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We show that the maximal operator

Mf(x) = sup
j∈Z

∣∣∣∣∫
Rd

f(x − 2jy) dµ(y)
∣∣∣∣

maps H1 into L1,∞ under certain assumptions on the decay
of µ̂ and the geometry of supp(µ).

1. Introduction and statement of results.

In this paper we consider the lacunary maximal operator M defined by

Mf(x) = sup
j∈Z

∣∣∣∣∫
Rd

f(x− 2jy) dµ(y)
∣∣∣∣ .(1)

Here d ≥ 1 is an integer. When µ is a finite positive Borel measure on Rd,
it is proved in [DR] that if the Fourier transform of µ satisfies

|µ̂(ξ)| ≤ c (1 + |ξ|)−α(2)

for some α > 0, then (1) is bounded on Lp(Rd) for 1 < p ≤ ∞. Also when
α = d

2 , it is proved in [O] that (1) maps H1(Rd) into L1,∞(Rd). Here H1 de-
notes the usual real-variable Hardy space. On the other hand, Theorem 4 in
[C2] states that if µ is the Lebesque measure σd−1 on the unit sphere

∑
d−1

in Rd then (1) maps H1(Rd) into L1,∞(Rd). The purpose of this paper is
to prove a result which includes the results in [O] and Theorem 4 in [C2]
as special cases and which also applies to maximal operators associated to
some submanifolds of codimension greater than 1. The method of proof is
an adaptation of the argument in [O], which is based on the basic approach
in [C2].

For each bounded subset A of Rd and 0 < ε < 1, define N(A, ε) as the
smallest number of ε-balls needed to cover A, i.e.,

N(A, ε) = min

{
m : A ⊂

m⋃
i=1

B(xi, ε) for some xi ∈ Rd

}
.

Now we state our main result.
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Theorem 1. Suppose µ is a finite positive Borel measure on Rd with com-
pact support such that for 0 < ε < 1

N(supp(µ), ε) ≤ c ε−n, |µ̂(ξ)| ≤ c (1 + |ξ|)−
n
2

then (1) maps H1(Rd) into L1,∞(Rd) when 0 < n ≤ d.

In particular if n = d, then we obtain the result of [O]. Moreover we have
the following.

Corollary 2. Suppose M ⊂ Rd is a C1 submanifold of dimension n equipped
with a finite positive Borel measure µ which has compact support. If the
Fourier transform of µ satisfies the decay estimate

|µ̂(ξ)| ≤ c (1 + |ξ|)−
n
2

then (1) maps H1(Rd) into L1,∞(Rd) when 0 < n ≤ d.

Proof. Let A be a bounded subset of Rn and f : A 7→ Rd be a Lipschitz
map. Then it is easy to show that

N(f(A), ε) ≤ cN(A, ε) ≤ c ε−n.(3)

If M is a C1 submanifold of Rd, then we can view M locally as the graph
of a vector-valued C1 function defined on its tangent plane. Hence by (3)
and compactness of supp(µ), we have N(supp(µ), ε) ≤ c ε−n. By applying
Theorem 1, we obtain the conclusion. �

In particular if M is
∑

d−1 and µ is σd−1, then we obtain Theorem 4
in [C2]. Also, as was treated in [CDMM] and [CM], if M is a smooth
compact convex hypersurface of finite type in R1+n, with Gaussian curva-
ture κ and surface measure µ, then the Fourier transform κ̂1/2µ(ξ) decays
as |ξ|−

n
2 as |ξ| goes to infinity. Hence Corollary 2 holds for κ1/2µ when n ≥ 1.

Our proof follows the methods of [C2] and [O]. What is different from [O]
is the use of the geometry of supp(µ). We use the geometry of supp(µ) in
proving Lemma 5. The use of geometry of supp(µ) allows us to put a weaker
decay condition on µ̂. Littman [L] showed that, if M ⊂ R1+n is a smooth
submanifold of dimension n and has at least l nonzero principal curvatures
everywhere on supp(µ), where µ is smooth and compactly supported, then

|µ̂(ξ)| ≤ c(1 + |ξ|)−
l
2 .

