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It is known that the maximal order of a cyclic group of
automorphisms admitted by a Klein surface or real algebraic
curve of algebraic genus p is 2p or 2(p + 1), depending on
whether p is odd or even. In this paper, we classify the auto-
morphism groups of all non-orientable Klein surfaces, without
boundary, which admit an automorphism group of order 2p,
or 2(p + 1). We determine that the automorphism groups are
cyclic precisely when the surfaces are hyperelliptic. Defining
equations for all but one family of these Klein surfaces are
given.

There are certain properties that can be shown to exist for at least one
Riemann surface of each genus g or Klein surface of each algebraic genus
p. For example, for each g ≥ 2, there exists a Riemann surface of genus g
which possesses 8g + 8 automorphisms [1], [7]. Similarly, for each p ≥ 2,
there exist orientable and non-orientable Klein surfaces of algebraic genus p
which possess 4(p+1) and 4p automorphisms respectively [10]. In each case
these bounds are sharp, since there are infinitely many g and p for which
there are no Riemann or Klein surfaces which possess more automorphisms.
Similarly, for each p ≥ 2, there exists a Klein surface which admits a cyclic
group of automorphisms of order 2(p + 1) if p is even, or 2p, if p is odd [3],
[9]. Although Klein surfaces which possess such large cyclic automorphism
groups are so numerous, in this paper we prove an interesting converse.
Recall that a non-orientable Klein surface without boundary is called a non-
orientable Riemann surface. We show that any non-orientable Riemann
surface which admits a group G of automorphisms of order 2(p + 1) or 2p
has the property that G is either cyclic or an extension of a cyclic group by
Z2. We further determine that G is cyclic if and only if the non-orientable
Riemann surface is hyperelliptic.

Recall that the category of Klein surfaces is equivalent to the category
of real algebraic curves. Each Klein surface can be realized as an algebraic
curve, defined by real equations, upon which complex conjugation acts. Non-
orientable Riemann surfaces correspond to algebraic curves whose real locus
is empty. We determine the defining equations for the Riemann double
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covers for all but one family of surfaces found in this paper. We explicitly
determine the symmetry which yields each Klein surface and give explicit
equations for the automorphism group of order 2p or 2(p+1). This work, in
conjunction with the examination of bordered Klein surfaces in [6], provides
an extensive analysis of all Klein surfaces which admit automorphism groups
of order 2(p + 1) or 2p.

1. Preliminaries.

Let U denote the upper half plane and let W be a compact Klein surface
of algebraic genus p ≥ 2. Then W can be realized as U/Γ for some non-
euclidean crystallographic (NEC) group Γ. In addition, Γ can be chosen to
be a surface group, meaning that it has no nonidentity orientation preserving
elements of finite order. If W admits a group of automorphisms G, then
there exists an NEC group Λ such that G ∼= Λ/Γ, and W/G and U/Λ are
equivalent Klein surfaces. Important properties of Λ are contained in its
signature

(g;±; [m1,m2, . . . ,mr]; {(n11, . . . , n1s1), . . . , (nk1, . . . , nksk
)}).(1)

The above signature indicates that U/Λ has topological genus g and k
boundary components. Each mi is called a proper period, each nij is called
a link period, and each term (ni1, . . . , nisi) is called a period cycle of Λ. It
is well-known that Λ, with signature (1), can be generated by one of the
following two sets of elements:

{xu, cij , ev, aw, bw | 1 ≤ u ≤ r, 1 ≤ i ≤ k, 0 ≤ j ≤ si, 1 ≤ v ≤ k, 1 ≤ w ≤ g},

{xu, cij , ev, dw | 1 ≤ u ≤ r, 1 ≤ i ≤ k, 0 ≤ j ≤ si, 1 ≤ v ≤ k, 1 ≤ w ≤ g}.
(2)

The first set generates Λ if the signature of Λ has a plus sign, and the
second set generates Λ if the signature has a minus sign. In either case, the
generators satisfy the relations

(3) {xmu
u = 1, ci,si = e−1

i ci,0ei, c
2
i,j−1 = c2

ij = (ci,j−1cij)nij = 1

| 1 ≤ u ≤ r, 1 ≤ i ≤ k, 1 ≤ j ≤ si, 1 ≤ w ≤ g},

and the additional relation x1 . . . xre1 . . . ek[a1, b1] . . . [ag, bg] = 1 if there is
a plus sign in the signature, and x1 . . . xre1 . . . ekd

2
1 . . . d2

g = 1 if there is a
minus sign in the signature.

Since Γ is a surface group, it has a signature of the form

(g′;±; [−]; {(−), . . . , (−)}).(4)

Let k′ denote the number of empty period cycles in (4).
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The Riemann-Hurwitz formula yields that

αg′ + k′ − 2
| G |

= αg + k − 2 +
r∑

j=1

(1− 1/mj) +
1
2

k∑
i=1

si∑
j=1

(1− 1/nij).(5)

The algebraic genus p of a Klein surface is defined to be the genus of its
Riemann double cover. If a surface has signature (1), then p = αg + k − 1,
where α equals 2 or 1, depending on whether there is a + or − in the
signature.

A non-orientable Riemann surface is a non-orientable Klein surface with-
out boundary. Note that if the surface group Γ in (4) corresponds to a
non-orientable Riemann surface of algebraic genus p, then Γ has the signa-
ture

(p + 1;−; [−]; {−}).(6)

It is well-known that an NEC group with signature (1) exists if and only
if the right hand side of (5) is positive. Therefore, a way to construct Klein
surfaces which admit a given automorphism group G is to define a group
homomorphism θ from an NEC group Λ, with signature (1), onto a finite
group G. If Γ = ker(θ), then the Klein surface U/Γ admits G ∼= Λ/Γ as a
group of automorphisms.

Throughout the paper we will use the following presentation for a group
G of order 2n, where n is odd, which possesses a cyclic group of order n:

〈A,B | An = B2 = 1, BAB = Aα〉.(7)

In (7), α and n are relatively prime and α2 ≡ 1 mod n. Note that if α = −1,
then G is the dihedral group Dn, and if α = 1, then G is cyclic. However
we will use the presentation

〈a | a2n = 1〉(8)

for the cyclic group of order 2n. In addition, we denote the greatest common
divisor of the integers a and b by gcd(a, b).

We state without proof an elementary result concerning groups of order
2n where n is odd.

Proposition 1.1. Let G be a group of order 2n, where n is odd. Then
G contains a unique normal subgroup H of order n which contains all the
elements of G of odd order.

We now define notation to be used for the rest of the paper. Define γ = p
if p is odd or p + 1 if p is even. Let W denote a non-orientable Riemann
surface of algebraic genus p which admits a group G of automorphisms of
order 2γ and let its corresponding NEC group Γ have signature (6). Let
Λ denote an NEC group such that Γ / Λ, G ∼= Λ/Γ, and X/G = U/Λ. We
assume Λ has signature (1) and generators and relations (2) and (3). Let
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θ : Λ → G denote the canonical map, and let H denote the unique subgroup
of G of order γ.

We state two Propositions which allow us to determine the possible sig-
natures for Λ.

Proposition 1.2. Let W,Λ, G, and H be defined as above. Let Λ have
signature (1). Then no proper period mi in the signature for Λ is divisible
by 4, and each link period nij in the signature of Λ must be odd.

