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Much has been written about various obstacle problems in
the context of variational inequalities. In particular, if the
obstacle is smooth enough and if the coefficients of associated
elliptic operator satisfy appropriate conditions, then the solu-
tion of the obstacle problem has continuous first derivatives.
For a general class of obstacle problems, we show here that
this regularity is attained under minimal smoothness hypothe-
ses on the data and with a one-sided analog of the usual mod-
ulus of continuity assumption for the gradient of the obsta-
cle. Our results apply to linear elliptic operators with Hölder
continuous coefficients and, more generally, to a large class of
fully nonlinear operators and boundary conditions.

Introduction.

For a smooth bounded domain Ω ⊂ Rn with unit inner normal γ, we are
concerned with generalizations of the simple obstacle problem of finding a
function u ∈W 1,2(Ω) which minimizes the functional F defined on W 1,2 by

F(v) =
∫

Ω
|Dv|2 dx+

∫
∂Ω
v2 dσ

over the set of all v ∈ W 1,2 with v ≥ ψ for a given function ψ. From
standard results in the theory of variational inequalities and the arguments
in [12], it follows that this minimizer has bounded second derivatives if ψ
has bounded second derivatives and satisfies the inequality ∂ψ/∂γ − ψ ≥ 0
on ∂Ω, which is assumed sufficiently smooth. To state our generalization of
this problem, we note that the minimizer u will be superharmonic in Ω and
harmonic on the set where u > ψ; in addition ∂u/∂γ − u = 0 on ∂Ω. It is
this formulation of the minimization problem that we wish to generalize.

We write Sn for the set of all n × n symmetric matrices, and we set
Γ = Ω × R × Rn × Sn and Γ′ = ∂Ω × R × Rn. For real-valued, differential
functions F and G defined on Γ and Γ′, respectively, we consider the problem

min{−F (x, u,Du,D2u), u− ψ} = 0 in Ω, G(x, u,Du) = 0 on ∂Ω.(0.1)
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(We justify this somewhat nonstandard way of writing the problem by point-
ing out that, in the special case that F is the Laplace operator, our solu-
tion u will be superharmonic with u ≥ ψ and u is harmonic on the set
{u > ψ}.) Using subscripts to denote partial derivatives with respect to
the variables z ∈ R, p ∈ Rn and r ∈ Sn, we assume at least that the
matrix Fr(x, z, p, r) is positive definite for all (x, z, p, r) ∈ Γ (so that the
equation F (x, u,Du,D2u) = 0 is elliptic) and that Gp(x, z, p) · γ(x) > 0 for
all (x, z, p) ∈ Γ′ for the unit inner normal γ to ∂Ω (so the boundary condi-
tion is an oblique derivative condition). If ψ ∈ C1, then the analog of the
condition ∂ψ/∂γ − ψ ≥ 0 would be G(x, ψ,Dψ) ≥ 0 on ∂Ω (compare with
[12, (0.7)]); however, we shall assume a weaker condition than continuity of
Dψ which still implies the continuity of Du, so we shall modify this con-
dition appropriately (see conditions (2.1) and (3.9) below). Under suitable
regularity hypotheses on F , G, ψ, and Ω, we shall show that a modulus of
continuity for the first derivatives of u can be estimated in terms of known
data. In conjunction with known first derivative estimates, our results give
a complete description of the regularity of solutions for several problems.
As particular examples, we mention here the capillarity obstacle problem
from [12] and the Bellman equation problem with linear boundary condi-
tion from [23] (strictly speaking, we refer to the problem which the authors
of that paper defer to a sequel, listed there as reference [27], which has never
appeared in print). In [12], F has the special form