Hence when l = n ≥ 1, Corollary 2 can be applied.

As was indicated in [C3], the proof of Littman’s theorem goes unchanged
to establish the following. Suppose that M ⊂ Rd is a smooth manifold of
dimension n, and µ is a smooth compactly supported measure on M . For
fixed b ∈ M , we can view M locally as a graph of a vector-valued function
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ψ(x) defined on its tangent plane. Let Nb(M) be a collection of a unit
vector normal to M at b then for each v ∈ Nb(M) the function 〈ψ(x), v〉 has
a critical point at x = b. Suppose that for all b ∈M in some neighborhood
of supp(µ) and for all v ∈ Nb(M) we have

det D2 〈ψ(x), v〉 |x=b 6= 0.(4)

Then

|µ̂(ξ)| ≤ c (1 + |ξ|)−
n
2 .(5)

Hence Corollary 2 can be applied in this case also. The condition (4) is
controlled by the second-order terms in the Taylor expansion of ψ at b. We
give some examples which satisfy (5).

Example 3.
(3.1) For n = 2m and d = n + 2, let x, y ∈ Rm and M be the manifold

described by (x, y ; |x|2 − |y|2, x · y), then a smooth measure µ sup-
ported in a sufficiently small neighborhood of the origin satisfies (5)
when m ≥ 1. So Corollary 2 holds for this µ when m ≥ 1.

(3.2) For n = 4m and d = n+2, let x, y, z, u ∈ Rm and M be the manifold
described by (x, y, z, u ; x·z+y ·u, x·u−y ·z), then a smooth measure
µ supported in a sufficiently small neighborhood of the origin satisfies
(5) when m ≥ 1. So Corollary 2 holds for this µ when m ≥ 1.

(3.3) For n = 4m and d = n+3, let x, y, z, u ∈ Rm and M be the manifold
described by (x, y, z, u ; |x|2−|y|2−|z|2+|u|2, x·y−z·u, x·z+y·u), then
a smooth measure µ supported in a sufficiently small neighborhood of
the origin satisfies (5) when m ≥ 1. So Corollary 2 holds for this µ
when m ≥ 1.

2. Preliminaries.

Notation. If Q is a dyadic cube in Rd with side-length 2j , we write σ(Q) =
j. For σ ∈ Z, <σ denotes the collection of dyadic cubes Q ∈ Rd with
σ(Q) = σ. And for Q ∈ <σ, Q∗ denotes Q + [−2σ, 2σ]d. | · | denotes the
Lebesgue measure.

The following Lemma is taken from [O] (see Lemma 1).

Lemma 4. Suppose α > 0 is given, and given any finite collection of
dyadic cubes {Q}Q∈C in Rd, and corresponding collection of positive num-
bers {λQ}Q∈C there exists a finite collection of pairwise disjoint dyadic cubes
{S}S∈S such that each Q ∈ C is contained for some S ∈ S and
(4.1)

∑
Q⊂S λQ ≤ 3dα|S|

(4.2)
∑

S∈S |S| ≤
1
α

∑
λQ

(4.3)
∥∥∥∥ P

Q: not contained
in any S

λQ|Q|−1χQ

∥∥∥∥
L∞

≤ α.
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Lemma 5 (cf. [C2, Lemma 5.1]). Suppose given the following: 0 < n ≤ d,
a Borel measure µ defined on a compact subset of Rd with N(supp(µ), ε) ≤
c ε−n for 0 < ε < 1, some α > 0, a finite collection S of pairwise disjoint
dyadic cubes S ⊂ Rd, a finite collection C of dyadic cubes Q ⊂ Rd such that
each Q ∈ C is contained in some S = S(Q) ∈ S and for each Q ∈ C a
positive number λQ is assigned. Then there exist a function K : C 7→ Z and
a measurable set E such that
(5.1) |E| ≤ c

(
1
α

∑
λQ +

∑
|S|
)

(5.2)
{
Q+ 2jsupp(µ)

}
⊂ E if j < K(Q) and Q ∈ C

(5.3) σ(S(Q)) < K(Q) (Q ∈ C)
(5.4) For each τ, σ ∈ Z with σ ≤ τ , and any q ∈ <σ∑

Q⊂q, K(Q)≤τ

λQ ≤ 2nα2(d−n)σ+nτ .

