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We show how the symmetric Laplacian on the Sierpinski
gasket, together with its associated Dirichlet form and har-
monic functions, can be defined entirely in terms of average
values of a function over basic sets. This approach com-
bines the constructive limit–of–difference–quotients method
of Kigami and the method of averages introduced by Kusuoka
and Zhou for the Sierpinski carpet.

1. Introduction.

A direct construction of a Laplacian on the Sierpinski gasket as a limit
of difference quotients was given by Kigami [Ki1], who later extended the
method to a class of self-similar fractals called post critically finite (p.c.f.)
[Ki2, Ki3]. At about the same time, Kusuoka and Zhou [KZ] introduced
what we will call the method of averages for defining a Laplacian on the
Sierpinski carpet, a fractal that is not p.c.f. The method of averages uses
average values of functions over basic sets rather than pointwise values in
defining all operations. In this paper we will show how the method of av-
erages can be used to define the Laplacian on the Sierpinski gasket. (Since
there are many different Laplacians obtainable by the method of [Ki2], we
should call this the symmetric Laplacian.) It would be nice to be able to
use the method for all Laplacians on p.c.f. fractals, but it is not clear at
present how to do this. Ultimately, the goal is to use the method of averages
to define Laplacians on wider classes of fractals. To advance these goals it
is worthwhile to have a basic example worked out in detail. As we will see,
the formulas involved are a bit more complicated than the analogous ones
for pointwise values. Also, since average values play such an important role
in the usual theory of harmonic functions, it is of independent interest to
understand the properties of average values of harmonic functions on the
Sierpinski gasket.

For the convenience of the reader, we summarize the results from [Ki1]
that we will use. In principle we should establish all properties of the theory
directly in terms of the average quantities, and then show that the theory is
equivalent to the standard pointwise one. However, in the interest of brevity,
we will make the connection between average and pointwise quantities at
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the outset, and make use of properties from the pointwise theory whenever
convenient to simplify the proofs. A different characterization of the domain
of the Dirichlet form, based on integrated quantities, is given in [J].

2. Harmonic functions.

The Sierpinski gasket K is generated by the i.f.s. consisting of 3 mappings in
the plane, Fjx = 1

2x + 1
2qj , j = 0, 1, 2, where q0, q1, q2 are the vertices of an

equilateral triangle. We approximate the fractal K by a sequence of graphs
Γ0,Γ1, . . . with vertices V0 ⊆ V1 ⊆ V2 ⊆ · · · , where V0 = {q0, q1, q2} and

Vk+1 =
2⋃

j=0

FjVk. The edge relation for Γm, denoted x ∼m y for x, y ∈ Vm

and x 6= y, is defined by the existence of a word w = (w1, . . . , wm) of length
|w| = m such that x, y ∈ FwK, where Fw = Fw1 ◦ Fw2 ◦ · · · ◦ Fwm . The
simple graph energy form on Γm is

Em(u, v) =
∑

x∼my

(u(x)− u(y))(v(x)− v(y))(2.1)

and the renormalized energy Em is given by

Em(u, v) =
(

5
3

)m

Em(u, v),(2.2)

where u and v denote continuous functions on K and, by abuse of notation,
their restriction to Vm.

We regard V0 as the boundary of each graph Vm, and also of K. A function
h on Vm (for m ≥ 1) is called graph harmonic if it satisfies

h(x) =
1
4

∑
y∼mx

h(y)(2.3)

for all non-boundary points x (note that such points have exactly 4 neighbors
in Vm). It is easy to see that this is equivalent to the property that h min-
imizes the energy Em(u, u) among all functions u with the same boundary
values. The following proposition summarizes the basic results (from [Ki1])
concerning the Dirichlet form and harmonic functions on K, and justifies
the choice of renormalization factor in (2.2):

Proposition 2.1. For any continuous function u on K, the sequence
Em(u, u) is monotone increasing, so

E(u, u) = lim
m→∞

Em(u, u)(2.4)

is well-defined in [0,∞], and E(u, u) = 0 if and only if u is constant. Denote
by dom E the set of continuous functions for which E(u, u) < ∞. Then dom E
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modulo constants is a Hilbert space with inner product

E(u, v) = lim
m→∞

Em(u, v).(2.5)

