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We characterize the Lebesgue measurable maps between
Euclidean spaces which preserve BMO.

1. Introduction.

For a subdomain D of Rn, n ≥ 1, let BMO(D) be the space of all locally
integrable functions f on D satisfying

‖f‖∗ = ‖f‖∗.D = sup
Q⊂D

|Q|−1

∫
Q
|f − fQ|dx < ∞,(1)

where |Q| is the n-dimensional Lebesgue measure of Q, fQ = |Q|−1
∫
Q fdx,

and the supremum is taken over all closed cubes Q ⊂ D with sides parallel
to the coordinate axes.

Let D and D′ be subdomains of Rm and Rn, m, n ≥ 1, respectively. We
say that a map F : D → D′ is measurable if F−1(E) is measurable for each
measurable subset E of D′. We say that a measurable map F : D → D′

is a BMO map if i) for each null set E ⊂ D′, F−1(E) is also a null set,
and furthermore, ii) for each BMO(D′) function f , CF (f) = f ◦ F belongs
to BMO(D). The condition i) guarantees the uniqueness of the function
f ◦F . From the closed graph theorem each BMO map F induces a bounded
operator CF between BMO spaces.

Various partial results are known for the characterization of BMO maps.
It seems, however, that we do not know almost anything yet for non-
continuous BMO maps. The main purpose of the present paper is to give a
characterization of BMO maps F : Rm → Rn, m,n ≥ 1 (Theorem 3.1).

Our argument depends on the following two celebrated results for BMO; a
growth estimation for BMO functions due to John-Nirenberg, and the exis-
tence of certain extremal BMO functions due to Uchiyama (Propositions 4.1
and 4.2).

The present paper is organized as follows. First, we give various examples
of BMO maps in §2. The main results of the present paper are given in §3.
The following §4 is devoted to their proofs. Finally, in §5 we give a remark
on BMO maps which are homeomorphisms between intervals.
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In the following, a cube implies a closed cube with sides parallel to the
coordinate axes, tQ denotes the cube with the same center as Q and ex-
panded by a constant factor t > 0, and we use the letter C to denote a
positive constant which may vary from place to place unless stated other-
wise, that is, f ≤ 2C implies f ≤ C, on the other hand, f ≤ 2C2 does not
necessarily mean f ≤ C2. Also we sometimes write “F : D → D′” even if
F (D) 6⊂ D′ under the assumption that both A = F (D)\D′ and F−1(A) are
null sets. For instance, we may write F : R → (0,∞), F (x) = |x|, instead
of F : R → [0,∞), F (x) = |x|.

The author would like to thank the referee for his helpful comments and
suggestions.

2. Examples.

In the present section we give various examples of BMO maps.

Example 2.1. a) Let F : D1 × D2 → D1, D1 ⊂ Rm, D2 ⊂ Rn, be the
canonical projection. Then F is a BMO map satisfying ‖CF ‖ = 1. In
particular, if D2 = Rn, then ‖CF (f)‖∗ = ‖f‖∗ holds for each f ∈ BMO(D1).

b) Let F : D → D′ be the inclusion map. Then F is a BMO map
satisfying ‖CF ‖ = 1.

Example 2.2. Let F : D → D′ be a homeomorphism between subdomains
of Rn, n ≥ 2. If F is quasiconformal, then F is a BMO map satisfying
‖CF ‖ ≤ C(n, KF ), where KF is the maximal dilatation of F . Conversely, if
F is a BMO map satisfying i) for each null set E, F−1(E) is also a null set,
ii) F is ACL, iii) F is differentiable a.e., then F is a quasiconformal map
satisfying KF ≤ C(n, ‖CF ‖) (Reimann [13]).

Example 2.3. Let F be a homeomorphism of R. Then F is a BMO map
if and only if we can take constants K, α > 0 so that

|F−1(E ∩ I)|
|F−1(I)|

≤ K

(
|E ∩ I|
|I|

)α

(2)

holds for each pair of a measurable subset E of R and an interval I (Jones
[11]). Note that (2) holds if and only if F−1 is absolutely continuous and its
derivative (F−1)′ (or −(F−1)′) is an A∞ weight (cf. (4)). In this case F−1

also satisfies the same condition, and so F induces a bijection of BMO(R).

Jones gave no explicit relation between the constants K, α above and
‖CF ‖. In §3 we show, however, that his argument implicitly gives the fol-
lowing estimations: If (2) holds, then ‖CF ‖ ≤ CK/α for some universal
constant C > 0; conversely, if F is a BMO map, then we can take constants
K, α so that K = C1 and α = C2/‖CF ‖, where Ck > 0, k = 1, 2, are uni-
versal constants. Hence ‖CF ‖ and inf(K/α) are comparable with universal
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constant factors, where the infimum is taken over all pairs of K, α satisfying
(2) (Theorem 5.3) (cf. Mayer-Zinsmeister [12]).

Fominykh [3] gave a sufficient condition for spherically continuous maps
between (finite or infinite) open intervals to be BMO maps, which partially
extends Jones’ result.

Example 2.4. Let F : D → D′ be a nonconstant holomorphic map between
plane domains. Then F is a BMO map if and only if we can take an integer
p > 0 so that for each disk B satisfying 2B ⊂ D, F is p-valent on B. In
particular, a holomorphic map F : C → C is a BMO map if and only if it
is a polynomial (Gotoh [8]).

Thus, whether a given nonconstant holomorphic map F : D → D′ be-
tween plane domains is a BMO map or not is independent of the choice of
its target D′. The following example shows that this does not extend to
hold for general maps.

Example 2.5. a) Let D = {x ∈ R2 | 1 < |x| < 2}, I = {(0, x2) ∈ R2 | −2 <
x2 < −1}, and D0 = D \ I. Let F satisfy F (x) = x on D0 and F (x) ∈ D0

on I. Then F : D → D is a BMO map, and F : D → D0 is not a BMO
map, because BMO(D) 6= BMO(D0).

b) Let F : D → D′ be a BMO map. Let D′
0 be a subdomain of D′ sat-

isfying F (D) ⊂ D′
0. Assume that each BMO(D′

0) function is the restriction
of some BMO(D′) function. (Such domains D′

0 are characterized as relative
uniform domains with respect to D′ (Gotoh [7].) For instance, uniform do-
mains D′

0 satisfy this condition (Proposition 3.4). In this case F : D → D′

is a BMO map if and only F : D → D′
0 is a BMO map.

