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In this paper we consider, for 1 ≤ m < p < 2, the gener-
alized KPZ equation ut = 4(um) − |∇u|p. For m = 1, we
show existence and uniqueness of the so called very singu-
lar solution which is self-similar. A complete classification of
self-similar solutions is also given. For m > 1, we establish
the existence of very singular self-similar solution and prove
that such a solution must have compact support. Moreover,
we derive the interface relation. Recent experience with par-
allel equations where the gradient term |∇u|p is replaced by
up indicates that the self-similar solutions are crucially im-
portant in study intermediate asymptotic behavior of general
solutions.

1. Introduction.

In this paper, we consider the equation

ut = ∆u− |∇u|p in Rn × (0,+∞), 1 < p < 2(1.1)

and its porous media counterpart

ut = ∆(um)− |∇u|p in Rn × (0,+∞), 1 < m < p < 2.(1.2)

Equation (1.1) is called generalized KPZ equation which arises from mod-
elling of growth mechanism for surfaces through ballistic deposition, see [15],
[16]. The model is derived from consideration that the growth mechanism
is governed (approximating) by local rules. In such a model, u(x, t) is the
height above the underlying substrate which describes the interface profile,
or the surface of the material. Experiments and numerical simulation show
that u(x, t) behaviours in a self-similar way. One important aspect in the
study of such a model is then to find out the scaling exponents and functions
which characterize the self-similarity of surface on a large space-time scale.

The actual physical model involving (1.1) is subject to random initial data
and thorough analytical understanding is beyond our ability.

In this paper, we consider a simpler case, where the initial value u(x, 0) =
u0(x) is a deterministic function.
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The main purpose is to study the existence and detailed characterization
of special profiles of various type of self-similar solutions to (1.1) and (1.2),
see Theorems 2.1 and 3.1 for more details.

Here by a self-similar solution we mean that u has the form

u(x, t) = t−αf(|x|t−β).(1.3)

For Equation (1.1),

α :=
2− p

2(p− 1)
, β :=

1
2
,(1.4)

and f as a function of r = |x|t−β, defined on [0,+∞), solves

f ′′ +
n− 1

r
f ′ + βrf ′ + αf − |f ′|p = 0 ∀ r > 0.(1.5)

For Equation (1.2),

α :=
2− p

p(3−m)− 2
,(1.6)

β :=
p−m

p(3−m)− 2
(1 < m < p < 2 ⇒ p(3−m)− 2 > 0),

and f as a function of r = |x|t−β, defined on [0,+∞), solves

(fm)′′ +
n− 1

r
(fm)′ + βrf ′ + αf − |f ′|p = 0 ∀ r > 0.(1.7)

In particular, we are able to show the existence of the so called very
singular solutions for both (1.1) and (1.2).

By a singular solution we mean a nonnegative and nontrivial solution
which is continuous in Rn × [0,+∞)\{(0, 0)} and satisfies

lim
t↘0

sup
|x|>ε

u(x, t) = 0 ∀ ε > 0.(1.8)

A singular solution is called a very singular solution if

lim
t↘0

∫
|x|≤ε

u(x, t)dx = ∞ ∀ ε > 0.(1.9)

Note that condition (1.9) is equivalent to, if u is given by (1.3),

lim
r→∞

rα/βf(r) = 0.(1.10)

Furthermore, if nβ < α and the solution f of (1.5) or (1.7) satisfies (1.10),
then u(x, t) given explicitly by (1.3) satisfies (1.8) and (1.9), i.e., it is a very
singular self-similar solution of (1.1) or (1.2).
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In recent years, several authors of [3]-[9], [11]-[14] and [17]-[20] studied
the existence of very singular self-similar solutions and their role in describ-
ing the intermediate asymptotic behavior of general solutions to

ut = 4(um)− up, 0 < m < ∞, p > 1(1.11)

and

ut = div(|∇u|m−1∇u)− up, 0 < m < ∞, p > 1.(1.12)

But, it can be seen from what follows that (1.1) and (1.2) have some
peculiar properties very different from (1.11) and (1.12).

We mention that the Cauchy problem of (1.1) and related problems have
been studied by Ben-Artzi and Koch [1], B. Gilding et al [10] and more
recently by Benachou and Laurencot [2]. In particular, Benachou and Lau-
rencot [2] proved the existence and uniqueness of very singular solution of
(1.1), but their proof is different from ours.

The organization of this paper is as follows. In §2 we study (1.5) and give
a complete classification of its solutions. In particular, the existence and
uniqueness of very singular self-similar solution is proved. In §3, we study
(1.7) and establish the existence of a very singular self-similar solution which
has compact support. The interface relation is also shown.