A function h is called harmonic on K if it minimizes energy E(u, u) among
functions with the same boundary values. Then h is harmonic if and only
if its restriction to every Vm is graph harmonic. For a harmonic func-
tion, Em(h, h) = E(h, h) for every m. The space of harmonic functions is
3-dimensional, with each harmonic function determined uniquely from its
boundary values by means of the following harmonic algorithm: If the val-
ues of h on Vm are known, and the value h(x) for x ∈ Vm+1 \ Vm is desired,
find w of length |w| = m such that x ∈ FwK, and set

h(x) =
2
5
h(Fwqj) +

2
5
h(Fwqj+1) +

1
5
h(Fwqj+2)(2.6)

if x lies between Fwqj and Fwqj+1 (cyclic notation of indices). For any
u ∈ dom E the normal derivatives

∂nu(qj) = lim
m→∞

(
5
3

)m

(2u(qj)− u(Fm
j qj+1)− u(Fm

j qj+2))(2.7)

exist at boundary points, and for harmonic functions it is not necessary to
take the limit in (2.7).

Our first goal is to obtain the same results for quantities defined in terms
of average values. Let µ denote the self-similar probability measure on K
satisfying

µ(B) =
1
3
µ(F−1

0 B) +
1
3
µ(F−1

1 B) +
1
3
µ(F−1

2 B) or∫
fdµ =

1
3

2∑
j=0

∫
f ◦ Fjdµ.

(2.8)

We define the averages

Aw(f) =
∫

f ◦ Fwdµ = 3−m

∫
FwK

fdµ(2.9)

for any word w. If we write Aw(f) = aw then we have

3aw = aw0 + aw1 + aw2(2.10)

(here w0 denotes (w1, . . . , wm, 0), etc). Conversely, given numbers aw for
every w, with (2.10) holding, there exists a continuous function f such that
Aw(f) = aw provided the function w → aw satisfies its own form of uniform
continuity. To state this condition we first define a graph Γ̃m whose vertices
are the words w of length |w| = m, and whose edge relation, also denoted
w ∼m w′, is defined by the condition that FwK ∩ Fw′K is non-empty. The
boundary of Γ̃m is defined to be the 3 constant words, denoted 0m, 1m, 2m.
Figure 2.1 shows Γ̃1, Γ̃2 and Γ̃3.
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Figure 2.1. a) Γ̃1. b) Γ̃2. c) Γ̃3.

Definition 2.2. A function w → aw is uniformly continuous if for every
ε > 0 there exists m(ε) such that for all m ≥ m(ε) we have |aw − aw′ | ≤ ε
provided |w| = |w′| = m and w ∼m w′.

Lemma 2.3. aw = Aw(f) for some continuous function f , if and only if
(2.10) holds and w → aw is uniformly continuous.

We leave the proof as an exercise.

Now we would like to characterize harmonic functions in terms of their
average values. If we write the graph harmonic condition for Γ̃m (m ≥ 2) it
says

3aw =
∑

w′∼mw

aw′ for all non-boundary w of length |w| = m.(2.11)

Note that each such w has exactly 3 neighbors in Γ̃m. The harmonic exten-
sion problem (from Γ̃m to Γ̃m+1) can be stated as follows: Given values aw

for |w| ≤ m satisfying (2.11) for |w| ≤ m and (2.10) for |w| ≤ m− 1, define
aw for |w| = m + 1 so that (2.11) holds for |w| = m + 1 and (2.10) holds for
|w| = m. The solution will be given by the following harmonic algorithm:

awjk =
4
5
awj +

1
5
awk j 6= k

awjj =
8
5
awj −

3
5
aw

(2.12)

for |w| = m− 1.

Lemma 2.4. Given values aw for |w| ≤ m satisfying (2.11) for |w| ≤ m
and (2.10) for |w| ≤ m−1, define aw for |w| = m+1 by (2.12). Then (2.11)
holds for |w| = m + 1 and (2.10) holds for |w| = m.
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Proof. First we verify (2.10), namely 3awj = awj0 + awj1 + awj2 , for |w| =
m− 1. For simplicity of notation take j = 0. Then by (2.12)

aw00 + aw01 + aw02 =
8
5
aw0 −

3
5
aw +

4
5
aw0 +

1
5
aw1 +

4
5
aw0 +

1
5
aw2

= 3aw0 +
1
5
(aw0 + aw1 + aw2 − 3aw)

and aw0+aw1+aw2−3aw = 0 by (2.10), known to be true since |w| = m−1.
Next we verify (2.11). We consider two cases. In the first case the word

has the form wjk for j 6= k and |w| = m− 1. For simplicity of notation take
w01, with neighbors w10, w00 and w02. By (2.12)

aw10 + aw00 + aw02 =
4
5
aw1 +

1
5
aw0 +

8
5
aw0 −

3
5
aw +

4
5
aw0 +

1
5
aw2

=
13
5

aw0 +
4
5
aw1 +

1
5
aw2 −

3
5
aw.