Example 2.6. Let D = Rn−1 × (0,∞) be the upper half space. Then
for each f ∈ BMO(D), its symmetric extension g, g(x, y) = f(x, y) on
D and g(x, y) = f(x,−y) on Rn \ D, is a BMO(Rn) function satisfying
‖f‖∗,Rn ≤ C‖f‖∗,D, where C > 0 is a universal constant, which is called
a reflection principle for BMO. In other words, the two-sheeted folding
map F : Rn → D, F (x, y) = (x, |y|), is a BMO map satisfying ‖CF ‖ ≤ C
(cf. Reimann-Rychener [14]).

Example 2.7. Let D be a quasidisk, that is, D is the image of the upper
half plane under a quasiconformal map of R2 = R2∪{∞}. Let τ : R2 → R2

be the quasiconformal reflection with respect to ∂D. Then from Exam-
ples 2.2 and 2.6 the two-sheeted folding map F : R2 → D, F (x) = x on D
and F (x) = τ(x) on Rn \D, is a BMO map.

Example 2.8. a) Let D = {r < |x| < r′} ⊂ Rn, n ≥ 2. Let a = r′/r
and set Dk = {akr < |x| < ak+1r}, k ∈ Z. We define an infinite-sheeted
folding map F : Rn → D as follows: Set F (x) = x/a2k on D2k and F (x) =
F (τk(x)) on D2k+1, where τk is the reflection with respect to the sphere
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{|x| = a2k+1r}. Then F is a BMO map and ‖CF ‖ ≤ aC
a−1 , where C =

C(n) > 0. This is a consequence of the reflection principle, the removability
of one point for BMO, and Proposition 5.2 below.

b) We define an infinite-sheeted folding map F : R → (0, 1) as follows:
Set F (x) = x on [0, 1], F (x) = 2 − x on [1, 2], and F (x) = F (x − 2k),
2k ≤ x ≤ 2k + 2, k ∈ Z. Then F is a BMO map. On the other hand,
F × idR : R × R → (0, 1) × R is not a BMO map: Let f(x1, x2) = x2.
Then CF×idR

(f)(x1, x2) = x2. Thus f ∈ BMO((0, 1)×R) and CF×idR
(f) 6∈

BMO(R×R).

There are essentially non-continuous BMO maps.

Example 2.9. a) Let τ be a Möbius transformation of Rn = Rn ∪ {∞},
n ≥ 2. Let D be an arbitrary subdomain of Rn and D′ = τ(D)\{∞}. Then
F = τ |D : D → D′ is a BMO map. This is a consequence of Example 2.2 and
the removability of one point for BMO. (cf. Reimann-Rychener [14]. Also
see Lemma 5.1 below.) For instance, x 7→ x/|x|2, which is discontinuous
at the origin under the Euclidean topology, induces a bijection between
BMO({|x| < 1}) and BMO({|x| > 1}).

b) Let F : R → (0, 1) be the infinite-sheeted folding map in Example 2.8
b). Then G : R → (0, 1), G(x) = F (1/x), is a BMO map which is discon-
tinuous at the origin even under the spherical topology.

Moreover, there are BMO maps between plane domains with essential
singularities.

Example 2.10. Let F (z) = P(1/z), where P is the Weierstrass P-function.
Then F : C → C is a BMO map having the origin as an essential singularity.
Another example is given by the Blaschke product F : C → C,

F (z) =
∞∏

k=0

z − 2−ki

z + 2−ki

∞∏
k=1

2ki− z

2ki + z
.

(See the next example.) Moreover, for an arbitrary plane domain D and an
arbitrary sequence {zk} ⊂ D, zk → ∂D, there exists a BMO meromorphic
map F : D → C having {zk} as simple poles satisfying ‖CF ‖ ≤ C, where
C > 0 is a universal constant (Gotoh [6], [8]).

Contrary to the case of holomorphic maps between plane domains (Ex-
ample 2.4), it seems difficult to estimate the operator norms for rational
maps F : C → C. As to this we only know the following.

Example 2.11. Let F be a finite Blaschke product on the unit disk ∆.
Let tζ , ζ ∈ ∆, denote the Carleson constant associated with the zeros of
the Blaschke product (F − ζ)/(1 − ζF ). Let sF = supζ∈∆ tζ . Then for the
operator norm ‖CF ‖ of the map F : C → C, we have ‖CF ‖ ≤ C1(sF ) and
sF ≤ C2(‖CF ‖). In particular, we can show that there exists a sequence of
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rational maps Fk : C → C, deg Fk = k, satisfying ‖CFk
‖ ≤ C, where C > 0

is a universal constant (Gotoh [6]).

For related topics, see Astala [1], Smith [15], and Mayer-Zinsmeister [12].

3. Main theorem.

We say that a domain D ⊂ Rn is admissible if D is an increasing limit of
some sequence of cubes. For instance, Rn, half spaces with sides parallel to
the coordinate axes, and open cubes are admissible.

Theorem 3.1 (Main Theorem). For a measurable map F : D → D′, D ⊂
Rm, D′ ⊂ Rn, we consider the following conditions:

(a) We can take constants K, α > 0 so that for an arbitrary pair of
measurable subsets E1, E2 of D′ we have

sup
Q⊂D

min
k=1,2

|F−1(Ek) ∩Q|
|Q|

≤ K

(
sup

Q′⊂D′
min
k=1,2

|Ek ∩Q′|
|Q′|

)α

,(3)

where the suprema are taken over all cubes Q ⊂ D and Q′ ⊂ D′

respectively;
(b) We can take constants γ, 0 < γ < 1/4, and λ > 0 so that for an

arbitrary pair of measurable subsets E1, E2 of D′ satisfying

sup
Q′⊂D′

min
k=1,2

|Ek ∩Q′|
|Q′|

< λ,

we have

sup
Q⊂D

min
k=1,2

|F−1(Ek) ∩Q|
|Q|

< γ,

where the suprema are taken over all cubes Q ⊂ D and Q′ ⊂ D′

respectively;
(c) F is a BMO map.

