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FIELD TOWER

Elliot Benjamin

Let k be an imaginary quadratic number field with Ck,2, the
2-Sylow subgroup of its ideal class group Ck, of rank 4. We
show that k has infinite 2-class field tower for particular fam-
ilies of fields k, according to the 4-rank of Ck, the Kronecker
symbols of the primes dividing the discriminant ∆k of k, and
the number of negative prime discriminants dividing ∆k. In
particular we show that if the 4-rank of Ck is greater than or
equal to 2 and exactly one negative prime discriminant divides
∆k, then k has infinite 2-class field tower.

Introduction.

Let k denote an algebraic number field and Ck,2 denote its 2-class group,
i.e., the 2-Sylow subgroup of the ideal class group Ck (in the wide sense) of
k; denote by k1 the Hilbert 2-class field of k. Let kn (for n a nonnegative
integer) be defined inductively as k0 = k and kn+1 = (kn)1. Then k0 ⊆ k1 ⊆
k2 ⊆ . . . ⊆ kn ⊆ . . . is called the 2-class field tower of k. If n is the minimal
integer such that kn = kn+1, then n is called the length of the tower. If no
such n exists, then the tower is said to be of infinite length.

In 1964, Golod and Shafarevich (cf. [4]) established for the first time the
existence of infinite p-class field towers, for p prime. In the case p = 2,
their criterion (as refined by Gaschütz and Vinberg [10]) can be stated in
the following way, where Ek,2 denotes the unit group of k mod its squares,
Ek/E2

k : If rank Ck,2 ≥ 2 + 2(rankEk,2 + 1)1/2 then k has infinite 2-class
field tower. We shall refer to the above inequality as the Golod-Shafarevich
inequality. We immediately see that for k imaginary with rank Ck,2 ≥ 5,
or k real with rank Ck,2 ≥ 6, the Golod-Shafarevich inequality is satisfied
and k thereby has infinite 2-class field tower. It is well-known that for k
imaginary with rank Ck,2 = 2 or 3, the 2-class field tower of k may be finite
or infinite, and that if rank Ck,2 = 1 then the 2-class field tower of k is finite
and has length 1 (cf. [3], [6], [14], [17], [20]). It has been conjectured that
for k imaginary with rank Ck,2 = 4, k has infinite 2-class field tower (cf. [17],
[18]).
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A partial result in this direction, as proved by Hajir, is that if k is an
imaginary quadratic number field such that Ck,2 contains a subgroup iso-
morphic to Z4 ×Z4 ×Z4, then k has infinite 2-class field tower (cf. [6], [7]).
We extend this result to particular fields k with rank Ck,2 = 4 and 4-rank
of Ck less than 3. Denoting the discriminant of k by ∆k, our fields k are
classified according to the 4-rank of Ck, the Kronecker symbols (p/q) of the
primes dividing ∆k, and the number of negative prime discriminants divid-
ing ∆k. We demonstrate that if the 4-rank of Ck is greater than or equal
to 2 and exactly one negative prime discriminant divides ∆k, then k has
infinite 2-class field tower.

Preliminaries.

Our initial results are directly related to the following inequality (cf. [6],
[7]):

Proposition 1. Let F be a totally real field of degree n, E a totally complex
quadratic extension of F, and t the number of prime ideals of F which ramify
in E. If t ≥ 3 + 2

√
n + 1 then the 2-class field tower of E is infinite.

We will also need to utilize the well-known ambiguous class number for-
mula, where for a cyclic extension K/F an ambiguous ideal class is an ideal
class of K that remains invariant under the action of Gal (K/F ). We de-
note the subgroup of ambiguous ideal classes by Am (K/F ) and its Sylow
2-subgroup by Am2(K/F ). We state the following two propositions: (cf. [12],
[15]).

Proposition 2. Let K/F be a cyclic extension of prime degree p. Then
|Am(K/F )| = h(F )·pt−1/(E : H) where t is the number of (finite or infinite)
primes of F which are ramified in K/F, E = EF is the unit group of F,
H = E ∩NK/F Kx is the subgroup of units which are norms of elements of
Kx, and Kx is the multiplicative group of K.

