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We show that an even Kakutani equivalence class of Z2

actions is “spanned” by ~α and ~β equivalence classes where
~α = {1 + α1, 1 + α2}, ~β = {1 + β1, 1 + β2} and {1, α−1

i , β−1
i }

are rationally independent for i = 1, 2. Namely, given such
vectors ~α and ~β and two evenly Kakutani equivalent Z2 ac-
tions S and T , we show that U is ~α -equivalent to S and
~β -equivalent to T .

1. Introduction.

In this paper we discuss the relationship between two of the fundamental
examples of restricted orbit equivalence: even Kakutani equivalence and ~α
equivalence. Both equivalence relations arise in the context of representa-
tions of ergodic and measure preserving Rd actions. The first is related to
the Ambrose-Kakutani Theorem [1]: every free, measure preserving and er-
godic R action can be represented as a suspension flow over a free, measure
preserving and ergodic Z action. In the case of Rd and Zd actions, for d > 1,
this is the Katok Representation Theorem [4]. For all d ≥ 1 two Zd actions
are said to be even Kakutani equivalent (denoted e∼) if they arise as sections
of equal frequency in different representations of the same Rd action.

Rudolph has shown that the representation of a finite entropy Rd action
can be achieved with a restriction on the values which the ceiling function
may take [8], [9]. In the one-dimensional case, the return times to the base
can be required to be only {1, α}, with α > 0 an irrational. For d > 1
a vector ~α = {1 + α1, . . . , 1 + αd} is specified, with αi > 0 irrationals,
and the suspension is a tiling representation of the Rd action. The vector
~α determines the sizes and placement rules of the tiles. The equivalence
relation in this context analogous to e∼ is called ~α-equivalence ( ~α∼).

It is clear, in all dimensions, that ~α∼ implies e∼. The converse does not hold.
In [3], Fieldsteel, del Junco and Rudolph construct a spectral invariant which

shows that ~α∼ is a refinement of e∼. This invariant can easily be extended to
higher dimensions.

On the other hand, in the one-dimensional case Park showed that an
even Kakutani equivalence class is, in fact, spanned by ~α and ~β equivalence
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classes, when {1, α−1, β−1} are irrationally related [6]. In this paper we
extend this result to higher dimensions. The main result of the paper is as
follows.

Theorem 1.1. Let (X,M, µ) and (Y,G, ν) be nonatomic Lebesgue proba-
bility spaces. Let S and T be two free measure preserving ergodic Z2 actions
of finite entropy acting on X and Y respectively.

Let ~α = {1+α1, 1+α2} and ~β = {1+β1, 1+β2} where the αi and βi are
positive irrationals and {1, α−1

i , β−1
i } are rationally independent for i = 1, 2.

If S and T are evenly Kakutani equivalent, then there is a nonatomic,
Lebesgue probability space (Z,F , λ) and an ergodic, measure preserving, and
free Z2 action U on Z so that

S
~α∼ U and U

~β∼ T.(1)

In [6] the author proves the result by constructing the action U and
the flows over it explicitly. Extending these methods to higher dimensions
quickly becomes an intractable tiling problem. Instead, in this paper, we
use the fact that both equivalence relations can be cast as restricted orbit
equivalences to prove the result. This characterization will enable us to
recognize e∼ and ~α∼ by checking for relationships in the orbit structures of
the various Zd actions. Thus we will be able to work with the discrete
actions directly, and we won’t be constructing flows or tilings.

Even Kakutani equivalence of Zd actions was cast as a restricted orbit
equivalence by Rudolph and del Junco in [2]. The one-dimensional charac-
terization is older (see for example [5]) and relies on the linear ordering of
the integers. The higher-dimensional characterization is more complicated
due to the more complex geometry in the orbits of a higher-dimensional
group action.

The situation for ~α-equivalence is different. The orbit equivalence charac-
terization for one-dimensional ~α-equivalence is given in [3] and is extended
to dimension two by Şahin in [10]. Surprisingly this higher dimensional for-
mulation does not require more restrictions on the orbit equivalence. Given
that tilings of the plane are much more complicated than tilings of the line,
it is surprising that new invariants of equivalence do not appear in higher
dimensions.

As was discussed above, in this paper we use the results of [2] and [10] to
work only with restricted orbit equivalences between discrete actions, and
provide a simpler proof of the result in [6]. We note that the arguments
in this paper hold in any dimension, but we state the theorem for d = 2,
because the techniques in, and hence the results of, [10] hold for d = 2. The
paper is self contained in that the next section contains the concepts and
definitions from [2] and [10] necessary for our arguments.
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Finally, we remark that in [7], the author provides an outline of the proof
in the one-dimensional case using the restricted orbit equivalence definition
of ~α equivalence. The results in this paper, of course, subsume the one-
dimensional result, but more importantly, the techniques we use here are
significantly different to those sketched in [7]. The differences are due to the
more complicated geometry and definition of even Kakutani equivalence in
higher dimensions.

2. Preliminaries.

2.1. Notation. Throughout the paper (X,F , µ) and (Y,G, ν) will denote
Lebesgue probability spaces. S = {S~n}~n∈Zd and T = {T ~n}~n∈Zd will denote
measurable measure preserving ergodic and free Zd actions on X and Y
respectively.