Proof. The proof is a stopping-time argument controlled by two parameters
τ and σ as in the proof of Lemma 5.1 in [C2]. Let m = min {σ(Q) : Q ∈ C}.
Select an integer τ0 such that

τ0 > max{σ(Q) : Q ∈ C},
∑
Q∈C

λQ < α2(d−n)m+nτ0 .

For each fixed τ ∈ Z with τ ≤ τ0, we define a sequence of functions
Λτ,σ : <σ 7→ R by a descending induction on σ ∈ Z with σ ≤ τ . And
proceed with the same construction by a descending induction on τ . At
each step, we divide C into disjoint subcollections C1 and C2 which will in-
crease as we proceed. Let C1, C2 ⊂ C and τ ∈ Z be fixed for the moment,
and we define [Inner Loop] as

[Inner Loop] Define Λτ,σ : <σ 7→ R with σ ≤ τ . For each q ∈ <σ define

Λτ,σ(q) =
∑

Q⊂q; Q/∈C1∪C2

λQ.

First, begin with σ = τ . If Λτ,σ(q) > α2(d−n)σ+nτ then we say that “q is
selected at step (τ, σ)” and put into C1 every Q such that Q ⊂ q and for
such a Q define K(Q) = 1 + τ . Next replace σ by σ − 1 and repeat the
process. Repeat until σ < m. Actually this part of process terminates once
σ is smaller than m. Finally, put into C2 every Q ∈ C\C1 such that σ(Q) ≥ τ
and for such a Q define K(Q) = 1 +σ(S(Q)). Actually every Q ∈ C\C1 ∪C2

satisfies σ(Q) ≤ τ − 1.

Perform [Inner Loop] with C1 = C2 = ∅ and τ = τ0. Next replace τ
by τ − 1 and repeat [Inner Loop]. Repeat until τ = m − 1. After this
process, we obtain C = C1 ∪C2, and clearly all selected q are disjoint, and K
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is well-defined. Note that there is the usual stopping-time condition

Λτ,σ(q) ≤ 2nα2(d−n)σ+nτ(6)

which holds for all q ∈ <σ when σ ≤ τ ≤ τ0. This is because, if τ = τ0 then
the condition is clear from the initial condition on τ0. And when σ ≤ τ < τ0,
suppose this fails. Then Λτ+1,σ(q) ≥ Λτ,σ(q) > α2(d−n)σ+n(τ+1). This means
q is selected at step (τ +1, σ), hence Λτ,σ(q) = 0 and we have contradiction.

Next we show (5.4), which says that for each q ∈ <σ with σ ≤ τ∑
Q⊂q; K(Q)≤τ

λQ ≤ 2nα2(d−n)σ+nτ .

When τ ≥ τ0, then the condition is clear from the initial condition of τ0.
When τ ≤ τ0, then we note the fact that for each q ∈ <σ with σ ≤ τ ≤ τ0

Λτ,σ(q) =
∑

Q⊂q; Q/∈C1∪C2

λQ ≥
∑

Q⊂q; K(Q)≤τ

λQ.(7)

Combining (6) and (7), we have (5.4) when σ ≤ τ ≤ τ0. (7) will follow from
the definition

Λτ,σ(q) =
∑

Q⊂q; Q/∈C1∪C2

λQ

and the fact that if Q ∈ C1∪C2 at the beginning of step (τ, σ) thenK(Q) > τ .
This is because, if Q ∈ C1 then K(Q) ≥ 1 + τ > τ , and if Q ∈ C2 then
K(Q) = 1 + σ(S(Q)) ≥ 1 + (1 + τ) > τ . Hence we have (5.4).

Next, we construct an exceptional set E. If q is selected at step (τ, σ),
then we define τ(q) = τ and

T (q) =
⋃

j≤τ(q)+1

{
q + 2jsupp(µ)

}
E = E1

⋃
E2, E1 =

⋃
S∈S

S∗, E2 =
⋃

q:selected

T (q).