2. Study of self-similar solutions to (1.1).

In this section we study (1.5) and give a complete classification of its so-
lutions in relation to the initial value f(0). In particular, we prove the
existence and uniqueness of very singular self-similar solution. We consider
the solution of (1.5) with initial value

f(0) = a > 0, f ′(0) = 0.(2.1)

For each a > 0, (1.5) and (2.1) has a unique solution f(r; a), at least locally.
If we multiply (1.5) by rn−1 and integrate from 0 to r, we get

f ′rn−1 = −βrnf(r) +
∫ r

0
sn−1[(βn− α)f + |f ′|p] ds.

Another integration on [0, r] after dividing the above equation by rn−1 and
simple calculation yield

f(r) = a− a
α

2n
r2 + o(r2).

This shows how the solution behaviours as r → 0.
If we denote by (0, R(a)) the maximal existence interval where f > 0,

then f ′ < 0 in (0, R(a)) and either (i) R(a) = ∞ and limr↗∞ f(r; a) = 0, or
(ii) R(a) < ∞ and f(R(a); a) = 0. The main results of this section read as
follows.
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Theorem 2.1. Assume that 1 < p < 2. For each a > 0, let f(r; a) be the
solution of (1.5), (2.1). Then the following conclusions hold:

(i) If 2α ≤ n, then R(a) = ∞ and lim infr→∞ r2αf(r; a) > 0.
(ii) If 2α > n, then there exists a∗ > 0 such that the following classification

is valid:
(a) If a ∈ (0, a∗), then R(a) < ∞ and f ′ < 0 in (0, R(a)].
(b) If a ∈ (a∗,∞), then R(a) = ∞, f(r; a) is strictly increasing and

f ′(r; a) is strictly decreasing with respect to a. And for some k(a) >
0,

(2.2) f(r; a) = k(a)r−2α
{
1 + 2α(2 + 2α− n− [2αk(a)]p−1)r−2 + o(r−2)

}
as r →∞.

(c) If a = a∗, then limr→∞ r2αf(r; a∗) = 0, and for some k(a∗) > 0,

(2.3) f(r; a∗) = k(a∗)r2α−ne−r2/4
{
1− 2(2α− n)(α− 1)r−2 + o(r−2)

}
as r →∞.

This theorem shows that (1.1) has a very singular self-similar solution if
and only if 1 < p < (2 + n)/(1 + n), and in case of existence the solution is
unique.

We write (1.5) as{
f ′ = v,

v′ = −n−1
r v − r

2v − αf − |v|p−1v.
(2.4)

Lemma 2.1. Assume that a > 0 and f = f(r; a) is the solution of (1.5),
(2.1), (0, R(a)) is the maximal existence interval where f > 0. Then

|f ′(r)| ≤ (αa)1/p for all 0 ≤ r ≤ R(a).

Proof. First, we consider the case where f ′′ is negative in an interval. If
there exist two constants b and c such that 0 < b < c ≤ R(a) and f ′′(r) ≤ 0
in (b, c). Then by Equation (1.5) we have |f ′(r)|p ≤ αf(r) ≤ αa. Therefore,
|f ′(r)| ≤ (αa)1/p for all r ∈ [b, c].

On the other hand, if b1 and c1 are so given that 0 < b1 < c1 ≤
R(a), f ′′(r) ≥ 0 in (b1, c1) and f ′′(b1) = 0, then f ′(r) ≥ f ′(b1), and hence
|f ′(r)| ≤ |f ′(b1)| for all r ∈ [b1, c1].

Since f ′′(0) = −αa/n < 0, the above consideration show that the conclu-
sion of Lemma 2.1 holds. �

For any given λ > 0, we denote Lλ = {(f, v) : f > 0, −λf < v < 0}.
Lemma 2.2. For any given λ > 0 there exists an rλ := 2(λ + α/λ) such
that Lλ is positively invariant for r > rλ. That is, if (f(rλ), v(rλ)) ∈ Lλ,
then the orbit (f(r), v(r)) of (2.4) remains in Lλ for all r ≥ rλ.
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Proof. Since the vector field points into Lλ from the positive f -axis, we need
to show that it also points into Lλ from the ray

lλ = {(f, v) : f > 0, v = −λf}.
We have on lλ,

v′

f ′
= −n− 1

r
− r

2
− α

f

v
− |v|p−1 < −r

2
+

α

λ
.

Hence,
v′

f ′
< −λ on lλ

if r ≥ rλ := 2(λ + α/λ). This completes the proof. �

By using similar arguments as those of Lemmas 5-7 in [4], the following
result can easily be shown to hold. But, for simplicity, we omit the details.

Lemma 2.3. Suppose f(r; a) > 0 for all r > 0. Then
(i) (f(r; a), v(r; a)) → (0, 0) as r →∞.