For ~v ∈ Zd, if ~v = (v1, . . . , vd) we set ‖~v‖ = max{|v1|, . . . , |vd|}. We
denote the ith component of the vector ~v by ~vi. To avoid confusion, the ith

component of an indexed vector such as ~vn will be denoted by [~vn]i.
Given the action S, we define

RS = {(x1, x2) ∈ X ×X : there is a ~n ∈ Zd with S~nx1 = x2}.

If G is an abelian group a G-valued S cocycle is defined to be a function
f : RS → G satisfying the cocycle condition f(x, y) = f(x, z) + f(z, y)
for every (x, y), (x, z) ∈ RS . A coboundary is defined in the usual way. We
define the S-ordering cocycle of the Zd action S, ~S:RS −→ Zd, by ~S(x, y) = ~n
if and only if S~nx = y.

Set Bn = {~v : 0 ≤ v1, . . . , vd ≤ n} and let E ⊂ X. If for some integer
n > 0 the sets {S~vE : ~v ∈ Bn} are disjoint, we call SBnE = ∪~v∈BnS

~vE a
Rohlin tower of size n for S. Each set S~vE, for ~v ∈ Bn, is called a level of the
tower and the level corresponding to ~0 is called the base of the tower. For
C ⊂ Bn we call SCE = ∪~v∈CS~vE the subtower with shape C. For E′ ⊂ E
we call SBnE′ a slice of the tower. If µ(SBnE) > 1− δ we say the tower has
error < δ.

Let P = {p1, . . . , pk} be a measurable partition of X. By the (n, P )-name
of a point x ∈ X we mean the map Pn(x) : Bn → P defined by Pn(x)[~v] = pi
if and only if S~vx ∈ pi. Finally, for R ⊂ Zd, we denote the cardinality of R
by |R| and the complement of any set A by Ac.

2.2. Restricted orbit equivalence characterizations. Here we give the
restricted orbit equivalence characterizations of the equivalence relations e∼
and ~α∼. We refer the reader to [2], [3] and [10] for details.

Definition 2.1. Two Zd actions S and T are evenly Kakutani equivalent if
there is an orbit equivalence φ : X → Y between S and T such that given
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ε > 0, there is an N(ε) > 0, and a set A ⊂ X with µA > 1− ε such that for
all x, y ∈ A and on the same orbit if ~S(x, y) > N then

‖~S(x, y)− ~T (φx, φy)‖ < ε‖~S(x, y)‖.(2)

The set A will be called an ε Kakutani pinning set. The constant N(ε)
will be called an ε Kakutani constant. Property (2) will be referred to as
the distortion property of φ.

Definition 2.2. Let ~α = {1 + α1, 1 + α2} where αi are positive irrationals.
Let S and T be measurable, measure preserving, free, and ergodic Z2 ac-
tions on (X,M, µ) and (Y,G, ν) respectively. The actions S and T are
~α-equivalent if and only if there exists an orbit equivalence φ : X → Y
between S and T such that

1) given ε > 0 there is an N(ε) > 0, and a set A ⊂ X with µA > 1 − ε

such that for all x, y ∈ A and on the same orbit if ~S(x, y) > N then

‖~S(x, y)− ~T (φx, φy)‖ < ε‖~S(x, y)‖,
and

2) the function d

(
~Si(x,y)−~Ti(φx,φy)

αi
,Z
)

is a circle valued coboundary for

i = 1 . . . d.

We will refer to the second condition on the orbit equivalence in Defini-
tion 2.2 as the coboundary condition of φ.

3. Proof of the main theorem, Theorem 1.1.

Let S, T , ~α, and ~β be as in the statement of Theorem 1.1. Let Θ : X → Y
be the orbit equivalence given by applying Definition 2.1 to S and T . Let
P = {p1, . . . , pk} be a generating partition for S.

We will inductively construct a third Lebesgue space (Z,M, λ), a measure
preserving ergodic free Z2 action U on Z, and an orbit equivalence ψ (φ)
between S and U (T and U) which satisfies Definition 2.2 with ~α (~β). The
space Z will be a subset of [0, 1], and λ will be Lebesgue measure.

3.1. The First Step of the Construction. We begin the construction
by choosing a Rohlin tower τ1 of size n1 (to be determined later) for S. We
begin constructing the space Z by constructing a subset Z1 of [0, 1] as a
copy of a subtower X1 of τ1. We will describe the shape I1 of this subtower
in detail below. We construct a partial action U1 defined on most levels of
Z1 by defining set maps U~e11 (U~e21 ) so that Z1 is a Rohlin tower of U1. Note
that U~e11 (U~e21 ) will be undefined on the rightmost (uppermost) levels of the
tower.