Using (2.10) for aw this becomes 3
(

4
5aw0+ 1

5aw1

)
, and this is 3aw01 by (2.12).

The second case is a word of the form wjj for |w| = m−1. For simplicity of
notation take j = 0. Let w′ denote the word of length m− 1 that neighbors
w on the side of w00, and assume w′11 neighbors w00 (the other possibility
is w′22). That means w00 has neighbors w01, w02 and w′11 (see Figure 2.2).
Also w0 has neighbors w1, w2 and w′1, and w′1 has neighbors w′0, w′2 and
w0, and this means

{
3aw0 = aw1 + aw2 + aw′1 and
3aw′1 = aw0 + aw′0 + aw′2 = aw0 + 3aw′ − aw′1

(2.13)

by (2.11) and (2.10). Now by (2.12) we have

aw′11 + aw01 + aw02 =
8
5
aw′1 −

3
5
aw′ +

4
5
aw0 +

1
5
aw1 +

4
5
aw0 +

1
5
aw2

=
8
5
aw0 +

1
5
aw1 +

1
5
aw2 +

8
5
aw′1 −

3
5
aw′ .

Using (2.13) to eliminate aw′1 and aw yields 3
(

7
5aw0 − 1

5aw1 − 1
5aw2

)
, which

equals 3
(

8
5aw0 − 3

5aw

)
by (2.10), and this is 3aw00 by (2.12). �

If we start with arbitrary values for a0, a1, a2, then by repeated use of
(2.12) we can define aw for all w so that (2.10) and (2.11) hold. It will be
true that aw is uniformly continuous in the sense of Definition 2.2, so that
by Lemma 2.3 there is a continuous function h with Aw(h) = aw, but it
is rather tricky to show this directly. Instead we will show that there is
a harmonic function h with Aw(h) satisfying the same identities as aw, so
Aw(h) = aw indirectly.
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Figure 2.2. a) The neighbors of w01. b) The neighbors of w00.
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Theorem 2.5. (a) A continuous function h is harmonic if and only if its
average values Aw(h) satisfy (2.11) for all m ≥ 2.

(b) If h is harmonic then Aw(h) satisfy (2.12).
(c) Given arbitrary values for a0, a1, a2, and defining aw for all w via

(2.12), there exists a harmonic function h such that Aw(h) = aw.
(d) The boundary values and normal derivatives of a harmonic function

are given in terms of average values by
h(qj) =

5
2
Ajm+1(h)− 3

2
Ajm(h) for any m ≥ 0,

∂nh(qj) =
15
2

(
5
3

)m

(Ajm+1(h)−Ajm(h)) for any m ≥ 0.

(2.14)

Proof. For any harmonic function h we have∫
hdµ =

1
3

2∑
j=0

h(qj)

by rotational symmetry, hence

Aw(h) =
∫

h ◦ Fwdµ =
1
3

2∑
j=0

h(Fwqj)(2.15)

since h ◦ Fw is also harmonic. We can use (2.15) to replace any equation
involving average values by one involving pointwise values. In particular, if
we do this for (2.11), we obtain a certain identity which is also the average
of the graph harmonic identity (2.3) at the 3 vertices Fwqj of FwK, as can
be seen from Figure 2.3. Since (2.3) holds for harmonic functions, so does
(2.11), proving one implication in (a).

To prove (b) it suffices to show (2.12) for the empty word w and for the
single harmonic function whose values and averages are shown in Figure 2.4.
This is an exercise in arithmetic. Similarly, we can verify (2.14) for m = 0, 1
directly for this function. It follows easily from (2.12) that the right sides of
(2.14) are independent of m, proving (d).