Proof. Let θ : Λ → G be the canonical epimorphism. Since Γ = ker(θ), and
Γ is a surface group, it cannot contain elliptic elements. Since 4 doesn’t
divide | G |, no proper period is divisible by 4. We now show that no link
period can be even. Assume nij is an even link period and let ci,j−1 and cij

be the elements of order two such that ci,j−1cij has even order nij . Since W
has no boundary, ci,j−1, and cij are not in ker(θ), and θ(ci,j−1cij) has order
nij . Therefore G contains a dihedral group of order 2nij , which implies that
4 divides | G |, a contradiction. Thus each nij cannot be even.

Proposition 1.3. Let W,Λ,Γ, G, and H be defined as above. Assume all
of the proper periods, if they exist, in the signature of Λ are odd. Then Λ
cannot have one of the following signatures:

i. (1;−; [m1,m2, . . . ,mr]; {−}),
ii. (0;+; [m1,m2, . . . ,mr]; {(−)}),
iii. (0;+; [m1, . . . ,mr]; {(n1, n2, . . . ns)}),
iv. (0;+; [−]; {(n1, . . . , ns)}).

Proof. In each case, let θ : Λ → G be the canonical map. We say a proper
generator of Λ is a generator in (2) which is not in Γ. A proper word of Λ is
the product of proper generators of Λ. Recall that ker(θ) is non-orientable
if and only if a glide reflection (one of the dw in (2)) or a non-orientable
proper word belongs to ker(θ) [5]. We will show that the above signatures
imply that ker(θ) is orientable. Considering (2), in Cases (i)-(iv) generators
for Λ are:

i. {x1, . . . , xr, d1},
ii. {x1, . . . , xr, e1, c0},
iii. {x1, . . . , xr, e1, c0, . . . , cs},
iv. {c0, . . . , cs}.
Since each xi has odd order θ(xi) ∈ H. In Case (i), this implies that

θ(d1) /∈ H, otherwise θ is not onto. In Cases (ii)-(iii), this implies that
θ(e1) ∈ H, since x1 . . . xre1 = 1. Note that for each j, cj /∈ Γ, since W
has no boundary, therefore θ(cj) /∈ H. For each case, let w be a proper,
non-orientable word in Λ and let w1 = θ(w). For each case, we consider
w1H in G/H. For Case (i) we obtain that w1H = θ(d1)qH, where q is
the number of appearances of d1 in w. Since w is non-orientable, q is odd,
therefore w1 /∈ H, therefore w /∈ ker(θ). In Cases (ii)-(iv), w1H = θ(c0)qH,
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where q is the number of appearances of c0, . . . , cs in w. Again, since w is
non-orientable, q is odd, and therefore w /∈ ker(θ). Therefore, no proper,
non-orientable word in Λ is an element of Γ = ker(θ). This contradicts that
W is non-orientable.

We now determine possible signatures for Λ. Let Λ have the signature (1)
and let Γ have the signature (6). From (5), we obtain

1
2

>
p− 1
2γ

= αg + k − 2 +
r∑

i=1

(1− 1/mi) +
1
2

k∑
i=1

si∑
j=1

(1− 1/nij).(9)

Therefore αg + k ≤ 2 and we have the following cases:

(a) g = 1, α = 1, k = 1,
(b) g = 1, α = 1, k = 0,
(c) g = 0, k = 2,
(d) g = 0, k = 1,
(e) g = 2, α = 1, k = 0.

We consider each case in conjunction with (9). In Case a), if r > 0, or
if r = 0 and s ≥ 2, then the right hand side of (9) is not less than 1/2.
Therefore, for case a), r = 0 and s1 = 1. In Case b), r must be two. In
Case c), r must be 0, however, it is not possible for both s1 and s2 to be
greater than 0. In Case d), r ≤ 2. If r = 2, then s1 = 0 or 1. If r = 1, then
s1 = 1 or 2. Proposition 1.3 yields that r 6= 0. Finally, in Case e), the right
hand side of (9) is zero or greater than or equal to 1/2. Therefore we arrive
at the list of relevant signatures for which the right hand side of (9) is less
than 1/2:

(a) (1;−; [−]; {(n)}),
(b) (1;−; [m1,m2]; {−}),
(c) (0; +; [−]; {(−), (n)}),

(d1) (0; +; [m1,m2]; {(n)}),
(d2) (0; +; [m1,m2]; {(−)}),
(d3) (0; +; [m]; {(n1, n2)}),
(d4) (0; +; [m]; {(n)}).

2. Main theorems.

We now determine which signatures for Λ yield non-orientable Riemann sur-
faces which admit 2γ automorphisms. We also determine all of the possible
epimorphisms from Λ onto a group of order 2γ.

Theorem 2.1. Let W be a non-orientable Riemann surface of even alge-
braic genus p ≥ 2 which admits a group of automorphisms G of order 2p+2.
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Then G ∼= Z2p+2 and W is hyperelliptic, or G is a non-cyclic group with pre-
sentation (7).

Proof. We continue to use the notation established above. Note that Λ
cannot have signatures a) or c) listed above since in these cases (9) implies
that n = (p + 1)/2, which is impossible since p is even.

We now consider Case b). In this case, Λ has signature (1;−; [m1,m2]; {−})
and so (9) yields that 1/2 + 1/(p + 1) = 1/m1 + 1/m2. If m1 = 2, then
m2 = p + 1. If m1 and m2 are both greater than two, then (9) yields that
2(m1 + m2)(p + 1) = m1m2(p + 3), therefore one of m1 or m2 is even. How-
ever, if m1 is even, then, since no proper period is divisible by 4, m1 ≥ 6.
However, m1 ≥ 6 and m2 ≥ 3 contradicts (9). Therefore, Case b) yields the
signature

(1;−; [2, p + 1]; {−}).(10)

We now determine the possible signatures for Cases d1)–d4). Case d1)
is impossible. To see this, assume m1 = m2 = 2. Then (9), yields that
n = (p+1)/2 which is impossible, since p is even. If m1 > 2, then (9) yields
that 1/2 > −1/m1 − 1/m2 + 3/2− 1/(2n) ≥ −1/3− 1/2 + 3/2− 1/6 = 1/2,
a contradiction.

The argument in Case d2) is analogous to Case b) above, and easily yields
the signature

(0;+; [2, p + 1]; {(−)}).(11)

In Case d3), (9) yields
1
2

>
p− 1

2(p + 1)
= 1− 1

m
− 1

2n1
− 1

2n2
.(12)

We will show that m = 2. If m > 2, Propositions 1.2 and 1.3 yield that
m ≥ 6. However, since n1 and n2 are odd, this contradicts (12). Therefore
m = 2. From (12) we obtain 2n1n2 = (n1 + n2)(p + 1). Let n1 ≤ n2 and
assume that n2 < p + 1. Then 2n1n2 > n2(n1 + n2), so n1 > n2 which is a
contradiction. Thus, since each link period must be odd, n2 = p + 1. But
then 1/(p + 1) = 1/n1 which give n1 = p + 1 also. Hence Case d3) only
yields the signature

(0;+; [2]; {(p + 1, p + 1)}).(13)

We now examine Case d4). Equation (9) yields that

2mn = (p + 1)(2n + m).(14)

If m = 2(p+1) then n = p+1 and so Λ has signature (0;+; [2(p+1)]; {(p+
1)}). However this signature cannot occur, since it implies that the element
x ∈ Λ corresponding to the proper period has order 2(p + 1) in G, which
implies that G is cyclic. On the other hand, this signature also implies
that G contains two elements of order two, whose product is p + 1, which
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is a contradiction. Therefore m ≤ (p + 1), however, this contradicts (14).
Therefore Λ cannot have a signature of the form d4).

