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Let k be an imaginary quadratic number field with Cj 2, the
2-Sylow subgroup of its ideal class group Cj, of rank 4. We
show that k has infinite 2-class field tower for particular fam-
ilies of fields k, according to the 4-rank of Cj, the Kronecker
symbols of the primes dividing the discriminant Ay of k, and
the number of negative prime discriminants dividing Ay. In
particular we show that if the 4-rank of Cj is greater than or
equal to 2 and exactly one negative prime discriminant divides
Ay, then k has infinite 2-class field tower.

Introduction.

Let k denote an algebraic number field and C} 2 denote its 2-class group,
i.e., the 2-Sylow subgroup of the ideal class group Cj (in the wide sense) of
k; denote by ki the Hilbert 2-class field of k. Let k,, (for n a nonnegative
integer) be defined inductively as kg = k and kp4+1 = (ky)1. Then kg C k1 C
ko C...Ck, C... is called the 2-class field tower of k. If n is the minimal
integer such that k,, = k,41, then n is called the length of the tower. If no
such n exists, then the tower is said to be of infinite length.

In 1964, Golod and Shafarevich (cf. [4]) established for the first time the
existence of infinite p-class field towers, for p prime. In the case p = 2,
their criterion (as refined by Gaschiitz and Vinberg [10]) can be stated in
the following way, where Ej, o denotes the unit group of k mod its squares,
Ek/E,% If rank Cro > 2 4 2(rank By o + 1)1/2 then k has infinite 2-class
field tower. We shall refer to the above inequality as the Golod-Shafarevich
inequality. We immediately see that for & imaginary with rank Cjo > 5,
or k real with rank Cj o > 6, the Golod-Shafarevich inequality is satisfied
and k thereby has infinite 2-class field tower. It is well-known that for k
imaginary with rank Cj 2 = 2 or 3, the 2-class field tower of £ may be finite
or infinite, and that if rank C} o = 1 then the 2-class field tower of £ is finite
and has length 1 (cf. [3], [6], [14], [17], [20]). It has been conjectured that
for k imaginary with rank C}, o = 4, k has infinite 2-class field tower (cf. [17],
18)).
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A partial result in this direction, as proved by Hajir, is that if k is an
imaginary quadratic number field such that Cj o contains a subgroup iso-
morphic to Z4 X Zy x Z4, then k has infinite 2-class field tower (cf. [6], [7]).
We extend this result to particular fields k with rank Cj 2 = 4 and 4-rank
of C} less than 3. Denoting the discriminant of k by Ay, our fields k are
classified according to the 4-rank of Cj, the Kronecker symbols (p/q) of the
primes dividing Ag, and the number of negative prime discriminants divid-
ing A,. We demonstrate that if the 4-rank of C}, is greater than or equal
to 2 and exactly one negative prime discriminant divides Ay, then k has
infinite 2-class field tower.

Preliminaries.

Our initial results are directly related to the following inequality (cf. [6],
[7]):
Proposition 1. Let F be a totally real field of degree n, E a totally complex

quadratic extension of F, and t the number of prime ideals of F' which ramify
in E. If t >34+ 2v/n+ 1 then the 2-class field tower of E is infinite.

We will also need to utilize the well-known ambiguous class number for-
mula, where for a cyclic extension K/F an ambiguous ideal class is an ideal
class of K that remains invariant under the action of Gal (K/F). We de-
note the subgroup of ambiguous ideal classes by Am (K/F) and its Sylow
2-subgroup by Amg(K/F'). We state the following two propositions: (cf. [12],
15]).

Proposition 2. Let K/F be a cyclic extension of prime degree p. Then
|Am(K/F)| = h(F)-p"=1/(E : H) wheret is the number of (finite or infinite)
primes of F which are ramified in K/F, E = Ep is the unit group of F,
H = EN Ng,pK?” is the subgroup of units which are norms of elements of
K?*, and K% is the multiplicative group of K.

Proposition 3. Let K/F be a quadratic extension of an algebraic number
field where h(F) is odd. Then |Amg(K/F)| = 2¢ where e is the 2-rank of
Ck.

Results.

We begin by obtaining some conditions on the Kronecker symbols of the
primes dividing Apg, directly related to Proposition 1, to insure that an
imaginary quadratic number field k& with rank C 9 = 4 has infinite 2-class
field tower.

