obvious

bijective correspondence between PH
2n(αi,1−i, γ) and PH

2n+1(∗i, γ), so that the
equation in Proposition 5.3(b)(i), when l = 2n + 1, may be re-written as:

An
0 (α01, γ) = An

1 (α10, γ).

Further, since the Perron-Frobenius eigenvectors of the Ai’s are given by
the µ function, and since they both have Perron-Frobenius eigenvalue given
by β2, we may argue exactly as in Case 1 to obtain the desired conclusion.

�

Proposition 5.5. For any π ∈ Bpi, ρ ∈ Bir, γ ∈ Brs, ν ∈ Bps, we have∑
λ∈Bpr

f(π, ρ, λ) f(λ, γ, ν) =
∑

κ∈Bis

f(π, κ, ν) f(ρ, γ, κ).(5.6)
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Proof. To start with, fix paths σ1 ∈ PV (∗r, ρ), σ2 ∈ PV (∗i, π), τ1 ∈
PH(∗i, ρ), τ2 ∈ PH(∗r, γ), and suppose |σi| = ki and |τi| = li for i =
1, 2. Consider the matrix B = ((Bτ ′1τ ′2

σ′1σ′2
)) with rows and columns indexed

by PH
l1+l2

(π, ν) and PV
k1+k2

(γ, ν), respectively, defined by

B
τ ′1τ ′2
σ′1σ′2

=


∗r

τ2→ γ
σ1 ↓ ↓ σ′1

∗i
τ1→ ρ f(σ′1)

σ2 ↓ ↓ σ′2

π
τ ′1→ f(τ ′1)

τ ′2→ ν



=
∑

eσ
∑

eτ


∗r

τ2→ γ
σ1 ↓ ↓ σ′1

∗i
τ1→ ρ

eτ→ f(σ′1)
σ2 ↓ σ̃ ↓ ↓ σ′2

π
τ ′1→ f(τ ′1)

τ ′2→ ν


=

∑
eσ

∑
eτ W

σ2τ ′1
τ1eσ W σ1eτ

τ2σ′1
W

eστ ′2eτσ′2
.

We shall compute the Hilbert-Schmidt norm of B in two ways. First note
that

B
τ ′1τ ′2
σ′1σ′2

=
∑

eσ
∑

eτ W
σ2τ ′1
τ1eσ W σ1eτ

τ2σ′1
W

eστ ′2eτσ′2
(5.7)

=
∑

eσ A(σ2, τ1, f(τ ′1))
τ ′1eσ A(σ1σ̃, τ2, ν)τ ′2

σ′1σ′2
;

and that also

B
τ ′1τ ′2
σ′1σ′2

=
∑

eσ
∑

eτ W
σ2τ ′1
τ1eσ W σ1eτ

τ2σ′1
W

eστ ′2eτσ′2
(5.8)

=
∑

eτ A(σ1, τ2, f(σ′1))
eτ
σ′1

A(σ2, τ1τ̃ , ν)τ ′1τ ′2
σ′2

.

Deduce from Equation (5.7) that∣∣∣Bτ ′1τ ′2
σ′1σ′2

∣∣∣2
=

∣∣∣∣∣∑eσ A(σ2, τ1, f(τ ′1))
τ ′1eσ A(σ1σ̃, τ2, ν)τ ′2

σ′1σ′2

∣∣∣∣∣
2

=
∑
eσ,eσ1

A(σ2, τ1, f(τ ′1))
τ ′1eσ A(σ1σ̃, τ2, ν)τ ′2

σ′1σ′2
A(σ2, τ1, f(τ ′1))

τ ′1eσ1
A(σ1σ̃1, τ2, ν)τ ′2

σ′1σ′2
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and hence,

‖B‖2
2 =

∑
τ ′1τ ′2

∑
σ′1σ′2

∣∣∣Bτ ′1τ ′2
σ′1σ′2

∣∣∣2
=

∑
τ ′1τ ′2

∑
σ′1σ′2

∑
eσ,eσ1

A(σ2, τ1, f(τ ′1))
τ ′1eσ A(σ2, τ1, f(τ ′1))

τ ′1eσ1

·A(σ1σ̃, τ2, ν)τ ′2
σ′1σ′2

A(σ1σ̃1, τ2, ν)τ ′2
σ′1σ′2

=
∑
τ ′1τ ′2

∑
eσ,eσ1

A(σ2, τ1, f(τ ′1))
τ ′1eσ A(σ2, τ1, f(τ ′1))

τ ′1eσ1

·
∑
σ′1σ′2

A(σ1σ̃, τ2, ν)τ ′2
σ′1σ′2

A(σ1σ̃1, τ2, ν)τ ′2
σ′1σ′2

=
∑
τ ′1τ ′2

∑
eσ,eσ1

A(σ2, τ1, f(τ ′1))
τ ′1eσ A(σ2, τ1, f(τ ′1))

τ ′1eσ1

· (A(σ1σ̃, τ2, ν)A(σ1σ̃1, τ2, ν)∗)τ ′2
τ ′2

=
∑
τ ′1

∑
eσ,eσ1

A(σ2, τ1, f(τ ′1))
τ ′1eσ A(σ2, τ1, f(τ ′1))

τ ′1eσ1

·Tr(δσ1eσ,σ1eσ1
V (τ2, τ2, f(τ ′1), ν))

=
∑
τ ′1

∑
eσ

∣∣∣A(σ2, τ1, f(τ ′1))
τ ′1eσ

∣∣∣2 f(f(τ ′1), γ, ν)

=
∑

λ∈Bpr

f(π, ρ, λ) f(λ, γ, ν).