Therefore the possible signatures for Λ are
i. (1;−; [2, p + 1]; {−}),
ii. (0;+; [2, p + 1]; {(−)}),
iii. (0;+; [2]; {(p + 1, p + 1)}).

Associated to the above signatures are the following presentations for Λ:
i′. 〈d, x1, x2 | x1x2d

2 = 1, x2
1 = xp+1

2 = 1〉,
ii′. 〈e, x1, x2, c | x1x2e = 1, x2

1 = xp+1
2 = 1, c2 = 1, ec = ce〉,

iii′. 〈e, x, c0, c1, c2 | xe = 1, x2 = 1, c2
0 = c2

1 = c2
2 = 1, ec2e

−1 = c0, (c0c1)p+1

= (c1c2)p+1 = 1〉.
We will show that there is an epimorphism θ : Λ → G only if Λ has one

of the signatures ii) or iii) above.
Assume that Λ has signature i) with the associated presentation listed

above. Let H be the normal subgroup of G of order p+1. Clearly θ(x2) ∈ H,
and θ(d2) ∈ H. Since x1 has order 2, θ(x1) /∈ H. Therefore θ(x1x2d

2) /∈ H.
This contradicts that x1x2d

2 = 1.
We now determine the epimorphisms if Λ has signature ii) with its associ-

ated presentation above. Since Λ has elements of orders two and p + 1, and
G has order 2(p + 1), we see that G must be a group with presentation (7).
Let θ : Λ → G be an epimorphism. We may assume that θ(x1) = B and
θ(x2) = A, therefore θ(e) = (BA)−1. Then θ(c) = AkB, for some integer k,

and θ(c2) = AkBAkB = AkAkα = Ak(α+1). Therefore

k(α + 1) ≡ 0 mod p + 1.(15)

To satisfy the defining relations of Λ, we must have θ(ec) = θ(ce), or equiv-
alently, BAk+1B = AkBBA. This yields that

(k + 1)(α− 1) ≡ 0 mod p + 1(16)

which combined with Equation (15), yields that k ≡ 2−1(α− 1) mod p + 1.
Since α2 ≡ 1 mod p + 1, this value of k satisfies both Equations (15) and
(16). Therefore θ(c) = A(α−1)/2B or A(α+p)/2B depending on whether α is
odd or even respectively. We have shown a group G is an epimorphic image
of Λ if and only if it has presentation (7). In addition, each epimorphism θ
must have the above form.

We now consider signature iii) with its associated presentation for Λ
above. It is clear that G must be dihedral since it contains two elements of
order two whose product has order p + 1. Let G have presentation (7) with
α = −1. We now determine the epimorphisms θ : Λ → G. Clearly we may as-
sume that θ(c0) = B and θ(c1) = AB. Then θ(c2) must be of the form AkB,
where k − 1 and p + 1 are relatively prime. Since θ(x) /∈ H, θ(e) /∈ H. Thus
θ(e) = AjB, and the relation ec2e

−1 = c0 implies that 2j ≡ k mod p + 1.
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Therefore, given k, it follows that j = k/2 if k is even, or (k + p + 1)/2 if
k is odd. We have shown that for each k with gcd(k − 1, p + 1) = 1, there
exists an epimorphism onto G with θ(c2) = AkB and θ(x) = θ(e) = Ak/2B

or A(k+p+1)/2B depending on whether k is even or odd respectively.

Theorem 2.2. Let W be a non-orientable Riemann surface of odd algebraic
genus p ≥ 2 which admits a group of automorphisms G of order 2p. Then
either G ∼= Z2p and W is hyperelliptic, or G ∼= Dp.

Proof. We again employ Equation (9), with γ = p, in conjunction with
signatures a) through d4).

If Λ has signature a) or c), then (9) easily yields that n = p. Therefore
Λ has signature (1;−; [−]; {(p)}) or (0;+; [−]; {(−), (p)}). If Λ has signature
b), then (9) yields that

1/2 >
p− 1
2p

= 1− 1/m1 − 1/m2.(17)

Assume m1 ≤ m2. Then (17) easily yields that m1 ≤ 3. If m1 = 2, then
(17) yields that m2 = 2p, thus the signature of Λ is (1;−; [2, 2p]; {−}). If
m1 = 3, then (17) yields that m2 = 6−18/(p+3), therefore m2 = 3, 4, or 5.
However m2 = 4 contradicts Proposition 1.2, while m2 = 3 or 5 contradicts
Proposition 1.3.

For Case d1), (9) yields 1/2 > (p−1)/(2p) = 3/2−1/m1−1/m2−1/(2n).
This implies that neither m1 nor m2 can be greater than 2. This yields the
signature (0;+; [2, 2]; {(p)}) for Λ.

The calculations for Case d2) are exactly the same as for Case b) and
yield the signatures (0;+; [2, 2p]; {(−)}), (0;+; [3, 3]; {(−)}), and (0; +; [3, 5];
{(−)}). The last two signatures contradict Proposition 1.3.

For Case d3), (9) yields

1/2 > (p− 1)/(2p) = 1− 1/m− 1/(2n1)− 1/(2n2).(18)

Assume n1 ≤ n2. Clearly m < 6, since n1 and n2 are odd. From Proposi-
tion 1.2, m 6= 4, and from Proposition 1.3, m 6= 3 or 5. However, if m = 2,
then (18) yields that p(n1 + n2) = n1n2 which contradicts that n1 and n2

are both odd. Therefore Λ cannot have a signature of the form d3).
For Case d4), (9) yields that mn = p(2n+m), which implies that m > 2p,

which contradicts that m divides 2p.
We now summarize the possible signatures for Λ found above. For each

signature, we will determine the possible epimorphisms of Λ onto a group
of order 2p.

i. (1;−; [−]; {(p)}),
ii. (0;+; [−]; {(p), (−)}),
iii. (1;−; [2, 2p]; {−}),
iv. (0;+; [2, 2]; {(p)}),
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v. (0; +; [2, 2p]; {(−)}).

Associated to each of the above signatures are the following presentations
for Λ.

i. 〈e, d, c0, c1 | ed2 = 1, c2
0 = c2

1 = 1, ec1e
−1 = c0, (c0c1)p = 1〉,

ii. 〈e1, e2, c1,0, c1,1, c2,0 | e1e2 = 1, c2
1,0 = c2

1,1 = c2
2,0 = 1, e1c1,1e

−1
1 =

c1,0, e2c2,0 = c2,0e2, (c1,0c1,1)p+1 = 1〉,
iii. 〈d, x1, x2 | x1x2d

2 = 1, x2
1 = x2p

2 = 1〉,
iv. 〈e, x1, x2, c0, c1 | x1x2e = 1, x2

1 = x2
2 = 1, c2

0 = c2
1 = (c0c1)p =

1, ec1e
−1 = c0〉,

v. 〈e, x1, x2, c | x1x2e = 1, x2
1 = x2p

2 = 1, c2 = 1, ec = ce〉.