Thus we have
|E1| ≤ c

∑
|S|

and

T (q) =
⋃

j≤τ(q)+1

{
q + 2jsupp(µ)

}
=

⋃
j≤σ(q)

{
q + 2jsupp(µ)

} ⋃
σ(q)<j≤τ(q)+1

{
q + 2jsupp(µ)

}
.

Because supp(µ) is compact, if we regard q∗ as a proper expansion of q
then

⋃
j<σ(q)

{
q + 2jsupp(µ)

}
⊂ q∗. And for j > σ(q), if x0 is the center
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of q, then by using translation invariance and dilation property of Lebesque
measure, we have∣∣{q + 2jsupp(µ)

}∣∣ ≤
∣∣∣{B(x0, 2σ(q)) + 2jsupp(µ)

}∣∣∣
=

∣∣∣{B(0, 2σ(q)) + 2jsupp(µ)
}∣∣∣

= 2dj
∣∣∣{B(0, 2σ(q)−j) + supp(µ)

}∣∣∣
≤ c 2dj2d(σ(q)−j)N(supp(µ), 2σ(q)−j)

≤ c 2(d−n)σ(q)+nj .

Hence

|T (q)| ≤ c

 |q|+
∑

σ(q)<j≤τ(q)+1

2(d−n)σ(q)+nj

 ≤ c 2(d−n)σ(q)+nτ(q)

and we have

|E2| ≤
∑

q:selected

|T (q)|

≤ c
∑

q:selected

2(d−n)σ(q)+nτ(q)

≤ c

α

∑
q:selected

Λτ,σ(q)

≤ c

α

∑
λQ.

So we obtain (5.1). For (5.2), observe that if Q ∈ C1 then Q belongs to some
selected q, hence⋃
j<K(Q)

{
Q+ 2jsupp(µ)

}
⊂

⋃
j≤K(Q)=τ(q)+1

{
q + 2jsupp(µ)

}
= T (q) ⊂ E2

and if Q ∈ C2 then Q belongs to some S = S(Q) ∈ S, hence⋃
j<K(Q)=1+σ(S(Q))

{
Q+ 2jsupp(µ)

}
⊂ S∗ ⊂ E1

if we regard S∗ as a proper expansion of S. For (5.3), we replace K by K ′

and define

K(Q) = max
{
K ′(Q), 1 + σ(S(Q))

}
.

Then (5.1) and (5.3) are satisfied. We must check (5.2) and (5.4). For (5.2),
if K(Q) = K ′(Q) then there is no problem. If K(Q) = 1 + σ(S(Q)) > j
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then the argument is the same as above. For (5.4)∑
Q⊂q; K(Q)≤τ

λQ ≤
∑

Q⊂q; K′(Q)≤τ

λQ

and Lemma 5 follows. �

3. Proof of Theorem 1.

Let f ∈ H1(Rd) have the form of a finite sum

f =
∑

λQaQ

where λQ > 0 and aQ, supported in Q, satifies

‖aQ‖L∞ ≤ 1
|Q|

,

∫
aQ = 0.

As was pointed out in [C2], a device of Garnett and Jones involving auxiliary
dyadic grids allows us to assume that each Q is dyadic. For α > 0, it is
enough to show ∣∣{x : Mf(x) > 2α}

∣∣ ≤ c

α

∑
λQ.(8)

Let S be as in Lemma 4 and define

b =
∑
S∈S

∑
Q⊂S

λQaQ, g = f − b.

Then ‖g‖L∞ ≤ α from (4.3) and so |Mg| ≤ α (by assuming µ has mass 1).
Thus (8) will follow from

|{x : Mb(x) > α}| ≤ c

α

∑
λQ.