Proposition 3. Let K/F be a quadratic extension of an algebraic number
field where h(F ) is odd. Then |Am2(K/F )| = 2e where e is the 2-rank of
CK .

Results.

We begin by obtaining some conditions on the Kronecker symbols of the
primes dividing ∆k, directly related to Proposition 1, to insure that an
imaginary quadratic number field k with rank Ck,2 = 4 has infinite 2-class
field tower.

Lemma 1. Let k be an imaginary quadratic number field such that rank
Ck,2 = 4. If for some prime pj ≡ 1 mod 4, or pj = 2 in which case we
further assume that 8 is a fundamental discriminant dividing ∆k, we have
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pj

pk

)
=

(
pj

pl

)
=

(
pj

pm

)
= 1, pj , pk, pl, pm distinct primes, pjpkplpm|∆k, then

k has infinite 2-class field tower.

Proof. We proceed in a similar way to Hajir in [6]. Let F = Q(√pj),
E = k(√pj). We see that E is a CM field with maximal field subfield F

such that either 7 or 8 primes ramify from F to E. Since 7 ≥ 3 + 2
√

2 + 1,
it follows from Proposition 1 that E has infinite 2-class field tower. Since E
is an umramified quadratic extension of k, k has infinite 2-class field tower
as well. �

We utilize the following notational convenience: If dj is a negative prime
discriminant we let pj denote the prime dividing dj if dj 6= −4, and pj = 1
if dj = −4.

Lemma 2. Let k be an imaginary quadratic number field such that rank
Ck,2 = n, n ≥ 1. Let L = Q(

√
dj) and F = k(

√
dj), where dj is a negative

prime discriminant, pj |∆k. Then exactly 2n prime ideals in L are ramified

in F if and only if
(
−pj

pi

)
= 1, i 6= j, for all primes pi|∆k, 1 ≤ i ≤ n + 1.

Proof. Assume
(
−pj

pi

)
= 1, i 6= j, for all primes pi|∆k, 1 ≤ i ≤ n + 1. It

follows that there are exactly n primes pi dividing ∆k that split in L =
Q(

√
dj). Since F = k(

√
dj) is an unramified quadratic extension of k, these

n primes pi each have ramification index 2 in F . We therefore can conclude
that each of these primes pi must ramify from L to F . There are no other
prime ideals that ramify from L to F , since if there were a prime ideal Pm

in L that ramifies in F such that Pm ∩Q = pm 6= pi, 1 ≤ i ≤ n+1, it would
imply that pm ramifies in F . But pm does not divide ∆k unless pm = pj ,
and F is an unramified quadratic extension of k. Since pj has ramification
index 2 in F , we therefore conclude that exactly 2n prime ideals in L are
ramified in F . The converse is proved in a similar way and is left to the
reader. �

We note that in our proof of Lemma 1 we were able to utilize the full
strength of Proposition 1 by requiring only 7 primes to ramify from F to E,
whereas Hajir, in his original proof that if the 4-rank of Ck is greater than
or equal to 3 then k has infinite 2-class field tower (cf. [6]), assumed that
pi ≡ 1 mod 4,

(
pj

pi

)
= 1, j 6= i, and therefore 8 primes ramified from F to

E.
We illustrate Hajir’s method of proof of the above result in the case where

a negative prime discriminant dj divides ∆k,
(
−pj

pi

)
= 1, j 6= i, as follows

(cf. [7]):

Lemma 3. Let k be an imaginary quadratic number field such that rank
Ck,2 = 4. Assume there exists a negative prime discriminant dj , dj |∆k,
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such that ,
(
−pj

pi

)
= 1, j 6= i, for all primes pi|∆k, 1 ≤ i ≤ 5. Then k has

infinite 2-class field tower.

Proof. Let L = Q(
√−pj) and F = k(

√−pj). By Lemma 2 we see that
exactly 8 prime ideals in L are ramified in F . By Proposition 2 and Propo-
sition 3, it follows that rank CF,2 ≥ 6. Since rank EF,2 = 2, we obtain the
Golod-Shafarevich inequality: rank CF,2 ≥ 6 ≥ 2+2

√
2 + 1 and therefore F

has infinite 2-class field tower. Since F is an unramified quadratic extension
of k, k has infinite 2-class field tower as well. �

We state the following corollaries of Lemma 3:

Corollary 1. Let k be an imaginary quadratic number field such that rank
Ck,2 = 4, exactly one negative prime discriminant divides ∆k, and ∆k ≡
4 mod 8. Then k has infinite 2-class field tower.