Assume Λ has signature i) with associated presentation i) above. Then
G ∼= Dp, since it contains two elements of order two whose product has
order p. Let G have presentation (7) with α = −1, and let H = 〈A〉. We
may assume that θ(c0) = B, and θ(c1) = AB. Since θ(d2) must have odd
order, θ(d2) ∈ H, therefore, since ed2 = 1, θ(e) ∈ H, say θ(e) = Ak. From
θ(ec1e

−1) = θ(c0), we deduce that A2k+1 = 1, so θ(e) = A(p−1)/2. If θ(d) /∈
H, then θ(d2) = 1, contradicting ed2 = 1. Therefore θ(d) = Aj , for some
integer j. To satisfy the relation ed2 = 1, we must have 2j ≡ (p+1)/2 mod p

therefore, θ(d) = A(p+1)/4 or A(3p+1)/4, depending, respectively, on whether
(p + 1)/2 is even or odd.

Assume Λ has signature ii) with associated presentation ii) above. Then
clearly G is dihedral. Let G have presentation (7) with α = −1 and let
H = 〈A〉. We may assume that θ(c1,0) = B, θ(c1,1) = AB, and θ(c2,0) =
AkB for some integer k. Note that θ(e1) 6= 1, therefore θ(e2) 6= 1. The
only nonidentity element of G which commutes with AkB is itself, therefore
θ(e2) = AkB. This yields that θ(e1) = AkB also. This, in conjunction with
θ(e1c1,1e

−1
1 ) = θ(c1,0) yields that k must be (p + 1)/2. Therefore, θ(c2,0) =

θ(e1) = θ(e2) = A(p+1)/2B.
Assume Λ has signature iii) with associated presentation iii) above. In

this case G ∼= Z2p with presentation (8). We may assume that θ(x1) = ap

and θ(x2) = a. But then θ(d) = a(p−1)/2. Observe that the inverse image of
〈ap〉 has signature (1;−; [2, p+1

··· , 2]; {−}). So W is hyperelliptic, by [5].
Assume Λ has signature iv) with associated presentation iv) above. In this

case, G is again dihedral. Assume G has the presentation (7) with α = −1
and let H = 〈A〉. We may assume that θ(c0) = B and θ(c1) = AB. Since
θ(x1) and θ(x2) have order 2, they do not lie in H, and since x1x2e = 1,
θ(e) ∈ H. Thus θ(e) = Ak, where k is chosen so that θ(ec1e

−1) = c0. This
yields that k = (p− 1)/2. Therefore θ(x1) = AsB and θ(x2) = AtB where s

and t are chosen so that AsBAtB = A(p+1)/2. Therefore s and t can be any
integers such that 2(s− t) = p + 1.
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Assume Λ has signature v) with associated presentation v) above. Then
G is cyclic with presentation (8). Therefore θ(x1) = ap, θ(x2) = a, θ(e) =
ap−1 and θ(c) = ap. In this case, the inverse image of 〈ap〉 has signature
(0;+; [2, p+1

··· , 2]; {(−)}), therefore W is hyperelliptic.
If m is odd, a group with presentation (7) has a nontrivial center if and

only if it is cyclic. Therefore we have the following corollary.

Corollary 2.3. Let W be a non-orientable Riemann surface of algebraic
genus p ≥ 2 which admits a group of automorphisms G of order 2p + 2, if p
is even, or 2p, if p is odd. Then W is hyperelliptic if and only if G is cyclic.

3. Defining equations.

We now determine the defining equations for the Klein surfaces whose sig-
natures were determined in the previous section. We do this by determining
the Riemann double cover of each Klein surface and the conformal automor-
phism group of order 2γ. We then determine the symmetry of the Riemann
double cover which yields the Klein surface as its quotient.

We continue to use the notation established earlier. Let W denote the
Klein surface with a group G of 2γ automorphisms whose defining equations
we seek. Let X = W/G. Since G contains a normal subgroup H of index
two, we let Z denote the Klein surface W/H. The double covers of W,Z, and
X, will be denoted by Ŵ , Ẑ, and X̂ respectively. Let σ denote the symmetry
acting on Ŵ , such that Ŵ/〈σ〉 = W. The groups G and G/H induce auto-
morphism groups of Ŵ and Ẑ respectively. We shall use the same notation
for the elements of G and their induced actions on the Riemann double cov-
ers. Note that Z must be non-orientable, since W is non-orientable and the
order of H is odd. In addition, the symmetry σ, acting on Ẑ must be fixed
point free. To see this, assume it possesses a fixed point z0. Above z0, there
are an odd number of points of Ŵ , say w1, . . . , wk. On Ŵ , σ is fixed point
free, therefore σ permutes w1, . . . , wk. This contradicts that a permutation
of order two cannot act without fixed points on an odd number of objects.

In the following sections we compute defining equations for Ŵ , explicitly
determine the symmetry σ such that W = Ŵ/〈σ〉, and explicitly determine
its automorphism group of order 2γ. The only family of surfaces whose
equations we do not compute is the one corresponding to the signature
(0;+; [2, 2]; {(p)}) found in the proof of Theorem 2.2. The computations
for this family are quite difficult, due to the fact that this family has real
dimension two in Teichmüller space, while the other families listed in the
proofs of Theorems 2.1 and 2.2 have real dimension one.

Proposition 3.1. The following basic results concerning defining equations
will be freely used.
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i. Assume wn − r(x)/s(x) is a defining equation of Ŵ , where r(x) and
s(x) are relatively prime polynomials. Then there is a defining equation
for Ŵ of the form wn

1 − f(x), where f(x) is a polynomial. One such
equation is obtained by defining w1 := s(x)w and f(x) = r(x)sn−1(x).

ii. Assume Ŵ has a defining equation of the form wdn − (x − a)dmf(x),
where (m,n) = 1, (n, d) = 1 and f(x) is a polynomial. Then there is
a defining equation for Ŵ of the form wdn

1 − (x− a)df1(x). One such
equation can be obtained in the following way. Since (m, n) = 1, there
exist integers u and v such that mu = 1 − nv. We can choose u so
that (d, u) = 1. Thus wdnu = (x − a)dmufu(x) = (x − a)d−dnvfu(x).
Thus define w1 = (x − a)vwu and f1(x) = fu(x). Since (u, dn) = 1,
note that w can be expressed in terms of w1 and x, thus C(w1, x) =
C(w, x) = C(Ŵ ).

iii. Let wn− (x−a)mf(x) be a defining equation for Ŵ , where (x−a) and
f(x) are relatively prime polynomials. Assume that m = nu+v, where
u ≥ 1. Then Ŵ has a defining equation of the form wn

1 − (x−a)vf(z),
by defining w1 := w/(x− a)u.

iv. Let wn− r(x)/s(x) = 0 be a defining equation for Ŵ , and assume r(x)
and s(x) are polynomials with no factors in common. Assume (x−a)m

divides either r or s and (x−a)m+1 does not. Let d denote the greatest
common factor of m and n. Then there exists d points of Ŵ which lie
over the point a ∈ X̂ and the ramification index there is n/d.

v. Assume C(Ŵ ) is a cyclic Galois extension of degree n of C(X̂). As-
sume that C(Ŵ ) = C(X̂)[w], and that the automorphism A is the
identity on C(X̂) but A(w) = εw, where ε is a primitive nth unit of
unity. Assume λ is a symmetry or an automorphism of C(Ŵ ) of or-
der 2, and assume λAλ = Aα. Let λ(w) = a0 + a1w + · · ·+ an−1w

n−1,

where each ai ∈ C(X̂). Then

A ◦ λ(w) = a0 + a1(εw) + · · ·+ an−1(εw)n−1,

λ ◦Aα(w) = εiα(a0 + a1w + · · ·+ an−1w
n−1),

where i = −1 if λ is a symmetry, but i = 1 otherwise. We obtain
that each aj = 0 except for aα, if i = 1, and an−α, if i = −1. In
particular, we have the following cases. If the automorphism B has
order two and BAB = A−1, then B(w) = h1/w, for some h1 ∈ C(X̂).
If λ is a symmetry which commutes with A, then λ(w) = h2/w for
some h2 ∈ C(X̂).