The key ingredients of the construction are the properties of τ1, and we
describe them first without technical detail. We select εi-Kakutani pinning
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sets A(i) for Θ (where the εi will be determined later) and set A = ∩A(i).
Using the ergodic theorem we will choose τ1, so that its base E1 is entirely
contained in A(1) and most of its levels are well covered in measure by the
set A. By partitioning the base E1, if necessary, we can assume that a level
S~v(E1) is entirely contained in A or in Ac. If a level is contained in A, we
call it a good level. We define ψ1 on a good level S~vE1 by mapping it to level
~v + ~c1 in Z1, where ~c1 will be chosen using the following standard lemma
with ε = ε1:

Lemma 3.1. Suppose α, β ∈ R are such that {1, α−1, β−1} are rationally
independent, and that ε > 0 is given. Let T2 = S1 × S1 denote the 2-torus,
and Bε(0) ⊂ T2 denote the ε neighbourhood of 0 in T2.

Then there exists K(ε) > 0 such that for all (x, y) ∈ T2, there is 0 ≤ k ≤
K(ε) such that Rk(x, y) ∈ Bε(0) where Rk(x, y) = (x+ k

α , y + k
β ).

This lemma guarantees that we can choose ~c1 so that ψ1 will satisfy a
coboundary condition with the αi (condition (15) below). Since ε1 will be
determined at the start of the construction we can choose n1 so that it is
much larger than K(ε1). Then ψ1 will automatically satisfy a distortion
property (condition (14) below) on good levels of τ1.

To construct an orbit equivalence between U1 and T , we set σ1 =
∪~v∈Bn1

T~v(Θ(E1)) and make the following observation. Normally an orbit
equivalence will not necessarily preserve Rohlin towers, but using the fact
that Θ is an even Kakutani equivalence we can choose n1 so that if a level
S~v(E1) of τ1 is far enough away from the base, and is entirely contained in
A(1) then Θ(S~v(E1)) ⊂ σ1. Thus, if τ1 is also chosen so that most of its
levels are well covered by A(1) we can guarantee that most levels of τ1 get
mapped into σ1.

We then define a set map φ1 from Z1 to σ1 by sending ψ1(S~v(E1)) to
Θ(S~v(E1)), when the latter is contained in σ1, and to an arbitrary subset
of σ1 otherwise. Because n1 can be chosen to be very large compared to
K(ε1), φ1 will inherit a distortion property (with different parameters) from
Θ in spite of the vector ~c1 involved in the definition of ψ1 (condition (14′)
below).

In addition, since we know a priori where Θ sends levels of τ1, using
Lemma 3.1 the vector ~c1 can be chosen to additionally guarantee that φ1

satisfies a coboundary condition with the βi (condition (15′) below).
Now for the details. Fix ε > 0 and a sequence {εn} of positive real numbers

such that
∑
εn < ε. Let N( εn32) be an increasing sequence of εn

32 Kakutani
constants, and let A(n) denote the εn

32 Kakutani pinning sets. Let K(n) be
an increasing sequence chosen to satisfy Lemma 3.1 for εn

4 and {αi, βi}, for
both i = 1, 2. Let N(n) be an increasing sequence of integers chosen so that

N(n) ≥ N
( εn

32

)
and(3)
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4
∑n

i=1K(i)
N(n)

<
εn
16
.(4)

Let A = ∩∞n=1A(n) and note that µA > 1− ε.
We pick k ∈ N such that

4N(1)
k

<
ε1
8
.(5)

We use the Rohlin Lemma and the Ergodic Theorem to choose n1 large
enough so that the tower τ1 has error < ε2

10 and satisfies:
1) E1 ⊂ A(1),
2) for all x ∈ E1

|~v ∈ Bn1 : S~vx ∈ A|
n2

1

> 1− 2ε,
|~v ∈ Bn1 : S~vx ∈ A(1)|

n2
1

> 1− ε1
16
,(6)

3) and finally

4(k +K(2) +N(2))
n1

<
ε1
32
.(7)

To define the subtower X1 of τ1 we let b1 = K(2) + N(2) + ε1
16n1 and

~b1 = (b1, b1). We set I1 = Bn1−2b1 + ~b1, C1 = Bn1 \ I1, X1 = SI1E1 and
X1 = X1 ∪ E1. Note that by (7)

µX1 > 1− ε2
10
−

4(k +K(2) +N(2) + ε1
16n1)n1

n2
1

> 1− ε1
2
.(8)

Suppose µ(X1) = `1 and set Z1 = [0, `1). We slice Z1 into subintervals
to make a copy of X1 and we denote the base of this tower by F1. We
define the partial action U1 as discussed above and we set Z1 = U I11 (F1),
the subtower of shape I1. Thus [0, `1) = Z1 = Z1 ∪ F1.

3.1.1. Constructing ψ1. Let x ∈ E1 and suppose that ~v ∈ I1 is such
that S~vx ∈ A(1). Since E1 ⊂ A(1) we claim that our choice of n1 and b1
guarantees that

Θ(S~vx) ∈ TBn1 (Θx).(9)

To see this, note that for ~v ∈ I1 we have N(2) + ε1
16n1 < ‖~v‖ < n1(1 − ε1

16).
So ‖~v − ~T (Θx,ΘS~vx)‖ < ε1

32‖~v‖, thus ‖~T (Θx,ΘS~vx)‖ < (1 + ε1
32)‖~v‖ < n1.

