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A celebrated theorem of P. Funk, 1916, states that an origin-
centered star body in R3 is determined by the areas of its
central hyperplane cross-sections. In particular, if all these
concurrent sections have the same area then the body must
be a ball (its boundary is a sphere). It is natural to try to
strengthen the theorem by using a smaller class of planes. It
is evident that a lower-dimensional class of hyperplanes, e.g.,
planes passing through an axis, does not suffice, but a proper
open subset of planes appears plausible. The class of planes
at a small angle relative to an axis has been considered in the
literature. We show that this class does not characterize the
body. We then show that if a body is known to osculate a ball
centered at the origin to infinite order along one hyperplane
through the axis, then the proper open class of planes above
does determine whether the body is a ball. We generalize our
theorem to arbitrary origin centered star bodies and to any
open connected collection of planes that fills out Rn. We have
counterexamples to the theorem for every finite order of os-
culation. We have similar theorems for the cosine transform
and projection areas.

0. Introduction.

The goal of this paper is to use Radon transforms to answer specific questions
about star-shaped and convex sets. Funk showed that a radially symmetric
convex body in R3 is determined by areas of its intersections with all planes
through the origin. A natural question is whether there are subclasses of
planes for which the areas of intersection are sufficient to determine the
body. One might think that planes that are within an angle of Θ ∈ (0, π/2)
of an axis might determine the object, and this claim is in the literature [T].
This is reasonable since the set of all planes near an axis is a full-dimensional
set, and every point in the object meets an infinite number of such planes.

In fact, as we show in Proposition 2.2, this does not determine if an object
is a ball (i.e., its boundary is a sphere). In fact, Proposition 2.2 shows that
even if we assume the object is a ball to any finite order along the hyperplane,
it does not have to be a ball everywhere. As a positive result, we prove that
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if an origin-centered star-shaped body is a ball to infinite order along one
hyperplane meeting the axis and if its areas are constant on all hyperplanes
sufficiently near the axis, then the body is a ball (Theorem 1.2). In fact, our
theorem holds for arbitrary origin-centered star bodies that agree to infinite
order along a hyperplane through the axis (Theorem 1.3) and for any open
connected set of hyperplanes through the origin that fills out Rn. We prove
similar uniqueness theorems for the cosine transform and projection areas
(Theorems 3.1–3.3).

The authors thank Richard Gardner for useful comments and helpful ref-
erences, in particular to [SW]. This work has also benefited from discussions
with Mark Agranovsky, Fulton Gonzalez, Joram Lindenstrauss, and Larry
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tion 2.1. The authors thank Boris Rubin for specific information about [Mi].
The second author thanks the Humboldt Stiftung for its support and Prof.
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their hospitality.

1. Radon transforms and cross-sections of star bodies.

A star body is a body in Rn that is star-shaped about the origin; that is, the
origin is connected to every point in the body by a segment (which could be
just a point) contained in the body. A body K is origin centered if K = −K.
The sets we consider will be assumed to be compact. We will say two sets
are equal when they agree up to a set of measure zero. There is a natural
one-to-one correspondence between a star body and its bounding surface,
which we will use when convenient.

There is an identification between star shaped bodies in Rn and certain
functions on the sphere Sn−1. If K is a star body in Rn then its radial
function ρK is defined by

(1.1) ρK(ω) = max{t ∈ [0,∞)
∣∣ tω ∈ K}

where ω ∈ Sn−1. The number ρK(ω) is just the (maximum) distance from
the origin to the boundary of K in the direction ω.

For ω ∈ Sn−1 (or for ω ∈ RPn−1) let P (ω) be the hyperplane through
the origin perpendicular to ω and let ω⊥ = P (ω)∩Sn−1 be the great sphere
in Sn−1 perpendicular to ω.

The Funk-Radon transform for functions f ∈ C(Sn−1) is defined by

(1.2) Rf(ω) ≡
∫

η∈ω⊥
f(η) dη.
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Thus R operates by integration on great (n−2) spheres in Sn−1 with respect
to the normalized rotation invariant measure. Call a function f(ω) even if
f(−ω) = f(ω). By inspection, Rf is always an even function. Minkowski
[Mi] proved injectivity of this transform for functions with integrable second
derivative. Funk [F] proved an inversion formula. Both results imply the
following uniqueness theorem.