F (x, z, p, r) = (1 + |p|2)−1/2

(
δij − pipj

1 + |p|2

)
rij + a(x, z),(0.2a)

for a suitable, Lipschitz function a and G has the form

G(x, z, p) =
p

(1 + |p|2)1/2
· γ + ϕ(x, z)(0.2b)

for a suitable, smooth function ϕ such that sup |ϕ(x, z)| < 1. Because of the
bound on the gradient of the solution of (0.1) in [12], it follows that our
estimates apply to this problem assuming that a is Lipschitz and ϕ is C1,α

for some α ∈ (0, 1). In [23], F has the form

F (x, z, p, r) = inf
k∈J

(aij
k (x)rij + bik(x)pi + ck(x)z + fk(x)),(0.3a)

where J is some index set (assumed to be countable in [23]) and there are
uniform (with respect to k) bounds on the C2 norms of the coefficients aij

k ,
bik, ck, and fk as well as a positive lower bound (independent of k) on the
minimum eigenvalue of the matrix [aij

k ]; G has the form

G(x, z, p) = β(x) · p+ b(x)z + g(x)(0.3b)
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for some vector β such that β·γ is bounded from below by a positive constant,
and the C2 norms of β, b and g are assumed to be bounded. Again, from
the gradient bounds proved in [23], it can be shown that our results apply
to such problems if we only assume bounds on the Hölder norms of aij

k , bik,
ck, and fk (see Theorem 2.2) and on the Hölder norms of β, b and g (see
Theorem 3.2); for second derivative bounds, we need to assume that β, b,
and g have Hölder continuous derivatives (see Theorem 3.3). Of course, the
uniform lower bounds on the minimum eigenvalue of [aij

k ] and on β ·γ cannot
be relaxed for our techniques to work.

In addition to the one-sided condition on ψ, our hypotheses are weaker
than those in [11, Section 2], [12], [16, Section 4], [1], and [2] because we
relax the smoothness hypotheses on F , G, and Ω.

A basic interpolation inequality appears in Section 1, which allows us to
use a weak Harnack inequality rather than the usual Harnack inequality.
An interior regularity result is proved in Section 2 using a modification of
the technique pioneered by Caffarelli and Kinderlehrer [4]. Specifically, we
show (via the weak Harnack inequality) that our one-sided condition on
ψ implies a two-sided integral bound for u − L with L a suitable linear
function, and then the interpolation inequality from Section 1 gives a two-
sided estimate on the first derivatives of u. The corresponding estimates
at the boundary are proved in Section 3. Most of our work is to analyze
the hypotheses on the obstacle; only some simple elements of the theory of
differential equations enters into this analysis. Some similar results, with
a Dirichlet boundary condition replacing the oblique derivative boundary
condition, appear in a preprint by Jensen [13]. The analysis of the obstacle
also provides a straightforward extension to the two obstacle problem, which
we present in Section 4, and Section 5 discusses applications of our methods
to some degenerate variational inequalities; in particular, problems with the
p-Laplacian operators are considered. We close in Section 6 with an outline
of the existence theory in a special case.

Our notation follows that in [10]. In addition, we write F ij for the compo-
nents of the matrix Fr and F i for the components of the vector Fp. Similarly,
Gi denotes the components of the vector Gp. We always assume here that
ψ is Lipschitz with

|ψ|+ |Dψ| ≤ Ψ1,(0.4)

and we define

Γ′1 = {(x, z, p) ∈ Γ′ : |z|+ |p| ≤ Ψ1}.
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1. An interpolation lemma.

Our first lemma is an improvement of results on second derivative estimates
in terms of estimates on lower order derivatives. For brevity, if Σ ⊂ Ω, we
use |u|(b)a;Σ to denote the norms weighted in terms of distance to ∂Σ ∩ Ω.

Lemma 1.1. Let Ω be a bounded Lipschitz domain, let Σ be a subset of
Ω, and suppose u ∈ C2+α(Σ) for some α ∈ (0, 1). Suppose that there are
positive constants C1 and C2 such that

[D2u]α;Σ∩B(R) ≤ C1R
−α|D2u|0;Σ∩B(2R) + C2(1.1)

for any two concentric balls B(R) and B(2R), with radii R and 2R, respec-
tively, such that the boundary of Σ ∩ B(2R) is disjoint from Ω \ Σ. Then
there is a constant C determined only by C1, α, and Ω such that

|u|(0)
2+α;Σ ≤ C

(
|u|0;Σ + C2(diam Σ)2+α

)
.(1.2)

In addition, if Σ = Ω ∩B(2R) for some ball B(2R), and if κ > 0, then

|D2u|0;Σ′ ≤ C(C1, α, κ,Ω)
(
R−2−(n/κ)‖u‖κ;Σ + C2R

α
)
,(1.3)

where Σ′ = Ω ∩B(R).