Also, since for s = 1, 2 we have ~vs > ε1
16n1 we have ~Ts(Θx,ΘS~vx) > 0, and

(9) follows.
Without loss of generality suppose that the dimensions of I1 are integer

multiples of k. For a fixed x ∈ E1, take the k grid of SI1x starting at the
lower left hand index of I1. We say y ∈ SI1x is a good element of SI1x if

1) y ∈ A and
2) y lies at least a distance N(1) away from the boundary of its k-grid

box.
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Choose a good element from each grid box which contains one and call this
set A1(x). Set A1 = ∪x∈E1A1(x). It follows from (5), (6) and (7) that
µ(A1) > 1

2k2 .
For each x ∈ E1, let the set {x1, . . . , xm(x)} denote the elements of A1(x)

in lexicographic order. Define ~V1(x) = {~v1, . . . , ~vm(x)} ⊂ I1 by ~vj = ~S(x, xj)
for j = 1, . . . ,m(x). Thus, ~V1(x) is a list of the levels of τ1 containing the
elements of A1(x).

We first define ψ1 on the levels in ~V1(x). To this end we partition E1 into
subsets Ei1 such that:

1) The set V1 is constant over each set Ei. Namely, if x, y ∈ Ei1 then
~V1(x) = ~V1(y) = ~V1(i).

2) For each ~v ∈ Bn1 , the level S~v(Ei1) is contained entirely in A (A(1))
or Ac (A(1)c). Namely, S~v(Ei1)∩A(1) is either empty or all of S~v(Ei1)
and S~v(Ei1) ∩A is either empty or all of S~v(Ei1).

3) The map Θ is constant on the levels of I1 which lie in A(1). Namely
if ~v ∈ I1 is such that S~v(Ei1) ⊂ A(1) then

~T (Θx,ΘS~vx) = ~T (Θy,ΘS~vy)(10)

for all x, y ∈ Ei1.
4) Finally, every x ∈ Ei1 has the same (n1, P )-name.
Let i(1) denote the number of sets Ei1. Note that by (9) we are guaranteed

that i(1) is finite, even with condition (10). Partition F1 into i(1) measurable
subsets with λ(F i1) = µ(Ei1) and for each i = 1, . . . , i(1) set

ψ1(Ei1) = F i1.

For each i, we can now define ψ1 on S ~V1(i)Ei1. Fix x ∈ Ei1. By our choice of
K(1), for each xj ∈ A1(x) we can find a vector ~c1(i, xj) with

‖~c1(i, xj)‖ < K(1)(11)

such that for s = 1, 2

d

(
(~c1(i, xj))s

αs
,Z
)
<
ε1
4

and(12)

d

(
~Ts(Θ(x),Θ(xj))− Ss(x, xj)− (~c1(i, xj))s

βs
,Z

)
<
ε1
4
.

For each j set

ψ1(S~vj (Ei1)) = U
~vj+~c1(i,xj)
1 (F i1).(13)

For a vector ~v ∈ I1 which is not in ~V1(i) if there is no conflict arising from
(13) we set ψ1(S~vEi1) = U~v1 (F i1). If there is a conflict, then we map S~vEi1 to
an empty level in U I11 (F i1). We do not define ψ1 on SC1(E1) at this stage.
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We claim that ψ1 is well-defined on the levels of X1 and has range Z1. To
see this note that ~vj + ~c1(i, xj) ∈ I1, so ψ1(S~vjEi1) ∈ Z1. Also note that if
j 6= k then since

‖~S(x, xj)− ~S(x, xk)‖ = ‖~S(xj , xk)‖ > 2N(1)

it follows from (4) and (11) that ~vj + ~c1(i, xj) 6= ~vk + ~c1(i, xk).
If y1, y2 ∈ A1(x) then by construction ‖~S(y1, y2)‖ > 2N(1). Using the

properties of the set A1(x), (4), and (11) we have

‖~S(y1, y2)− ~U(ψ1(y1), ψ1(y2))‖ ≤
‖ − ~c1(i, y1) + ~c1(i, y2)‖

‖~S(y1, y2)‖
‖~S(y1, y2)‖(14)

<
ε1
8
‖~S(y1, y2)‖.

In addition, by (12) for s = 1, 2 and y1 and y2 as above

(15) d

( ~Ss(y1, y2)− ( ~U1(ψ1y1, ψ1y2))s
αs

,Z
)

= d

(
~c1(i, y1)
αs

,Z
)

+ d

(
~c1(i, y2)
αs

,Z
)
<
ε1
2
.

3.1.2. Defining φ1. For every i = 1, . . . , i(1) we set φ1(F i1) = Θ(Ei1) and if
~v ∈ I1 is such that the level ψ−1

1 (U~v1F
i
1) in X1 is contained in A(1), we set

φ1(U~v1 (F i1)) = Θ(ψ−1
1 (U~v1 (F i1))).(16)

We do not define φ1 on the rest of the levels of Z1 at this stage.
Recall that by construction Θ is constant on the levels of SI1E1, for all i

every level S~vEi1 is either entirely in A(1) or in A(1)c so φ1 is well-defined.
For levels ~v where (16) holds (9) is satisfied and the range of φ1 is contained
in σ1.