Lemma 1. Let k be an imaginary quadratic number field such that rank
Cr2 = 4. If for some prime pj = 1 mod 4, or p; = 2 in which case we
further assume that 8 is a fundamental discriminant dividing Ay, we have
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(%) = (%j) = (%) =1, pj, ks D1> D distinct primes, pipgpipm| Ay, then
k has infinite 2-class field tower.

Proof. We proceed in a similar way to Hajir in [6]. Let F' = Q(,/p;),
E = k(,/pj). We see that E is a CM field with maximal field subfield F
such that either 7 or 8 primes ramify from F' to E. Since 7 > 3 + 2v/2 + 1,
it follows from Proposition 1 that E has infinite 2-class field tower. Since F
is an umramified quadratic extension of k, k£ has infinite 2-class field tower
as well. O

We utilize the following notational convenience: If d; is a negative prime
discriminant we let p; denote the prime dividing d; if d; # —4, and p; =1
if dj = —4.

Lemma 2. Let k be an imaginary quadratic number field such that rank
Cra=mn,n>1. Let L =Q(\/d;) and F = k(\/d;), where d; is a negative
prime discriminant, p;|Ay. Then exactly 2n prime ideals in L are ramified

in F if and only if (;—m) =1, i # j, for all primes p;|Ag, 1 <i<n+1.

Proof. Assume <%€7) =1, i # j, for all primes p;|Ag, 1 < i <n+1. It
follows that there are exactly n primes p; dividing A, that split in L =
Q(+/d;). Since F = k(,/d;) is an unramified quadratic extension of k, these
n primes p; each have ramification index 2 in F'. We therefore can conclude
that each of these primes p; must ramify from L to F. There are no other
prime ideals that ramify from L to F', since if there were a prime ideal P,
in L that ramifies in F' such that P, NQ = py, # pi, 1 <i < n+1, it would
imply that p,, ramifies in F'. But p,, does not divide A unless p,, = pj,
and F' is an unramified quadratic extension of k. Since p; has ramification
index 2 in F, we therefore conclude that exactly 2n prime ideals in L are
ramified in F'. The converse is proved in a similar way and is left to the
reader. O

We note that in our proof of Lemma 1 we were able to utilize the full
strength of Proposition 1 by requiring only 7 primes to ramify from F' to E,
whereas Hajir, in his original proof that if the 4-rank of C}, is greater than
or equal to 3 then k has infinite 2-class field tower (cf. [6]), assumed that
pi =1 mod 4, <%> =1, j # i, and therefore 8 primes ramified from F' to
E.

We illustrate Hajir’s method of proof of the above result in the case where
a negative prime discriminant d; divides Ay, (;—?) =1, j # i, as follows
(cf. [7]):

Lemma 3. Let k be an imaginary quadratic number field such that rank
Cra2 = 4. Assume there exists a negative prime discriminant dj, dj|Ay,
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such that , (;—fj) =1, j # 1, for all primes p;|Ag, 1 < i < 5. Then k has

infinite 2-class field tower.

Proof. Let L = Q(y/=pj) and F = k(y/=p;). By Lemma 2 we see that
exactly 8 prime ideals in L are ramified in F. By Proposition 2 and Propo-

sition 3, it follows that rank C'r2 > 6. Since rank Fro = 2, we obtain the
Golod-Shafarevich inequality: rank Cra > 6 > 2+21/2 4 1 and therefore I
has infinite 2-class field tower. Since F' is an unramified quadratic extension
of k, k has infinite 2-class field tower as well. O

We state the following corollaries of Lemma 3:

Corollary 1. Let k be an imaginary quadratic number field such that rank
Cr2 = 4, exactly one negative prime discriminant divides Ay, and Ay =
4 mod 8. Then k has infinite 2-class field tower.