Let S be as above and C be the collection of Q’s appearing in the definition
of b. With K and E as in Lemma 5, it is enough to prove

‖Mb‖2
L2(Rd\E) ≤ cα

∑
λQ.(9)

Let µj be the dilate of µ defined by

〈φ, µj〉 =
∫

Rd

φ(2jx) dµ(x)

then

Mb(x) = sup
j∈Z

|b ∗ µj(x)| .
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If Q ∈ C, then by (5.3) aQ ∗ µj is supported in E unless j ≥ K(Q). Thus
for x /∈ E, we have

|Mb(x)|2 ≤
∑

j

|b ∗ µj(x)|2

=
∑

j

∣∣∣∣∣∣
 ∑

K(Q)≤j

λQaQ

 ∗ µj(x)

∣∣∣∣∣∣
2

=
∑

j

∣∣∣∣∣∣
∞∑

s=0

 ∑
K(Q)=j−s

λQaQ

 ∗ µj(x)

∣∣∣∣∣∣
2

.

So for x /∈ E, by Minkowski’s inequality

|Mb(x)| ≤
∞∑

s=0

∑
j

∣∣∣∣∣∣
 ∑

K(Q)=j−s

λQaQ

 ∗ µj(x)

∣∣∣∣∣∣
2

1
2

.

Now (9) will follow from∥∥∥∥∥∥∥∥
∑

j

∣∣∣∣∣∣
 ∑

K(Q)=j−s

λQaQ

 ∗ µj

∣∣∣∣∣∣
2

1
2

∥∥∥∥∥∥∥∥
2

L2

≤ c(s+ 3)α2−εs
∑

λQ

where ε = min (1, n). And so from∥∥∥∥∥∥
 ∑

K(Q)=j−s

λQaQ

 ∗ µj

∥∥∥∥∥∥
2

L2

≤ cα(s+ 3)2−εs
∑

K(Q)=j−s

λQ.(10)

By scaling we may take j = 0. And (10) will follow from∥∥∥∥∥∥
 ∑

K(Q)=−s

λQaQ

 ∗ µ

∥∥∥∥∥∥
2

L2

≤ cα(s+ 3)2−εs
∑

K(Q)=−s

λQ.(11)

Next as in Lemma 3 in [O], for each positive integer N , we define a sequence
of functions hN and LN . First we define hN by

ĥN (ξ) =
χ|ξ|≤N (ξ)
(1 + |ξ|)n

.

Choose a radial function ρ ∈ C∞
c (Rd) such that∫

ρ = 1, supp(ρ) ⊂ [−1, 1]d, ρ̂ ≥ 0.
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Now let LN = ρhN and

L̂(ξ) = lim
N→∞

L̂N (ξ) =
∫

ρ̂(y)dy
(1 + |ξ − y|)n

.

Lemma 6. We have the following:
(6.1) supp(LN ) ⊂ [−1, 1]d

(6.2) L̂N (ξ) ≥ c
(1+|ξ|)n if |ξ| ≤ N − 1

(6.3) For each β, we have∣∣∣∂β
ξ L̂(ξ)

∣∣∣ ≤ Aβ

(1 + |ξ|)n+|β| .

Proof. It is easy to check (6.1), (6.2). For (6.3), first we assume d ≥ 2, then
we have ∣∣∣∂β

ξ L̂(ξ)
∣∣∣ =

∣∣∣∣∫ ρ̂(y)∂β
ξ

1
(1 + |ξ − y|)n

dy

∣∣∣∣
≤ c

∫
|ρ̂(y)|dy

(1 + |ξ − y|)n+|β| ≤
c

(1 + |ξ|)n+|β| .

When d = 1, we use

L̂(ξ) =
∫ ∞

ξ

ρ̂(y)dy
(1 + y − ξ)n

+
∫ ξ

−∞

ρ̂(y)dy
(1 + ξ − y)n

,

and do similarly as before. �

Next, let φN be the inverse Fourier transform of (L̂N )
1
2 , then LN =

φN ∗ φ̃N . And we have

|φ̂N (ξ)|2 ≥ c

(1 + |ξ|)n
when |ξ| ≤ N − 1.