To prove (c) we construct a harmonic function h satisfying Aj(h) = aj ,
j = 0, 1, 2 simply by setting

h(q0) = 2a0 −
1
2
a1 −

1
2
a2

h(q1) = 2a1 −
1
2
a0 −

1
2
a2

h(q2) = 2a2 −
1
2
a0 −

1
2
a1

in view of (d), and extending h by the harmonic algorithm (2.6). Since both
Aw(h) and aw satisfy (2.12), it follows that Aw(h) = aw for all w.
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Figure 2.3. The weights at the vertices shown have the
property that for any harmonic, the sum of the weight times
the value of the function vanishes. These weights were ob-
tained by substituting (2.15) in (2.11). But the same weights
may also be obtained by averaging (2.3) at the 3 vertices of
FwK.

Finally, to complete the proof of (a), assume that u is a continuous func-
tion (it is in fact not necessary to assume continuity) such that aw = Aw(u)
satisfies (2.11). By (c) there exists a harmonic function h with aw = Aw(h),
hence Aw(u) = Aw(h) for all w. It follows by standard measure theory that
u = h a.e., so u is harmonic. �

Remarks. (1) It is not true that condition (2.15) characterizes harmonic
functions. For a counterexample take the piecewise harmonic function whose
values on V1 are shown in Figure 2.5. Interestingly, there is an analogous
characterization of harmonic functions in Euclidean spaces: A continuous
function whose average value on a ball is the same as its average value on
the boundary of the ball, for every ball, must be harmonic. (We are grateful
to L. Zalcman for this observation, which is obtainable from results in [Z].)
Of course the analogy is not exact between sets FwK in K and balls in
Euclidean space.

(2) It is also easy to compute the transverse derivatives defined in [S2] in
terms of average values, namely

∂T h(qj) =
1

5m
(h(Fm

j qj+1)− h(Fm
j qj+2))(2.16)
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Figure 2.4. The values at vertices and averages (in trian-
gles) for a typical harmonic function.

0
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0

1
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0

Figure 2.5. The values of a piecewise harmonic function
satisfying (2.15) which is not harmonic.

for any m ≥ 0 is the same as(
5
2

)
1

5m
(Ajm(j+1)(h)−Ajm(j+2)(h))(2.17)
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for any m ≥ 0. This can be seen directly for m = 0, 1 for the harmonic func-
tion in Figure 2.4. On the other hand the right side of (2.16) is independent
of m by (2.6), and the same is true for (2.17) by (2.12).

3. The Dirichlet form.

Now we consider the expression of the Dirichlet form in terms of average
values. The graph Γ̃m gives rise to a simple energy form

Ẽm(u, v) =
∑

w∼mw′

(Aw(u)−Aw′(u))(Aw(v)−Aw′(v)).(3.1)

In analogy with the pointwise formula (2.2) we might guess a renormalization
factor of (5/3)m. In fact we choose

Ẽm(u, v) =
3
2

((
3
5

)m

−
(

3
5

)2m
)−1

Ẽm(u, v)(3.2)

to define the renormalized energy. In the limit we obtain the same thing (the
3/2 factor in (3.2) is chosen to obtain the same energy as in the pointwise
definition). The reason for the choice of the constant in (3.2) is that for
harmonic functions the expression is independent of m.

Theorem 3.1. For a harmonic function h, Ẽm(h, h) is independent of m,
and in fact equal to Em(h, h).

Proof. We will establish the recursion formulas
Ẽ1(h, h) =

4
25

E0(h, h)

Ẽm(h, h) =
4
25

Em−1(h, h) +
9
25

Ẽm−1(h, h) for m ≥ 2.

(3.3)

Since Em−1(h, h) =
(

3
5

)m−1
E0(h, h) the result follows from (3.3) by a routine

argument.
To establish (3.3) we consider two types of adjacent pairs of words of

length m. The first type is of the form (wj, wk), for j 6= k and |w| = m− 1.
Now from (2.15) and (2.6) we obtain easily

Awj(h) =
2
5
h(Fwqj) +

3
5
Aw(h).(3.4)

Then we have

(Aw0(h)−Aw1(h))2 + (Aw1(h)−Aw2(h))2 + (Aw2(h)−Aw0(h))2

=
4
25

[(h(Fwq0)− h(Fwq1))2 + (h(Fwq1)− h(Fwq2))2

+ (h(Fwq2)− h(Fwq0))2].
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When we sum over all words w of length m−1 we obtain exactly 4
25Em−1(h,

h), since every pair of adjacent vertices (x, y) in Vm−1 occurs once and only
once, namely with the unique word w of length m−1 such that x, y ∈ FwK.
This gives the first term on the right side of (3.3) (when m = 1 there are no
other terms).

