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In this paper the authors explore relationships between the
cohomology of the general linear group and the symmetric
group. Stability results are given which show that the coho-
mology of these groups agree in a certain range of degrees.

1. Introduction.

1.1. . Let k be an algebraically closed field, GLn(k) be the general linear
group over k, and Σd be the symmetric group on d letters. For k = C,
Frobenius and Schur discovered that the commuting actions of GLn(k) and
Σd on V ⊗d can be used to relate the character theory of these two groups.
For modular representations of these groups the relationship between their
representation theories is not as direct. However, James [12] showed that
the decomposition matrix of the symmetric group is a submatrix of the de-
composition matrix of the general linear group, and Erdmann [9] used tilting
modules to prove that one can also recover the decomposition numbers of
the general linear groups from those of the symmetric groups.

Let M(n, d) be the category of polynomial representations of GLn(k) of
a fixed degree d ≤ n. The Schur functor F is a certain covariant exact
functor from M(n, d) to modules for the group algebra kΣd ([10]). Some
of the aforementioned results can be proved by using F . So it is natural
to hope that the Schur functor can also be used to compare the cohomogy
theories of GLn(k) and Σd. In this paper we address the following question.
Let M,N ∈M(n, d). When is it true that

Exti
GLn(k)(M,N) ∼= Exti

kΣd
(F(M),F(N)) ?(1.1.1)

Here Exti
GLn(k) is taken in the category M(n, d). By [5, 2.1f], this is equiva-

lent to considering extensions in the category of all rational GLn(k)-modules.
The case where i = 1 and M,N are irreducible representations is of partic-
ular importance.

The precise relationship between the two cohomology groups is given by
the spectral sequence of [7]. It starts with extensions for GLn(k) and con-
verges to extensions for kΣd. However, to use the spectral sequence one
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needs to compute the higher right derived functors

R•G(−) ∼= Ext•kΣd
(V ⊗d,−),

where G is a right adjoint functor to F (see Section 2.2). These derived
functors are used extensively throughout the paper.

1.2. . To describe the results of the paper we need some notation. Let
us denote the simple (polynomial) GLn(k) module with highest weight λ
by L(λ). We also write ∆(λ) and ∇(λ) for the standard and costandard
GLn(k)-modules with highest weight λ, respectively. It is well-known that
F(L(λ)) is nonzero if and only if λ is p-restricted, and

{F(L(λ)) | L(λ) ∈M(n, d), and λ is p-restricted}
is a complete set of the simple kΣd-modules up to isomorphism. If λ is
p-restricted, we denote F(L(λ)) by Dλ.

A simple kΣd-module is called completely splittable (CS for short) if its
restriction to any Young subgroup is semisimple. These modules were in-
troduced in [15], see also [20, 17, 19]. It is possible to say explicitly which
of the Dλ are CS, see [15] and Section 4.2.

Now we describe the contents of the paper in greater detail. In Section 2,
the basic facts about the Schur functor are reviewed. We also define the
spectral sequence constructed in [7] and state the elementary properties of
the higher right derived functors R•G(−). In the following section the image
of G on twisted Specht and twisted Young modules is computed (for p > 3).
The main result of the section (Theorem 3.2) can be interpreted as the
isomorphism (1.1.1) for important classes of modules. Section 4 deals with
CS modules. Our result in Theorem 4.4(a) says that

G(Dλ) = L(λ)(1.2.1)

if Dλ is CS and nontrivial (i.e., Dλ 6∼= k). We note that the image of G
on the simple kΣd-modules is generally very complicated. According to [7,
3.3], G(Dλ) can be described as the largest submodule of the injective hull
of L(λ) in the category M(n, d) whose only p-restricted composition factor
is L(λ). Informally, G(Dλ) is L(λ) with as many non-p-restricted modules
on top as possible. In the light of this description the property (1.2.1) is
quite remarkable. Using this result we show in Theorem 4.4(b) that if λ and
µ are p-restricted, Dλ is CS, and Dλ 6∼= k then

Ext1GLn(k)(L(µ), L(λ)) ∼= Ext1kΣd
(Dµ, Dλ).(1.2.2)

This again provides us with many cases where (1.1.1) is indeed an isomor-
phism.

Section 5 contains vanishing results about the cohomology of symmetric
groups with coefficients in CS modules. This information is later used to
prove the vanishing of some R•G(Dλ). The results of Section 5 allow us to
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generalize the isomorphism (1.2.2) to higher Ext-groups in a suitable range
of degrees. This result is a portion of two general theorems on stability of
extensions given in Sections 6.1 and 6.3, which give further examples where
(1.1.1) holds. For example, Corollary 6.1a claims that

Hi(Σd,F(N)⊗ sgn) ∼= Exti
GLd(k)(δ,N) for 0 ≤ i ≤ p− 2.

Here, sgn is the one-dimensional sign representation for Σd, δ is the one-
dimensional determinant representation for GLd(k), and N ∈M(n, d). Note
that Cline, Parshall and Scott [4, (12.4)] have a similar result in non-
describing characteristic relating the cohomology of the finite general linear
group with cohomology for the q-Schur algebra. Their approach relies on
using the Deodhar complex and is quite different from ours.

One can improve the stability results on the symmetric group cohomology
with coefficients in a simple module if one considers the following setting.
Let V be the natural n-dimensional GLn(k)-module and Sd(V ) be the d-th
symmetric power of V . Corollary 6.3(b) shows that for n ≥ d and 0 ≤ i ≤
2(p− 2) + 1,

Hi(Σd, Dµ) ∼= Exti
GLn(k)(S

d(V ), L(µ)).