Therefore, returning to (11) we have∥∥∥∥∥∥
 ∑

K(Q)=−s

λQaQ

 ∗ µ

∥∥∥∥∥∥
2

L2

= c

∫ ∣∣∣∣∣∣
 ∑

K(Q)=−s

λQâQ

 (ξ)

∣∣∣∣∣∣
2

|µ̂(ξ)|2 dξ

≤ c

∫ ∣∣∣∣∣∣
 ∑

K(Q)=−s

λQâQ

 (ξ)

∣∣∣∣∣∣
2

lim inf
N→∞

∣∣∣φ̂N (ξ)
∣∣∣2 dξ

≤ c lim inf
N→∞

∫ ∣∣∣∣∣∣
 ∑

K(Q)=−s

λQâQ

 (ξ)

∣∣∣∣∣∣
2 ∣∣∣φ̂N (ξ)

∣∣∣2 dξ
≤ c lim inf

N→∞

∥∥∥∥∥∥
 ∑

K(Q)=−s

λQaQ

 ∗ φN

∥∥∥∥∥∥
2

L2

.
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So (11) will follow from

lim inf
N→∞

∥∥∥∥∥∥
 ∑

K(Q)=−s

λQaQ

 ∗ φN

∥∥∥∥∥∥
2

L2

(12)

≤ c α(s+ 3)2−εs
∑

K(Q)=−s

λQ.

Because supp(LN ) ⊂ [−1, 1]d, and for each Q,Q′ ∈ C such that
K(Q) = K(Q′) = −s , we have σ(Q), σ(Q′) ≤ K(Q) = K(Q′) = −s ,
hence

∣∣〈aQ′ ∗ LN , aQ

〉∣∣ = 0 when dist(Q,Q′) > 4. So we have

lim inf
N→∞

∥∥∥∥∥∥
 ∑

K(Q)=−s

λQaQ

 ∗ φN

∥∥∥∥∥∥
2

L2

≤ 2 lim inf
N→∞

∑
Q,Q′; σ(Q′)≥σ(Q)

dist(Q,Q′)≤4

λQλQ′

∣∣∣〈aQ′ ∗ LN , aQ

〉∣∣∣
≤ 2 lim inf

N→∞

∑
Q,Q′; σ(Q′)≥σ(Q)

dist(Q,Q′)≤4

λQλQ′

∣∣∣〈âQ′L̂N , âQ

〉∣∣∣
≤ 2

∑
Q′

∑
Q⊂Q′∗

dist(Q,Q′)≤4

λQλQ′

∣∣∣〈âQ′L̂, âQ

〉∣∣∣
+ 2

∑
Q′

∑
Q

T
Q′∗=∅

dist(Q,Q′)≤4

λQλQ′

∣∣∣〈âQ′L̂, âQ

〉∣∣∣
= I + II.

Lemma 7. We have the following:

(7.1)
∣∣∣〈âQ′L̂, âQ

〉∣∣∣ ≤ c2−(d−n)σ(Q′)

(7.2)
∣∣∣〈âQ′L̂, âQ

〉∣∣∣ ≤ c 2σ(Q)

(dist(Q,Q′))d−n+1 when Q
⋂
Q′∗ = ∅.

Proof. For (7.1), we consider as two cases; d = n and d > n. When d = n,
we use the easy estimates.

|âQ(ξ)| ≤ c min(1, |ξ|2σ(Q)), ||âQ||2L2 ≤ c2−dσ(Q).
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Hence we have∣∣∣〈âQ′L̂, âQ

〉∣∣∣ ≤
∥∥âQ

∥∥
L∞

∫ |âQ′(ξ)|
(1 + |ξ|)d

dξ

≤ c

(∫
|ξ|<2−σ(Q′)

|ξ|2σ(Q′)

(1 + |ξ|)d
dξ

+
∥∥âQ′

∥∥
L2

[∫
|ξ|≥2−σ(Q′)

(1 + |ξ|)−2ddξ

]1/2
)

≤ c.

When d > n, choose η ∈ C∞
c (Rd) such that η(ξ) = 1 for |ξ| ≤ 1, and

η(ξ) = 0 for |ξ| ≥ 2. Define another function δ by δ(ξ) = η(ξ)−η(2ξ). Then
we have

1 = η(ξ) +
∞∑

j=1

δ(2−jξ), for all ξ,

and

L̂(ξ) = η(ξ)L̂(ξ) +
∞∑

j=1

L̂(ξ)δ(2−jξ) = m0(ξ) +
∞∑

j=1

mj(ξ).