(ii) limr→∞
v(r;a)
f(r;a) = La exists, and La = 0 or La = −∞.

We now prove Theorem 2.1(i), which gives the nonexistence results of
very singular self-similar solutions when 2α ≤ n.

Proof of Theorem 2.1(i). Suppose 2α ≤ n. Multiplying (1.5) by r2α−1 we
have, for r ∈ (0, R(a)),(

r2α−1f ′ +
1
2
r2αf

)′
= (2α− n)r2α−2f ′ + r2α−1|f ′|p > 0.

The function g(r) := r2α−1f ′+ 1
2r2αf is strictly increasing in (0, R(a)). Note

that limr↘0 g(r) = 0, we get g > 0 in (0, R(a)). Since f ′ < 0, we conclude
that R(a) = ∞ and f ↘ 0 as r ↗ ∞. In addition, r2αf(r; a) ≥ 2g(r) and
g(r) is increasing, hence lim infr→∞ r2αf > 0. This completes the proof. �

In the sequel of this section we always assume that 2α > n. Let La be
given as in Lemma 2.3, we define

A = {a > 0 : R(a) < ∞},
B = {a > 0 : R(a) = ∞ and La = 0},
C = {a > 0 : R(a) = ∞ and La = −∞}.

By Lemma 2.3 we know that A ∪ B ∪ C = (0,∞). It is obvious that these
sets are disjoint.

Lemma 2.4. The set A is nonempty and open.
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Proof. We choose a = ε � 1 and let

wε(r) = ε−1f(r; ε).

Then wε satisfies{
w′′ε + n−1

r w′ε + r
2w′ε + αwε + εp−1|w′ε|p−1w′ε = 0,

wε(0) = 1, w′ε(0) = 0.
(2.5)

Let E(wε) = αw2
ε + (w′ε)

2, then d
drE(wε) ≤ 0. Therefore, E(wε) ≤ α for all

ε > 0. Consequently, both wε and w′ε are uniformly bounded with respect
to r ≥ 0 and ε > 0. It follows by the standard continuity argument that

wε → w as ε → 0 in C2([0, R])

for any R > 0, where w is the solution of the reduced problem{
w′′ + n−1

r w′ + r
2w′ + αw = 0,

w(0) = 1, w′(0) = 0.
(2.6)

We claim that w has a zero. Suppose on the contrary that w(r) > 0 for
all r > 0. By (2.6) we have(

rn−1w′(r) +
1
2
rnw(r)

)′
=

(n

2
− α

)
rn−1w(r) < 0.(2.7)

Therefore, w′(r)+ 1
2rw(r) < 0 for all r > 0. Thus we have w(r) ≤ exp{− r2

2 },
and lim supr→∞ rn−1w′(r) = 0. But, an integration of (2.7) gives

rn−1w′(r) +
1
2
rnw(r) =

∫ r

0

(n

2
− α

)
sn−1w(s) ds < −C, r � 1

for some constant C > 0. It is a contradiction.
Since w′ < 0 at the first zero of w, it follows that for ε sufficiently small,

wε has a zero as well. This shows that A is nonempty.
By the uniqueness and continuous dependence on the initial data of solu-

tion we see that A is open. �

Lemma 2.5. The set B is nonempty and open.

Proof. We first show that if initial data a is suitably large then the corre-
sponding orbit must stay in L1 for all r ≥ 0. This implies that a ∈ B.

Let r0 be the first value such that the orbit intersects with the boundary
of L1. It is clear that v(r0) = −f(r0). Consequently, using Lemma 2.1, we
have

f(r0) = −v(r0) ≤ (αa)1/p,(2.8)
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and

f(r0) = f(0) +
∫ r0

0
f ′(s)ds(2.9)

≥ a +
∫ r0

0
{−(αa)1/p}ds

= a− (αa)1/pr0.

(2.8) combined with (2.9) yields

r0 ≥
a− (αa)1/p

(αa)1/p
→∞ as a →∞.

It contradicts to Lemma 2.2.
Now we prove that B is open. Suppose a0 ∈ B. Then by the definition

of B, there exists r0 > 0 such that (f(r0; a0), v(r0; a0)) ∈ L1. Hence, by
continuous dependence on initial data there exists a neighbourhood Σ of a0

such that if a ∈ Σ, then f(r; a) > 0 for all r ∈ [0, r0] and (f(r0; a), v(r0; a)) ∈
L1. It follows from Lemmas 2.2 and 2.3 that if a ∈ Σ, the corresponding
La = 0, so that a ∈ B. �

Lemma 2.6. Assume that f1(0) = a1 > 0, f2(0) = a2 > 0. If a2 > a1

then

f2(r) > f1(r), f ′2(r) < f ′1(r) ∀ 0 < r < R(a1).