To interpret this statement in the context of (1.1.1) one needs to note that
F(Sd(V )) ∼= k.

Theorem 6.1 can also be used to prove a conjecture on the cohomology
of dual Specht modules made in [2]. In fact, we get an even stronger result
(Corollary 6.2) that for any Specht module Sλ over kΣd and 1 ≤ i ≤ p− 2,

Hi(Σd, (Sλ)∗) = 0.(1.2.3)

This result can be interpreted as an isomorphism in (1.1.1) with M = ∧d(V )
and N being any costandard module. The vanishing result (1.2.3) along
with the work in Section 3 is used in Section 6.4 to prove stability results
for extensions of Specht modules. This is followed by similar results in
Section 6.5 on extensions of Young modules. Finally, in Section 6.6 we
obtain some results on cohomology of the alternating groups.

This work was initiated while the second author was visiting the Uni-
versity of Oregon during the spring of 1998. The second author would like
to acknowledge the Department of Mathematics at the University of Ore-
gon for their hospitality and support. This work was completed during the
conference on Algebraic Representation Theory held at Aarhus University
in August 1998. Both authors thank Henning H. Andersen and Jens C.
Jantzen for organizing a productive meeting.

2. Comparing GLn(k) and kΣd.

2.1. The Schur functor. The basic references for this section are [10],
[11]. Let k be an algebraically closed field of characteristic p > 0 and let
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G = GLn(k). The Schur algebra S(n, d) is the finite-dimensional associative
k-algebra EndkΣd

(V ⊗d) where V is the natural representation of G. The cat-
egory M(n, d) of polynomial G-modules of a fixed degree d ≥ 0 is equivalent
to the category of modules for S(n, d) and we do not distinguish between
the two categories from now on. We denote by Mod(kΣd) (resp. mod(kΣd))
the category of all (resp. all finite dimensional) kΣd-modules.

Throughout the paper we assume that n ≥ d. Let e = ζ(1,2,...,d)(1,2,...,d)

be the idempotent in S(n, d) described in [10, (6.1)]. Then eS(n, d)e ∼=
kΣd. The Schur functor F is the covariant exact functor from M(n, d) to
Mod(kΣd) defined on objects by F(M) = eM.

The simple S(n, d)-modules are in bijective correspondence with set of
partitions of d. We will denote this set by Λ = Λ+(n, d) and the correspond-
ing simple S(n, d)-module by L(λ) for λ ∈ Λ. Note that one can also identify
Λ as the set of dominant polynomial weights of G of degree d. Moreover, if
λ ∈ Λ, let P (λ) be the projective cover of L(λ) and T (λ) be the correspond-
ing tilting module. There exists a duality on M(n, d) fixing simple modules
called the transpose dual. This duality will be denoted by τ . The duality
τ and the usual duality ‘∗’ in mod(kΣd) are compatible in the sense that
eM τ ∼= (eM)∗ for any finite dimensional M ∈M(n, d).

A partition (λ1, λ2, . . . ) is called p-restricted if λi − λi+1 ≤ p − 1 for all
i. As mentioned in Section 1.2, we label the simple kΣd-modules by the
p-restricted partitions λ ∈ Λ. The set of the p-restricted partitions of d will
be denoted by Λres. A partition λ is called p-regular if its transpose λ′ is
p-restricted. We denote the set of all p-regular partitions of d by Λreg. In
[11], the simple kΣd-modules are labelled by the p-regular partitions and
denoted by Dλ. We will use both parametrizations so note a result from
[10, §6]:

Dλ ∼= Dλ′ ⊗ sgn for any λ ∈ Λreg.(2.1.1)

The Specht, Young, and permutation modules over kΣd corresponding to a
partition λ ∈ Λ are denoted by Sλ, Y λ, and Mλ, respectively. In particular
Mλ is the module induced from the trivial module over the Young subgroup
Σλ. One has following correspondences between S(n, d)-modules and kΣd-
modules under F (see [10, §6] and [6, 3.5, 3.6]):

F(∇(λ)) = Sλ, F(∆(λ)) = (Sλ)∗, F(P (λ)) = Y λ, F(T (λ)) = Y λ′ ⊗ sgn.

2.2. Spectral sequences. Let A = S(n, d) and eAe = kΣd with n ≥ d.
The Schur functor F can be represented as a Hom functor and a tensor func-
tor: F(M) ∼= eM ∼= HomA(Ae,M) ∼= eA⊗A M. By using this identification,
F admits a right adjoint functor, a right adjoint G defined by

G(N) = HomeAe(eA,N).
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Furthermore, G is a left inverse to F . Since Ae ∼= V ⊗d, and G takes injective
eAe-modules to injective A-modules, one can construct a spectral sequence
[7, 2.2]:

Theorem (A). Let M ∈M(n, d), N ∈ Mod(kΣd) with n ≥ d. There exists
a first-quadrant Grothendieck spectral sequence, with E2-page given by

Ei,j
2 = Exti

S(n,d)(M,Extj
kΣd

(V ⊗d, N))⇒ Exti+j
kΣd

(eM, N).(2.2.1)

For M ∈ M(n, d) and S a simple module in M(n, d), let [M : S] be the
multiplicity of S as a composition factor of M . The following results from
[7] provide information on composition factors of the higher right derived
functors of G.

Theorem (B). Let N ∈ mod(kΣd), and µ ∈ Λ. Then:

(i) [RjG(N) : L(µ)] = dimk Extj
kΣd

(Y µ, N) for j ≥ 0.
(ii) In particular, e(RjG(N)) = 0 for j > 0.