We set

Kj(x) =
∫
e2πix·ξ mj(ξ)dξ.

Observe that∣∣∣(−2πix)γ∂β
xKj(x)

∣∣∣ = ∣∣∣∣∫ ∂γ
ξ

[
(2πiξ)β mj(ξ)

]
e2πix·ξdξ

∣∣∣∣ .
By (6.3) and support condition of the integrand, we can show∣∣∣xγ∂β

xKj(x)
∣∣∣ ≤ Aγ,β2j(d−n+|β|−|γ|).

Hence, for each positive integer M , we have∣∣∣∂β
xKj(x)

∣∣∣ ≤ AM,β|x|−M2j(d−n+|β|−M),(13)

and so
∞∑

j=0

∣∣∣∂β
xKj(x)

∣∣∣ = ∑
2j≤|x|−1

+
∑

2j>|x|−1

.

First with M = 0, we have∑
2j≤|x|−1

∣∣∣∂β
xKj(x)

∣∣∣ ≤ Aβ

∑
2j≤|x|−1

2j(d−n+|β|)

≤ A′β|x|−d+n−|β|.
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Second with M > d− n+ |β|, we have

∑
2j>|x|−1

∣∣∣∂β
xKj(x)

∣∣∣ ≤ Aβ

∑
2j>|x|−1

|x|−M2j(d−n+|β|−M)

≤ A′β|x|−d+n−|β|.

Hence we have

∞∑
j=0

∣∣∣∂β
xKj(x)

∣∣∣ ≤ A′β|x|−d+n−|β|.(14)

Returning to (7.1), by Lebesgue Dominated Convergence Theorem, we have

∣∣∣〈âQL̂, âQ′

〉∣∣∣ =

∣∣∣∣∣∣
∞∑

j=0

〈
âQ′mj , âQ

〉∣∣∣∣∣∣
=

∣∣∣∣∣∣
∞∑

j=0

〈
aQ′ ∗Kj , aQ

〉∣∣∣∣∣∣
≤

〈
|aQ′ | ∗

∞∑
j=0

|Kj |, |aQ|

〉

≤
∥∥aQ

∥∥
L1supx∈Q

∣∣aQ′
∣∣ ∗
 ∞∑

j=0

∣∣Kj(x)
∣∣

≤ c
∥∥aQ′

∥∥
L∞

supx∈Q

∫
Q′

∞∑
j=0

|Kj(x− y)|dy,

and by (14), we have

supx∈Q

∫
Q′

∞∑
j=0

|Kj(x− y)|dy ≤ c supx∈Q

∫
Q′
|x− y|−d+n dy ≤ c 2nσ(Q′)

when d > n. Hence when d > n, we have

∣∣∣〈âQ′L̂, âQ

〉∣∣∣ ≤ c 2−(d−n)σ(Q′),
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and obtain (7.1). For (7.2), let x̃ be the center of Q, then∣∣∣〈âQ′L̂, âQ

〉∣∣∣
=

∣∣∣∣∣∣
∞∑

j=0

〈
aQ′ ∗Kj , aQ

〉∣∣∣∣∣∣
=

∣∣∣∣∣∣
∞∑

j=0

∫ ∫
aQ′(y)

(
Kj(x− y)−Kj(x̃− y)

)
aQ(x) dxdy

∣∣∣∣∣∣
≤
∫ ∫

|aQ′(y)| |aQ(x)|
∞∑

j=0

∣∣(Kj(x− y)−Kj(x̃− y)
)∣∣ dxdy

≤
∫ ∫

|aQ′(y)| |aQ(x)|
∞∑

j=0

|x− x̃|| 5Kj(x̃j − y)| dxdy,

where x̃j lies in the line connecting x̃ and x. By (13), for each positive
integer M , we have

| 5Kj(x̃j − y)| ≤ AM |x̃j − y|−M2j(d−n+1−M)

≤ A′Mdist(Q,Q′)−M2j(d−n+1−M),

when Q
⋂
Q′∗ = ∅. Hence, by the same method as in (14), we have

∞∑
j=0

| 5Kj(x̃j − y)| ≤ c (dist(Q,Q′))−d+n−1 when Q
⋂
Q′∗ = ∅.