Funk-Minkowski Theorem ([F, Mi]). R is injective on even functions,
L2

even(S
n−1).

It is obvious that Rf is zero if f is an odd function. This theorem shows
that the null space of R is the set of odd functions. Since Rf is always
even, we will sometimes view R as an injective transform from L2(RPn−1)
to L2(RPn−1).

The link between cross-sections of star bodies, K, and the transform R is
given by the polar coordinate area formula

(1.3) Area (K ∩ P (ω)) =
1
n

∫
η∈ω⊥

(
ρK(η)

)n−1
dη = R

(
(1/n) ρn−1

K

)
(ω).

This, in turn, follows from integration in polar coordinates. For background
information about star and convex bodies see [G3]. In particular, since
star bodies are determined by their radial functions and the Funk-Radon
transform is injective on even functions we can make the following assertion.
Origin-centered star bodies in Rn are determined by the areas of their central
cross-sections.

Funk’s original proof of his theorem uses spherical harmonic expansions
and is valid on S2. After many years it remains the standard proof though
others have emerged. See, e.g., [BEGM]. For even functions, Helga-
son [He1] proved this theorem and inversion formulas for odd dimensional
spheres and projective spaces, and Semyanistyi [Se] proved injectivity for
spheres of all dimensions using Fourier techniques. Grinberg [Gr] proved
injectivity and the inversion formula for spheres of all dimensions (and pro-
jective spaces) using spherical harmonics and group invariance.

We need two definitions about asymptotic behavior of functions and sets
near a given hypersurface.

Definition 1.1. Let f be a function on a Riemannian manifold and let S
be a closed hypersurface. The function f is zero to order k ∈ N on S if and
only if f is continuous near S and f(x) = O((dist(x, S))k) where dist(x, S)
is the minimum geodesic distance from x to S. The function f is zero to
infinite order on S if and only if f is zero to order k for all k ∈ N.

Definition 1.2. Order of osculation among star bodies. Let K1 and K2 be
star bodies in Rn, and let H0 be a hyperplane through the origin. Assume
K1 ∩H0 = K2 ∩H0. Let k ∈ N ∪ {∞}. Then, K1 and K2 osculate to order
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k along H0 if and only if the difference of radial functions, ρK1 − ρK2 is zero
to order k on Sn−1 ∩H0 according to Definition 1.1.

If the bodies K1 and K2 have smooth boundaries, then the condition in
Definition 1.2 is equivalent to the boundaries of K1 and K1 being tangent
to order k along K1 ∩H0.

Our first theorem, a support theorem for the Funk-Radon transform, is
the key to the subsequent theorems.

Theorem 1.1. Let A be an open connected subset of Sn−1. Assume f is
an even function in Cc(Sn−1) with Rf(ω) = 0 for all ω ∈ A and assume,
for some ω0 ∈ A, f is zero to infinite order on P (ω0). Then, f is zero on
∪ω∈Aω⊥.

This theorem can be proven using microlocal techniques [GS] for any
generalized Funk-Radon transform (in which the measure dη (1.2) is replaced
by any nowhere zero real-analytic weight). The transform (1.2) is shown to
satisfy a microlocal condition, the Bolker Condition, in [Q1]. Theorem 1.1 is
a special case of Theorem 2.2 in [Q3], which is true for all Radon transforms
satisfying the Bolker Condition.

However, the proof we give is elementary and it involves the standard
projection from a half sphere in Sn−1 to Rn−1. This projection takes great
spheres on Sn−1 into hyperplanes in Rn−1 This projection has been used
to prove support theorems for the hyperplane and the great-sphere Radon
transforms in [Q2] and [Bo], and it was noted by Gelfand in the sixties.

Proof of Theorem 1.1. We rotate Sn−1 ⊂ Rn so that ω⊥0 is on the (x1, . . . ,
xn−1) hyperplane. Then, we consider the projection from the origin through
each point in the open upper half sphere S+ to the (n − 1)-plane xn = 1.
We identify this plane with Rn−1. Under this projection each point ω ∈
intS+ is mapped to the point x = 1

ωn
ω which is identified with its first

n − 1 coordinates, x′ = (x1, . . . , xn−1). The great sphere perpendicular
to ω is mapped to the n − 2 dimensional hyperplane on Rn−1 normal to
ω′ = (ω1, . . . , ωn−1) and of distance ωn/

√
1− ω2

n from the origin (in the
opposite direction to ω′).