Then we have (a) ⇒ (b) ⇒ (c). Moreover, if we can take an admissible
domain D′

0 satisfying F (D) ⊂ D′
0 ⊂ D′, then all these conditions are equiv-

alent.

In particular, all the conditions above are equivalent if D′ is admissible.
The implication (a) ⇒ (b) is trivial. We show that (a) implies (c) with
‖CF ‖ ≤ C(m,n)K/α (Lemma 4.8). Furthermore, if we can take an admis-
sible domain D′

0 satisfying F (D) ⊂ D′
0 ⊂ D′, then we show that (c) implies

(a) with constants K = K(m,n) and α = C(m,n)/‖CF ‖ (Lemma 4.10).
Thus we have:

Corollary 3.2. If we can take an admissible domain D′
0 satisfying F (D) ⊂

D′
0 ⊂ D′, then the operator norm ‖CF ‖ and inf(K/α) are comparable with
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constant factors depending only on m and n, where the infimum is taken
over all pairs of constants K, α satisfying the estimation (3).

Let F be a homeomorphism of R. Then the condition (2) in Example 2.3
implies (3) with the same constants K, α. And so we may regard the Main
Theorem as an extension of Jones’ result.

We say that a weight w is an A∞ weight on D if we can take a constant
α, K > 0 so that ∫

E∩Q wdx∫
Q wdx

≤ K

(
|E ∩Q|
|Q|

)α

(4)

holds for each pair of a measurable set E ⊂ D and a cube Q ⊂ D. A
weight w is an A∞ weight if and only if we can take constants ε, δ, 0 <
ε, δ < 1, so that for each pair of E, Q satisfying |E ∩ Q|/|Q| < δ, we have∫
E∩Q wdx/

∫
Q wdx < ε. The equivalence of the conditions (a) and (b) of the

Main Theorem implies the corresponding result holds for BMO maps.
Recall that for a weight w on D, f = log w belongs to BMO(D) if and

only if wγ is an A∞ weight on D for some γ > 0. Hence,

Corollary 3.3. We can add the condition

(d) For each A∞ weight w on D′, wγ ◦F is an A∞ weight on D for some
γ > 0.

to the list of the Main Theorem in the sense that (c) ⇔ (d) holds.

We say that a domain D ⊂ Rn is uniform if

kD(x, y) ≤ C log
(

d(x, ∂D) + d(y, ∂D) + |x− y|
min{d(x, ∂D), d(y, ∂D)}

)
, x, y ∈ D,

holds for some C > 0, where kD is the quasihyperbolic metric on D. Uniform
domains are invariant under quasiconformal maps on Rn. Half spaces are
uniform domains. In the case of a simply connected plane domain D, D is
uniform if and only if D is a quasidisk. The uniformness can be characterized
by the BMO extension property.

Proposition 3.4 (Jones [10]). A domain D ⊂ Rn is uniform if and only
if each BMO(D) function is the restriction of some BMO(Rn) function.

In this case, for each g ∈ BMO(D) we can take f ∈ BMO(Rn), f |D = g,
so that ‖f‖∗ ≤ C‖g‖∗, where C > 0 is a constant depending only on n and
the constant of uniformness.

Corollary 3.5. Let D and D′ be subdomains of Rm and Rn respectively.
Assume that D′ is uniform. Then for a measurable map F : D → D′, the
following conditions are equivalent:
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(a) We can take constants K, α > 0 so that for an arbitrary pair of
measurable subsets E1, E2 of D′ we have

sup
Q⊂D

min
k=1,2

|F−1(Ek) ∩Q|
|Q|

≤ K

(
sup

Q′⊂Rn
min
k=1,2

|Ek ∩Q′|
|Q′|

)α

,(5)

where the suprema are taken over all cubes Q ⊂ D and Q′ ⊂ Rn

respectively;
(b) We can take constants γ, 0 < γ < 1/4, and λ > 0 so that for an

arbitrary pair of measurable subsets E1, E2 of D′ satisfying

sup
Q′⊂Rn

min
k=1,2

|Ek ∩Q′|
|Q′|

< λ,

we have

sup
Q⊂D

min
k=1,2

|F−1(Ek) ∩Q|
|Q|

< γ,

where the suprema are taken over all cubes Q ⊂ D and Q′ ⊂ Rn

respectively;
(c) F is a BMO map;
(d) G = i◦F : D → Rn is a BMO map, where i : D → Rn is the inclusion

map.

We cannot replace the condition “Q′ ⊂ Rn” in (a) (and in (b)) above
with “Q′ ⊂ D′” (Example 4.11).

Remark 3.6. We may replace the assertion (a) of the Main Theorem with
(a′) For each N ≥ 2 we can take constants K, α > 0 so that for arbitrary

measurable subsets E1, . . . , EN of D′ we have

sup
Q⊂D

min
1≤k≤N

|F−1(Ek) ∩Q|
|Q|

≤ K

(
sup

Q′⊂D′
min

1≤k≤N

|Ek ∩Q′|
|Q′|

)α

,(6)

where the suprema are taken over all cubes Q ⊂ D and Q′ ⊂ D′

respectively,
or
(a′′) The assertion (a′) holds for some N ≥ 2.
Similarly, we may replace the assertion (b) of the Main Theorem with
(b′) For each N ≥ 2 we can take constants γ, 0 < γ < 1/4, and λ > 0 so

that for arbitrary measurable subsets E1, ..., EN of D′ satisfying

sup
Q′⊂D′

min
1≤k≤N

|Ek ∩Q′|
|Q′|

< λ,
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we have

sup
Q⊂D

min
1≤k≤N

|F−1(Ek) ∩Q|
|Q|

< γ,

where the suprema are taken over all cubes Q ⊂ D and Q′ ⊂ D′

respectively,

or

(b′′) The assertion (b′) holds for some N ≥ 2.