And so we have

∣∣∣〈âQ′L̂, âQ

〉∣∣∣ ≤ c
2σ(Q)

(dist(Q,Q′))d−n+1

∫ ∫
|aQ′(y)| |aQ(x)|dxdy

≤ c
2σ(Q)

(dist(Q,Q′))d−n+1

when Q
⋂
Q′∗ = ∅. �

• Estimation of part I:
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By (5.4) we have
∑

Q⊂Q′∗ λQ ≤ cα2(d−n)σ(Q′)−ns and use (7.1). So we
have

I ≤ c
∑
Q′

∑
Q⊂Q′∗

λQλQ′2−(d−n)σ(Q′)

≤ c

∑
Q′

λQ′2−(d−n)σ(Q′)

(α2(d−n)σ(Q′)−ns
)

≤ c2−nsα
∑

K(Q)=−s

λQ.

• Estimation of part II:

If Q ∩Q′∗ = ∅, then by (7.2) and σ(Q) ≤ σ(Q′), we have

II ≤ c
∑
Q′

∑
Q∩Q′∗=∅

dist(Q,Q′)≤4

λQλQ′
2σ(Q′)

dist(Q,Q′)(d−n)+1

≤ c

∑
Q′

2σ(Q′)λQ′

 ∑
Q∩Q′∗=∅

λQ

dist(Q,Q′)(d−n)+1



≤ c

∑
Q′

2σ(Q′)λQ′


 ∑

Q; dist(Q,Q′)∼2m+σ(Q′)
m+σ(Q′)≤−s+2

+
∑

Q; dist(Q,Q′)∼2m+σ(Q′)
−s+3≤m+σ(Q′)≤2


≤ c

∑
Q′

2σ(Q′)λQ′

 (II1 + II2) .

For each positive integer m, consider the contribution of all λQ over all Q
disjoint from Q′∗ with σ(Q) ≤ σ(Q′). So we have dist(Q,Q′) ∼ 2m+σ(Q′).
All such Q are contained in the union of a fixed number of elements of
<m+σ(Q′). Hence when m+ σ(Q′) ≤ −s+ 2, we can use (5.4) to obtain

II1 =
∑

Q; dist(Q,Q′)∼2m+σ(Q′)
m+σ(Q′)≤−s+2

λQ

dist(Q,Q′)(d−n)+1

≤ c
∑
m≥0

α2−(d−n+1)(m+σ(Q′))2(d−n)(m+σ(Q′))−ns

≤ cα2−σ(Q′)2−ns.
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Next, consider all Q with dist(Q,Q′) ∼ 2m+σ(Q′) and m + σ(Q′) ≥ −s + 3.
Recall that each Q ∈ C is contained in S(Q) for some S(Q) ∈ S. Since
K(Q) = −s and K(Q) > σ(S(Q)), we obtain dist(S(Q), Q′) ≥ 2−s. Also,
by (4.1), we have

∑
Q⊂S λQ ≤ cα|S| for every S ∈ S, hence we obtain

II2 =
∑

Q; dist(Q,Q′)∼2m+σ(Q′)
−s+3≤m+σ(Q′)≤2

λQ

dist(Q,Q′)(d−n)+1

≤ c
∑ λQ

dist(S(Q), Q′)(d−n)+1

≤ cα
∑ |S|

dist(S,Q′)(d−n)+1

≤ cα

∫
2−s≤|y|≤4

|y|−(d−n+1)dy

≤ cα(s2(1−n)s + 1).

Finally, since σ(Q′) < K(Q′) = −s, we obtain

II ≤ c
∑
Q′

2σ(Q′)
(
α2−σ(Q′)2−ns + α(s2(1−n)s + 1)

)
λQ′

≤ c(s+ 3)α2−εs
∑

K(Q)=−s

λQ

where ε = min (n, 1). This completes the proof of (12) and Theorem 1.
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