Proof. Since k has exactly one negative prime discriminant and ∆k ≡
4 mod 8, all the odd primes dividing ∆k are congruent to 1 mod 4. We
therefore have

(
−1
pi

)
= 1 for all odd primes pi|∆k and our result follows

immediately from Lemma 3. �

Corollary 2. Let k be an imaginary quadratic number field, rank Ck,2 = 4,
such that five negative prime discriminants divide ∆k. Then the following
fields k have infinite 2-class field tower, where qi, 1 ≤ i ≤ 5, is a prime
congruent to 3 mod 4:

Q
(√

−q1q2q3q4q5

)
,

(
−qi

qj

)
=

(
−qi

qk

)
=

(
−qi

ql

)
=

(
−qi

qm

)
= 1,

{i, j, k, l, m} = {1, 2, 3, 4, 5}

Q
(√

−q1q2q3q4

)
,

(
−qi

qj

)
=

(
−qi

qk

)
=

(
−qi

ql

)
=

(
−qi

2

)
= 1,

{i, j, k, l} = {1, 2, 3, 4}.

Proof. It is immediate by applying Lemma 3 to each field k that we have
infinite 2-class field tower. We note that these are all the possible fields
satisfying the assumptions of our corollary for which we are able to apply
Lemma 3. �

For the cases when exactly one negative prime discriminant divides ∆k

where ∆k 6≡ 4 mod 8, and exactly three negative prime discriminants divide
∆k, we utilize the following lemma:

Lemma 4. Let k be an imaginary quadratic number field such that rank
Ck,2 = 4, at least two of the prime discriminants dividing ∆k are positive,

and
(

p1

p3

)
=

(
p2

p3

)
= 1 where p1 and p2 are distinct primes dividing positive
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prime discriminants dividing ∆k, and p3 is a prime dividing a positive or
negative prime discriminant dividing ∆k, p1 6= p3 6= p2. Then k has infinite
2-class field tower.

Proof. By the assumptions of our lemma, we can write k=Q(
√
−p1p2p3p4p5)

or k = Q(
√
−p1p2p3p4) where p1 ≡ p2 ≡ 1 mod 4, or p1 = 2 and p2 ≡

1 mod 4. By Martinet (cf. [17], Proposition 5) we see immediately that k
has infinite 2-class field tower. �

We now let k = Q(
√
−p1p2p3p4p5) where ∆k 6≡ 4 mod 8 and exactly

one negative prime discriminant divides ∆k. We define a Kronecker symbol
configuration of k to be a complete list of Kronecker symbols

(
pi

pj

)
, i ≤ j,

l ≤ i ≤ 5, l ≤ j ≤ 5. We denote a Kronecker symbol configuration by listing
all the Kronecker symbols

(
pi

pj

)
as above with

(
pi

pj

)
= 1 (respectively −1),

where the remaining Kronecker symbols
(

pi

pj

)
, i < j, are assumed to be −1

(respectively 1).
In Table 1 we utilize the Rédei & Reichardt conditions [19] to list all pos-

sible Kronecker symbol configurations (without loss of generality) according
to the 4-rank of Ck.

Table 1.

4-rank of Ck possible Kronecker symbol configurations

4 all Kronecker symbols equal 1

3
(

p1

p2

)
=

(
p1

p3

)
=

(
p1

p4

)
=

(
p1

p5

)
= 1(

p1

p2

)
= −1

2
(

p1

p2

)
=

(
p1

p3

)
=

(
p2

p3

)
= 1(

p1

p2

)
=

(
p3

p4

)
=

(
p1

p5

)
=

(
p2

p5

)
= 1(

p1

p2

)
=

(
p1

p3

)
=

(
p1

p4

)
=

(
p1

p5

)
=

(
p2

p5

)
= 1(

p1

p2

)
=

(
p3

p4

)
= −1(

p1

p2

)
=

(
p1

p3

)
= −1(

p1

p2

)
=

(
p1

p3

)
=

(
p2

p3

)
= −1(

p1

p2

)
=

(
p3

p5

)
=

(
p1

p3

)
=

(
p1

p5

)
=

(
p2

p3

)
= 1(

p1

p2

)
=

(
p4

p5

)
=

(
p1

p3

)
=

(
p1

p5

)
=

(
p2

p3

)
= 1
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4-rank of Ck possible Kronecker symbol configurations