The second type of adjacent pair is of the form (wj, w′k) where (w,w′) is
an adjacent pair in Γ̃m−1, and Fwqj = Fw′qk. From (3.4) we see Awj(h) −
Aw′k(h) = 3

5(Aw(h)− Aw′(h)). If we square and take the sum over all such
pairs, we obtain exactly 9

25Ẽm−1(h, h), completing the proof of (3.3).
We can also prove directly that Ẽm(h, h) is independent of m. Let Ẽ0

m(h, h)
denote the contribution to Ẽm(h, h) from the first type of adjacent pairs.
Then we can show

Ẽ0
m(h, h) =

3
5
Ẽm−1(h, h)

Ẽm(h, h) = Ẽ0
m(h, h) +

9
25

Ẽm−1(h, h),
(3.5)

and from this deduce that Ẽm(h, h) is independent of m. �

It is easy to see that the average values aw = Aw(h) of a harmonic function
minimize the energy ∑

w∼mw′

(aw − aw′)2(3.6)

among all choices with the same boundary values ajm . However, if we fix
the values of aw for |w| = m − 1 and minimize the energy (3.6) subject
to the consistency conditions (2.10), we will not obtain harmonic functions,
even if (2.11) holds for |w| = m − 1. It seems likely that the solution of
this minimum extension problem is not local (the formula for aw would
involve the values of aw′ for all words w′ of length m− 1, not just those in
a neighborhood of w). We have worked out the solution for m = 2, namely
ajk = aj + 1

4ak − 1
4aφ, which is quite different from (2.12), and this yields

the relationship Ẽ2 = 3
4Ẽ1.

Because of this situation, the sequence Ẽm(u, u) will not necessarily be
monotone increasing, so we cannot obtain the exact analog of Proposi-
tion 2.1. But we can circumvent this difficulty by first considering piece-
wise harmonic functions. Let Hm denote the space of continuous functions
whose restrictions to each FwK, for |w| = m, are harmonic (meaning u ◦Fw

is harmonic). It is shown in [Ki2] that H =
⋃
m

Hm is dense in dom E , so

knowing the behavior of Ẽm(u, u) for u ∈ H will be very useful.
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Corollary 3.2. For u ∈ H,

lim
k→∞

Ẽk(u, u) = E(u, u).(3.7)

Proof. For simplicity of notation we prove this for u ∈ H1. In the computa-
tion of Ẽm(u, u) we consider two types of adjacent pairs (note these are not
the same as the two types in the proof of Theorem 3.1). The first type are
of the form (0w, 0w′), (1w, 1w′) or (2w, 2w′) where w ∼m−1 w′, and these
contribute exactly

2∑
j=0

Ẽm−1(u ◦ Fj , u ◦ Fj).

The second type consists of just the 3 pairs (10m−1, 01m−1), (12m−1, 21m−1)
and (20m−1, 02m−1) that lie at the intersection points of FjK and FkK. At
these intersection points it is easy to bound the differences aw − aw′ by a
multiple of (3/5)m, so the contribution to Ẽm(u, u) is bounded by a multiple
of (3/5)2m. When we take into account the normalization factor in (3.2),
these terms will vanish in the limit. Thus

lim
m→∞

Ẽm(u, u) = lim
m→∞

3
2

((
3
5

)m

−
(

3
5

)2m
)−1 2∑

j=0

Ẽm−1(u ◦ Fj , u ◦ Fj)

=
5
3

lim
m→∞

2∑
j=0

Ẽm−1(u ◦ Fj , u ◦ Fj)

=
5
3

2∑
j=0

E(u ◦ Fj , u ◦ Fj)

= E(u, u)

by Theorem 3.1. �

It does not follow immediately from the density of H in dom E that (3.7)
continues to hold for all u in dom E , since this involves interchanging limits.
The required maximal estimate is provided in the next Lemma.