2.3. . A standard spectral sequence argument yields the following useful
result.

Proposition. Let n ≥ d, M ∈ M(n, d), and N ∈ Mod(kΣd) Suppose that
RjG(N) = 0 for 1 ≤ j ≤ t. Then

Exti
S(n,d)(M,G(N)) ∼= Exti

kΣd
(eM, N)

for 0 ≤ i ≤ t + 1.

Proof. Consider the spectral sequence (2.2.1). By assumption,

Extj
kΣd

(V ⊗d, N) = RjG(N) = 0 for 1 ≤ j ≤ t.

Therefore, Ei,j
2 = 0 if j > 0 and 1 ≤ i + j ≤ t. The spectral sequence has

differentials dr with bidegree (r, 1− r). Therefore,

Ei,0
2
∼= Exti

S(n,d)(M,G(N)) ∼= Exti
kΣd

(eM, N)

for 0 ≤ i ≤ t + 1. �

3. Twisted Specht and Young modules.

In this section we prove that the image under the functor G of a twisted
Young (resp. Specht) module is a tilting (resp. Weyl) module as long as
p > 3. These results for twisted Young modules can be viewed as dual to
the results proved in [3, 5.2.4]. The result in [3] holds for p > 2 and can
be used to prove its dual version (see [8, 6.2]). But we employ a different
approach than the one given in [3].
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3.1. . We deal with Young modules first.

Lemma. If p > 3 and λ ∈ Λ then G(Y λ′ ⊗ sgn) has a good filtration.

Proof. Let M = ∆(µ) and N = Y λ′⊗sgn. From the five term exact sequence
for the spectral sequence (2.2.1), we have

0→ Ext1S(n,d)(∆(µ),G(Y ′ ⊗ sgn)) ↪→ Ext1kΣd
((Sµ)∗, Y λ′ ⊗ sgn).

However,

Ext1kΣd
((Sµ)∗, Y λ′ ⊗ sgn) ∼= Ext1kΣd

(Y λ′ , Sµ ⊗ sgn) ∼= Ext1kΣd
(Y λ′ , (Sµ′)∗).

As Y λ′ is a summand of the permutation module Mλ′ , the Frobenius
reciprocity implies that Ext1kΣd

(Y λ′ , (Sµ′)∗) is a summand of Ext1kΣλ′
(k,

(Sµ′)∗↓Σλ′
). Moreover, the restriction (Sµ′)∗↓Σλ′

has a Specht filtration
by [13], so the last Ext-group is zero in view of [2, 2.4] or [8, 4.2]. Hence,
Ext1S(n,d)(∆(µ),G(Y ′ ⊗ sgn)) = 0 for all µ ∈ Λ, thus G(Y ′ ⊗ sgn) has a good
filtration. �

Theorem. If G(Y λ′ ⊗ sgn) has a good filtration then G(Y λ′ ⊗ sgn) = T (λ).
In particular for p > 3 we have G(Y λ′ ⊗ sgn) = T (λ) for all λ ∈ Λ.

Proof. As d ≤ n, every standard module has a p-restricted socle [12]. Hence
T (λ) also has a p-restricted socle. So by [7, 3.3] there exists an exact se-
quence of the form

0→ T (λ)→ G(Y ′ ⊗ sgn)→ X → 0

where all composition factors of X are not p-restricted. Since T (λ) and
G(Y ′⊗ sgn) have good filtrations, it follows that X must have a good filtra-
tion. Therefore, X = 0 because each ∇(µ) has a p-restricted head by [12]
again. �

3.2. . We now prove that the image under G of a twisted Specht module is
a Weyl module.

Theorem. Let p > 3. Then ∆(λ) = G(Sλ′ ⊗ sgn) for all λ ∈ Λ.

Proof. By [12], ∆(λ) has a p-restricted socle so in view of [7, 3.3] there
exists a short exact sequence of the form

0→ ∆(λ)→ G(Sλ′ ⊗ sgn)→ X → 0.

Therefore, it will suffice to prove that dimk ∆(λ) = dimk G(Sλ′ ⊗ sgn) or
equivalently that ∆(λ) and G(Sλ′ ⊗ sgn) have the same composition factors
with multiplicities. According to Theorems 2.2B(i), 3.1 and [6, (3.8)], we
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have

[G(Sλ′ ⊗ sgn) : L(µ)] = dimk HomkΣd
(Y µ, Sλ′ ⊗ sgn)

= dimk HomkΣd
((Sλ′)∗, Y µ ⊗ sgn)

= dimk HomS(n,d)(∆(λ′),G(Y µ ⊗ sgn))

= dimk HomS(n,d)(∆(λ′), T (µ′))

= [T (µ′) : ∇(λ′)]
= [∆(λ) : L(µ)].

�

3.3. . For p > 2, Ext1Σd
(Y λ, Y µ) = 0 for λ, µ ∈ Λ by [3, 4.6.1] or [8,

6.3]. The following theorem deals with extensions of Specht modules and
extensions between Specht and Young modules. We note that part (a) was
first observed in [3, 3.8.1].

Theorem. Let p > 3, µ ∈ Λres, and λ ∈ Λ.
(a) Ext1kΣd

(Sµ, Y λ) = 0.
(b) Ext1kΣd

(Sµ, Sλ) ∼= Ext1S(n,d)(∆(µ′),∆(λ′)).
(c) If µ does not strictly dominate λ then Ext1kΣd

(Sµ, Sλ) = 0.
(d) In particular, Ext1kΣd

(Sµ, Sµ) = 0.