vi. Assume that the polynomial F (z, w) is a defining equation for a Rie-
mann surface Ŵ and (r, s) is a nonsingular solution of F. If Ŵ admits
a symmetry σ, then there exits an induced symmetry σ on C(Ŵ ) such
that σ(i) = −i. Note that (r, s) is the unique point on F which satisfies
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z− r = 0 and w− s = 0. Then (r, s) is a fixed point of σ if and only if
(r, s) is also a solution of σ(z)−r and σ(w)−s. In particular, we have
the following cases. Assume (r, s) is a fixed point of σ. If σ(z) = z,
then r is real. If σ(z) = −z, then r is pure imaginary. If σ(z) = 1/z,
then r is a complex number with | r |= 1. It is not possible for (r, s) to
be a fixed point of σ and σ(z) = −1/z.

3.1. Defining equations for even p.

3.1.1. The signature (0; +; [2, p + 1]; {(−)}). Assume that Λ from the
proof of Theorem 2.1 has the above signature. Then its associated Fuchsian
group Λ+ has signature (0;+; [2, 2, p + 1, p + 1]; {−}) and the four points of
X̂ := U/Λ+ fixed by the elliptic elements of Λ+ lie above interior points of
X := U/Λ. Assume that G satisfies presentation (7). Note that Ẑ := Ŵ/〈A〉
has genus zero, since two points of X̂ are ramified in it. From the remark
at the beginning of this section, the induced action of σ on Ẑ is fixed point
free.

Let us choose coordinates for C(x) = C(X̂) so that the induced action
of σ on C(x) is conjugation. Assume that x = a ± bi are the points of X̂

with ramification index two in Ẑ, where a and b are real and b 6= 0. By the
real change of coordinates x 7→ (2/b)(x − a), we may assume that x = ±2i

are the points ramified in the covering of X̂ by Ẑ. Let us choose coordinates
for Ẑ so that z = i and z = −i lie over x = 2i and x = −2i respectively.
In addition, let us choose coordinates so that z = ∞ is one of the points
lying over x = ∞. Note that B is an automorphism of order two such that
Ẑ/〈B〉 = X̂. Since z = ±i are the ramified points, they are fixed by B. This
uniquely identifies B as the map B(z) = −1/z. Note that x0 := z − 1/z
is fixed by B, therefore x0 ∈ C(x). However, x0 = x, since each function
agrees at the points z = i, z = −i, and z = ∞. Note that z satisfies the
minimal polynomial z2−zx−1 = 0. The roots of this are z and −1/z. Since
σ(x) = x, we have that σ(z) = z or σ(z) = −1/z. The first of these yields
that Ẑ has fixed points under σ, therefore σ(z) = −1/z.

Let c + di, with c and d real, be one of the points of Ẑ with ramification
index p + 1. Note that d 6= 0, otherwise c + di lies over a point on the
boundary of X. Note that a real transformation of the form

z 7→ βz − 1
z + β

(19)

fixes both i and −i. If c 6= 0, define

β = −
√

c4 + 2c2(d2 + 1) + (d2 − 1)2 + c2 + d2 − 1
2c

.(20)
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Then β is a real number, and one can check that the map (19) maps c + di
to a complex number with real part equal to 0. Thus we may assume that
the ramified points are z = ki,−ki, 1/(ki) and −1/(ki). The above change
of coordinates still yields that B(z) = −1/z and σ(z) = −1/z.

Since C(Ŵ ) is a cyclic extension of C(z), Proposition 3.1 yields that there
is a defining equation of Ŵ of the form

wp+1 − (z − ki)(z + ki)v(z − 1/ki)r(z + 1/ki)s = 0(21)

where each of v, r, and s are between 0 and p + 1 and relatively prime to
p +1. In addition, since ∞ is not ramified, p +1 divides 1 + v + r + s. Let A
be the map which is the identity on C(Ẑ) and which maps w to εw. Since
σ and A commute, from Proposition 3.1 we have that σ(w) = h1(z)/w for
some h1(z) ∈ C(z). Applying this to (21) yields that

h1(z)p+1 = wp+1(−1/z + ki)(−1/z − ki)v(−1/z + 1/ki)r(−1/z − 1/ki)s.

Thus hp+1
1 z1+v+r+s =

(−1)v+s(ki)1+v−r−s(z − ki)1+r(z + ki)v+s(z − 1/ki)1+r(z + 1/ki)s+v,

(22)

therefore p+1 divides both 1+ r and v + s, so r = p and s = p+1− v. This
implies that (−1)v+s(ki)1+v−r−s = (−1)v+1k2v−2p and h1 = η1(z − ki)(z +
ki)(z−1/ki)(z+1/ki)/z2, where η1 is a p+1st root of k2v−2p(−1)v+1. Since
σ has order two and fixes (z− ki)(z + ki)(z− 1/ki)(z +1/ki)/z2, we deduce
that η1 must be real. A defining equation for Ŵ is

wp+1 = f(z) := (z − ki)(z + ki)v(z − 1/ki)p(z + 1/ki)p+1−v = 0.(23)

Recall that AB = BAα and that B(z) = −1/z. We may assume that
0 ≤ α < p+1. From (v) of Proposition 3.1 we deduce that B(w) = h2(z)wα

for some h2(z) ∈ C(z). Applying this to (23) above yields

(h2(z))p+1

= f(z)−α(−1/z − ki)(−1/z + ki)v(−1/z − 1/ki)p(−1/z + 1/ki)p+1−v.

Thus h2(z)p+1 equals

(z − ik)p+1−v−α(z + ik)p−vα(z − 1/ik)v−pα(z + 1/ik)1−(p+1−v)α

(−1)v+1k2p−2vz2p+2
.(24)

Considering the power of z− ik, this implies that v = p+1−α. Since α2 ≡ 1
mod p+1, (24) is a (p+1)st power. If k2 is chosen so that (p+1)k2 = 1−α2,
then

h2(z) =
εjη1

z2
(z + ik)1−α−k2(z − 1/ik)1−α(z + 1/ik)k2(25)

where j ∈ Z and ε is a primitive (p+1)st root of unity. A tedious calculation
shows that B2(w) = εj(α+1)w, so j(α+1) ∼= 0 mod p+1. By redefining B as
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A−jB, we may assume j = 0. With this definition of h2(z), B(w) = h2(z)wα

and BAB = Aα.
We now check that B and σ commute. Recall that σ(w) = h1/w, where

h1 = η1(z − ik)(z + ik)(z − 1/ik)(z + 1/ik). However, since v = p + 1 − α,
we see that η1 = η2. Since Bσ(z) = σB(z), it is sufficient to show that
Bσ(w) = σB(w). However Bσ(w) = B(h1(z)/w) = B(h1(z))/(h2(z)wα).
On the other hand, σB(w) = σ(h2(z)wα) = σ(h2)hα

1 /wα. A tedious calcu-
lation shows that B(h1) = h2σ(h2)hα

1 . Therefore, Bσ(w) = σB(w), thus B
and σ commute.