The map φ1 is then defined on Z ′′1 = ψ1(A(1) ∩X1). By (6) and (7)

λZ ′1 = µ(A(1) ∩X1) > 1− ε1
32
− ε1

16
> 1− ε1.(17)

We let Y1 = φ1(Z ′′1 ), and note that since ψ1 and Θ are measure preserving,
so is φ1.

We now show that φ1 satisfies a distortion and coboundary condition on

the set D1 = ψ1

(⋃i(1)
i=1 S

~V (i)Ei1

)
, the image of the special levels in ~V1(i).

Pick zj , zk ∈ D1 and identify which level of in τ1 they came from. Namely,
choose i ∈ {1, . . . , i(1)} and ~vj , ~vk ∈ ~V1(i) such that zj ∈ ψ1(S~vjEi1) and
zk ∈ ψ1(S~vkEi1). Then for x ∈ Ei1 we can choose representative points from
these levels of τ1. Namely, we can find xj , xk ∈ S

~V1(i)Ei1 such that S~vjx = xj ,
S~vkx = xk. Note that by construction we have ‖~S(xj , xk)‖ > 2N(1) and

~U1(zj , zk) = (~vj − ~vk) + (~c1(i, xj)− ~c1(i, xk)).
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Thus, ‖~U1(zj , zk)‖ > N(1) and by (4) we have:

‖~U1(zj , zk)− ~T (φ1zj , φ1zk)‖

= ‖~vj − ~vk + ~c1(i, xj)− ~c1(i, xj)− ~T (Θxj ,Θxk)‖

≤ ‖~S(xj , xk)− ~T (Θxj ,Θxk)‖+ 2K(1)

≤ ε1
32
‖~S(xj , xk)‖+ 2K(1)

≤ ‖~U1(zj , zk)‖
(
ε1
32

+
4K(1)
N(1)

)
<
ε1
8
‖~U1(zj , zk)‖.

So we have

‖~U1(zj , zk)− ~T (φ1zj , φ1zk)‖ <
ε1
8
‖~U1(zj , zk)‖.(14′)

Now notice that

d

( ~Ts(Θx,Θxk)− (~U1(zj , zk))s
βs

,Z
)

≤ d

( ~Ts(φ1z, φ1zj)− ~Ss(x, xj)− (~c1(i, xj))s
βs

,Z
)

+ d

( ~Ts(Θx,Θxk)− ~Ss(x, xk)− (~c1(i, xk))s
βs

,Z
)

for any z ∈ F i1. Thus by (12)

d

( ~Ts(φ1zj , φ1zk)− (~U1(zj , zk))s
βs

,Z
)
<
ε1
2
.(15′)

3.2. The Induction Step of the Construction. We will again begin by
choosing a Rohlin tower τ2 for S, and we will construct Z2, a copy of a
subtower X2 of τ2 in [0, 1]. The key issue is to ensure that Z2 refines Z1,
and that the map ψ2 (φ2) respects ψ1 (φ1) on most of X1 (Z1). We first
briefly describe the part of the construction which is parallel to the first
step.

We choose n2 ∈ N such that there is a Rohlin tower τ2 for S with shape
Bn2 , base E2, and error ε3

10 such that E2 is entirely contained in A(2), and
for all x ∈ E2 we have

|~v ∈ Bn2 : S~vx ∈ τ1|
n2

2

> 1− ε2
5
,

|~v ∈ Bn2 : S~vx ∈ A(2)|
n2

2

> 1− ε2
16
,(18)

and
4(K(3) +N(3) + n1)

n2
<
ε2
32
.(19)
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We define b2,~b2, I2, and C2 as in the first step (with the index in each
parameter increased by one). Set X2 = SI2E2 and X2 = X2 ∪ E2 and note
that by (19) we have

µX2 > 1− ε3
10
− ε2

32
> 1− ε2

2
.(20)

As in the first step we will partition E2 into subsets so that the levels of
X2 are entirely covered by special sets or their complements. The special
sets are a little different this time. For x ∈ E2 we set A2(x) = SI2x ∩ A1

and A2 = ∪x∈E2A2(x). Note that

µA2 > (1− ε2)µA1.(21)

We let {x1, . . . , xm(2)} denote the elements of A2(x) in lexicographic order
and we define ~V2(x) = {~v1, . . . , ~vm(x)} as before: the list of the levels based
at x containing the xi.

We then partition E2 into subsets Ej2 such that each level of τ2 is either
entirely contained in A(2) (A2), or in A(2)c (Ac2), every x ∈ Ej2 has the same
(n2, P )-name, the list V2(x) is constant on each Ej2, and Θ is constant on
the levels of SI2E2 which lie in A(2). By a computation parallel to the one
given in the first step of the construction we can show that

Θ(S~vx) ∈ TBn2 (Θx),(22)

so E2 is partitioned into finitely many subsets, in spite of the last condition.
Let j(2) denote the number of sets Ej2.

We impose one new condition on the partitioning of E2: we require that
each level of X2 lies entirely in Ec1 or in exactly one subset Ei1 of E1.