Proof. Let w = f1f
′
2 − f ′1f2, then w satisfies

w′ +
{

n− 1
r

+
r

2
+ |f ′2|p−1

}
w = −f ′1f2[|f ′2|p−1 − |f ′1|p−1](2.10)

∆= F (r).

Because f ′′i (0) = −ai/n, a1 < a2 and f ′i(0) = 0, it follows that f ′2(r) < f ′1(r),
and consequently F (r) > 0 for r � 1. Denote

r0 = sup{0 < r < R(a1) : f ′2(s) < f ′1(s) ∀ s ∈ (0, r)}.

Then we have

w′ +
{

n− 1
r

+
r

2
+ |f ′2|p−1

}
w = F (r) > 0 ∀ 0 < r < r0.

Since w(0) = 0, it follows that

w(r) > 0, i.e., (f2/f1)′ > 0 ∀ 0 < r < r0.

Therefore, f2(r) > f1(r) for all 0 ≤ r ≤ r0.
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We assert that r0 = R(a1). Suppose to the contrary that r0 < R(a1),
then f ′2(r0) = f ′1(r0). On the other hand, by (1.5) we have

f ′′2 (r0) = −n−1
r0

f ′2(r0)− r0
2 f ′2(r0) + |f ′2(r0)|p − αf2(r0)

= −n−1
r0

f ′1(r0)− r0
2 f ′1(r0) + |f ′1(r0)|p − αf2(r0)

= f ′′1 (r0) + α(f1(r0)− f2(r0)) < f ′′1 (r0).

It contradicts to the definition of r0. This lemma is proved. �

Proof of Theorem 2.1(ii). By Lemmas 2.4-2.6 and the proofs of Lemmas 2.4
and 2.5 we know that there exist ai : 0 < a1 ≤ a2 < ∞ such that A =
(0, a1), B = (a2,∞), C = [a1, a2].

For any a ∈ C, the corresponding orbit satisfies

lim
r→∞

f ′(r)
f(r)

= −∞.

To prove (2.3), we define E(r) = rv(r) + 1
2r2f(r), G(r) = r2E(r)− (2α −

n)r2f(r). Similar to the proofs of Lemmas 13-15 in [4] we can prove that

lim
r→∞

v(r)
rf(r)

= −1
2
, lim

r→∞

E(r)
f(r)

= 2α− n, lim
r→∞

G(r)
f(r)

= 4(α− 1)(2α− n).

Using the same argument as in the proof of Theorem 2 in [4] it follows that
(2.3) holds.

For any a ∈ B, the corresponding orbit satisfies

lim
r→∞

f ′(r)
f(r)

= 0.

Similar to the proof of Theorem 4 in [4] we know that (2.2) holds.
We prove a1 = a2. If a1 < a2, by Lemma 2.6 and (2.10) we have that

w′ + b(r)w = F (r) > 0 for all r > 0, where w = f1f
′
2 − f ′1f2 and b(r) :=

n−1
r + r

2 + |f ′2|p−1. Therefore,

w(R) exp
{∫ R

r0

b(s)ds

}
> w(r) exp

{∫ r

r0

b(s)ds

}
.

Because

fi(r) ≈ k(ai)r2α−n exp
{
−r2

4

}
, f ′i(r) ≈ k(ai)r2α+1−n exp

{
−r2

4

}
, r � 1,

it follows that

w(r) exp
{∫ r

r0

b(s)ds

}
< w(R) exp

{∫ R

r0

b(s)ds

}
→ 0 as R →∞.

It is a contradiction. Therefore, a1 = a2 := a∗.
Lemma 2.6 shows that f(r; a) is strictly increasing and f ′(r; a) is strictly

decreasing with respect to a. The proof of Theorem 2.1 is complete. �
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3. Existence of very singular self-similar solution of (1.2).

In this section we prove the existence and uniqueness of very singular self-
similar solution to (1.2). Similar to §2, we consider (1.7) with initial data

f(0) = b > 0, f ′(0) = 0.(3.1)

For each b > 0, (1.7), (3.1) has a unique solution f(r; b). If we denote
by (0, R(b)) the maximal existence interval where f > 0, then f ′ < 0 in
(0, R(b)). The main results of this section read as follows.