Let R be the classical hyperplane transform on Rn−1. If f is a continuous
even function on Sn−1 and f̃ is its projected function on Rn−1, and ω ∈ Sn−1,
then

Rf(ω) =
√

1 + p2R
(
f̃(x)(1 + |x|2)−(n−1)/2

)
(τ, p)(1.4a)

where f̃(x) = f
( (x, 1)
|(x, 1)|

)
, τ =

ω′

|ω′|
, p =

−ωn√
1− ω2

n

.(1.4b)

The p and x factors in (1.4a) come from the change of coordinates.
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Note that if f is zero to infinite order on ω⊥0 , then f̃(x)(1 + |x|2)−(n−1)/2

is rapidly decreasing at infinity. Let A be the set of n − 2 dimensional hy-
perplanes in Rn−1 that correspond to the set of great spheres parameterized
by A. As Rf = 0 on A, R(f̃(1 + |x|2)−(n−1)/2) is zero for all hyperplanes
in A. As A is open and ω0 ∈ A, a whole neighborhood of ω0 is in A. Since
the great sphere ω⊥0 corresponds to the hyperplane at infinity in Rn−1, A
contains all hyperplanes outside of some ball, B, in Rn−1. Now, we can use
Helgason’s support theorem for the hyperplane transform [He2, Theorem
2.6], which is true for rapidly decreasing functions that are continuous near
infinity, to conclude f̃ = 0 outside B. Finally, we can use the main theorem
of [BQ] (or a generalization of [He2, Lemma 2.11]) to conclude f̃ is zero on
∪A. Therefore, f is zero on ∪(ω∈A)ω

⊥. �

Theorem 1.1 has the following consequence for star bodies in Rn.

Theorem 1.2. Let K be an origin centered star body in Rn and let A be an
open connected set of hyperplanes through the origin so that Rn = ∪A. If
for some H0 ∈ A, K osculates a ball centered at the origin to infinite order
along H0 and K has constant cross-sectional areas when sliced by planes in
A, then K is that ball.

Note that the collection of planes in R3 within an angle of Θ ∈ (0, π/2)
of an axis satisfies the hypotheses of Theorem 1.2, so this theorem shows
that any set that osculates a ball centered at the origin to infinite order
on one 2-plane through the axis and with constant cross-sectional areas on
these planes is a ball. Thus, under the additional osculation assumption,
the theorem discussed in the introduction [T] holds.

Proof of Theorem 1.2. Let A be the connected set of directions in RPn−1

normal to hyperplanes in A, A = {P (ω)
∣∣ω ∈ A}. Let K be an origin

centered star body. Assume K osculates a ball centered at the origin to
infinite order along a plane H0, then ρn−1

K is constant to infinite order on
H0 ∩Sn−1. If the cross-sectional areas of K are constant on all planes in A,
including H0, then the Funk transform of ρn−1

K agrees with that of a ball on
A. By Theorem 1.1, we can conclude the radial function of K is constant
on all unit vectors on planes in A. By the assumption that Rn = ∪A, the
radial function of K must be constant on Sn−1 and so K is a ball. �

This proof is valid for any pair of origin-centered star bodies that osculate
each other to infinite order along a hyperplane, so we obtain the following
theorem.

Theorem 1.3. Let K1 and K2 be origin-centered star bodies in Rn and
let A be an open connected set of hyperplanes through the origin so that
Rn = ∪A. If for some H0 ∈ A, K1 and K2 osculate each other to infinite
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order along H0, and their cross-sectional areas agree when sliced by planes
in A, then K1 = K2.

Simple counterexamples (related to the non-uniqueness of the interior
Radon transform on lines) show that the connectedness assumptions in these
theorems are necessary.

2. Counterexamples.

In this section we explore the hypotheses of the characterization Theo-
rems 1.2 and 1.3, and show through counterexamples that they are needed.
First we ask if the ‘starter’ hypothesis (the condition that the sets agree to
infinite order along a hyperplane) can be eliminated entirely. This can be
answered using mid-decade developments involving intersection bodies. If K
is a star body in Rn then the Funk-Radon transform of its radial function
defines another body IK, the intersection body of K:

ρIK(ω) = R(ρn−1
K )(ω),

up to normalizations. H. Busemann proved that if K is a centered convex
set, then IK is convex [G3]. Given another star body L it is natural to ask
if L is expressible as IK for a star body K ⊂ Rn. In dimension three the
answer is affirmative for origin centered bodies [G2]. In higher dimensions
the answer is negative [Ko1, G1, G2, Zh, GZ]. These results played a
critical role in the solution of the celebrated Busemann-Petty problem. This
problem involves the comparison of volumes of two convex bodies by means
of comparison of areas of lower-dimensional cross-sections.