To begin copying X2 in [0, 1] we first cut an interval of length µE2 from
[0, 1] \ Z1. This will be the base of the tower Z2 and will be labelled F2.

The rest of Z2 will consist of slices of Z1, and some new intervals cut from
the remaining part of [0, 1]. The new intervals will form the levels of Z2 not
covered by Z1. The set maps U~e12 and U~e22 are defined as before and we have
Z2 = F2 ∪ Z2 where Z2 = U I22 F2, the subtower corresponding to X2.

Since the definition of the map ψ2 will depend heavily on how we locate
the various slices of Z1 inside Z2 we finish constructing Z2 as we define ψ2.

3.2.1. Constructing ψ2. As before we will construct ψ2 only on E2∪X2 so
we first eliminate from consideration those slices of X1 in τ2 which don’t lie
entirely in X2. Denote these slices by X ′

1. For ease of notation we continue
to call the partitioned base of this new subtower Ei1. By (8) and (19) we
have

µ(X ′
1) > 1− ε1

2
− ε2

2
.(23)

To construct Z2 we will first slice F1 and Z1 into subsets corresponding
to the various slices of E1 and X ′

1 appearing in X2. Label these slices in
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some way to keep track of where the X ′
1 slices appear in X2. Specifically,

the subset Ei,j,k1 of Ei1 is the base of the kth slice of X1 appearing in Xj
2 . So

we have

X ′
1 =

i(1)⋃
i=1

j(2)⋃
j=1

⋃
k

Xi,j,k
1 and Z ′1 =

i(1)⋃
i=1

j(2)⋃
j=1

⋃
k

Zi,j,k1 .

We will place F i,j,k1 in the same location in Z2 as Ei,j,k1 appears in X2.
The set Zi,j,k1 , however, will be shifted to a different location relative to its
base than Xi,j,k

1 sits relative to Ei,j,k1 . Recall that ψ1 was left undefined on
SC1(Ei1), for every i, so the C1-collar around Zi,j,k1 does not have a preimage
in X. The set Zi,j,k1 will be placed in Z2 starting at a location in this collar.

The translation of Zi,j,k1 relative to its base will be by a vector ~c2 obtained
from Lemma 3.1, this time applied with ε = ε2. The map ψ2 will then
respect ψ1 on X ′

1, and will map each slice Xi,j,k
1 to a location which is a

shift by the vector ~c2 from its original position in τ2. Again, n2 is very large
compared to K(2), so the distortion property is guaranteed, and Lemma 3.1
will guarantee the coboundary property.

To choose the vectors ~c2 let ~vk ∈ ~V2(j) be such that xk = S~vkx ∈ A2(x) is
the first lexicographic occurrence of A2 in Xi,j,1

1 . Using Lemma 3.1 choose
~c2(j, xk) with

‖~c2(j, xk)‖ < K(2)(24)

such that for s = 1, 2 we have

d

(
(~c2(j, xk))s

αs
,Z
)
<
ε2
4

and(25)

d

( ~Ts(Θ(x),Θ(xk))− ~Ss(x, xk)− (~c2(j, xk))s
βs

,Z
)
<
ε2
4
.

Place Zi,j,11 in Z2 so that its location in I2 relative to F2, is a shift of the
position of Xi,j,1

1 in I2 by the vector ~c2(j, xk) − ~c1(i, xk). In particular, for
z ∈ F2 and zk ∈ ψ2(S~vkx) we have

~U2(z, zk) = ~S(x, xk) + ~c2(j, xk).

Since C1 is a collar of width greater thanK(2) around SI1E1, (24) guarantees
that the images of distinct slices of SI1E1 under ψ2 will not intersect.

We repeat this procedure until all the slices of X ′
1 are taken care of, hence

all of Z ′1 is placed in Z2.
We will also define ψ2 on SC1(Ei,j,k1 ) at this stage by mapping this sub-

tower level by level into locations in UC1
1 (F i,j,k1 ) vacated by the translation

of Zi,j,k1 .
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We complete the tower Z2 by slicing intervals of the appropriate length
from [0, 1]\ (Z ′1∪F2) and placing these in the empty positions of I2. Finally,
for the remaining ~v ∈ I2 we set

ψ2(S~vEi2) = U~v2 (F i2).

The map ψ2 is now defined on all of X2 with image Z2. Further, ψ2 refines
ψ1 on X ′

1 ⊂ X2.
We will now show that for y1, y2 ∈ A2, if ‖~S(y1, y2)‖ > N(2) then

‖~S(y1, y2)− ~U2(ψ2y1, ψ2y2)‖ <
ε2
8
‖~S(y1, y2)‖,(26)

and that regardless of the value of ‖~S(y1, y2)‖ we always have

d

( ~Ss(y1, y2)− (~U2(ψ2y1, ψ2y2))s
αs

,Z
)
< ε1 + ε2.(27)

Pick such a pair y1 and y2 and suppose they lie in A2(x), x ∈ Ej2. Then
either y1 and y2 lie in the same slice, Xi,j,k