The implications (a′) ⇒ (a) ⇒ (a′′), (b′) ⇒ (b) ⇒ (b′′), (a) ⇒ (b), (a′)
⇒ (b′), and (a′′) ⇒ (b′′) are trivial. Furthermore, we obtain (a′′) ⇒ (a) and
(b′′) ⇒ (b) by setting E2 = E3 = · · · = EN . In the next section we show (b)
⇒ (c), and (c) ⇒ (a) (under the additive assumption). It is easy to check
that we can show (c) ⇒ (a′) in the same way.

Note that we can also rewrite Corollaries 3.2 and 3.5 similarly.

4. Proofs of the Main Theorem and Corollary 3.5.

The following two results play fundamental roles in the proof of the Main
Theorem. The latter one shows that the growth estimation of BMO func-
tions given by the former one is remarkably precise.

Proposition 4.1 (John-Nirenberg [9]). Let f ∈ BMO(D), D ⊂ Rn, and
Q ⊂ D be a cube. Then

|{x ∈ Q | |f(x)− fQ| ≥ t}| ≤ C1|Q| exp
(
−C2

t

‖f‖∗

)
, t ≥ 0,

where C1, C2 > 0 are constants depending only on n.

Proposition 4.2 (Uchiyama [17], cf. Garnett-Jones [4]). Let D be an ad-
missible subdomain of Rn. Let N ≥ 2, t > 1, and E1,...,EN be measurable
subsets of D satisfying

sup
Q⊂D

min
1≤k≤N

|Ek ∩Q|
|Q|

≤ 2−nt,

where the supremum is taken over all cubes Q ⊂ D. Then there exist
BMO(D) functions f1, . . . ,fN satisfying

∑N
k=1 fk = 1 and

0 ≤ fk ≤ 1, fk = 0 on Ek, ‖fk‖∗ ≤ C/t, (0 ≤ k ≤ N),

where C = C(n, N) > 0.

Garnett-Jones showed the assertion when D = Rn, N = 2 and E1 ⊂ Q,
E2 = Rn \ 2Q. Uchiyama extended their result to the form above.

First, we give a variant of the John-Nirenberg Theorem.
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Lemma 4.3. Let f ∈ BMO(D), D ⊂ Rn, and Q ⊂ D be a cube. Then

min{|{x ∈ Q | f(x) ≥ t}|, |{x ∈ Q | f(x) ≤ s}|}

≤ C1|Q| exp
(
−C2

t− s

‖f‖∗

)
, −∞ < s ≤ t < ∞,

where C1, C2 > 0 are constants depending only on n.

Proof. We may assume fQ ≤ (s + t)/2. Then from the John-Nirenberg
theorem we have

|{x ∈ Q | f(x) ≥ t}| ≤
∣∣∣∣{x ∈ Q | |f(x)− fQ| ≥

t− s

2

}∣∣∣∣
≤ C|Q| exp

(
−C

t− s

‖f‖∗

)
.

�

Conversely,

Lemma 4.4. Let f , f(x) 6= ±∞ (a.e.), be a measurable function on a
domain D ⊂ Rn. Assume that there exist constants C1, C2 > 0 such that
for each cube Q ⊂ D we have

min {|{x ∈ Q | f(x) ≥ t}|, |{x ∈ Q | f(x) ≤ s}|}

≤ C1|Q|e−C2(t−s), −∞ < s ≤ t < ∞.

Then f is a BMO(D) function satisfying ‖f‖∗ ≤ 4(C1 + 1)C−1
2 exp(2C2).

This is a direct consequence of the following.

Lemma 4.5. Let λ : R → [0, 1] be a nonconstant, non-decreasing function.
Assume that there exist constants C1, C2 > 0 such that

min(λ(s), 1− λ(t)) ≤ C1e
−C2(t−s), −∞ < s ≤ t < ∞.

Then we can take t0 ∈ R so that

max(λ(t0 − t), 1− λ(t0 + t)) ≤ (C1 + 1)e2C2e−C2t, t ≥ 0.

Proof. Since λ is nonconstant, λ(t) → 0 (t → −∞), and λ(t) → 1 (t →∞).
Let sk = sup{t |λ(t) ≤ 1 − λ(t + k)}, k ≥ 1. Then sk is non-increasing,
sk + k is non-decreasing, and

λ(sk − 1) ≤ 1− λ(sk + k − 1), λ(sk + 1) > 1− λ(sk + k + 1).

Set t0 = s1. First, assume k ≤ t < k + 1, k ≥ 2. Then

1− λ(t0 + t) ≤ 1− λ(sk−1 + k) ≤ C1e
−C2(k−1) ≤ C1e

2C2e−C2t,

λ(t0 − t) ≤ λ(sk−1 − 1) ≤ C1e
−C2(k−1) ≤ C1e

2C2e−C2t.

Next, if 0 ≤ t < 2, then max{λ(t0 − t), 1− λ(t0 + t)} ≤ 1 ≤ e2C2e−C2t. �
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Proof of Lemma 4.4. Set λ(t) = |{x ∈ Q | f(x) ≤ t}|/|Q|. Then λ satisfies
the assumption of Lemma 4.5 with the same constants C1, C2. Thus we can
take t0 so that

max{λ(t0 − t), 1− λ(t0 + t)} ≤ (C1 + 1)e2C2e−C2t, t ≥ 0.

And so

µ(t) := |{x ∈ Q | |f(x)− t0| ≥ t}| ≤ 2(C1 + 1)|Q|e2C2e−C2t, t ≥ 0.

Hence∫
Q
|f − fQ|dx ≤ 2

∫
Q
|f − t0|dx = 2

∫ ∞

0
µ(t)dt ≤ 4(C1 + 1)C−1

2 e2C2 |Q|.

�

Lemma 4.6. Let F : D → D′ satisfy the condition (a) of the Main Theo-
rem. Then K ≥ 1 and α ≤ 1.