In the present context the surjectivity of the intersection body transform
in dimension three shows that the ‘starter’ hypothesis above cannot be en-
tirely eliminated. For the values of central cross-sectional areas of the star
body K give the values of the radial function of IK. If one could remove
the starter hypothesis in Theorem 1.2, then radial functions of star bodies
would enjoy a continuation property. Since, in dimension three, every cen-
tered convex body is an intersection body, no such continuation can exist.
In particular, it is not possible to determine a star body from its central
cross-sections by planes with relative angle less than Θ with respect to an
axis since this would imply that an intersection body is determined by its
intersection with a central slab. Though intersection bodies form a proper
subclass in higher dimensions it is nonetheless possible to show that no
suitable continuation property can exist there either.

We now turn to the more delicate question involving the severity of the
starter assumption. We will construct a body with constant cross-sections
for planes at a small angle relative to an axis which osculates the unit ball
to finite order along a plane containing the axis.
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Proposition 2.1. Let k ∈ N and let Θ ∈ (0, π/2). There is a non-zero
function f ∈ C∞

even(S
n−1) which vanishes to order k on the great sphere e⊥n

(which contains the x1-axis) and whose integrals vanish on all great spheres
within angle Θ of the x1-axis.

Proof. We use the relation, (1.4), between the great sphere transform and
the classical Radon transform on hyperplanes in Rn−1, R, and then a range
theorem of Solmon for functions that satisfy a finite number of moment
conditions.

Let H(τ, p) be the hyperplane in Rn−1 perpendicular to τ ∈ Sn−2 and
p ≥ 0 units from the origin. Then, under the correspondence (1.4),

(2.1)

H(τ, p) corresponds to the great sphere ω⊥ ⊂ Sn−1

where ω =

(
1√

1 + p2
τ,

−p√
1 + p2

)
∈ Sn−1.

So, the set of great spheres within Θ radians of the x1-axis correspond to
ω ∈ Sn−1 with |ω1| < cos Θ. Under (1.4) and (2.1), this set of great spheres
corresponds to hyperplanes for (τ, p) in a subset of the set {(τ, p)

∣∣ |τ1| <
a or |p| > b} for some a > 0, b > 0.

We now construct a function g satisfying:

g ∈ C∞
c (Sn−2 × R)(2.2a)

g(τ, p) = g(−τ, p) = g(−τ,−p)(2.2b)

g is supported in C = {(τ, p)
∣∣ |τ1| > a and 0 < |p| < b}(2.2c) ∫ ∞

p=−∞
g(τ, p)pmdp = 0 ∀τ ∈ Sn−2,m = 0, 1, . . . , k.(2.2d)

Let g1(τ) be a smooth even function that is supported in {τ ∈ Sn−2
∣∣ |τ1| >

a}. It is easy to construct a function g2(p) ∈ C∞
c ((0, b)) that satisfies∫∞

p=−∞ g2(p)pmdp = 0, ∀m = 0, . . . , k. For example, one can just take
an appropriate linear combination of k + 2 translates of a small bump func-
tion supported in (0, b/(k + 4)). Now, extend g2 to R to be even. Let
g(τ, p) = g1(τ)g2(p) and then g satisfies (2.2a)–(2.2d).

Now, we use Theorem 7.7, p. 376 of [So] to conclude that g = Rh for
some h ∈ C∞(Rn−1). Furthermore, because g satisfies the first k moment
conditions, (2.2d),

(2.3) h = O(|x|−n−k) at infinity.

Next, we let f : Sn−1 → R be defined by

(2.4) f(ω) = h

(
ω′

ωn

)
|ωn|−(n−1)
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Then f is zero to order k on e⊥n by the relation of f to h, (2.4), and the
growth condition on h, (2.3) (and since |x| = 1/|ωn|). Also, f is continuous
on Sn−1 and f is smooth away from e⊥n .