Theorem 3.1. Assume that 1 < m < p < 2. Then the following conclu-
sions hold:

(i) If α ≤ nβ, then R(b) = ∞ and lim infr→∞ rα/βf(r; b) > 0.
(ii) If α > nβ, then there exist one closed set B and two open sets A and

C of (0,∞) satisfying

A∪B∪C = (0,∞), (b,∞) ⊂ A if b � 1, and (0, b) ⊂ C if 0 < b � 1,

such that the following classification is valid:
(a) If b ∈ C, then R(b) < ∞ and (fm)′(R(b)) < 0.
(b) If b ∈ A, then R(b) = ∞, limr→∞(f(r; b), f ′(r; b)) = (0, 0). And

for some ϕ(b) > 0,

lim
r→∞

rα/βf(r; b) = ϕ(b).

(c) If b ∈ B, then R(b) < ∞ and f ′(R(b)) = 0. That is, the solution
f(r; b) has compact support, and

f(r) > 0 for 0 ≤ r < R(b), f(r) = 0 for r ≥ R(b).

Moreover,

lim
r↗R(b)

(fm−1(r))′ = −(m− 1)β
m

R(b).(3.2)

Where α and β are given in (1.6).

This theorem shows that (1.2) has a very singular self-similar solution if
and only if α > nβ.

Remark. (3.2) is the important profile relation which we believe should
give the optimal regularity of general solutions with compact support.

The proof of Theorem 3.1 (i) is similar to that of Theorem 2.1 (i), and
we omit the details.

In the sequel we assume that α > nβ.

Let z = fm, a = bm, we deal with the reduced problem{
z′′ + n−1

r z′ + βr(z1/m)′ + αz1/m −m−pzp(1−m)/m|z′|p = 0 r > 0,

z(0) = a > 0, z′(0) = 0, z(r) ≥ 0.
(3.3)
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Here, (1.10) becomes

lim
r→∞

rα/βz1/m(r) = 0.(3.4)

Let z′ = v then we have{
z′ = v,

v′ = −n−1
r v − β

mrz
1
m
−1v − αz

1
m −m−pzp(1−m)/m|v|p−1v.

(3.5)

Lemma 3.1. Assume that a > 0 and z = z(r; a) is the solution of (3.3),
(0, R(a)) is the maximal existence interval where z > 0. Then z′(r) < 0 for
all 0 < r < R(a), and

|z′(r)| ≤ mα1/pa(1+mp−p)/(mp) for all 0 ≤ r ≤ R(a).(3.6)

Proof. It’s proof is similar to that of Lemma 2.1 and we omit the details. �

Because 1 < m < p < 2, it is clear that there exists θ such that

max
{

1
m

,
1 + mp− p

mp

}
< θ < min

{
1,

2p− 1
mp

,
m + p−mp

m(2− p)

}
.(3.7)

For any given λ, η > 0, we define

Sλ,η := {(z, v) : 0 < z ≤ η, −λzθ < v < 0}.

Lemma 3.2. For any given λ, η > 0, there exists an rλ,η := mα
βλ η1−θ +

mθλ
β ηθ−1/m such that Sλ,η is positively invariant for r > rλ,η. That is, if

(z(rλ,η), v(rλ,η)) ∈ Sλ,η, then the orbit (z(r), v(r)) of (3.5) remains in Sλ,η

for all r ≥ rλ,η.

Proof. Similar to the proof of Lemma 2.2, we need only to show that the
orbit points into Sλ,η from the parabola

lλ,η := {(z, v) : 0 < z ≤ η, v = −λzθ}.
On lλ,η, by (3.5), we have

v′

(zθ)′
= −n− 1

θr
z1−θ − β

mθ
rz

1
m
−θ +

α

θλ
z1−2θ+ 1

m(3.8)

− 1
θ
m−pz1−θ+p(1−m)/m|v|p−1

< − β

mθ
rz

1
m
−θ +

α

θλ
z1−2θ+ 1

m ≤ −λ

if
− β

mθ
r +

α

θλ
z1−θ ≤ −λzθ− 1

m .

Since 1/m < θ < 1 and 0 < z ≤ η, it is clear that (3.8) holds if

r ≥ rλ,η :=
mα

βλ
η1−θ +

mθλ

β
ηθ−1/m.
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This completes the proof. �

Define Sλ := {(z, v) : z > 0, −λzθ < v < 0}. The orbit (z(r), v(r)) of
(3.5) starting from (a, 0) enters Sλ eventually means that there exists an
ra : 0 < ra < R(a) such that (z(r), v(r)) ∈ Sλ for all ra ≤ r < R(a). Set

A = {a > 0 : the orbit (z, v) starting from (a, 0) enters S1 eventually},
B = {a > 0 : R(a) < ∞, z′(R(a)) = 0},
C = {a > 0 : R(a) < ∞, z′(R(a)) < 0}.

Remark. For any a ∈ A, the corresponding solution z(r; a) satisfies z′ +
zθ > 0 when r < R(a) and close to R(a). This implies R(a) = ∞. Therefore,
A∪B∪C = (0,∞). It is obvious that A,B and C do not intersect with each
other.