Lemma 3.3. Let u ∈ dom E. Then

|u(x)−Aw(u)| ≤ cE(u ◦ Fw, u ◦ Fw)1/2 for all x ∈ FwK,(3.8)

Ẽm(u, u)1/2 ≤ c(Em(u, u)1/2 + E(u, u)1/2),(3.9)

and

sup
m
Ẽm(u, u) ≤ cE(u, u).(3.10)
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Proof. It is shown in [Ki2] that |u(x) − u(y)| ≤ cE(u, u)1/2 for any x, y ∈
K, and applying this estimate to u ◦ Fw and averaging with respect to y

yields (3.8). To prove (3.9) we want to replace each term in Ẽm(u, u) by a
corresponding term in Em(u, u), and use (3.8) to control the error. So for
each pair of adjacent words (w,w′) of length m we pick a pair of adjacent
vertices (x, y) in Vm with x ∈ FwK and y ∈ Fw′K. There are 4 different
ways to make this choice, and depending on how the choice is made the same
pair (x, y) can be chosen twice (with some care we can eliminate duplicates,
but it only affects the constant in the estimate). Writing

Aw(u)−Aw′(u) = u(x)− u(y) + (Aw(u)− u(x)) + (u(y)−Aw′(u))

and making routine estimates we obtain

Ẽm(u, u)1/2 ≤ c

Em(u, u)1/2 +

 ∑
|w|=m

|Aw(u)− u(x)|2
1/2


where x ∈ FwK. Now we use (3.8) to estimate this last sum. When we
multiply by the renormalization constant in (3.2), which is of the order of
(5/3)m, we obtain

Ẽm(u, u)1/2 ≤ c

Em(u, u)1/2 +

(5
3

)m ∑
|w|=m

E(u ◦ Fw, u ◦ Fw)

1/2


= c(Em(u, u)1/2 + E(u, u)1/2)

by the self-similarity of the Dirichlet form E . This proves (3.9), and since
the constant is independent of m and Em(u, u) ≤ E(u, u) by Proposition 2.1,
we have (3.10). �

Theorem 3.4. If u ∈ dom E then (3.7) holds. Conversely, if u is continuous
and

lim inf
k→∞

Ẽk(u, u) < ∞(3.11)

then u ∈ dom E.

Proof. Since H is dense in dom E and (3.7) holds for H, it follows by routine
functional analysis arguments that it holds for dom E because of (3.10).

Conversely, suppose Ẽm(u, u) ≤ M for an infinite number of indices m.
We construct functions um in Hm by setting

um(x) =
1
2
(Aw(u) + Aw′(u))

if x ∈ FwK ∩ Fw′K, and um(qj) = Ajm(u) on the boundary. Because u is
continuous, um converges uniformly to u as m → ∞. On the other hand,
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we claim that Em(um, um) ≤ cẼm(u, u). The reason is that if x ∼m y, then
x ∈ FwK ∩ Fw′K and y ∈ Fw′K ∩ Fw′′K, with w ∼m w′ ∼m w′′, so

um(x)− um(y) =
1
2
(Aw(u)−Aw′(u)) +

1
2
(Aw′(u)−Aw′′(u)),

and each neighboring pair of words arises at most 4 times in this way (a
slightly different argument is needed if one of the vertices is a boundary
point). Thus we have Em(um, um) ≤ cM , but Em(um, um) = E(um, um)
because um ∈ Hm, so

Ek(um, um) ≤ E(um, um) ≤ cM

for all k because Ek(um, um) is increasing in k. Now if we fix k and let
m →∞ we obtain

Ek(u, u) ≤ cM

since um → u uniformly. Since this is true for all k, u ∈ dom E . �

4. The Laplacian.

In this section we describe how to obtain the Laplacian directly in terms of
average values. In a sense this is unnecessary, since the Laplacian can be
defined entirely in terms of the Dirichlet form, by u ∈ dom ∆ and ∆u = f
if and only if u ∈ dom E , f is continuous, and

E(u, v) = −
∫

fvdµ(4.1)

for every v ∈ dom E vanishing on the boundary. However, there is a much
simpler and appealing definition in terms of pointwise difference quotients.
Let

∆mu(x) =
3
2
5m

(∑
y∼mx

u(y)− 4u(x)

)
(4.2)

for x ∈ Vm \ V0. Then u ∈ dom ∆ and ∆u = f if and only if u and f
are continuous and ∆mu converges uniformly to f . (The renormalization
factor 5m is in fact the ratio

(
5
3

)m
/
(

1
3

)m where
(

5
3

)m is the Dirichlet form
renormalization factor and

(
1
3

)m is the measure of FwK for |w| = m. The
constant 3/2 is needed to have (4.1) hold.)