1
(

p1

p2

)
=

(
p1

p3

)
=

(
p1

p4

)
=

(
p2

p3

)
= 1(

p1

p2

)
=

(
p1

p3

)
=

(
p1

p4

)
=

(
p2

p3

)
= −1(

p1

p2

)
=

(
p1

p3

)
=

(
p1

p4

)
= −1(

p1

p2

)
=

(
p1

p3

)
=

(
p2

p4

)
= −1(

p1

p2

)
=

(
p1

p3

)
= 1

0 all Kronecker symbols equal −1(
p1

p2

)
= 1(

p1

p2

)
=

(
p3

p4

)
= 1(

p1

p2

)
=

(
p1

p3

)
=

(
p2

p4

)
= 1(

p1

p2

)
=

(
p3

p4

)
=

(
p1

p5

)
=

(
p2

p3

)
= 1(

p1

p2

)
=

(
p3

p4

)
=

(
p1

p5

)
=

(
p2

p3

)
=

(
p4

p5

)
= 1(

p1

p2

)
=

(
p1

p3

)
=

(
p1

p4

)
=

(
p2

p5

)
=

(
p3

p5

)
= 1(

p1

p2

)
=

(
p3

p4

)
=

(
p1

p5

)
= 1(

p1

p2

)
=

(
p1

p3

)
=

(
p1

p4

)
= 1(

p1

p2

)
=

(
p3

p4

)
=

(
p1

p3

)
=

(
p1

p5

)
= 1(

p1

p2

)
=

(
p3

p4

)
=

(
p1

p3

)
=

(
p1

p5

)
=

(
p2

p3

)
= 1(

p1

p2

)
=

(
p3

p4

)
=

(
p1

p5

)
= −1(

p1

p2

)
=

(
p3

p4

)
=

(
p1

p5

)
=

(
p2

p3

)
= −1(

p1

p2

)
=

(
p3

p4

)
=

(
p1

p3

)
=

(
p1

p5

)
= −1(

p1

p2

)
=

(
p3

p4

)
=

(
p1

p5

)
=

(
p2

p5

)
= 1(

p1

p2

)
=

(
p1

p3

)
=

(
p1

p4

)
=

(
p1

p5

)
= −1

We are now able to state the following theorem:

Theorem 1. Let k be an imaginary quadratic number field with rank Ck,2 =
4, ∆k 6≡ 4 mod 8, and exactly one negative prime discriminant dividing ∆k.
Then the following fields k have infinite 2-class field tower, where
{i, j, k, l,m} = {1, 2, 3, 4, 5}:
(A) 4-rank of Ck equal to 2, 3 or 4
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(B) 4-rank of Ck equal to 1 and Kronecker symbol configuration of k not
( pi

pj
) = ( pi

pk
) = 1 where either pj or pk is the prime dividing the negative

prime discriminant dividing dk

(C) 4-rank of Ck equal to 0 (i.e., Ck,2 elementary) and Kronecker symbol
configuration of k not one of the following types:
• all Kronecker symbols equal −1
• ( pi

pj
) = 1

• ( pi

pj
) = (pk

pl
) = 1

• ( pi

pj
) = (pk

pl
) = ( pi

pm
) = 1 where either pj or pm is the prime dividing

the negative prime discriminant dividing dk.

Proof. For case (A) with 4-rank of Ck equal to 3 or 4 the result has been
established by Hajir (cf. [6], [7]). For case (A) with 4-rank of Ck equal to
2, and cases (B) and (C), we apply Lemma 4 to our fields listed in Table 1
to establish our result. �

From Table 1 we see that there are 32 possible Kronecker symbol config-
urations when exactly one negative prime discriminant divides ∆k, ∆k 6≡ 4
mod 8. From Theorem 1 we find that for 27 of these Kronecker symbol
configurations, k has infinite 2-class field tower. The unknown cases can be
summarized by means of the 4-rank of Ck as follows:

Table 2.