Lemma 3.3. The set C is non-empty and open. Moreover, (0, b) ⊂ C if
0 < b � 1.

Proof. We choose a=ε>0 small and let wε(t) = ε−1z(r; ε), t = rε(1−m)/(2m).
For simplicity we replace t by r. Then wε satisfies

w′′ε + n−1
r w′ε + βr(w1/m

ε )′ + αw
1/m
ε

+m−pε(3p−mp−2)/(2m)w
p(1−m)/m
ε |w′ε|p−1w′ε = 0,

wε(0) = 1, w′ε(0) = 0.

(3.9)

Let E(wε) = 2α
1+1/mw

(1+m)/m
ε +(w′ε)

2, then d
drE(wε) ≤ 0. Therefore, E(wε)≤

2mα/(1 + m) for all ε > 0, both wε and w′ε are uniformly bounded with
respect to r ≥ 0 and ε > 0. Denote by (0, Rε) the maximal existence
interval where wε > 0, then w′ε(r) < 0 in (0, Rε).

We first consider the reduced problem (ε = 0){
w′′ + n−1

r w′ + βr(w1/m)′ + αw1/m = 0,
w(0) = 1, w′(0) = 0.

It is easy to show that there exists an r0 : 0 < r0 < ∞ such that w(r0) =
0, w′(r0) < 0 and w(r) > 0 for all 0 ≤ r < r0.

We will prove that when ε is small then the solution wε of (3.9) has the
same properties as w. To this aim, let η0 > 0 be such that

η0 +
(m− 1)

8m
r0w

′(r0) < 0,(3.10)

(3.11)
n− 1

r0
η0 + βr0η

1/m
0

+
m1−p

m + p−mp

(
2mα

1 + m

)(p−1)/2

η
(m+p−mp)/m
0 < −w′(r0)

4
.
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Choose r1 : 0 < r0 − r1 � 1 such that w(r1) < η0 and w′(r1) < w′(r0)/2.
By the continuous dependence of solution on the parameter ε we have that
if ε � 1, then the solution wε of (3.9) satisfies

Rε > r1, wε(r1) := η < η0, w′ε(r1) < w′(r0)/2.(3.12)

Since |w′ε(r)| ≤ [2mα/(1 + m)]1/2, it follows that for r > r1,

w′′ε ≤ −
n− 1

r
w′ε − βr(w1/m

ε )′ − αw1/m
ε

−m−pε(3p−mp−2)/(2m)

(
2mα

1 + m

)(p−1)/2

wp(1−m)/m
ε w′ε.

Integrating this inequality from r1 to r and using (3.11), (3.12) we have,

w′ε + βrw1/m
ε ≤ w′ε(r1) +

n− 1
r1

η + βr1η
1/m + βη1/m(r − r1)

(3.13)

+
m1−p

m + p−mp

(
2mα

1 + m

)(p−1)/2

ε(3p−mp−2)/(2m)η(m+p−mp)/m

≤ 1
2
w′(r0) +

n− 1
r0

η0 + βr0η
1/m
0 + βη1/m(r − r1)

+
m1−p

m + p−mp

(
2mα

1 + m

)(p−1)/2

η
(m+p−mp)/m
0

<
1
4
w′(r0) + βη1/m(r − r1) ≤ 0

if
r ≤ r2 := r1 −

1
4β

η−1/mw′(r0).

Integrating (3.13) from r1 to r2 and by (3.10) we get

w(m−1)/m
ε (r2) < η(m−1)/m − β(m− 1)

2m
(r2

2 − r2
1)

< η−1/m

[
η +

(m− 1)
8m

r0w
′(r0)

]
< η−1/m

[
η0 +

(m− 1)
8m

r0w
′(r0)

]
< 0.

This shows that Rε < r2 and w′ε+βrw
1/m
ε < 0 for all r1 < r ≤ Rε. Therefore,

w′ε(Rε) < 0. And consequently, a = ε ∈ C.
It can be seen from the above proof that for a solution z to (3.3), if there

exists r1 > 0 such that z(r1) � 1 and |z′(r1)| is not too small, then the
solution will reach zero at a finite r = R and z′(R) < 0. Hence C is open.
Lemma 3.3 is proved. �



KPZ EQUATION 235

Lemma 3.4. For any given a > 0. If the corresponding R(a) = ∞, then
there exists a limit limr→∞ rα/βz1/m(r; a) = k(a) and k(a) > 0.

Proof.