Proof. We obtain K ≥ 1 by setting E1 = E2 = D′.
Next, assume α > 1. Let Q0 = [p, q] × P0 ⊂ R ×Rn−1 = Rn be a cube

in D′. Let l = q − p. Let I1 = [p, p + l/4], I2 = [q − l/4, q]. We decompose
I into 2s subintervals Jk = [p + 2−s(k − 1)l, p + 2−skl], 1 ≤ k ≤ 2s, where s
is a sufficiently large integer. Let Ek = (Jk ×Rn−1) ∩D′. Let Q be a cube
in D. Let k0 be the integer k which maximizes |F−1(Ek) ∩Q|, 1 ≤ k ≤ 2s.
Then

sup
Q′⊂D′

min
{
|Ek ∩Q′|
|Q′|

,
|Ek0 ∩Q′|
|Q′|

}
≤ 4

2s
,

holds for each k ∈ Σ1 or for each k ∈ Σ2, where Σ1 = {k |Jk ⊂ I1} and
Σ2 = {k |Jk ⊂ I2}. Thus from the assumption we have

|F−1(Ek) ∩Q|
|Q|

≤ K

(
4
2s

)α

,

for each k ∈ Σ1 or for each k ∈ Σ2. It follows from ]Σ1 = ]Σ2 = 2s−2 that

min
j=1,2

|F−1((Ij ×Rn−1) ∩D′) ∩Q| ≤ 2s−2K

(
4
2s

)α

|Q| → 0, s →∞.

Therefore, the measure µ(S) = |F−1((S × Rn−1) ∩ D′) ∩ Q| on [p, q] is
absolutely continuous and satisfies µ([a, a + t]) = 0 or µ([a + 3t, a + 4t]) =
0 for each a, t with p ≤ a < a + 4t ≤ q. Thus µ([p, q]) = 0, and so
|F−1(Q0) ∩ Q| = 0. Since Q and Q0 are arbitrary, we have |F−1(D′)| = 0,
which is a contradiction. �

Lemma 4.7. Let F : D → D′, D ⊂ Rm, D′ ⊂ Rn, be a BMO map. Then
‖CF ‖ ≥ 1.
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Proof. Note that if E is a measurable subset of D satisfying |E| > 0,
|D\E| > 0, then the characteristic function f of E satisfies ‖f‖∗ = ‖f‖∗,D =
1/2.

Let F be a BMO map. Fix a cube Q ⊂ D and set λ(E) = |F−1(E) ∩Q|.
Then λ is an absolutely continuous finite measure on D′, thus we can take
t0 ∈ R so that λ(E0) = λ(D′ \ E0) = |Q|/2, where E0 = ((−∞, t0] ×
Rn−1) ∩D′. Let f be the characteristic function of E0. Then f ◦ F is the
characteristic function of F−1(E0), and so from the first paragraph we have
‖f‖∗ = ‖f ◦ F‖∗ = 1/2, which implies the assertion. �

The following lemma shows (a) ⇒ (c) of the Main Theorem with an
estimation of the operator norm.

Lemma 4.8. Let F : D → D′, D ⊂ Rm, D′ ⊂ Rn, be a measurable
map. Assume that there exist constants K, α > 0 such that for each pair of
measurable subsets E1, E2 of D′, we have

sup
Q⊂D

min
k=1,2

|F−1(Ek) ∩Q|
|Q|

≤ K

(
sup

Q′⊂D′
min
k=1,2

|Ek ∩Q′|
|Q′|

)α

.

Then F is a BMO map satisfying ‖CF ‖ ≤ CK/α, where C = C(m,n) > 0.

Proof. Assume that F satisfies the assumption of the lemma. Then the
inverse image of a null set is trivially a null set.

Let f ∈ BMO(D′), E1 = {x ∈ D′ | f(x) ≤ s}, E2 = {x ∈ D′ | f(x) ≥ t},
−∞ < s ≤ t < ∞, and Q′ ⊂ D′. From Lemma 4.3 we have

min{|E1 ∩Q′|, |E2 ∩Q′|} ≤ C|Q′| exp
(
−C(t− s)

‖f‖∗

)
.

It follows from the assumption and the fact α ≤ 1 (Lemma 4.6) that for an
arbitrary cube Q ⊂ D we have

min{|F−1(E1) ∩Q|, |F−1(E2) ∩Q|} ≤ CK|Q| exp
(
−Cα(t− s)

‖f‖∗

)
.

Now, F−1(E1) = {x ∈ D | f(F (x)) ≤ s}, F−1(E2) = {x ∈ D | f(F (x)) ≥ t},
and so from Lemma 4.4 and the fact K ≥ 1 (Lemma 4.6) we have F ◦ f ∈
BMO(D) and

‖f ◦ F‖∗ ≤
CK

α
‖f‖∗ exp

(
Cα

‖f‖∗

)
.

Finally, applying this estimation to tf , t > 0, and letting t →∞, we obtain
‖f ◦ F‖∗ ≤ CK

α ‖f‖∗. �

Next, to show (b) ⇒ (c) of the Main Theorem, we need the following.
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Proposition 4.9 (Strömberg [16]). Let f be a measurable function on D ⊂
Rn. Assume that we can take constants γ, 0 < γ < 1/2, and λ > 0 so that
for each cube Q ⊂ D we have

inf
c∈R

|{x ∈ Q | |f(x)− c| ≥ λ}| ≤ γ|Q|.

Then f is a BMO(D) function satisfying ‖f‖∗ ≤ Cλ, where C = C(n, γ) >
0.

Proof of Main Theorem (b) ⇒ (c). Assume that F satisfies the condition
(b) of the Main Theorem. Then the inverse image of a null set is trivially a
null set.

Let f ∈ BMO(D′). We may assume ‖f‖∗ = 1. Let −∞ < s < t < ∞,
E1 = {x ∈ D′ | f(x) ≤ s}, E2 = {x ∈ D′ | f(x) ≥ t}, and g = CF (f). Then
from Lemma 4.3 there exists C1 > 0 such that if t− s ≥ C1, then

sup
Q′⊂D′

min
k=1,2

|Ek ∩Q′|
|Q′|

≤ Ce−C(t−s) < λ,

and so

sup
Q⊂D

min
k=1,2

|F−1(Ek) ∩Q|
|Q|

< γ.