Finally, we look back at (1.4) to see that

Rf(ω) = (1− ω2
n)−1/2g(ω′/|ω′|,−ωn/

√
1− ω2

n) .

Because of (1.4) and the definition of g, Rf(ω) = 0 for |ω1| < cos Θ. By
(2.2b)–(2.2c) g(τ, p) is zero near p = 0 (ωn = 0) and g is zero near p = ∞
(ωn = 1) and g is even. Therefore, Rf is smooth and even on Sn−1. Since
R is bijective on C∞

even(S
n−1) (and injective on C(Sn−1)), f is smooth. This

finishes the construction. �

Let Bn be the unit ball in Rn. Our next proposition is an application
Proposition 2.1 to convex sets.

Proposition 2.2. Let k ∈ N and let Θ ∈ (0, π/2). Let H0 be the hyperplane
in Rn xn = 0. There is a strictly convex origin-centered set, K, with smooth
boundary that is not a ball but that osculates the unit ball, Bn, to order k
along H0 and which has cross-sectional areas of π on all hyperplanes through
the origin and within Θ radians of the x1-axis.

Proof. Let f be an even non-zero function satisfying the conclusions of
Proposition 2.1. Let ε0 > 0 be so small that 1 + ε0f > 0. By the choice
of ε0, for any ε ∈ (0, ε0), ρε(ω) = n−1

√
1 + εf(ω) is the radial function of

an origin-centered set, Kε with smooth boundary. Since the unit sphere
has strictly positive curvature, for sufficiently small ε ∈ (0, ε0), Kε will be
strictly convex; see the end of the proof of Theorem 3.1 of [G1] and also
[O]. �

These counterexamples give the following strong non-uniqueness results.

Proposition 2.3. Let A be any set in Sn−1 that omits an even open subset
of Sn−1. Then, f ∈ C∞

even(S
n−1) is not determined by data Rf(ω) for ω ∈

A. Furthermore, origin centered convex bodies are not determined by cross-
sectional areas on subspaces perpendicular to vectors in A.

Proof. Any set A that omits an even open subset of Sn−1 can be rotated
so that the omitted subset contains the x1-axis. Proposition 2.1 provides
the non-uniqueness result for the Funk-Radon transform. Proposition 2.2
provides the non-uniqueness result for cross-sectional areas. �

3. Projections of convex bodies and the cosine transform.

Now, we explain how the projection areas of a convex body give the Cosine
transform of the surface area measure of the body. We review the relation
between the Cosine and Funk-Radon transform and note that the two are
related by an invertible real analytic elliptic differential operator and hence
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have the same microlocal support properties. We can then state analogs of
the cross-section theorems above for projection areas (“shadows”).

We would like to formulate analogs of the results of Section 1 for pro-
jections or shadows instead of cross-sections. If K is a star body in Rn let
K|P (ω) denote its orthogonal projection into the hyperplane, P (ω), through
the origin which has normal vector ω. The quantity Area(K|P (ω)) is called
the brightness of K in the direction ω. Elementary examples show that we
can only hope to recover the convex hull of K from its brightness function
and, in keeping with tradition, we restrict the discussion to convex bod-
ies K. There is a partial duality relating cross-sections of star bodies and
projections of convex bodies.

With each smooth convex body K we can associate a measure on Sn−1.
To define it, we first define the Gauss map to be the map gK : bdK → Sn−1

taking x ∈ bd K to the outer unit normal to bd K at x. If bdK is C1 and
strictly convex, then gK is continuous and bijective [G3, p. 24-5]. If bdK is
C2 and strictly positively curved everywhere then gK is a C1 function with
C1 inverse (the inverse is C1 because strict positive curvature implies the
derivative of gK has only positive eigenvalues). If bdK is C∞ and strictly
positively curved everywhere then gK is a C∞ function with C∞ inverse.

This allows us to define a measure, SK , on Sn−1, the infinitesimal surface
area measure of K. Let E ⊂ Sn−1 be measurable and let λn−1 be the surface
area measure on bdK. Then the measure is defined by

(3.1) SK(E) = λn−1(g−1
K (E)).

In integrals, we will denote this measure by dSK .
Note that the infinitesimal surface area measure of the unit ball is the

standard measure on the sphere because the Gauss map is the identity. If
bd K is strictly positively curved and C2, then calculation (3.7) below shows
that dSK is absolutely continuous with respect to Lebesgue measure on the
sphere. However, the infinitesimal surface measure can be defined even if
the Gauss map is not well-defined (e.g., if K is a polytope). See [G3] for
details.