Proof. According to [7, 2.4A(ii)], one can let M = ∆(µ′) to get

Ext1kΣd
(Sµ ⊗ sgn, N) ∼= Ext1kΣd

((Sµ′)∗, N) ∼= Ext1kΣd
(∆(µ′),G(N)).(3.3.1)

For part (a) set N = Y λ ⊗ sgn and use Theorem 3.1. Part (b) follows by
setting N = Sλ⊗sgn and using Theorem 3.2. Note that if µ does not strictly
dominate λ then λ′ does not strictly dominate µ′, and Ext1S(n,d)(∆(µ′),∆(λ′))
= 0 by [14, II 2.14 (3)] proving part (c), of which (d) is a special case. �

4. Completely splittable modules.

4.1. Definition, [15].
A simple kΣd-module D is called completely splittable if the restriction

D↓Σµ
is completely reducible for any Young subgroup Σµ of Σd.

4.2. . We now recall two basic results on CS modules proved in [15]. For
a partition λ = (λ1 ≥ λ2 ≥ · · · ≥ λs > 0) define

h(λ) := s and χ(λ) := λ1 − λs + s.

The invariant h(λ) is often referred to as the height of the partition. The first
theorem provides necessary and sufficient conditions for a simple module to
be CS.



346 A.S. KLESHCHEV AND D.K. NAKANO

Theorem (A). [15] Let λ ∈ Λreg. Then Dλ is completely splittable if and
only if χ(λ) ≤ p.

For a removable node A of a partition λ ` n we denote by λA the partition
of n−1 whose Young diagram is obtained from that of λ by removing A. The
second result describes how CS representations decompose upon restriction
to Σd−1.

Theorem (B). [15] Let λ be a p-regular partition of d with χ(λ) ≤ p. Then
Dλ↓Σd−1

∼=
⊕

DλA where the sum is over all removable nodes A of λ such
that χ(λA) ≤ p.

4.3. . The following is an easy consequence of the branching rule given in
Theorem 4.2B.

Proposition. Let m > d, µ be any p-regular partition of d, and λ be a
p-regular partition of m satisfying h(λ) ≤ s and λ1 − λs + s ≤ p. Then
Dµ appears as a composition factor of Dλ↓Σd

only if h(µ) ≤ s and µ1 −
µs + s ≤ p.

Proof. If h(λ) = s then χ(λ) = λ1−λs +s ≤ p, and by Theorem 4.2A, Dλ is
CS. If h(λ) < s then λs = 0, and χ(λ) < λ1−λs+s ≤ p. So by Theorem 4.2A
again, Dλ is CS in this case, too. Now apply Theorem 4.2B. �

4.4. . A kΣd-module is called nontrivial if it is not isomorphic to the triv-
ial module k. Our next result shows that nontrivial CS modules enjoy the
remarkable property that they always give simple S(n, d)-modules upon ap-
plication of the functor G.

Theorem. Let Dλ be a nontrivial completely splittable kΣd-module and Dµ

be an arbitrary simple kΣd-module. Then
(a) G(Dλ) = L(λ).
(b) If n ≥ d then Ext1kΣd

(Dµ, Dλ) ∼= Ext1S(n,d)(L(µ), L(λ)).

Proof. (a) According to Theorem 2.2B(i), we have [G(Dλ) : L(ν)] =
dimk HomkΣd

(Y ν , Dλ). If ν is p-restricted then Y ν is a projective kΣd-
module with simple head Dν . So the only p-restricted composition factor of
G(Dλ) is L(λ). Now assume that ν is not p-restricted. Pick γ ∈ Λreg so that
Dλ = Dγ . Then Y ν is a direct summand of Mν and

HomkΣd
(Y ν , Dγ) ⊆ HomkΣd

(Mν , Dγ) ∼= HomkΣν (k,Dγ↓kΣν
).

We claim that the last space is zero. Indeed, Σν
∼= Σν1 × Σν2 × . . . , with

ν1 ≥ p because ν is not p-restricted. As Dγ is nontrivial, it follows that
s := h(γ) ≥ 2. Now by Proposition 4.3, Dγ↓kΣν1

does not contain a trivial
component. This completes the proof of part (a).

(b) By [7, 4.2(i)], we have Ext1kΣd
(Dµ, Dλ) ∼= Ext1S(n,d)(L(µ),G(Dλ)). But

by part (a), G(Dλ) = L(λ), which completes the proof. �
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Martin and the first author conjectured that for any simple module D,
Ext1kΣd

(D,D) = 0 as long as p > 2. The next result shows this holds for CS
representations. It is a special case of [16, 2.10 and Remark (iv) on page 2],
which show that the conjecture is true for D = Dλ provided h(λ) ≤ p − 1.
However, we give a proof as our methods here are very different.

Corollary. Let p ≥ 3 and D be any CS module over kΣd. Then
Ext1kΣd

(D,D) = 0.

Proof. If Dλ 6∼= k then Ext1kΣd
(Dλ, Dλ) = Ext1S(n,d)(L(λ), L(λ)) = 0 by

Theorem 4.4b and [14, II.2.14]. On the other hand, if Dλ
∼= k then

Ext1kΣd
(k, k) ∼= H1(Σd, k) = 0 as p > 2. �

5. Vanishing results.

Theorem 4.4 motivates us to study images of CS modules under the higher
derived functors of the functor G. A vanishing result depending on the height
will be proved in Section 5.4. But first we need three lemmas on symmetric
group cohomology.