We have shown that a defining equation for Ŵ is

wp+1 − (z − ik)(z + ik)p+1−α(z − 1/ik)p(z + 1/ik)α = 0.

In addition to A, it possesses the following symmetries and automorphisms:

σ(z) = z, σ(w) = η1(z2 + k2)(z2 + 1/k2)/z2w,

B(z) = −1/z, B(w) = h2(z)wα,

where h2(z) is defined in (25) with j = 0, and η1 is the real p + 1st root of
(−1)αk2−2α. Since σ is fixed point free on C(z), σ is fixed point free on Ŵ ,

therefore the Klein surface W = Ŵ/〈σ〉 has no boundary.

3.1.2. The signature (0; +; [2]; {(p + 1, p + 1)}). Assume Λ from the
proof of Theorem 2.1 has the above signature. In this case G ∼= Dp+1 and
two boundary points of X and one interior point of X are ramified in W.
Note that X̂ has genus 0 and assume coordinates are chosen so that the
action of σ on X̂ is conjugation. By a real change of coordinates, we may
assume ∞ is one of the fixed points of X̂ which has ramification index
p + 1 in Ŵ . Note that two points of the form a± bi of X̂ are ramified with
index 2 in Ŵ , where a and b are real and b 6= 0. By making the change of
coordinates x 7→ 2(x−a)/b, we may assume that the points ±2i are ramified
with ramification index 2 in Ŵ . Let Ẑ be the orbit space of Ŵ under the
action of 〈A〉. Exactly as in Section 3.1.1 we may assume that C(Ẑ) = C(z),
where x = z − 1/z, B(z) = −1/z and σ(z) = −1/z. Note that z = 0 and
z = ∞ are the two points lying over x = ∞. There is another point of X̂
which has ramification index p + 1 in Ŵ , and let z = k be one of the points
of Ẑ which lies over it. Then the point must be x = k − 1/k and the two
points lying over it are z = k and z = −1/k. It is easy to see, since k − 1/k
is real, that k is real.

To obtain the equation of W, we note that the C(Ŵ ) is a field extension
of C(z) of index p + 1 in which z = 0, k,−1/k, and ∞ are all ramified.
Therefore a defining equation of W is of the form

wp+1 − z(z − k)u(z + 1/k)v
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where u and v are between 0 and p+1, relatively prime to p+1, and 1+u+v
is also relatively prime to p+1. Let A(w) = εw, where ε is a primitive p+1st
root of unity. We must show that the maps B(z) = −1/z and σ(z) = −1/z

lift to Ŵ with the properties that BA = A−1B and σ commutes with both
A and B.

From Proposition 3.1, we have that σ(w) = f/w and B(w) = g/w for
some f and g ∈ C(z). Note that both B and σ map z − k 7→ −1/z − k =
(−k/z)(z + 1/k) and z + 1/k 7→ −1/z + 1/k = (1/zk)(z − k). Therefore
letting h = f or g depending on whether we are considering σ or B, we
obtain

0 = hp+1 − wp+1(−1/z)(−k/z)u(1/zk)v(z + 1/k)u(z − k)v

= hp+1 − (−1)1+uku−v(z − k)u+v(z + 1/k)u+v/zu+v.

Therefore v = p+1−u. Let λ be the real p+1st root of (−1)1+uk2u−p−1, then
f = ε1λ(z−k)(z+1/k)/z and g = ε2λ(z−k)(z+1/k)/z, where ε1 and ε2 are
p + 1st roots of unity. Since σ is a symmetry, w = σ2(w) yields that ε1 = 1.
By redefining B as AjB for an appropriate integer j, we may assume that
ε2 = 1. Thus a defining equation for Ŵ is wp+1 − z(z − k)u(z + 1/k)p+1−u,

where u is relatively prime to p + 1. In addition, Ŵ possesses the following
automorphisms and symmetries:

A(w) = εw,A(z) = z,B(w) = λ(z − k)(z + 1/k)/(zw), B(z) = −1/z,

σ(w) = λ(z − k)(z + 1/k)/(zw), σ(z) = −1/z, σ(i) = −i,

where λ is a real number such that λp+1 = (−1)1+uk2u−p−1.

3.2. Defining equations for odd p.

3.2.1. The signatures (1; −; [−]; {(p)}) and (0; +; [−]; {(−), (p)}).
Let Λ have one of the above signatures. Note that X̂ has genus one and
recall that G ∼= Dp. The two signatures are distinguished by the number of
fixed ovals of σ acting on X̂; the first yields one fixed oval and the latter
yields two. If we define Ẑ = Ŵ/〈A〉, we see that Ẑ is an unramified cover
of X̂, therefore Ẑ has genus one also. There is a distinguished boundary
point of X which has ramification index p in W. Lying above this point
there is a unique point of X̂ and there are two points of Ẑ. Let us choose
coordinates for Ẑ so that one of these two points is the point at infinity of
a defining equation of the form y2 − f(z) = 0, where f(z) has three distinct
zeros. Recall that B is an automorphism of order 2 acting on Ẑ, such that
X̂ = Ẑ/〈B〉. Since B is fixed point free, B is a translation of order two in
the group structure of Ẑ, therefore ∞ is mapped to one of the roots of f(z).
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We may make a change of coordinates to assume that z = 0 is the root of
f(z) to which ∞ is mapped under B. Thus B(z) = c2/z for some complex
number c2. By making the change of coordinates z := z/c, we may assume
that c = 1.

Therefore B(z) = 1/z is an automorphism of the defining equation

y2 − z(z − a)(z − b),(26)

of Ẑ. Note that B(y) must be of the form r(z)y/s(z), where r(z) and s(z) are
relatively prime polynomials. Therefore z3r2y2−abs2(z− 1/a)(z− 1/b) = 0
and so z4r2(z − a)(z − b) − abs2(z − 1/a)(z − 1/b) = 0. If z − a does not
divide (z − 1/a)(z − 1/b), it must divide s(z). But then (z − a) divides
r(z), a contradiction. Therefore we may assume that z − a divides (z −
1/a)(z − 1/b). If a = 1/a, then a = ±1, and similarly, b = 1/b, so b = ±1.
Therefore y2 − z(z2 − 1), and B(y) = ±iy/z2. However, in this case, the
point corresponding to z = 1, y = 0 is fixed by B, thus B is not fixed point
free. Therefore, a = 1/b, and we may assume a defining equation for Ẑ is

y2 − z(z − a)(z − 1/a),(27)

with B(y) = −y/z2.

Before we compute the symmetry acting on Ẑ, we first determine the
orbit space of X̂ = Ẑ/〈B〉. This will help us determine the action of σ on Ẑ

that will produce one or two fixed ovals in X̂. Note that both t := z + 1/z
and u := y − y/z2 are fixed by B. It is easy to verify that they satisfy the
defining equation

u2 − (t− 2)(t + 2)(t− (a2 + 1)/a)(28)

and that C(X̂) = C(t, u).
Recall that σ commutes with B and is fixed point free on Ẑ. Since z =

∞ lies above a boundary point of X, we deduce that σ interchanges ∞
and B(∞). Therefore σ(z) = c/z, where, since σ is a symmetry, c/c = 1,
therefore c is real. However, σB(z) = σ(1/z) = z/c, while Bσ(z) = cz.
Therefore c = ±1 and σ(z) = 1/z or −1/z. We now show that σ(z) = −1/z
if the signature of Λ is (1;−; [−]; {(p)}) and σ(z) = 1/z if the signature of
Λ is (0; +; [−]; {(−), (p)}).