This measure is important because the projection area

(3.2) Area(K|P (ω)) =
∫

Sn−1

|ω · η| dSK(η)

where ω · η is the Euclidean inner product of these vectors.
If K is origin-centered then K is determined by its infinitesimal surface

area measure. This follows from the Alexandrov projection and unique-
ness theorems [G3, §3.3]. If K is smoothly bounded and positively curved
throughout, then dSK is absolutely continuous with respect to Lebesgue
measure on Sn−1 and its Radon-Nikodym derivative is the (n− 1)st elemen-
tary symmetric function of the principal radii of curvature of K [S2, §2.5,
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4.2]. The projection areas of the convex body K define a centered body
Π(K) called the projection body of K, by duality with intersection bodies
above. We refer to [G3] for general background on these matters.

Equation (3.1) suggests an integral operator called the Cosine transform.
Its definition is:

(3.3)
T : C(Sn−1) → Ceven(Sn−1)

Tf(ω) ≡
∫

Sn−1

|ω · η|f(η) dη,

where dη is the rotation invariant normalized measure on the sphere. The
cosine transform is a special Blaschke-Levy Representation, and many au-
thors, including Alexandrov, Gardner, Goodey, Groemer, Koldobsky, Rubin,
Schneider, and Weil have proven important properties including inversion
formulas [Ko2] and inversion formulas using wavelets [Ru1] and relations
to other transforms [Ru2]. See [G3, Ko2] for more information.

There is an identity linking the Funk-Radon and Cosine transforms [GW]:

(3.4) (∆ + 2(n− 1))Tf(ω) = 2Rf(ω), for ω ∈ Sn−1.

Here ∆ denotes the spherical Laplacian. Thus R and T are related by an
invertible real-analytic-elliptic operator and so they have the same microlo-
cal transformation properties. This means, in particular, that Rf is smooth
or real-analytic whenever Tf is. More precisely, Tf and Rf have the same
wavefront set in both the smooth [Hö] and real-analytic [Tr] categories.
The relation (3.4) gives us analogous theorems to Theorem 1.2 and 1.3 for
the Cosine Transform. For ω ∈ Sn−1, recall that P (ω) is the hyperplane
through the origin in Rn perpendicular to ω and ω⊥ = P (ω) ∩ Sn−1.

Theorem 3.1. Let K1 and K2 be origin centered convex bodies in Rn with
C2 boundaries that are strictly positively curved. Let A be an open connected
set in Sn−1 such that Rn = ∪(ω∈A)P (ω). Assume that for some η0 ∈ A, the
infinitesimal surface area measures of K1 and K2 agree to infinite order1

along the equator η⊥0 , and assume the projection areas (3.2) of K1 and K2

agree for ω ∈ A. Then K1 = K2.

The assumptions about Kj in the theorem ensure that the Radon-Nikodym
derivatives of the infinitesimal surface area measures with respect to Lebesgue
measure exist.

Proof. For j = 1, 2, because Kj is C2 and strictly positively curved, its infin-
itesimal surface measure is absolutely continuous with respect to Lebesgue
measure on the sphere (see (3.7)). Let fj be its Radon-Nikodym derivative
with respect to Lebesgue measure; then fj is a continuous function [G3].
The identities (3.2) and (3.4) can be used to show that the Funk-Radon

1That is, the Radon-Nikodym derivatives of dSK1 and dSK2 with respect to Lebesgue
measure on the sphere are functions that agree to infinite order according to Definition 1.1.
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transforms of the functions f1 and f2 are identical on A. Since f1 and f2

agree to infinite order on the great sphere η⊥0 and η0 ∈ A, Theorem 1.1 can
be used to finish the proof. �

Our next theorem follows from Theorem 3.1, and it has a more geometric
starter condition.

Theorem 3.2. Let K be an origin centered convex body in Rn with a C2

boundary that is strictly positively curved. Let A be an open connected set
in Sn−1 such that Rn = ∪(ω∈A)P (ω). Assume that for some η0 ∈ A, K
osculates a disk, D, centered at the origin to infinite order along P (η0) and
assume the projection areas (3.2) of K agree on A with those of D. Then
K = D.