5.1. . First we calculate cohomology groups of Σp with coefficients in simple
modules.

Lemma. The cohomology of Σp with coefficients in simple modules is given
as follows.

(i) Hj(Σp, D
λ) = 0 unless λ is of the form (p− i, 1i) for 0 ≤ i ≤ p− 2.

(ii) For 1 ≤ i ≤ p− 2,

Hj(Σp, D
(p−i,1i)) ∼=


k if j is of the form 2m(p− 1) + i or

2m(p− 1) + (2p− i− 3) for some integer m ≥ 0;
0 otherwise.

(iii) For i = 0,

Hj(Σp, k) ∼=


k if j is of the form 2m(p− 1) or 2m(p− 1)− 1

for some integer m ≥ 0;
0 otherwise.

Proof. Let Pi be the projective cover of D(p−i,1i), 0 ≤ i ≤ p−2. The module
Pi admits a Specht filtration with factors S(p−i,1i), S(p−i−1,1i+1) (starting
from the top). Since Pi is self-dual it also has a filtration with factors
(S(p−i−1,1i+1))∗, (S(p−i,1i))∗. Therefore, a minimal projective resolution can
be constructed as follows:

0← k ← P0 ← P1 ← · · · ← Pp−2 ← Pp−2 ← Pp−3 ← · · · ← P0 ← . . . .
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Since the resolution is minimal and D(p−i,1i) is a simple module, we have
Hj(Σp, D

(p−i,1i)) ∼= HomkΣp(Qj , D
(p−i,1i)), where Qj is the jth term of the

resolution. The lemma follows. �

5.2. . We now prove a vanishing result on cohomology of Σpm with coeffi-
cients in CS modules, using Lemma 5.1 as an induction base. Note that all
simple modules for kΣp are CS.

Lemma. Let m ≥ 1 and Dλ be a CS module of Σpm.

(a) If Dλ 6∼= k, h(λ) ≤ s and λ1 − λs + s ≤ p, then Hj(Σpm , Dλ) = 0 for
0 ≤ j ≤ s− 2.

(b) If Dλ ∼= k then Hj(Σpm , Dλ) = 0 for 1 ≤ j ≤ 2(p− 2).

Proof. We apply induction on m. For m = 1 the result follows from
Lemma 5.1. Let m > 1. The Sylow p-subgroup Sylp(Σpm) embeds into
the wreath product A := Σpm−1 o Σp < Σpm . Hence Hn(Σpm , Dλ) embeds
into Hn(A,Dλ). Note that A ∼= B o Σp where B is the Young subgroup
Σ(pm−1,pm−1,...,pm−1)

∼= Σpm−1 × · · · × Σpm−1 < Σpm .
Now we apply the Lyndon-Hochschild-Serre spectral sequence

Ei,j
2
∼= Hi(Σp,Hj(B,Dλ))⇒ Hi+j(A,Dλ).(5.2.1)

By the Künneth formula, we get

Hj(B,Dλ) ∼=
⊕ ⊕

(j1,...,jp)∈(Z+)p

j1+···+jp=j

Hj1(Σpm−1 , D1)⊗ · · · ⊗Hjp(Σpm−1 , Dp)

where the first sum is over all composition factors D1 ⊗ · · · ⊗ Dp of the
restriction Dλ↓B. Note that we have used the fact that the restriction is
completely reducible. If Dλ ∼= k and 1 ≤ j ≤ 2(p − 2) then by inductive
hypothesis the last expression is zero. So assume that Dλ is as given in part
(a) and 0 ≤ j ≤ s − 2. By Proposition 4.3, none of the modules Dq in a
composition factor D1 ⊗ · · · ⊗ Dp of Dλ↓B is trivial. On the other hand,
j1 + · · · + jp = j ≤ s − 2 ≤ p − 3 implies that at least one of the indices jq

in the sum above must be 0. So for this q we have H0(Σpn−1 , Dq) = 0. This
shows that Hj(B,Dλ) = 0 under our assumptions.

Finally, we prove part (a). As Hj(B,Dλ) = 0 for 0 ≤ j ≤ s− 2, it follows
that Ei,j

2 = 0 for 0 ≤ i + j ≤ s − 2 in the spectral sequence (5.2.1). The
differentials in this spectral sequence have bidegree (r, 1−r), so Hn(A,Dλ) =
0 for 0 ≤ n ≤ s − 2. Part (b) can be proved by using a similar line of
reasoning and the fact that in this case Hj(B,Dλ) = 0 for 1 ≤ j ≤ 2(p− 2)
and Ei,0

2 = H i(Σp,H
0(G, k)) = H i(Σp, k) = 0 for 1 ≤ i ≤ 2(p− 2). �
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5.3. . Now we get a general vanishing result on cohomology of CS modules.

Lemma. Let Dλ be a CS module of Σd.
(a) If Dλ 6∼= k, h(λ) ≤ s and λ1 − λs + s ≤ p then Hj(Σd, D

λ) = 0 for
0 ≤ j ≤ s− 2.

(b) If Dλ ∼= k then Hj(Σd, k) = 0 for 1 ≤ j ≤ 2(p− 2).