Step 1. First, as in the case of semilinear case, it can be shown following
the argument of Lemmas 5-7 in [4] that z(r) → 0 as r →∞. Since z(r) > 0,
z′(r) < 0 for all r > 0 and z(r) → 0 as r →∞, it is impossible that z′′(r) < 0
for all r � 1. Differentiating Equation (3.3), it is easy to see that z′′(r) > 0
for r � 1, in consequence, by (3.3),

αz1/m + βr(z1/m)′+
m(n− 1)

r
z(m−1)/m(z1/m)′− |(z1/m)′|p < 0, ∀ r � 1.

For any given ε > 0, since p > m > 1 and (z, z′) → (0, 0) as r → ∞, it
follows that

αz1/m + (β + ε)r(z1/m)′ < 0, ∀ r � 1,

and consequently,

z(r) ≤ Cr−mα/(β+ε), ∀ r � 1.(3.14)

Step 2. Chosen µ > mα/β and define h(r) = µz(r; a) + rz′(r; a). We claim
that h(r) does not change signs for r � 1. In fact, if h(r0) = 0, then by
using (3.3) we have

h′(r0) = −µ(µ + 2− n)
r0

z + (µβ/m− α)r0z
1/m + r1−p

0 m−pµpzp/m > 0

provided that r0 satisfies:

z(m−1)/m(r0; a) <
µβ/m− α

µ(µ + 2− n)
r2
0 (α > nβ ⇒ µ > n).

Hence, h(r) > 0 for r > r0. Therefore,

h(r) < 0 for all r � 1; or h(r) > 0 for all r � 1.

If h(r) = µz + rz′ < 0 for all r � 1, then −rz′/z > µ, and consequently

z′′ = −n− 1
r

z′ + z1/m(−α− βrz′/(mz)) + m−pzp(1−m)/m|z′|p(3.15)

> z1/m(βµ/m− α) ∆= δz1/m, δ > 0, r � 1.

Multiplying (3.15) by z′ and integrating the results from r to ∞ we have

(z′)2 ≥ [mδ/(1 + m)]z(1+m)/m, i.e., − z′ ≥ Cz(1+m)/(2m), r � 1.

Since m > 1, an integration of the last inequality yields that z(r0) = 0 for
some r0 < ∞. It is a contradiction. Therefore, h(r) > 0 for all r � 1.

By using (3.14) we have

|z′| = −z′ ≤ µr−1z = O(r−1−mα/(β+ε)).(3.16)
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Multiplying (3.3) by r(α−β)/β and an integration from 0 to r yields

z′r(α−β)/β + βrα/βz1/m(3.17)

=
(

α

β
− n

) ∫ r

0
z′s

α
β
−2

ds + m−p

∫ r

0
z

p(1−m)
m |z′|ps

α
β
−1

ds.

By (3.16) it follows that two integrands of the right hand side of (3.17)
converge and limr→∞ z′r(α−β)/β = 0. Consequently, the limit

lim
r→∞

rα/βz1/m = k(a)

exists. It is obvious that k(a) ≥ 0.

Now we show tht k(a) > 0. Assuming on the contrary that k(a) = 0.
Multiplying (3.3) by r(α−β)/β and an integration from r to ∞ yields, in view
of (3.16),

z′r(α−β)/β + βrα/βz1/m

=
(

n− α

β

) ∫ ∞

r
z′s

α
β
−2

ds−m−p

∫ ∞

r
z

p(1−m)
m |z′|ps

α
β
−1

ds.

Consequently, zrM → 0 as r →∞ for any M > 0.
On the other hand, since h(r) > 0 for r � 1, it follows that z(r) ≥ Cr−µ

for r � 1. We get a contradiction. Therefore, k(a) > 0. �

Lemma 3.5. The set A is non-empty and open. Moreover, for any a ∈ A,
there exists a limit limr→∞ rα/βz1/m(r; a) = k(a) and k(a) > 0.

Proof. Using (3.6) and the special choice of θ (see (3.7)), by following the
proof of Lemma 2.5 we can show that if a is large, it is in A. Since 1/m <

θ < 1, the number r1,η := mα
β η1−θ + mθ

β ηθ−1/m → 0 as η ↘ 0. Lemma 3.2
shows that A is open.

The last conclusion is a corollary of Lemma 3.4. �

Lemma 3.6. The set B is non-empty. For any a ∈ B, the corresponding
solution z(r; a) satisfies the following interface relation:

lim
r↗R(a)

{z′/z1/m} = −βR(a).

Proof. From Lemmas 3.3 and 3.5 we know that B is non-empty.
For simplicity we denote R = R(a). Putting Equation (3.3) into diver-

gence form and integrating the results from r to R, we get

rn−1z′ = −βrnz1/m + (α− nβ)
∫ R

r
z1/msn−1 ds(3.18)

−m−p

∫ R

r
zp(1−m)/m|z′|psn−1 ds.
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Dividing (3.18) by z1/m and putting r → R yields

Rn−1 lim
r→R

z′

z1/m
= −βRn −m−p lim

r→R
z−1/m

∫ R

r
zp(1−m)/m|z′|psn−1 ds.