An entirely similar argument, starting with Equation (5.8) rather than
(5.7), shows that

‖B‖2
2 =

∑
κ∈Bis

f(π, κ, ν) f(ρ, γ, κ),

and the proof of the proposition is complete. �

Proposition 5.6. For any π ∈ Bpi, ρ ∈ Bir, λ ∈ Bpr, we have:

f(π, ρ, λ) = f(π, λ, ρ).(5.9)

Proof. Much of the following notation will become clearer if one keeps the
following diagram in mind:

∗i
τ1→ ρ

τ2→ π
σ ↓ ↓ σ̃ ↓ σ′

π
τ ′1→ λ

τ ′2→ ∗p

.
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Choose positive integers k, l1, l2 such that (a) k − (p − i), l1 − (r − i)
and l2− (p− r) are all even, and (b) each of k, l1 and l2 are at least as large
as the maximum of the diameters of the four graphs. It then follows that
all the following sets are nonempty:
PV

k (∗i, π),PV
k (ρ, λ),PV

k (∗p, π), PH
l1

(∗i, ρ), PH
l1

(π, λ), PH
l2

(ρ, π), PH
l2

(λ, ∗p).

Let us write l = l1 + l2. We will need the admissible tuples (k, l) =
((k), (l)), (k′, l′) = ((0, k), (l1, l2)), (k′′, l′′) = ((0, k), (l, 0)), and the asso-
ciated unitary matrices W = W(k,l),(k′′,l′′)(∗i, ∗p), W1 = W(k,l),(k′,l′)(∗i, ∗p),
and W2 = W(k′,l′),(k′′,l′′)(∗i, ∗p). Then, it follows from Lemma 2.3 that W =
W1W2.

Let us write Pπ (resp., Rπ) for the diagonal matrix with rows and columns
indexed by paths of type (k, l) (resp., (k′′, l′′)) from ∗i to ∗p, which represents
the projection onto the subspace spanned by Pπ = {στ ′ ∈ PV H

kl (∗i, ∗p), f(σ)
= π} (resp., Pπ = {τσ′ ∈ PHV

lk (∗i, ∗p), f(τ) = π}). Then, thanks to
Proposition 5.3, we see that U = PπWRπ is unitary when viewed as a matrix
with rows and columns indexed by Pπ and Pπ respectively. Then, U = AB,
where A = PπW1 (resp. B = W2Rπ) is the rectangular matrix obtained by
suitably restricting the rows of W1 (resp., columns of W2).

Since A is obtained by taking some collection of rows of a unitary matrix,
it is seen that A is a coisometry. Similarly, it is seen that B is an isom-
etry. Hence, U = AB is a factorisation of a unitary matrix as a product
of a coisometry and an isometry. We can deduce from this that we must
have A∗A = BB∗ and that hence

UB∗ = ABB∗ = AA∗A = A.(5.10)

Now let Qρλ be the diagonal matrix with rows and columns indexed by
paths of type (k′, l′) from ∗i to ∗p, which represents the projection onto the
subspace spanned by the set Pρλ consisting of all paths τ1σ̃τ ′2 of type (k′, l′)
which satisfy f(τ1) = ρ and f(σ̃) = λ.

Then, we have

AQρλ = UB∗Qρλ = U(QρλB)∗,

and hence

‖AQρλ‖2 = ‖U(QρλB)∗‖2 = ‖(QρλB)∗‖2 = ‖QρλB‖2.(5.11)

Now, on the one hand, we have

‖AQρλ‖2
2 =

∑
σ,τ ′1,τ1,eσ,τ ′2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

∗i
τ1→ ρ

σ ↓ ↓ σ̃

π
τ ′1→ λ

τ ′2→ ∗p

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

2

(5.12)

= |PH
l2 (λ, ∗p)| |PV

k (∗i, π)| |PH
l1 (∗i, ρ)| f(π, ρ, λ);
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while on the other hand,

‖QρλB‖2
2 =

∑
τ1,eσ,τ ′2,τ2,σ′

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∗i

τ1→ ρ
τ2→ π

σ̃ ↓ ↓ σ′

λ
τ ′2→ ∗p

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

2

(5.13)

= |PH
l1 (∗i, ρ)| |PV

k (π, ∗p)| |PH
l2 (λ, ∗p)| f(π, λ, ρ);

and the desired conclusion follows from Equations (5.11), (5.12) and (5.13)
(and from Equation (5.4)). �

We may now deduce, from Propositions 5.5 and 5.6, that each Bii may be
regarded as the basis of a fusion algebra with the structure constants (i.e.,
fusion coefficients) being given by 〈π⊗ρ, λ〉 = f(π, ρ, λ) and the involution
being given by π 7→ π. From general facts — see [VS], for instance — about
such fusion algebras, we see that we also have, in addition to Equation (5.9),
the following identities:

f(π, ρ, λ) = f(λ, ρ, π) = f(ρ, π, λ).(5.14)

(Strictly speaking, the general facts described in [VS] will only yield Equa-
tion (5.14) in the special case where all the three vertices belong to the same
Bii; but a minor extension of the arguments there show that these equations
are valid in total generality, i.e., whenever π ∈ Bpi, ρ ∈ Bir, λ ∈ Bpr.)

In particular, if π ∈ Bjj and λ ∈ Bj,1−j , and if we set ρ = αj,1−j , we may
deduce from Equation (5.14) and Corollary 5.2 that

AHj (π, λ) = f(π, αj,1−j , λ)(5.15)

= f(αj,1−j , π, λ)

= f(α1−j,j , π, λ)

= AVj (π, λ).

The truth of the following corollary is immediate.

Corollary 5.7. The mapping γ 7→ γ establishes an isomorphism between
the graphs Vj and Hj, for j = 1, 2.
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