Assume σ(z) = 1/z and let σ act on the defining equation (27). Using
that σ(y) = r(z)y/s(z) for some relatively prime polynomials r(z) and s(z),
we deduce that z3r2y2 − s2(z − 1/a)(z − a) = 0. As before, we deduce
that r/s = ±1/z2, so σ(y) = ±y/z2, and that a = 1/a or a = a. Since
σ(z) = 1/z, a point (β, γ) satisfying (27) will have its first coordinate fixed
by σ if and only if |β| = 1. If a = 1/a, the point (a, 0) is fixed by σ. Therefore,
a 6= 1/a and thus a = a. We know that σ(y) = ±y/z2; we now determine
which sign should be chosen. Let r be real and let P = (eir, γ) be a point
satisfying (27). We must define σ so that P is not a fixed point. However
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P is fixed if and only if ±y/z2 − γ has a zero at P. This occurs if and only
if ±γ/e2ir − γ = 0, which implies ±γ2/e2ir − |γ|2 = 0, which implies that
±(eir − a)(eir − 1/a)/eir = |(e−ir − a)(e−ir − 1/a)|. Simplifying the last
equality yields ±(2 cos(r)−(a2 +1)/a) = |2 cos(r)−(a2 +1)/a|. If a > 0, the
left hand side is negative, so the plus sign should be chosen. If a < 0, the
left hand side is positive, so the minus sign should be chosen. In this way,
σ will have no fixed points on Ẑ. In summary, we have that if σ(z) = 1/z,
then a is real and σ(y) = y/z2 if a > 0 while σ(y) = −y/z2 if a < 0.

We now show that if σ(z) = 1/z, then X̂ has two fixed ovals. From the
definitions t = z + 1/z and u = y − y/z2, we see that t is fixed by σ and
σ(u) = ±u, where the sign depends on whether a is positive or negative.
Therefore fixed points of X̂ are the points (r, γ), satisfying (28) such that
r is real and γ is real or pure imaginary, depending on whether σ(u) = u,
or −u respectively. Considering (28), we see that there will always be two
intervals for t for which (t − 2)(t + 2)(t − (a2 + 1)/a) is positive and two
intervals for which it is negative. Therefore, independent of the definition
of σ(u), there are two ovals of X̂ fixed by σ.

Now assume σ(z) = −1/z. We will determine what this implies about
a, σ(y), and the number of fixed ovals of X̂. As before, applying σ to (27)
yields that σ(y) = ry/s and r2y2 +s2(1/z)(−1/z−a)(−1/z−1/a) = 0. This
yields z4r2(z− a)(z− 1/a)+ s2(z + a)(z +1/a) = 0. Since a = −1/a implies
|a| = −1, we conclude that a = −a, so a = ik for some real number k and
σ(y) = ±iy/z2. Since σ(z) = −1/z, we conclude that no point satisfying (27)
will have the same z coordinate under σ, therefore σ is fixed point free on
Ẑ. We now examine its action on X̂. Note that σ(t) = −t and σ(u) = ±iu.
Let η2 = i. Then σ fixes t1 := it and u1 := ηu or η3u, depending on whether
σ(u) equals iu or −iu respectively. When expressed in terms of t1 and u1,
(28) becomes

u2
1 ± (t21 + 4)(t1 + (k2 − 1)/k).

Since t21 + 4 > 0, this yields only one fixed oval, regardless of the plus or
minus sign. In summary, if σ(z) = −1/z, then a = ik, where k is real,
σ(y) = ±iy/z2, and one oval of X̂ is fixed by σ.

Recall that the point at infinity of (28) is ramified in Ŵ with ramification
index p. Therefore the points Q := (0, 0) and the point at infinity P of Ẑ are
ramified in Ŵ . Since the covering of Ẑ by Ŵ is cyclic, the field extension
C(Ŵ ) of C(z, y) has a defining equation of the form

wp − h(z, y) = 0,(29)

where the multiplicity of each pole and zero of h(z, y) is a multiple of p except
at P and Q. At these points, the multiplicity must be relatively prime to
p. Note that the function z has the divisor (z) = 2Q − 2P on Ẑ. We will
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show that, up to isomorphism, powers of z are the only functions we need
to consider for h(z, y) in (29).

Assume the divisor for h is (h) = p(k1R1+k2R2+· · ·+knRn)+d1P +d2Q,
where d1 and d2 are relatively prime to p and each ki ∈ Z. Assume that a
pole occurs at P, and that d1 = −(rp + s) where r and s are positive. Let
g ∈ C(Ẑ) be a function which has a simple pole at P and which does not
have a zero or pole at Q. Then

(w/gr)p − h/grp = 0

is also a defining equation for X. In addition, the pole divisor at P is s,
where s < p. A similar result holds for Q, and zeros at P or Q can also be
handled in this manner. In this way, we may assume that h has a pole at P
and a zero at Q and the pole and zero each have degree less than p. Assume
h is not a power of z. Since the divisor for h has degree zero we may now
assume that the defining equation for C(Ŵ ) is (29), where the divisor for h
is of the form

(h) = p(j1R1 + j2R2 + . . . jmRm)− p(k1S1 + k2S2 + . . . knSn)− dP + dQ,
(30)

and a zero occurs at each of the Ri’s and a pole occurs at each of the Si’s.
Consider the divisor D := −(j1−1)R1−j2R2−j3R3 · · ·−jmRm +k1S1 · · ·+
knSn. This divisor has degree 1. By the Riemann Roch theorem, there is a
function g ∈ C(Ẑ) such that (g)+D ≥ 0, in particular, g has a zero of order
at least j1−1 at R1 and ji at each Ri for i > 1. In addition, it’s pole divisor
is contained in the pole divisor of D. There are two possibilities. Either the
multiplicity of the zeros of g are precisely the same as the zeros in D, (and
the pole divisor has degree k1 + k2 + . . . kn − 1), or g also has a zero at a
point T and the pole divisor of g agrees precisely with that of D. Note that
T may be one of the points of (30). In either case, redefining h = h/gp and
w = w/g we have that

(h) = pR1 − pT − dP + dQ.(31)

Recall, from (v) of Proposition 3.1, that B(w) = k(z, y)/w for some k(z, y) ∈
C(z, y). Since B as order 2, we obtain

w = B2(w) =
B(k(z, y))

k(z, y)
w,

so B fixes k(z, y), so k(z, y) ∈ C(X̂). Using the defining equation (29) we
obtain that kp(z, y)/wp = B(h), thus kp(z, y) = hB(h). Thus (31) yields that
the divisor for k(z, y) is R1 + B(R1) − T − B(T ). However, since k(z, y) ∈
C(X̂) and X̂ is elliptic, we know that [C(X̂) : C(k)] ≥ 2, thus [C(Ẑ) :
C(k)] ≥ 4. On the other hand, since the pole divisor of k(z, y) has degree
at most 2, we have [C(Ẑ) : C(k)] ≤ 2 unless k(z, y) is a constant. Thus
k(z, y) is a constant, so B switches R1 and T. If R1 ∈ {P,Q}, then so is T



NON-ORIENTABLE SURFACES 285

and therefore h is a constant multiple of a power of z. We now assume that
R /∈ {P,Q}.