Proof. If d = pi1 + pi2 + . . . pik + r for i1 ≥ i2 ≥ · · · ≥ iq > 0 and 0 ≤ r < p,
then there is a Sylow p-subgroup of Σd contained in the Young subgroup
G := Σ(pi1 ,...,piq ). This implies that Hj(Σd, D

λ) embeds into Hj(G, Dλ). By
the Künneth formula, we get

Hj(G, Dλ) ∼=
⊕ ⊕

(j1,...,jq)∈(Z+)q

j1+···+jq=j

Hj1(Σpi1 , D
µ(1))⊗ · · · ⊗Hjq(Σpiq , Dµ(q))

where the first sum is over all composition factors Dµ(1) ⊗ · · · ⊗ Dµ(q) of
the restriction Dλ↓G (we have used the fact that the restriction is com-
pletely reducible). Furthermore, by Proposition 4.3, each µ(l) satisfies satis-
fies h(µ(l)) ≤ s and µ(l)1−µ(l)s + s ≤ p. So, by Lemma 5.2, Hj(G, Dλ) = 0
for 0 ≤ j ≤ s− 2 if Dλ 6∼= k, and Hj(G, k) = 0 for 1 ≤ j ≤ 2(p− 2). �

5.4. . Finally, we obtain an information on vanishing of the higher derived
functors of G.

Theorem. Let Dλ be a CS module of Σd.
(a) If Dλ 6∼= k, h(λ) ≤ s and λ1 − λs + s ≤ p then RjG(Dλ) = 0 for

1 ≤ j ≤ s− 2.
(b) If Dλ ∼= k then RjG(k) = 0 for 1 ≤ j ≤ 2(p− 2).

Proof. (a) Using the definition of G and the decomposition of V ⊗d as a
kΣd-module, we have

RjG(Dλ) ∼= Extj
kΣd

(V ⊗n, Dλ) ∼=
⊕

Extj
kΣd

(Mµ, Dλ)

∼=
⊕

Extj
kΣµ

(k, Dλ↓Σµ
)

where the sums are over all compositions µ of d. For 1 ≤ j ≤ s − 2 and
a composition µ = (µ1, . . . , µa) of d we prove that Extj

kΣµ
(k, Dλ↓Σµ

). Let
Dλ(1) ⊗ · · · ⊗Dλ(a) be a composition factor of Dλ↓Σµ

. According to Propo-
sition 4.3, every partition λ(i) satisfies h(λ(i)) ≤ s and λ(i)1−λ(i)s +s ≤ p.
Now Extj

kΣµ
(k, Dλ(1) ⊗ · · · ⊗ Dλ(a)) = 0 by Lemma 5.3a and the Künneth

formula. Hence, Extj
kΣµ

(k,Dλ↓Σµ
) = 0.

(b) As in (a), RjG(k) ∼= ⊕Extj
kΣµ

(k, k) where the sum is over all compo-

sitions µ of d. But, Extj
kΣµ

(k, k) = 0 for 1 ≤ j ≤ 2(p − 2) by the Künneth
formula and Lemma 5.3b. �
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Remark. The sign representation is CS and nontrivial if p > 2. It is equal
to some Dε with h(ε) = p − 1 if d ≥ p − 1 ([11, 24.5(iii)]). As kΣd is
semisimple for d < p, the theorem above implies

RjG(sgn) = 0 for 1 ≤ j ≤ p− 3.(5.4.1)

6. Applications.

6.1. Stability of Extensions I. The algebra S(n, d) is quasi hereditary
and thus has finite global dimension. On the other hand, kΣd has infinite
global dimension. So there is no hope for the extension groups of these
algebras to agree in all degrees. Nevertheless, often one can show that the
extension groups for S(n, d) and kΣd coincide for a certain range of degrees.

Theorem. Let Dλ = Dν be a nontrivial CS module with h(ν) ≥ 3 and let
M ∈M(n, d).

(a) For 0 ≤ i ≤ h(ν)− 1 we have Exti
S(n,d)(M,L(λ)) ∼= Exti

kΣd
(eM, Dλ).

(b) In particular for any µ ∈ Λ and 0 ≤ i ≤ h(ν)− 1 we have:

(i) Exti
S(n,d)(L(µ), L(λ)) ∼=

{
Exti

kΣd
(Dµ, Dλ) if µ ∈ Λres;

0 otherwise.
(ii) Exti

S(n,d)(∇(µ), L(λ)) ∼= Exti
kΣd

(Sµ, Dλ).
(iii) Exti

S(n,d)(∆(µ), L(λ)) ∼= Exti
kΣd

((Sµ)∗, Dλ).
(iv) Exti

S(n,d)(T (µ), L(λ)) ∼= Exti
kΣd

(Y µ′ , Dλ′).

(v) Exti
kΣd

(Y µ, Dλ) ∼=

{
k if λ = µ and i = 0;
0 otherwise.

Proof. (a) By Theorem 4.4a, G(Dλ) = L(λ), and by Theorem 5.4, RjG(Dλ)
= 0 for 1 ≤ j ≤ h(ν)− 2. The result now follows from Proposition 2.3.

(b) follows from (a). Indeed, for part (ii) (resp. (iii)) set M = ∇(µ)
(resp. M = ∆(µ)) and using the results stated in Section 2.1. For (i) set
M = L(µ) and use the fact that eL(λ) = 0 for λ 6∈ Λres. To prove part (iv),
set M = T (µ) and use (2.1.1). For part (v), set M = P (µ) where P (µ) is
the projective cover of L(µ). Observe that Exti

S(n,d)(P (µ), L(λ)) is zero if
i > 0 or λ 6= µ and isomorphic to k if i = 0 and λ = µ. �

Remark. (a) Note that even in the case i = 0 the theorem above is saying
something new. Part (v) implies that a nontrivial CS module Dλ appears in
the head of a Young module Y µ if and only if λ = µ. If µ is not p-restricted,
the head of Y µ need not be simple.