Schneider [S1] has proven important related theorems. Let K1 be a cen-
tered, convex polytope. Assume that K2 is a centered convex body and the
projection areas of K1 and K2 agree for all η in an open set A of arbitrarily
small measure (and containing the normal vectors to each face of K1). He
proves that K1 and K2 are the same. His starter assumption is that K1 is
a polytope, but he does not assume bdK1 and bd K2 agree anywhere, and
his set A is different from ours.

Schneider and Weil prove a related theorem in [SW] for odd dimensions.
Their starter assumption is that each body has at least one vertex and both
sets share a supporting plane, P, that touches a vertex of each body. They
assume the projection areas of K1 and K2 are the same for normal vectors
in an equatorial belt perpendicular to the normal vectors to P. Then, they
conclude K1 = K2. They also show that either if n is even or if only one of
the sets has a vertex supporting plane, then the theorem is false. This very
intriguing theorem has a different flavor from ours since convex sets with
vertices do not have smooth boundaries, so our theorem does not apply.
Also, their set A is different from ours since it does not include the vector
for which starter information is given (the normal to P).

Proof. We can assume the disk D is the unit disk in Rn. We show that the
infinitesimal surface area measure of K agrees on η⊥0 to infinite order with
that of D. Then, we use Theorem 3.1 to conclude that K = D.

To compare dSK to dη = dSD, we use (3.2) to write the surface area on
bd K, λn−1, as a measure on Sn−1 using the radial map ρK : Sn−1 → R.
Recall that the Gauss map gK : bdK → Sn−1 takes points on bdK to their
unit outer normals. Let h : Sn−1 → bd K be defined by

(3.5) h(ω) = ρK(ω) ω.

A straightforward exercise shows for F ⊂ bd K that

(3.6) λn−1(F ) =
∫

h−1(F )

ρn−1
K (ω)

|ω · gK(h(ω))|
dω.
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Another exercise using a change of variables (where J is the Jacobian de-
terminant) shows that if E ⊂ Sn−1 measurable, then

(3.7)

SK(E) =
∫

ω∈(gK◦h)−1(E)

ρn−1
K (ω)

|ω · gK(h(ω))|
dω

=
∫

η∈E

[
ρn−1

K (ω)
|ω · gK(h(ω))|

1
|J(gK ◦ h)(ω)|

]∣∣∣∣∣
ω=(gK◦h)−1(η)

dη.

It should be pointed out that J(gK ◦h) is non-zero since K is strictly convex
and C2. Since K osculates the unit disk along P (η0) to infinite order, this
implies ρK = 1 to infinite order on the great sphere η⊥0 and that gK ◦ h is
the identity map to infinite order on η⊥0 . This implies that the expression in
brackets in (3.7) is equal to one to infinite order on η⊥0 . But, this expression
is just the Radon-Nikodym derivative of SK . Therefore, the hypotheses of
Theorem 3.1 hold and we can use that to prove our theorem. �

A similar result to Theorem 3.2 can be stated for arbitrary strictly convex
sets K1 and K2 that agree to infinite order on a set that becomes a great
sphere under the Gauss map.

Theorem 3.3. Let Kj be an origin centered convex body in Rn with a C∞

boundary that is strictly positively curved for j = 1, 2. Let A be an open
connected set in Sn−1 so that Rn = ∪(ω∈A)P (ω). Let η0 ∈ A, and assume
K1 osculates K2 to infinite order along the set H = g−1

K1
(η⊥0 ). Assume the

projections (3.2) of K1 and K2 agree on A. Then K1 = K2.

Since Kj is strictly convex with C∞ boundary, the set H = g−1
K1

(η⊥0 ) is
smooth. The osculation condition in Theorem 3.3 is defined in terms of the
radial functions of K1 and K2 in a similar way as in Definitions 1.1 and 1.2.

The proof is similar to the proof of Theorem 3.2. One observes that, if K1

osculates K2 to infinite order along H, then the radial maps ρKj agree to
infinite order on h−1

j (H ∩ bd Kj) = H ∩ Sn−1 (where hj : Sn−1 → bd Kj is
the map defined by (3.5)) and the Gauss maps gKj agree to infinite order on
H ∩bd Kj . Then, one can use (3.7) to observe that the infinitesimal surface
area measures agree to infinite order on η⊥0 . Finally, one uses Theorem 3.1.
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