Proof. Since k has exactly one negative prime discriminant and A, =

4 mod 8, all the odd primes dividing Ay are congruent to 1 mod 4. We

therefore have (;—1> = 1 for all odd primes p;|Aj and our result follows

immediately from Lemma 3. (]

Corollary 2. Let k be an imaginary quadratic number field, rank C o = 4,
such that five negative prime discriminants divide Ay. Then the following
fields k have infinite 2-class field tower, where ¢;, 1 < i < 5, is a prime
congruent to 3 mod 4:

Q (V= 16:05015) (q> _ (‘-’) _ <Q> _ (Q) 0
q; dk qi dm
{ivjv ka l7 m} = {17 27 3, 4, 5}
tvmmmmm). (22) = (22) = (Z2) = () -,
qj Tk @ 2
{/i7j7 k’ l} = {1’ 2’ 3) 4-}
Proof. It is immediate by applying Lemma 3 to each field k that we have
infinite 2-class field tower. We note that these are all the possible fields

satisfying the assumptions of our corollary for which we are able to apply
Lemma 3. O

For the cases when exactly one negative prime discriminant divides Ay
where A #Z 4 mod 8, and exactly three negative prime discriminants divide
Ag, we utilize the following lemma:

Lemma 4. Let k be an imaginary quadratic number field such that rank
Cr2 = 4, at least two of the prime discriminants dividing Ay are positive,

and (%) = (%) =1 where p1 and p2 are distinct primes dividing positive
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prime discriminants dividing Ay, and ps is a prime dividing a positive or
negative prime discriminant dividing Ay, p1 # p3 # pa. Then k has infinite
2-class field tower.

Proof. By the assumptions of our lemma, we can write k= Q(\/—p1p2p3paps)
or k = Q(/—pip2psps) where py = po = 1 mod 4, or p; = 2 and py =
1 mod 4. By Martinet (cf. [17], Proposition 5) we see immediately that k
has infinite 2-class field tower. O

We now let k& = Q(y/—p1p2p3paps) where Ar Z 4 mod 8 and exactly
one negative prime discriminant divides A;. We define a Kronecker symbol

configuration of k£ to be a complete list of Kronecker symbols %) i <7,

j )
1 <i<5,1<j<5. Wedenote a Kronecker symbol configuration by listing

all the Kronecker symbols (%) as above with (;’—;) =1 (respectively —1),

where the remaining Kronecker symbols 1% , 1 < j, are assumed to be —1
(respectively 1).
In Table 1 we utilize the Rédei & Reichardt conditions [19] to list all pos-

sible Kronecker symbol configurations (without loss of generality) according
to the 4-rank of Cj.

Table 1.
4-rank of C}, | possible Kronecker symbol configurations
4 all Kronecker symbols equal 1
: Eié)(iﬁ)(ﬁi)(%)l
)=
P2
()= ) = () =
() = (5) = (i) = () =1
EH;U ()= (%) =1
p) — () = _q
(5) - ()
()= (i) = (32) =1
()= (5)= () = () = () =1
()= (8)= () = () = () =
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4-rank of C}, | possible Kronecker symbol configurations
- ®) () ()
P2 P3 Pa P3
<ZA _ () = () = (p2) = 4
P2 P3 Pa 3
()~ () (2)--
P2 p3 Ppa
()~ () (2) -
p2 P3 Pa
BEAR
2 3
0 all Kronecker symbols equal —1

1

=1

S N NS Ss N
| |
e K @ = R
| |
= als &
Now
Il

~— —
Il
I/~ =
N
Il
[a—

’U"E ’U‘“{S *B"ﬁ
o N}

(5)

(5) = (5) =1

() = () = ()

()= (2)= ()

() = () = () = () = (2
() = () = () = () = () =1
(52) = () = (%) =

(32) = (5) = (&) =1

()= (1) = ()= (1) =1
()= (5)= () = () = () =1
()= (5) = () =1

()= (5) = () = (52) =
()= (5)= ()= () =
()= (&)= (8)=(2)=1
()= (8)= ()= () =~

We are now able to state the following theorem:

Theorem 1. Let k be an imaginary quadratic number field with rank C, o =
4, A 4 mod 8, and exactly one negative prime discriminant dividing Ay.
Then the following fields k have infinite 2-class field tower,
{i,7,k,l,m} ={1,2,3,4,5}:

(A) 4-rank of Cy equal to 2,3 or 4

where



ON IMAGINARY QUADRATIC NUMBER FIELDS 263

(B) 4-rank of Cy equal to 1 and Kronecker symbol configuration of k not
(g—;) = (5—;) = 1 where either p; or py, is the prime dividing the negative
prime discriminant dividing dy,

(C) 4-rank of Cy equal to 0 (i.e., Cyo elementary) and Kronecker symbol
configuration of k not one of the following types:

e all Kronecker symbols equal —1

0(5—;):1

o (2= () =1
pg by )

. (g—;) = (%’;) = (If—:n) = 1 where either p; or p, is the prime dividing
the negative prime discriminant dividing dy.