4-rank of Ck number of Kronecker symbol
configurations where 2-class
field tower of k may be finite

4 0

3 0

2 0

1 1

0 4

Remark 1. For the case when exactly three negative prime discriminants
divide ∆k, one can again utilize the Rédei & Reichardt conditions and
Lemma 4 to obtain fields with infinite 2-class field tower. We note that
in this case the Kronecker symbol configuration (p1

p2
) = (p1

p3
) = (p1

p4
) = 1 may

not satisfy the requirements of Lemma 4; however, Lemma 1 may be used
when p1 6≡ 1 mod 4, or when p1 = 2 if 8 is a fundamental discriminant
dividing ∆k. For the case when five negative prime discriminants divide ∆k,
one can utilize the Rédei & Reichardt conditions and Corollary 2 to obtain
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fields with infinite 2-class field tower. In a follow-up paper we will demon-
strate that our techniques allow us to conclude that k has infinite 2-class
field tower for imaginary quadratic number fields k when rank Ck,2 = 4, Ck

has 4-rank equal to 2, and either five negative prime discriminants divide
∆k or ∆k 6≡ 4 mod 8 (cf. [1]).

Examples.

From Lemma 1, Corollary 2, and Theorem 1 we immediately obtain that the
following fields k have infinite 2-class field tower. We list our fields according
to the 4-rank of Ck.

Ck,2 elementary: k = Q
(√

−61, 620
)

= Q
(√

−3 · 5 · 13 · 79
)

k = Q
(√

−120, 180
)

= Q
(√

−5 · 13 · 17 · 29
)

k = Q
(√

−122, 655
)

= Q
(√

−3 · 5 · 13 · 17 · 37
)

k = Q
(√

−212, 135
)

= Q
(√

−5 · 7 · 11 · 19 · 29
)

k = Q
(√

−256, 360
)

= Q
(√

−2 · 5 · 13 · 17 · 29
)

k = Q
(√

−430, 360
)

= Q
(√

−2 · 5 · 7 · 29 · 53
)

k = Q
(√

−440, 115
)

= Q
(√

−3 · 5 · 13 · 37 · 61
)

k = Q
(√

−850, 135
)

= Q
(√

−5 · 11 · 13 · 29 · 41
)

k = Q
(√

−2, 035, 240
)

= Q
(√

−2 · 5 · 17 · 41 · 73
)

k = Q
(√

−5, 863, 655
)

= Q
(√

−5 · 7 · 29 · 53 · 109
)

4− rank of Ck = 1: k = Q
(√

−184, 008
)

= Q
(√

−2 · 3 · 11 · 17 · 41
)

k = Q
(√

−531, 867
)

= Q
(√

−3 · 7 · 19 · 31 · 43
)

k = Q
(√

−2, 657, 415
)

= Q
(√

−3 · 5 · 29 · 41 · 149
)

k = Q
(√

−6, 425, 679
)

= Q
(√

−3 · 13 · 37 · 61 · 73
)

4− rank of Ck = 2: k = Q
(√

−3, 989, 095
)

= Q
(√

−5 · 11 · 29 · 41 · 61
)
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Remark 2. Since the fields satisfying the conditions of Lemmas 1, 3, and 4
possess an unramified quadratic extension which satisfy the Golod-Shafare-
vich inequality, (cf. [19] in regard to Lemmas 1 and 4) it follows from The-
orem 6 of Hajir (cf. [5]) that the rank of the 2-class groups of these fields
tend to infinity.

In conclusion, we see that the conjecture concerning the 2-class field tower
of k being infinite holds in a number of particular fields k when the 4-rank of
Ck is equal to 0, 1, or 2, and always holds when the 4-rank of Ck is greater
than or equal to 3. Our techniques allow us to obtain families of fields k
with 4-rank of Ck equal to 0,1, or 2 and k having infinite 2-class field tower,
as well as the rank of the 2-class groups of the fields in the tower of k tending
to infinity. However, the complete resolution of the conjecture concerning
all imaginary quadratic number fields k with rank Ck,2 = 4 is still a very
open question.

Acknowledgement. I would like to express my gratitude to Chip Snyder
for a number of helpful suggestions throughout this paper.
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