For Q ⊂ D we set

sQ = sup
{

s ∈ R
∣∣∣ |{x ∈ Q | g(x) ≤ s}| ≤ |{x ∈ Q | g(x) ≥ s + C1}|

}
.

Since g 6= ±∞ (a.e.), we have sQ 6= ±∞. Thus

|{x ∈ Q | g(x) ≤ sQ − 1}| < γ, |{x ∈ Q | g(x) ≥ sQ + C1 + 1}| < γ,

and so if we set cQ = sQ + C1/2 and δ = 1 + C1/2, then

|{x ∈ Q | |g(x)− cQ| > δ}| ≤ 2γ (< 1/2).

Hence g ∈ BMO(D) by Proposition 4.9. �

Finally, we show the remaining implication (c) ⇒ (a) of the Main Theo-
rem.

Lemma 4.10. Let F : D → D′, D ⊂ Rm, D′ ⊂ Rn, be a BMO map.
Assume that there exists an admissible domain D′

0 satisfying F (D) ⊂ D′
0 ⊂

D′. Then there exist constants K, β > 0 depending only on m and n such
that for an arbitrary pair of measurable subsets E1, E2 of D′ we have

sup
Q⊂D

min
k=1,2

|F−1(Ek) ∩Q|
|Q|

≤ K

(
sup

Q′⊂D′
min
k=1,2

|Ek ∩Q′|
|Q′|

)β/‖CF ‖

.
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Proof. Let G : D → D′
0, G(x) = F (x). Let g ∈ BMO(D′

0). Since admissible
domains are uniform domains with uniformly bounded constants of uniform-
ness, from Proposition 3.4 we can take f ∈ BMO(D′) so that f |D′

0 = g and
‖f‖∗ ≤ C‖g‖∗. Thus ‖g ◦G‖∗ = ‖f ◦F‖∗ ≤ C‖f‖∗. Therefore, G is a BMO
map satisfying ‖CG‖ ≤ C‖CF ‖.

Let E1, E2 be an arbitrary pair of measurable subsets of D′. Let E′
k =

Ek ∩D′
0. Then

2−nt := sup
Q′⊂D′

0

min
k=1,2

|E′
k ∩Q′|
|Q′|

≤ sup
Q′⊂D′

min
k=1,2

|Ek ∩Q′|
|Q′|

.

Because of Lemma 4.7, we may assume t > 1. From the Uchiyama theorem
there exist BMO(D′

0) functions f1, f2 satisfying f1 + f2 = 1 and

0 ≤ fk ≤ 1, fk = 0 on E′
k, ‖fk‖∗ ≤ C/t, (k = 1, 2).

Let gk = fk ◦G. Then g1 + g2 = 1 and

0 ≤ gk ≤ 1, gk = 0 on G−1(E′
k), ‖gk‖∗ ≤ C‖CG‖/t, (k = 1, 2).

Let Q be an arbitrary cube in D. Since (g1)Q + (g2)Q = 1, we may assume
(g1)Q ≥ 1/2. Then from the John-Nirenberg theorem we have

|G−1(E′
1) ∩Q| ≤ |{x ∈ Q | |g1(x)− (g1)Q| ≥ 1/2}|

≤ C|Q| exp
(
− C

‖g1‖∗

)
≤ C|Q| exp

(
− Ct

‖CG‖

)
,

and so we obtain

sup
Q⊂D

min
k=1,2

|F−1(Ek) ∩Q|
|Q|

= sup
Q⊂D

min
k=1,2

|G−1(E′
k) ∩Q|

|Q|

≤ C

(
sup

Q′⊂D′
0

min
k=1,2

|E′
k ∩Q′|
|Q′|

) C
‖CG‖

≤ C

(
sup

Q′⊂D′
min
k=1,2

|Ek ∩Q′|
|Q′|

) C
‖CF ‖

.

�

Proof of Corollary 3.5. (a) ⇒ (b) is trivial. (c) ⇔ (d) follows from Propo-
sition 3.4. (d) ⇒ (a) is a consequence of the Main Theorem.

Finally, assume that (b) holds. Let E1 and E2 be measurable subsets of
Rn satisfying

sup
Q′⊂Rn

min
k=1,2

|Ek ∩Q′|
|Q′|

< λ.
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Then E′
k = Ek ∩D′ satisfies the assumption. Thus

sup
Q⊂D

min
k=1,2

|G−1(Ek) ∩Q|
|Q|

= sup
Q⊂D

min
k=1,2

|F−1(E′
k) ∩Q|

|Q|
< γ,

and so G satisfies the condition (b) of the Main Theorem. Hence (d) follows.
�

Example 4.11. Let D′ = {x ∈ R2 | |x1| < 4, |x2| < 5} \ {x ∈ R2 |x1 ≥
0, |x2| ≤ 1}, where x = (x1, x2). Then D′ is a uniform domain. Let
a1 = (2, 3), a2 = (2,−3), E1 = {|x− a1| ≤ 1}, and E2 = {|x− a2| ≤ 1}. Let
D = {x ∈ R2 | |x1| < 1, |x2| < 1}. Let F : D → D′ be a conformal map.
Then F is a BMO map. On the other hand, min{|E1 ∩ Q′|, |E2 ∩ Q′|} = 0
holds for each cube Q′ ⊂ D′. Thus we cannot replace the condition “Q′ ⊂
Rn” in Corollary 3.5 with Q′ ⊂ D′.

5. Homeomorphisms between intervals.

The Main Theorem gives a characterization of BMO maps between (finite
or infinite) open intervals. Jones result (Example 2.3) implies that in the
case of homeomorphisms of R we can reduce the condition to a much simpler
form. The purpose of the present section is to show that his argument really
characterizes BMO maps which are homeomorphisms between general open
intervals with an explicit estimation on operator norms.