Our goal is to replace ∆mu by an analogous expression in terms of average
values, namely

∆̃mu(x) =
3
2
5m

 ∑
w′∼mw

Aw′(u)− 3Aw(u)

 for x ∈ FwK, |w| = m.

(4.3)
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Note that ∆̃mu is not defined on the boundary cells FjmK, just as ∆u is not
defined at boundary points, but in the limit this is not important (∆u(x) is
defined at boundary points through the continuity of f).

Theorem 4.1. If u ∈ dom ∆ with ∆u = f , then ∆̃mu converges uniformly
to f .

Proof. Let v0 denote the unique solution of ∆u = 1 that vanishes at the
boundary. It is not hard to show that ∂nv0(qj) = −1/3 for all j, so∫

v0∆udµ =
∫

udµ− 1
3

2∑
j=0

u(qj)(4.4)

by the Gauss-Green formula [Ki2]. Applying (4.4) to u ◦ Fw and using the
scaling identity ∆(u ◦ Fw) = 5−m(∆u) ◦ Fw (see [Ki1]), we obtain

Aw(u)− 1
3

2∑
j=0

u(Fwqj) = 5−m

∫
v0(∆u) ◦ Fwdµ.(4.5)

We use (4.5) to compare ∆̃mu with ∆mu and control the error. To do this
we refer to Figure 2.3. The weights shown are arrived at in two different
ways. The first way is to take∑

w′∼mw

Aw′(u)− 3Aw(u)

and replace Aw(u) by its approximation

1
3

2∑
j=0

u(Fwqj),

and similarly for Aw′(u). The second way is to take

1
3

∑
x=Fwqj

(∑
y∼mx

u(y)− 4u(x)

)
.

(The weights just give the factor multiplying the value of u at the corre-
sponding vertex.) Since the two methods yield the same expression, we can
obtain an identity with remainder by using the exact formula (4.5), namely
(for x ∈ FwK)

∆̃mu(x) =
1
3

2∑
j=0

∆mu(Fwqj) + Rm(x)(4.6)
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with

Rm(x) =
3
2

∫
v0

3(∆u) ◦ Fw −
∑

w′∼mw

(∆u) ◦ Fw′

 dµ.(4.7)

Since ∆mu → f uniformly, it follows from (4.6) that ∆̃mu → f uniformly
if we can show that Rm(x) → 0 uniformly. But this is evident from (4.7)
because v0 and ∆u are continuous functions. �

Theorem 4.2. If u is a continuous (or even just integrable) function, and
∆̃mu converges uniformly to a continuous function f , then u ∈ dom ∆ and
∆u = f .

Proof. We use the following criterion (weak implies strong) for u ∈ dom ∆
with ∆u = f : ∫

u∆vdµ =
∫

fvdµ(4.8)

for all v ∈ dom ∆ vanishing in a neighborhood of the boundary ([S1] and
[SU]). To verify (4.8) we observe directly from the definitions that

Ẽm(u, v) =
∑

w∼mw′

(Aw(u)−Aw′(u))(Aw(v)−Aw′(v))(4.9)

= −
∑
w

′Aw(v)

 ∑
w′∼mw

Aw′(u)− 3Aw(u)


−
∑
w

′′Aw(v)

 ∑
w′∼mw

Aw′(u)− 2Aw(u)


where the first sum

∑ ′ extends over all w not on the boundary, and the
second sum

∑ ′′ extends over the 3 boundary words jm. Note that

3
2

(
5
3

)m∑
w

′Aw(v)

 ∑
w′∼mw

Aw′(u)− 3Aw(u)

 =
∫

v∆̃mudµ

because 3−mAw(v) =
∫
FwK vdµ and ∆̃mu is constant on FwK (by convention

we exclude the boundary cells from the integral since ∆̃mu is undefined
there). In (4.9) we can also interchange the role of u and v. In both cases
the boundary sum will vanish if m is large enough because we are assuming
that v vanishes in a neighborhood of the boundary. Thus we obtain∫

v∆̃mudµ =
∫

u∆̃mvdµ.(4.10)
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Now let m →∞. By assumption ∆̃mu → f uniformly, and by Theorem 4.1
∆̃mv → v uniformly. This yields (4.8), even if u is only assumed to be
integrable. �

It is also possible to characterize other kinds of weak solutions of ∆u = f

(for example f ∈ L2) in terms of ∆̃mu, but we will not do this here.
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