(3.19)

By using L’Hospital’s rule we get

lim
r→R

z−1/m

∫ R

r
zp(1−m)/m|z′|psn−1 = mRn−1 lim

r→R
(|z′|/z(m−1)/m)p−1 ds

(3.20)

if the limit of the right hand side of (3.20) exists.
In the following we will prove that

lim
r→R

{|z′|/z(m−1)/m} = 0.(3.21)

Dividing (3.18) by z(m−1)/m and putting r → R, note that 1/m > (m −
1)/m, we have

Rn−1 lim
r→R

z′

z(m−1)/m
= −m1−p

m− 1
Rn−1 lim

r→R
z(p+1−mp)/m|z′|p−1(3.22)

if the limit of the right hand side of (3.22) exists.
Choose σ1 = (p + m−mp)/m, then σ1 < 1/m. Similar to (3.22) we have

Rn−1 lim
r→R

z′

zσ1
= −m−p

σ1
Rn−1 lim

r→R
|z′|p−1 = 0.(3.23)

Case 1. If p + 1 ≥ mp, then σ1 ≥ (m− 1)/m, and consequently,

lim
r→R

{
|z′|/z(m−1)/m

}
≤ lim

r→R
{|z′|/zσ1} = 0,

i.e., (3.21) holds.

Case 2. If p + 1 < mp. We write

z(p+1−mp)/m|z′|p−1 =
(

|z′|
z(mp−p−1)/(mp−m)

)p−1

,(3.24)

and define a sequence

σl+1 = (p− 1)σl + 1− p + p/m, l = 1, 2, · · · .(3.25)

We first discuss the properties of σl. If σl < (mp − p − 1)/(mp −m) for
some l, then

σl <
m + p−mp

m(2− p)
, and

mp− p− 1
mp−m

<
m + p−mp

m(2− p)
(3.26)

because m < 2. The first inequality of (3.26) implies σl+1 > σl. We assert
that there exists l such that σl ≥ (mp−p−1)/(mp−m). Otherwise, σl → σ0

as l →∞ for some σ0 > 0 and σ0 ≤ (mp− p− 1)/(mp−m). Letting l →∞
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in (3.25) yields σ0 = (m+p−mp)/(2m−mp). It contradicts with the second
inequality of (3.26).

We assume that l0 ≥ 1 is the first one such that σl0 ≥ (mp−p−1)/(mp−
m). If l0 = 1, then limr→R z(p+1−mp)/m|z′|p−1 ≤ limr→R(|z′|/zσ1)p−1 = 0 by
(3.23). Hence, (3.21) holds in view of (3.22). If l0 > 1, we have

σl+1 = (p− 1)σl + 1− p + p/m < (mp− p− 1)/m + 1− p + p/m

= 1− 1/m < 1/m, ∀ 1 ≤ l < l0

because σl < (mp − p − 1)/(mp −m). Moreover, σl+1 > σl > · · · > σ1 =
(m+p−mp)/m for all 1 ≤ l ≤ σl0−1. Dividing (3.18) by zσl+1 , 1 ≤ l < l0,
we have

Rn−1 lim
r→R

z′

zσl+1
(3.27)

= −m−p lim
r→R

z−σl+1

∫ R

r
zp(1−m)/m|z′|psn−1 ds, l = 1, 2, . . . , l0 − 1,

and

lim
r→R

z−σl+1

∫ R

r
zp(1−m)/m|z′|psn−1 ds(3.28)

=
Rn−1

σl+1
lim
r→R

(|z′|/zσl)p−1, l = 1, 2, , . . . , l0 − 1

provided that the limit of the right hand side of (3.28) exists. Using (3.23) we
have that the limit of the left hand side of (3.28) equals zero for l = 1. Step
by step, by repeatedly using (3.27) and (3.28) it follows that the conclusion
holds for l = l0 − 1. That is,

Rn−1 lim
r→R

z′

zσl0
= −m−p lim

r→R
z−σl0

∫ R

r
zp(1−m)/m|z′|psn−1 ds = 0.

Because σl0 ≥ (mp− p− 1)/(mp−m), by use of (3.22) it follows that (3.21)
holds.

From (3.19)-(3.21) we know that Lemma 3.6 holds. �

Proof of Theorem 3.1 (ii). Denote ϕ(b) = k(bm). By Lemmas 3.3, 3.5 and 3.6
we know that Theorem 3.1 (ii) holds. �
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