Proof. For case (A) with 4-rank of C} equal to 3 or 4 the result has been
established by Hajir (cf. [6], [7]). For case (A) with 4-rank of Cj equal to
2, and cases (B) and (C), we apply Lemma 4 to our fields listed in Table 1
to establish our result. O

From Table 1 we see that there are 32 possible Kronecker symbol config-
urations when exactly one negative prime discriminant divides Ay, Ay Z 4
mod 8. From Theorem 1 we find that for 27 of these Kronecker symbol
configurations, k has infinite 2-class field tower. The unknown cases can be
summarized by means of the 4-rank of C} as follows:

Table 2.

4-rank of Cj | number of Kronecker symbol
configurations where 2-class
field tower of k may be finite

4 0
3 0
2 0
1 1
0 4

Remark 1. For the case when exactly three negative prime discriminants
divide Ag, one can again utilize the Rédei & Reichardt conditions and
Lemma 4 to obtain fields with infinite 2-class field tower. We note that
in this case the Kronecker symbol configuration (£+) = (2!) = (£%) = 1 may
not satisfy the requirements of Lemma 4; however, Lemma 1 may be used
when p; Z 1 mod 4, or when p; = 2 if 8 is a fundamental discriminant
dividing Ag. For the case when five negative prime discriminants divide Ay,

one can utilize the Rédei & Reichardt conditions and Corollary 2 to obtain
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fields with infinite 2-class field tower. In a follow-up paper we will demon-
strate that our techniques allow us to conclude that k£ has infinite 2-class
field tower for imaginary quadratic number fields £ when rank Cj o = 4, C},
has 4-rank equal to 2, and either five negative prime discriminants divide
Ay or Ap # 4 mod 8 (cf. [1]).

Examples.

From Lemma 1, Corollary 2, and Theorem 1 we immediately obtain that the
following fields k have infinite 2-class field tower. We list our fields according
to the 4-rank of Cj..

Cho elementary: sz( —61,620) = Q(V/=35-13-79)
k:Q< —120,180):Q(\/m)
k:zQ( —122,655):Q(\/—3-5-13-17-37)
k=Q (V=212,135) = @ (vV=5-7-11-19-29)
k:Q( —256,360):Q(\/—2-5-13-17-29)
k=@ (v/~130,360) = Q (vV=2-5-7-2953)
k:Q< —440,115):Q(\/—3-5-13-37-61)
k=Q (v=850,135) = @ (V=5-11-13-29 - 1)
k=Q(v=2085,210) = Q (vV=2-5-17 - 41-73)
k:Q( —5,863,655):Q(\/—5-7~29-53-109)

4 — rank of Cy = 1: k:Q( —184,008):Q(\/—2-3~11-17-41)
k:Q( —531,867):Q(\/—3~7-19-31-43)
k:Q( 9,657,415 ) = Q (V=35 29 - 41 - 149)
k=
(
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Remark 2. Since the fields satisfying the conditions of Lemmas 1, 3, and 4
possess an unramified quadratic extension which satisfy the Golod-Shafare-
vich inequality, (cf. [19] in regard to Lemmas 1 and 4) it follows from The-
orem 6 of Hajir (cf. [5]) that the rank of the 2-class groups of these fields
tend to infinity.

In conclusion, we see that the conjecture concerning the 2-class field tower
of k being infinite holds in a number of particular fields £ when the 4-rank of
Cj is equal to 0, 1, or 2, and always holds when the 4-rank of C}, is greater
than or equal to 3. Our techniques allow us to obtain families of fields k
with 4-rank of Cj equal to 0,1, or 2 and k having infinite 2-class field tower,
as well as the rank of the 2-class groups of the fields in the tower of k tending
to infinity. However, the complete resolution of the conjecture concerning
all imaginary quadratic number fields £ with rank C o = 4 is still a very
open question.
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