Proof. The proof of (1.2) is a simple combination of the interpolation in-
equality

|D2u|(2)
0 ≤ C

(
[D2u](2+α)

α + |u|0
)2/(α+2)

(|u|0)α/(2+α)

and the observation that (1.1) implies that

[D2u](2+α)
α ≤ C

(
C1|D2u|(2)0 + C2(diam Σ)2+α

)
.

To prove (1.3), we imitate the proof of [19, Lemma 4.5]. From (1.2), we
infer that

ρ sup
S(ρ)

|Du| ≤ C

(
sup
S(2ρ)

|u|+ C2ρ
2+α

)
,

where S(ρ) = Σ∩B(ρ) and the boundary of S(2ρ) is disjoint from Ω \Σ. It
follows that there is a constant C0 determined only by C1, α, κ, and Ω such
that

osc
S(θρ)

u ≤ C0θ

(
sup
S(2ρ)

|u|+ C2ρ
2+α

)
for any θ ∈ (0, 1). Now we take x1 so that d(x1)n/κ|u(x1)| ≥ 1

2 |u|
(n/κ)
0 and

we choose our balls to be centered at x1 with ρ = 1
4d(x1). Then

|u(x)| ≥ |u(x1)|[1− C0θ2n/κ]− C0θC2ρ
2+α
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for x ∈ S(θρ). If we take θ so small that C0θ2n/κ ≤ 1/2 and C0θ ≤ 1, then
rearranging the resulting inequality and integrating over S(ρ) yields

ρn|u(x1)|κ ≤ C

(∫
S(θρ)

|u|κ dx+ Cκ
2 ρ

(2+α)κ+n

)
,

and therefore

[u](n/κ)
0 ≤ C

(
‖u‖κ + C2R

2+α+(n/κ)
)
.

Hence

|u|0;Ω∩B(3R/2) ≤ C
(
R−n/κ‖u‖κ + C2R

2+α
)

for any ball B(3R/2). The desired result follows from this one after applying
(1.2) with Σ replaced by Ω ∩B(3R/2). �

2. Interior derivative estimates.

Our main ingredient is a pointwise estimate of how fast u moves away from
the obstacle near a contact point. In this section, we prove this estimate at
an interior point. The argument is a straightforward modification of that
in [4], but because of Lemma 1.1, we only need to estimate the Lκ norm
of a function related to u; this estimate is proved quite simply. Our basic
assumption on the obstacle ψ is that there are functions Y defined on Ω and
ζ defined on [0,diam Ω] with ζ continuous and increasing such that

ψ(x1) ≥ ψ(x2) + Y (x2) · (x1 − x2)− ζ(|x1 − x2|)|x1 − x2|(2.1)

for all x1 and x2 in Ω. We have not assumed that ζ(0) = 0, even though this
assumption is needed to conclude that Du is actually continuous, because it
does not affect the form of our estimates. Note that the usual assumption
(from [1, 4, 11, 12, 16, 18]) is that |Dψ(x1)−Dψ(x2)| ≤ ζ(|x1−x2|), which
is equivalent to the combination of (2.1) and the companion inequality

ψ(x1) ≤ ψ(x2) + Y (x2) · (x1 − x2) + ζ(|x1 − x2|)|x1 − x2|.
Our condition includes functions which are not continuously differentiable
even if ζ(0) = 0. For example, if (ψα)α∈I is a family of functions (with
arbitrary index set I) satisfying (2.1), then a simple calculation shows that
ψ defined by ψ(x) = supα∈I ψα(x) also satisfies this condition provided we
have a uniform L∞ bound on ψα and Dψα. In particular, condition (2.1)
includes the obstacles studied by Troianiello in [30, 31].