Recall that B is a fixed point free automorphism of the elliptic curve Ẑ. In
the group structure of Ẑ, B corresponds to the map S 7→ S + Q. Therefore,
in the group structure T = R1+Q and (31) becomes (h) = pR1−p(R1+Q)−
dP + dQ. However, a divisor is the divisor of a function in C(Ẑ) if and only
if it has degree zero and its sum is zero in the group structure of Ẑ. Since p
is odd and Q has order two, we obtain that d is odd. In addition, there is a
function h1 with divisor (h1) = R1 − T + P −Q = R1 − (R1 + Q) + P −Q.
But then h/hp

1 has divisor (p+d)Q−(p+d)P. Since d is odd, this yields that
h/hp

1 is a constant multiple of a power of the function z. We may redefine
h1 to absorb this constant, so (29) yields that (w/h1)p − zj = 0, for some
positive integer j. From (ii) of Proposition 3.1, we may assume j = 1 and
Ŵ has defining equations of the form

wp − z = 0, y2 − z(z − a)(z − 1/a),(32)

where a is real if σ(z) = 1/z, and a = ik, with k real, if σ(z) = −1/z.

We now determine the automorphisms of Ŵ . The map A(w) = εw,
A(z) = z, A(y) = y, where ε is a primitive pth root of unity is clearly
an automorphism of Ŵ . From (v) of Proposition 3.1, σ(w) = k1/w and
B(w) = k2/w for some k1 and k2 in C(Ẑ).

If σ(z) = 1/z, applying σ to (32) yields kp
1 − 1 = 0, therefore k1 is a pth

root of unity. We may redefine w = εjw, where j is an appropriate integer,
to obtain σ(w) = 1/w. This does not change the defining equations (32) or
any results concerning Ẑ. Applying B to (32) yields that k2 = εj for some
integer j. Given this, it is trivial to check that σB(w) = Bσ(w). We now
redefine B as AjB to obtain the simplification B(w) = 1/w. This change
merely concerns the representation of the dihedral group 〈A,B〉 and does
not change the defining equations or the action of B on Ẑ.

In a similar manner, if σ(z) = −1/z, then Ŵ has defining equations (32),
and possesses the automorphism B(w) = 1/w and the symmetry σ(w) =
−1/w.

In summary, if Ŵ is defined as in (32), then Ŵ has the automorphisms

A(w) = εw A(z) = z A(y) = y(33)

B(w) = 1/w B(z) = 1/z B(y) = −y/z2.

If Λ has signature (0; +; [−]; {(−), (p)}) then a in (32) is real and Ŵ has the
symmetry

σ(w) = 1/w, σ(z) = 1/z, σ(y) = ±y/z2(34)

where the plus sign is chosen if a > 0 and the minus sign is chosen if a < 0.
If Λ has signature (1;−; [−]; {(p)}), then in (32), a = ik, where k is real. In
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addition, Ŵ has the symmetry

σ(w) = −1/w, σ(z) = −1/z, σ(y) = ±iy/z2.(35)

In (35), either sign can be chosen in the definition of σ(y).

3.2.2. The signature (1; −; [2, 2p]; {−}).
Assume Λ has the above signature. Then X̂ has genus 0, and σ is fixed

point free on X̂. Thus the points of X of ramification index 2 and 2p each
have two points of X̂ lying over them. Let us choose coordinates so that
x = 0 and x = ∞ are the points of X̂ which have ramification index 2p and
x = −1 is one of the points with ramification index 2. Then σ interchanges
x = 0 and x = ∞, so σ(x) = c/x, where c is a real number. It is easy to
see that c must be negative, otherwise σ has fixed points on X̂. Defining the
real number k by −k2 = c, we redefine x as x = x/k. With this change of
coordinates, σ(x) = −1/x, x = 0 and x = ∞ each have ramification index
2p in Ŵ , and x = −1/k has ramification index 2. In addition, the other
point with ramification index 2 is x = k.

From Proposition 3.1, we may assume a defining equation for Ŵ is of the
form

w2p − x(x− k)p(x + 1/k)p.(36)

We note that Ŵ possess the automorphism A which maps w 7→ εw and
x 7→ x, where ε is a primitive 2pth root of unity. From (v) of Proposition 3.1
we observe that σ(w) = h/w, for some h ∈ C(x). Note that σ(x − k) =
−1/x−k = (−k/x)(x+1/k) and σ(x+1/k) = −1/x+1/k = (1/(kx))(x−k).
This yields that

h2p = (−1/x)(−1/x− k)p(−1/x + 1/k)px(x− k)p(x + 1/k)p

= (x− k)2p(x + 1/k)2p/x2p.

Therefore, σ(w) = εj(x − k)(x + 1/k)/xw, for some integer j. Since σ has
order two and fixes (x− k)(x + 1/k)/x, we deduce that ε = ±1. Regardless
of the sign, σ will not have fixed points. Therefore Ŵ has (36) as a defining
equation, possesses the automorphism A defined above, and possesses the
symmetry

σ(i) = −i, σ(x) = −1/x, σ(w) = ±(x− k)(x + 1/k)/wx,(37)

where either sign can be chosen in (37).

3.2.3. The signature (0; +; [2, 2p]; {(−)}).
Let Λ have the above signature. In this case G ∼= Z2p = 〈A | A2p = 1〉.

Note that X̂ has genus 0 and let coordinates be chosen so that the action of σ
on X̂ is complex conjugation. Through a real transformation similar to that
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in Section 3.1.1, we may assume that C(x) is ramified at the points x = ±i
and x = ±ki, where k 6= ±1 is a nonzero real number, and the ramification
indices are 2, 2, 2p and 2p respectively in C(Ŵ ). A defining equation for Ŵ
is

w2p − (x− i)p(x + i)p(x− ki)(x + ki)2p−1 = 0,(38)

and Ŵ possesses the automorphism A which maps w 7→ εw and x 7→ x,
where ε is a primitive 2pth root of unity. It is easy to deduce that W =
Ŵ/〈σ〉 where

σ(x) = x, σ(w) = λ(x2 + 1)(x2 + k2)/w,

for some 2pth root of unity λ. Since σ is a symmetry, σ2(w) = w implies that
λ = ±1. We will show that λ = −1, since σ is fixed point free on Ŵ . Note
that if a point (r, s) satisfying (38) is fixed by σ, then r must be real. There-
fore, s2p = (r2+1)p(r−ki)(r+ki)2p−1 = (r2+1)p(r+ki)2p(r−ki)/(r+ki) =
eit(r2 + 1)p(r + ki)2p, where t is real and eit = (r − ki)/(r + ki). Therefore,
points (r, s) with r real, which satisfy (38) have s = ε

√
r2 + 1eit/(2p)(r + ik)

for some 2pth root of unity ε. Now assume σ(w) = λ(x2 + 1)(x2 + k2)/w,

where λ = ±1. If the point (r, s) = (r, ε
√

r2 + 1eit/(2p)(r+ ik)) is fixed under
σ, then we have that σ(w − s) = σ(w) − s must have a zero at (r, s). This
yields that

0 = λ(r2+1)(r2+k2)/
(
ε
√

r2 + 1eit/(2p)(r + ik)
)
−ε

√
r2 + 1e−it/(2p)(r−ik).

It is easy to see that λ = 1 implies that such a point is always a fixed point,
and λ = −1 implies that such a point is never a fixed point. Therefore
σ(w) = −(x2 + 1)(x2 + k2)/w.
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