(b) Parts (iv) and (v) of the theorem can be used to prove some van-
ishing results for Exti

S(n,d)(T (µ), L(λ)). We leave the formulation of the
corresponding results to the reader.
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Corollary. Let M ∈M(d, d) and δ = L(1d) be the determinant representa-
tion for S(d, d).

(a) For 0 ≤ i ≤ p− 2, Hi(Σd, eM ⊗ sgn) ∼= Exti
S(d,d)(δ,M).

(b) In particular for any µ ∈ Λ and 0 ≤ i ≤ p− 2 we have:
(i) Hi(Σd, D

µ′) ∼= Exti
S(d,d)(δ, L(µ)) for µ ∈ Λres.

(ii) Hi(Σd, S
µ′) ∼= Exti

S(d,d)(δ, V (µ)).

(iii) Hi(Σd, (Sµ′)∗) ∼=

{
k if µ = (1d) and i = 0;
0 otherwise.

(iv) Hi(Σd, Y
µ ⊗ sgn) ∼=

{
k if µ = (1d) and i = 0;
0 otherwise.

Proof. (a) Let Dλ = sgn. Then by Theorem 6.1a and (5.4.1) we have for
0 ≤ i ≤ p− 2,

Hi(Σd, eM ⊗ sgn) ∼= Exti
kΣd

((eM)∗, sgn) ∼= Exti
kΣd

(eM τ , sgn)
∼= Exti

S(n,d)(M
τ , δ) ∼= Exti

S(n,d)(δ,M).

(b) By (2.1.1), Dµ′ = Dµ ⊗ sgn, and (Sµ′)∗ = Sµ ⊗ sgn so parts (i)-(iii)
follow. Part (iv) follows from Theorem 6.1b(v). �

6.2. BKM conjecture. We now note that a conjecture made in [2, Conj.
6.2] (stated in the corollary below) is a rather special case of Corollary 6.1b(iii).

Corollary. For a fixed i > 0 there exists a constant C depending only on i
such that for p > C we have Hi(Σd, (Sλ)∗) = 0 for all d and λ ∈ Λ. In fact,
we can take C = i + 1.

Proof. Let i > 0. Set C = i + 1. If p > i + 1, or in other words i < p − 1
then Hi(Σd, (Sλ)∗) = 0 by Corollary 6.1b(iii) for all d and λ. �

6.3. Stability of Extensions II. We can improve the range of the stabil-
ity of extensions as long as one of the modules involved is ∆(d) ∼= Sd(V )τ ,
the contravariant dual of the dth symmetric power of the natural module V .

Theorem. Let M ∈M(n, d) with n ≥ d.
(a) For 0 ≤ i ≤ 2(p−2)+1 we have Exti

S(n,d)(M,∆(d)) ∼= Exti
kΣd

(eM, k).
(b) In particular for any µ ∈ Λ and 0 ≤ i ≤ 2(p− 2) + 1 we have:

(i) Exti
S(n,d)(L(µ),∆(d)) ∼=

{
Exti

kΣd
(Dµ, k) if µ ∈ Λres;

0 otherwise.
(ii) Exti

S(n,d)(∇(µ),∆(d)) ∼= Exti
kΣd

(Sµ, k).
(iii) Exti

S(n,d)(∆(µ),∆(d)) ∼= Exti
kΣd

((Sµ)∗, k).
(iv) Exti

S(n,d)(T (µ),∆(d)) ∼= Exti
kΣd

(Y µ′ , sgn).
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(v) Exti
kΣd

(Y µ, k) ∼=

{
k if i = 0 and [∆(d) : L(µ)] 6= 0;
0 otherwise.

Proof. (a) We have G(k) = ∆(d) by [7, 5.5] and RjG(k) = 0 for 1 ≤ j ≤
2(p− 2) by Theorem 5.4. Now use Proposition 2.3.

(b) Parts (i)-(v) follows from (a) by setting M = ∇(µ) (resp. ∆(µ), T (µ),
P (µ)) as in the proof of Theorem 6.1b. For (v) we also use the fact that
∆(d) is multiplicity free. �

Corollary. Let M ∈M(n, d) with n ≥ d.
(a) For 0 ≤ i ≤ 2(p− 2) + 1 we have Hi(Σd, eM) ∼= Exti

S(n,d)(∇(d),M).
(b) In particular for any µ ∈ Λ and 0 ≤ i ≤ 2(p− 2) + 1 we have:

(i) Hi(Σd, Dµ) ∼= Exti
S(n,d)(∇(d), L(µ)) for µ ∈ Λres.

(ii) Hi(Σd, (Sµ)∗) ∼= Exti
S(n,d)(∇(d),∆(µ)).

(iii) Hi(Σd, S
µ) ∼= Exti

S(n,d)(∇(d),∇(µ)).
(iv) Hi(Σd, Y

µ′ ⊗ sgn) ∼= Exti
S(n,d)(∇(d), T (µ)).

(v) Hi(Σd, Y
µ) ∼=

{
k if i = 0 and [∇(d) : L(µ)] 6= 0;
0 otherwise.

Proof. (a) By Theorem 6.3a, one has for 0 ≤ i ≤ 2(p− 2) + 1

Hi(Σd, eM) ∼= Exti
kΣd

(k, eM) ∼= Exti
kΣd

((eM)∗, k) ∼= Exti
kΣd

(eM τ , k)
∼= Exti

S(n,d)(M
τ ,∆(d)) ∼= Exti

S(n,d)(∇(d),M).