Lemma 2.1. Suppose that u ∈W 2,n
loc satisfies

min{−F (x, u,Du,D2u), u− ψ} = 0 in Ω(2.2)

and that there are positive constants λ, Λ, and µ0 such that

λ|ξ|2 ≤ F ij(x, u,Du,D2u)ξiξj(2.3)
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for all x ∈ Ω and ξ ∈ Rn,

F (x, u,Du, 0) ≥ −µ0λ,(2.4a)

|Fr(x, u,Du, tD2u)| ≤ Λ,(2.4b)

for all x ∈ Ω and all t ∈ [0, 1]. Suppose also that (2.1) holds and that
x0 is a point such that u(x0) = ψ(x0). Then there are constants κ and C
determined only by n and Λ/λ such that the function u defined by

u(x) = u(x)− u(x0)− Y (x0) · (x− x0)(2.5)

satisfies the estimate(
R−n

∫
B(x0,R/2)

|u|κ dx

)1/κ

≤ C[µ0R
2 + ζ(R)R](2.6)

for all R ≤ d(x0)/2.

Proof. Since u ≥ ψ and u(x0) = ψ(x0), it follows from (2.1) that u ≥
−ζ(R)R in B(x0, R). Next, we note that aijDiju ≤ −F (x, u,Du, 0) for

aij(x) =
∫ 1

0
F ij(x, u(x), Du(x), tD2u(x)) dt.

It follows that v = u + ζ(R)R satisfies the conditions aijDijv ≤ λµ0 and
v ≥ 0 in B(x0, R). Therefore [10, Theorem 9.22] and the obvious inequality
infB(R/2) v ≤ v(0) = ζ(R)R yield(

R−n

∫
B(R/2)

|v|κ dx

)1/κ

≤ C[µ0R
2 + ζ(R)R],

and the triangle inequality gives(
R−n

∫
B(R/2)

|u|κ dx

)1/κ

≤ C(κ)

(R−n

∫
B(R/2)

|v|κ dx

)1/κ

+ ζ(R)R

 .
We complete the proof by combining these last two inequalities. �

Note Lemma 2.1 continues to hold if we only assume that the minimum
in (2.2) is nonnegative; however, our full regularity result will use that the
minimum is zero.

The regularity of the derivatives of u at an arbitrary point follows from
this estimate and Lemma 1.1 by a simple variation of the argument in [4].

Theorem 2.2. Suppose that u, ψ, and F satisfy conditions (2.1)-(2.4) with
ζ a continuous increasing function on [0,diam Ω] satisfying

ζ(t1)
t1

≥ ζ(t2)
t2

if t1 ≤ t2.(2.7)
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Suppose also that there are constants α ∈ (0, 1) and µ1 such that

|F (x, z, p, r)− F (y, w, q, r)| ≤ (µ0 + µ1|r|)λ|x− y|α,(2.8)

and that F is convex or concave with respect to r. Then there is a constant
C determined only by n, α, µ1, Λ/λ, |u|1, |ψ|1, and diam Ω such that

|Du(x1)−Du(x2)| ≤ C

[
ζ(|x1 − x2|) +

(
µ0 +

sup |Du|
d(x1)

)
|x1 − x2|

]
(2.9)

for all x1 and x2 in Ω with |x1 − x2| ≤ 1
4 min{d(x1), d(x2)}.

Proof. Using I to denote the contact set I = {x ∈ Ω : ψ(x) = u(x)}, we
consider three cases:

(i) both points are in I,
(ii) one point is in I,
(iii) neither point is in I.

In all cases, we set ρ = |x1 − x2| and Z = ζ(ρ) + µ0ρ.
In the first case, we use (2.6) twice, first with R = ρ and x0 = x1 and

then with R = 2ρ and x0 = x2 to infer that(
ρ−n

∫
B(x1,ρ)

|u(x)− ψ(xi)− Y (xi) · (x− xi)|κ dx

)1/κ

≤ CZρ

for i = 1, 2 because B(x1, ρ) ⊂ B(x2, 2ρ) ⊂ Ω. Next, we use the observation
that

ψ(x1)− ψ(x2)− Y (x2) · (x1 − x2) + [Y (x1)− Y (x2)] · (x− x1)