Recall that the space BMO(R) is invariant under Möbius transformations
of R = R ∪ {∞} (cf. Riemann-Rychener [14]). More generally:

Lemma 5.1. Let I1 and I2 be open intervals on R. Let τ be a Möbius
transformation of R satisfying τ(I1) = I2. Then F = τ |I1 : I1 → I2 is
a BMO map satisfying C−1 ≤ ‖CF (f)‖∗/‖f‖∗ ≤ C, f ∈ BMO(I2), where
C > 0 is a universal constant.

Proof. Let f ∈ BMO(I2). Let I be an interval satisfying 2I ⊂ I1. Then
maxI |F ′| ≤ C minI |F ′|, thus

|I|−1

∫
I
|f ◦ F − fF (I)|dx ≤ C|F (I)|−1

∫
F (I)

|f − fF (I)|dx ≤ C‖f‖∗,

and so ‖CF (f)‖ ≤ C‖f‖∗ from the proposition below. �

Proposition 5.2 (cf. Reimann-Rychener [14]). Let f ∈ L1
loc(D), D ⊂ Rn,

and t ≥ 1. Assume that

sup |Q|−1

∫
Q
|f − fQ|dx ≤ λ

holds for each Q satisfying tQ ⊂ D. Then f ∈ BMO(D) and ‖f‖∗ ≤ Ctλ,
where C = C(n) > 0.
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By virtue of the proposition above, repeating the argument of Jones, we
can easily extend his result as follows.

Theorem 5.3 (cf. Jones [11]). Let F : I1 → I2 be a homeomorphism be-
tween open intervals.

(a) If I1 = R and I2 6= R, then F is not a BMO map.
(b) If I1 6= R or I2 = R , then the following conditions are equivalent:

(i) F is a BMO map;
(ii) There exist constant K0, α0 > 0 such that for each measurable

subset E of I2 and each subinterval I of I2 satisfying 2F−1(I) ⊂ I1,
we have

|F−1(E ∩ I)|
|F−1(I)|

≤ K0

(
|E ∩ I|
|I|

)α0

.(7)

Moreover, if (7) holds, then ‖CF ‖ ≤ CK0/α0 for some universal con-
stant C > 0, and conversely, if F is a BMO map, then we can take
constants K0, α0 so that K0 = C1 and α0 = C2/‖CF ‖, where Ck > 0,
k = 1, 2, are universal constants.

In particular, ‖CF ‖ and inf(K0/α0) are comparable with universal con-
stant factors, where the infimum is taken over all pairs of K0, α0 satisfying
(7).

Lemma 5.4. Let I0 be an interval. Let J1 and J2 be mutually disjoint
subintervals of I0. Then

sup
I⊂I0

min
k=1,2

|Jk ∩ I|
|I|

=
s

d(J1, J2) + 2s
,

where s = mink=1,2 |Jk|.

Proof of Theorem 5.3. First, assume I1 = R and I2 6= R. From the Möbius
invariance of BMO we may assume I2 = (0,∞) and F is sense preserving.
Let f(x) = log x. Then f ∈ BMO(I2). On the other hand, since g = f ◦F is
an increasing function satisfying limx→∞ g(x) = ∞, limx→−∞ g(x) = −∞,
if we set Jk = [−k, k] and Ek = [−k,−k/2] ∪ [k/2, k], then

|Jk|−1

∫
Jk

|g − gJk
|dx ≥ (2k)−1

∫
Ek

≥ 4−1 (g(k/2)− g(−k/2)) →∞,

as k →∞. Thus F is not a BMO map.
Next, assume that F satisfies the condition (ii) of (b). Then K0 ≥ 1 and

α0 ≤ 1. Let I be a subinterval of I2 satisfying 2F−1(I) ⊂ I1. Let f ∈
BMO(I2), I ′ = F−1(I), g = f ◦ F , and Et = {x ∈ I | |f(x)− fI | ≥ t}, t ≥ 0.
Then from the John-Nirenberg theorem we have |Et| ≤ C|I| exp(−Ct/‖f‖∗),
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thus

µ(t) := |{x ∈ I ′ | |g(x)− fI | ≥ t}| = |F−1(Et)|

≤ CK0|I ′| exp
(
−Cα0t

‖f‖∗

)
and so

|I ′|−1

∫
I′
|g − fI |dx =

∫ ∞

0
µ(t)dt ≤ CK0

α0
‖f‖∗.

Hence, from Proposition 5.2 ‖g‖∗ ≤ CK0α
−1
0 ‖f‖∗.

Finally, assume that F satisfies the condition (i) of (b). We may assume
that F is sense preserving. Let Ik = (pk, qk), k = 1, 2. Let E be a measurable
subset of I2. Let I = [a, b] be an interval satisfying 2F−1(I) ⊂ I1. Let
l = |I| and l′ = |F−1(I)|. Let E1 = E ∩ [a, a + l/2] and E2 = [b, q2). Then
s := mink=1,2 |F−1(Ek)| ≥ |F−1(E1)|/2, thus from Lemma 5.4

sup
I′⊂I2

min
k=1,2

|Ek ∩ I ′|
|I ′|

≤
mink=1,2 |Ek|

l/2 + 2 mink=1,2 |Ek|
≤ 2|E1|

l
≤ 2|E ∩ I|

l
,

sup
I′⊂I1

min
k=1,2

|F−1(Ek) ∩ I ′|
|I ′|

≥ s

(l′ − |F−1(E1)|) + 2s
≥ |F−1(E1)|

2l′
.

And so from the Main Theorem we have

|F−1(E1)|
l′

≤ C

(
|E ∩ I|

l

)C/‖CF ‖
.