(b) For parts (i)-(iv) make the appropriate substitutions for M , (v) follows
from Theorem 6.3b(v) above by dualizing. �

6.4. Stability of Extensions III. A conjecture of Burichenko, Kleshchev
and Martin verified in Section 6.2 will now be used to obtain stability results
involving Specht modules.

Theorem. Let p > 3, 0 ≤ i ≤ p− 2, M ∈M(n, d), and λ, µ ∈ Λ. Then:
(a) Exti

S(n,d)(M,∆(λ)) ∼= Exti
kΣd

(eM, Sλ′ ⊗ sgn).
(b) In particular,

(i) Exti
S(n,d)(L(µ),∆(λ)) ∼= Exti

kΣd
(Dµ′ , Sλ′).

(ii) Exti
S(n,d)(∆(µ),∆(λ)) ∼= Exti

kΣd
(Sµ′ , Sλ′).

(iii) Exti
S(n,d)(∇(µ),∆(λ)) ∼= Exti

kΣd
(Sµ, Sλ′ ⊗ sgn).

(iv) Exti
kΣd

(Y µ, Sλ) = 0.
(v) Exti

kΣd
(Sλ, Y µ) = 0.

Proof. (a) By Theorem 3.2, G(Sλ′ ⊗ sgn) = ∆(λ). Moreover, by Frobenius
reciprocity,

RjG(Sλ′ ⊗ sgn) = Extj
kΣd

(V ⊗d, Sλ′ ⊗ sgn) = ⊕Extj
kΣµ

(k, (Sλ)∗↓Σµ
)
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where the last sum is over all compositions µ of d. By [13], (Sλ)∗ ↓Σµ admits
a filtration with sections of the form (Sλ(1))∗⊗(Sλ(2))∗⊗· · ·⊗(Sλ(a))∗. By the
Künneth formula and Corollary 6.1b(iii), it follows that Extj

kΣµ
(k, (Sλ(1))∗⊗

(Sλ(2))∗ ⊗ · · · ⊗ (Sλ(a))∗) = 0 for 1 ≤ j ≤ p − 3. Consequently, by using
induction on the length of the filtration on (Sλ)∗, we have RjG(Sλ′⊗sgn) = 0
for 1 ≤ j ≤ p− 3. Part (a) now holds by applying Proposition 2.3.

(b) For (i)-(v) substitute M = L(µ), ∆(µ), ∇(µ), T (µ) and P (µ), respec-
tively. �
6.5. Stability of Extensions IV. We now obtain stability results on ex-
tensions involving Young modules.

Theorem. Let p > 3, 0 ≤ i ≤ p− 2, M ∈M(n, d), and λ, µ ∈ Λ.
(a) Exti

S(n,d)(M,T (λ)) ∼= Exti
kΣd

(eM, Y λ′ ⊗ sgn).
(b) In particular,

(i) Exti
S(n,d)(L(µ), T (λ)) ∼= Exti

kΣd
(Dµ′ , Y λ′).

(ii) Exti
S(n,d)(∇(µ), T (λ)) ∼= Exti

kΣd
(Sµ ⊗ sgn, Y λ′) = 0.

(iii) Exti
kΣd

(Y µ, Y λ) = 0.
(iv) Exti

kΣd
(Y µ ⊗ sgn, Y λ) = 0.

Proof. (a) By Theorem 3.1, T (λ) = G(Y λ′ ⊗ sgn). Furthermore, if µ is a
composition of d then the restriction of Y λ′ ⊗ sgn to Σµ admits a filtration
with sections of the form (Y λ(1) ⊗ sgn) ⊗ · · · ⊗ (Y λ(a) ⊗ sgn). Now use the
same argument as in Theorem 6.4 along with Corollary 6.1b(iv) to show
that RjG(Y λ′ ⊗ sgn) = 0 for 1 ≤ j ≤ p− 3. Finally apply Proposition 2.3.

(b) Substitute M = L(µ), ∆(µ), T (µ) and P (µ), respectively. �

We remark that the results given in Theorem 6.4b(iv)-(v) and Theo-
rem 6.5b(iii) can be viewed as natural generalizations involving higher ex-
tension groups of the Ext1-results given in the work of Cline, Parshall and
Scott [3, §3.8, §4.6].
6.6. Alternating group cohomology. Let Ad be the alternating group
on d letters. Nakaoka computed the structure of the cohomology of the
symmetric group H•(Σd, k) [18]. For the prime p = 2, there is a method
to compute H•(Ad, k) by using the calculation of H•(Σd, k) [1]. The first
proposition shows that one can compute the cohomology of the alternating
group by knowing the cohomology of the symmetric group with coefficients
in the trivial and sign representations.

Proposition. Let p ≥ 3. Then H•(Ad, k) ∼= H•(Σd, k) ⊕ H•(Σd, sgn) as
k-vector spaces.

Proof. Note that the module induced from the trivial kAd-module to kΣd is
isomorphic to k ⊕ sgn. The result now follows from the Eckmann-Shapiro
lemma. �
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Corollary. Let p ≥ 3. Then Hi(Ad, k) = 0 for 1 ≤ i ≤ p− 3.

Proof. This follows from the proposition above, Lemma 5.3 and Remark 5.4.
�

Remark. Consider the spectral sequence (2.2.1) with M = Sd(V ) and N =
sgn:

Ei,j
2 = Exti

S(n,d)(S
d(V ), RjG(sgn))⇒ Hi+j(Σd, sgn).

This indicates that there may be some hope to compute the cohomology
of the alternating group by determining R•G(sgn) = Ext•kΣd

(V ⊗d, sgn) as a
GLn(k)-module.
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