1 of X1, or there exist k1 6= k2

and i1, i2 such that y1 ∈ Xi1,j,k1
1 and y2 ∈ Xi2,j,k2

1 . In the first case, by
construction we have

~U2(ψ2y1, ψ2y2) = ~U1(ψ1y1, ψ1y2)

and
~U1(ψ1y1, ψ1y2) = ~S(y1, y2) + ~c1(i, y1) + ~c1(i, y2).(28)

In the second case pick z ∈ F j2 . Then for p = 1, 2 there exist xmp ∈
A2(x) ∩X

ip,j,kp

1 such that

~U2(z, ψ2yp) = ~S(x, xmp) + ~c2(j, xmp) + ~U1(ψ1xmp , ψ1yp).(29)

In both cases by (4), (11), (24), and the construction of ψ1, if ‖~S(y1, y2)‖ >
N(2), then we have

‖~S(y1, y2)− ~U2(ψ2y1, ψ2y2)‖ ≤ 4K(1) + 2K(2) <
ε2
8
‖~S(y1, y2)‖.

To see that (27) holds we note that in the first case (15) holds, hence, so
does (27). In the second case using (29) we see that by (12) and (25)

d

( ~Ss(y1, y2)− (~U2(ψ2y1, ψ2y2))s
αs

,Z
)

≤ d

(
(~c1(i1, y1))s

αs
,Z
)

+ d

(
(~c1(i1, y2))s

αs
,Z
)

+ d

(
(~c2(j, xm1))s

αs
,Z
)

+ d

(
(~c2(j, xm2))s

αs
,Z
)

+ d

(
(~c1(i1, xm1))s

αs
,Z
)

+ d

(
(~c1(i2, xm2))s

αs
,Z
)

< ε1 + ε2.
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3.2.2. Constructing φ2. The construction here is essentially the same as
in the first step of the construction. The map φ2 will be a set map defined
on most of the levels of Z2 with range contained in TBn2 (ΘE2).

We start by setting φ2(F
j
2 ) = Θ(Ej2) for all j = 1, . . . , j(2). By construc-

tion we are guaranteed that for all j, and ~v ∈ I2 the level S~vEj2 in X2 is
entirely in A(2) or A(2)c. For ~v ∈ I2 if ψ−1

2

(
U~v2 (F j2 )

)
⊂ A(2) then (22) holds

and we set

φ2

(
U~v2 (F j2 )

)
= Θ

(
ψ−1

2 (U~v2 (F j2 ))
)
.

The map φ2 is defined on Z2 ∩ψ2(A(2)) which has measure µ(X2 ∩A(2)) >
1− ε2

2 −
ε2
16 > 1−ε2. We let Y2 = φ2(Z2∩ψ2(A(2))). Since ψ2 is a refinement of

ψ1 onX ′
1 it is clear that φ2 is a refinement of φ1 on Z ′′2 = ψ2(X ′

1∩A(1)∩A(2)).
By (17) and (18) we have

λZ ′′2 > 1− ε1 − ε2.(30)

To see that φ2 satisfies the appropriate properties we argue exactly as
before. Let D2 = ψ2

(
∪j(2)
j=1 S

~V2(j)Ej2
)
, notice that D2 ⊂ Z ′′2 and pick z1, z2 ∈

D2 such that either z1 and z2 lie in the same slice Zi,j,k1 of Z ′1 or there exist
k1 6= k2 and i1, i2 such that z1 ∈ Zi1,j,k11 and z2 ∈ Zi2,j,k21 , and further

‖~U2(z1, z2)‖ > 2N(2).(31)

In the first case, by construction we have

~T (φ2z1, φ2z2) = ~T (φ1z1, φ1z2)

and we know there exist y1, y2 ∈ Xi,j,k
1 ∩ A2 such that (28) holds. Then

(31) and (24) guarantee that ‖~S(y1, y2)‖ > N(2). Since ~T (φ1z1, φ1z2) =
~T (Θy1,Θy2) we have

‖~T (φ1z1, φ1z2)− ~U2(z1, z2)‖ ≤
ε2
32
‖~S(x1, x2)‖+ 2K(1)

≤ ε2
32

(‖~U1(z1, z2)‖+ 2K(1)) + 2K(1)

<
ε2
8
‖~U1(z1, z2)‖.

On the other hand, if z1 and z2 lie in different slices of Z ′1 then (29) holds,
so

‖~T (φ2z1, φ2z2)− ~U2(z1, z2)‖

≤ ‖~T (Θy1,Θy2)− ~S(y1, y2)‖+ 4K(1) + 2K(2),
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and an argument similar to the previous case then yields

‖~T (φ1z1, φ1z2)− ~U2(z1, z2)‖ <
ε2
8
‖~U(z1, z2)‖.

To see that the coboundary property holds, note that if z1 and z2 lie in
the same slice of Z ′1 then by (15′)

d

(
(~U2(z1, z2))s − ~Ts(φ2z1, φ2z2)

β2
,Z
)
< ε1.