Since the same estimation holds for E′
1 = E ∩ [a + l/2, b], we obtain (7). �

Contrary to the case of homeomorphisms of R, no homeomorphism F :
R → (0,∞) is a BMO map even if F−1 is a BMO map. Moreover, there
exists a homeomorphism F : (0,∞) → (0,∞) such that F is a BMO map
and F−1 is not a BMO map. One such example is given by F (x) = log(1 +
x) (cf. Corollary 5.9). This example also shows that we can not drop the
condition 2F−1(I) ⊂ I1 in the statement above: Assume that the estimation
(7) holds for I = [log 2, log(a + 1)] and E = [log(a/2 + 1), log(a + 1)], a > 1.
Then

a/2
a− 1

≤ K0

(
log((a + 1)/(a/2 + 1))

log((a + 1)/2)

)α0

, a > 1,

which is a contradiction. Another such example is given by F : (0,∞) →
(0,∞), F (x) = 1/x.

Applying (7) to subintervals I = [a, b] and E = [x, y] of I2, a ≤ x ≤ y ≤ b,
we obtain:

Corollary 5.5. Let F : I1 → I2 be a homeomorphism between open in-
tervals. Assume that F is a BMO map. Then F−1 is locally a Hölder
continuous function of order C/‖CF ‖, where C > 0 is a universal constant.
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The homeomorphism F (x) = |x|psgnx, p ≥ 1, of R shows that the esti-
mation above is best possible. (See Example 5.8 below.)

Recall that for a homeomorphisms G : J1 → J2 between (finite) closed
intervals, G is absolutely continuous and G′ is an A∞ weight on J1 if and
only if G−1 is absolutely continuous and (G−1)′ is an A∞ weight on J2

(cf. Coifman-Fefferman [2]). Thus, under the assumption of the corollary
above, F ′ (or −F ′) satisfies the A∞ condition uniformly on each I satisfying
2I ⊂ I1. In particular, F ′ ∈ Lp

loc(I1) holds for some p > 1, and so F is also
locally Hölder continuous. We do not know, however, whether the similar
estimation holds or not for the order of F ′. Moreover, from Proposition 5.2
we have:

Corollary 5.6. Let F : I1 → I2 be a homeomorphism between open inter-
vals. Assume that F is a BMO map. Then we have ‖ log |F ′|‖∗ ≤ C, where
C = C(‖CF ‖) > 0.

It is easy to see that the corresponding result does not hold for log |(F−1)′|.
In the rest of the present section, we give a remark on the global behavior

of BMO maps. For an open interval I = (a, b) ( 6= R), the hyperbolic metric
dsh is defined by

dsh(x) =
(b− a)dx

(b− x)(x− a)
.

The hyperbolic metric is invariant under Möbius transformations of R and
comparable with the quasihyperbolic metric dx/d(x, ∂I). Let dh(x, y) denote
the hyperbolic distance between x and y.

Lemma 5.7. Let F : I1 → I2 (I1, I2 6= R) be a homeomorphism between
open intervals. Assume that F is a BMO map. Then

dh(F (x), F (y)) ≤ C‖CF ‖(dh(x, y) + 1), x, y ∈ I1,(8)

where C > 0 is a universal constant.

Proof. Since both the quasihyperbolic metric and BMO are invariant under
Möbius transformations, we may assume that I1 = I2 = (0,∞), F is sense
preserving, x = 1 = F (1), and y = a > 1. Applying the Main Theorem with
E1 = (0, 1] and E2 = [F (a),∞), and utilizing Lemma 5.4, we get

1
a + 1

≤ C

(
1

F (a) + 1

)C/‖CF ‖
,

hence F (a) ≤ CaC‖CF ‖, which implies the assertion. �

Each hyperbolically Lipschitz continuous function is a BMO function and
F preserves the space of all hyperbolically Lipschitz continuous functions
if and only if F is hyperbolically Lipschitz continuous. The lemma above
shows that the similar result holds for BMO. Note that quasiconformal maps
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satisfy the corresponding estimation with respect to the quasihyperbolic
metric. The following example shows that the estimation (8) is best possible.

Example 5.8. Let F : (0,∞) → (0,∞), F (x) = xp, p ≥ 1. F is the
hyperbolic dilation centered at the point 1: dh(F (x), F (y)) = pdh(x, y),
x, y ∈ (0,∞). A simple calculation shows F satisfies (7) with K0 = 1 and
α0 = 1/p. On the other hand, if we set f(x) = log x, then CF (f) = pf .
Hence, ‖CF ‖ and p are comparable with universal constant factors. Note
that as to the antisymmetric extension F1 : R → R, F1(x) = |x|psgnx, of
F , ‖CF1‖ and p are comparable with universal constant factors similarly.

Corollary 5.9. Let F : I1 → I2, I1, I2 6= R, be a homeomorphism be-
tween open intervals. Assume that F is a BMO map. Then CF is a bijec-
tion between BMO(I2) and BMO(I1) if and only if we can take a constant
C > 0 so that for each interval I ⊂ I1 satisfying d(I, ∂I1) = |I|, we have
d(F (I), ∂I2) ≤ C|F (I2)|.

Note that we can take such a constant C > 0 if and only if

C−1 ≤ dh(F (x), F (y)) + 1
dh(x, y) + 1

≤ C, x, y ∈ I1,

holds for some C ≥ 1.

Proof. Assume that we can take such a constant C > 0. Let f ∈ BMO(I1).
Then for each I ⊂ I1 satisfying d(I, ∂I1) = |I|, ‖f ◦ F−1‖∗,F (I) ≤ C holds,
thus from Proposition 5.2 we have f ◦ F−1 ∈ BMO(I2), and so F−1 is a
BMO map. The converse assertion easily follows from Lemma 5.7. �
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cle laissant invariant l’espace BMO, Bull. London Math. Soc., 28 (1996), 24-32,
MR 96j:30035, Zbl 840.30007.

[13] H.M. Reimann, Functions of bounded mean oscillation and quasiconformal mappings,
Comm. Math. Helv., 49 (1974), 260-276, MR 50 #13513, Zbl 289.30027.

[14] H.M. Reimann and T. Rychener, Funktionen beschränkter mittelerer Oszillation, Lec-
ture Notes in Math., 487, Springer, 1975, MR 58 #23564, Zbl 324.46030.

[15] W. Smith, Compactness of composition operators on BMOA, Proc. Amer. Math. Soc.,
127 (1999), 2715-2725, MR 99m:47040, Zbl 921.47025.
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