If, instead, (29) holds we have

d

( ~Ts(φ2z1, φ2z2)− (~U2(z1, z2))s
βs

,Z
)

≤ d

( ~Ts(Θx,Θxm1)− ~Ss(x, xm1)− (~c2(j, xm1))s
β2

,Z
)

+ d

( ~Ts(Θxm1 ,Θy1)− (~U1(ψ1xm1 , ψ1y1))s
β2

,Z
)

+ d

( ~Ts(Θx,Θxm2)− ~Ss(x, xm2)− (~c2(j, xm2))s
β2

,Z
)

+ d

( ~Ts(Θxm2 ,Θy2)− (~U1(ψ1xm2 , ψ1y2))s
β2

,Z
)
.

By (25) the first and third summands are bounded by ε2
4 . Since the points

ψ1xmi and ψ1yi are all in D1 and in the same slice of Z ′1, by (15′) the second
and last summands are bounded by ε1

2 . We have then

d

( ~Ts(φ2z1, φ2z2)− (~U2(z1, z2))s
βs

,Z
)
< ε1 +

ε2
2
.

3.3. Conclusion of the proof. Continuing in this fashion, at stage n we
define sequences {X ′

n} and {Z ′n} of subsets of X and [0, 1] respectively with

µX ′
n = λZ ′n > 1− εn

(see for example (23)) and a set map ψn from the level sets of X ′
n to those

of Z ′n such that ψn is a refinement of ψn−1. Thus if we set

X ′ = ∪∞n=1 ∩∞k=n X ′
k Z ′ = ∪∞n=1 ∩∞k=n Z ′k

then µX ′ = λZ ′ = 1. In addition, since P was chosen to be a generating
partition ψ = limψn : X ′ → Z ′ is a well-defined point map. If we set
U = limUn, this is a Z2 action on Z ′ and ψ is an orbit equivalence between
S restricted to X ′ and U on Z ′.
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We also define at each stage n sets Z ′′n ⊂ Zn and Yn ⊂ Y with

λ(Z ′′n) = ν(Yn) > 1− (εn−1 + εn)

(see for example (30)). The maps φn are constructed so that φn(Z ′′n) = Yn
and φn refines φn−1 on Z ′′n. We set

Z ′′ = ∪∞n=1 ∩∞k=n Z ′′k Y ′ = ∪∞n=1 ∩∞k=n Yn.

Then λZ ′′ = νY ′ = 1 and the map φ = limφn is a well defined point map
on Z ′′.

Lemma 3.2. Let ψ be the map described above. Then
1) the function

d

(
~Ss(x, y)− ~Us(ψx, ψy)

αs
,Z

)
is a circle valued coboundary for s = 1, 2, and

2) for all η > 0 there exists a set A ⊂ X ′ and an integer M(η) > 0 such
that if x, y ∈ A are on the same orbit and ‖~S(x, y)‖ > M(η) then

‖~S(x, y)− ~U(ψx, ψy)‖ < η‖~S(x, y)‖.

Proof. For each n, there exist sets An ⊂ X ′
n, such that µAn > (1 − εn)µA

and for all x, y ∈ An and on the same orbit

1) d
( ~Ss(x,y)−((~Un)(ψnx,ψny))s

αs
,Z
)
<
∑n

i=1 εn for s = 1, 2, and
2) if ‖~S(x, y)‖ > N(n) then

‖~S(x, y)− ~Un(ψnx, ψny)‖ <
εn
2
‖~S(x, y)‖.

We set A = ∩nAn ⊂ X ′ and notice that µA > 0. To see the first part of the
claim we note that for all x, y ∈ A and on the same orbit

d

(
~Ss(x, y)− ~Us(ψx, ψy)

αs
,Z

)
< ε

where ε > 0 is chosen at the start of the construction. If ε < 1
3 a standard

argument yields that the function is a circle valued coboundary on RS∩(A×A),
and thus that it is a circle valued S coboundary on all of RS (see for example
[3]).

To see the second part of the claim note that if x, y ∈ A then x, y ∈ An for
all n. Then given η > 0 we select n such that εn < η and set M(η) = N(n).
The result follows. �

A similar argument yields the parallel result for the orbit equivalence φ:

Lemma 3.3. Let φ be the map described above. Then
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1) the function

d

( ~Us(x, y)− ~Ts(φx, φy)
βs

,Z
)

is a circle valued coboundary for s = 1, 2, and
2) for all η > 0 there exists a set D ⊂ Z and an integer M(η) > 0 such

that if x, y ∈ D are on the same orbit and ‖~U(x, y)‖ > M(η) then

‖~U(x, y)− ~T (φx, φy)‖ < η‖~U(x, y)‖.

Proof. For each n there exists a set Dn ⊂ Z ′′n such that λDn > (1 − εn)A
and for all z1, z2 ∈ Dn on the same orbit

1) d
( (~Un(z1,z2))s−~Ts(φnz1,φnz2)

βs
,Z
)
<
∑n

i=1 εn for s = 1, 2, and

2) if ‖~Un(z1, z2)‖ > 2N(n) then

‖~Un(z1, z2)− ~T (φnz1, φnz2)‖ <
εn
2
‖~Un(z1, z2)‖.

Again, set D = ∩Dn ⊂ Z and argue as before.
�

By Proposition 4 in [2] we have that the sets A and D from the previ-
ous two results can be made arbitrarily large. This completes the proof of
Theorem 1.1.
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