= [u(x)− ψ(x1)− Y (x1) · (x− x1)]− [u(x)− ψ(x2)− Y (x2) · (x− x2)]

along with the triangle inequality to infer that(
ρ−n

∫
B(x1,ρ)

|ψ(x1)− ψ(x2)− Y (x2) · (x1 − x2)

+ V · (x− x1)|κ dx
)1/κ

≤ CZρ,

where V = Y (x1)− Y (x2). In addition, (2.1) implies that

ψ(x1)− ψ(x2)− Y (x2) · (x1 − x2) + V · (x− x1) ≥ V · (x− x1)− ζ(ρ)ρ

in B(ρ). We therefore infer that(
ρ−n

∫
B(x1,ρ)

(
[V · (x− x1)]+

)κ
dx

)1/κ

≤ CZρ,
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and this inequality easily gives |V | ≤ CZ. It follows that

(2.10) |u(x1)− u(x2)− Y (x2) · (x1 − x2)|
≤ C[ζ(|x1 − x2|) + µ0|x1 − x2|]|x1 − x2|

for any x1 and x2 in I, so u is differentiable in the interior of I with Du = Y
there.

In the second case, we may assume without loss of generality that x1 ∈ I,
and we write ξ2 for the closest point to x2 in I. Note that u is a solution of
the equation F (x, u,Du,D2u) = 0 in Σ0 = B(x2, |x2 − ξ2|), so (1.1) holds
with Σ any subset of Σ0. (This estimate is proved in [28], but the precise
form used here does not appear in that reference; see [19, Theorem 14.7] for
a proof of the corresponding parabolic estimate.) If x is on the line segment
between x2 and ξ2, it follows from (1.3) with R = 2|x − ξ2| (applied to u
defined with ξ2 in place of x0) that

|Du(x)| ≤ C[R−1−(n/κ)‖u‖κ + µ0R
1+α]

and hence

|Y (ξ2)−Du(x2)| ≤ C|x2 − ξ2| ≤ CZ.

Since |x1−ξ2| ≤ 2ρ, it follows from Case (i) that |Y (x1)−Y (ξ2)| ≤ CZ, and
hence (2.10) holds if x1 ∈ I and x2 /∈ I. Therefore u is also differentiable
on ∂I with Du = Y there. Now that we know Du = Y on I, our estimates
imply (2.9) for x1 ∈ I and x2 ∈ Ω.

In the third case, we set d∗(x) = dist(x, I) and m0 = min{d∗(x1), d∗(x2)},
and we consider three possibilities. If 2ρ ≥ m0, then, with ξi denoting the
closest point to xi in I, we have

|Du(x1)−Du(x2)| ≤ |Du(x1)−Du(ξ1)|
+ |Du(ξ1)−Du(ξ2)|+ |Du(ξ2)−Du(x2)|,

and the three terms on the right-hand side of this inequality are estimated
either by Case (i) or Case (ii) along with the observation that

|x1 − ξ1| ≤ Cρ, |ξ1 − ξ2| ≤ Cρ, |x2 − ξ2| ≤ Cρ.

If 2ρ < m0 and d(x1) ≤ m0, then we can use Lemma 1.1 as in Case (ii) and
(2.7) to infer that

|D2u| ≤ C

[
ζ(m0)
m0

+ µ0m
α
0

]
≤ C

[
ζ(ρ)
ρ

+ µ0

]
on the line segment joining x1 and x2. An easy integration of this inequality
yields (2.9) in this case as well. Finally, if 2ρ < m0 and d(x1) > m0, then
(1.3) with κ = ∞ gives the desired result. �
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Note that the hypothesis (2.7) really involves no loss of generality. Specif-
ically if ζ is a continuous, increasing function, then the function ζ1, defined
by

ζ1(t) = t sup
s≥t

ζ(s)
s
,

satisfies (2.7) and ζ1 ≥ ζ, so (2.1) holds with ζ1 in place of ζ. In addition ζ1 is
clearly continuous. To see that ζ1 is increasing, we let t1 < t2 and choose si

so that ζ1(ti) = (ti/si)ζ(si). If ζ(s1) = ζ(s2), then ζ1(t1)/ζ1(t2) = t1/t2 < 1.
If ζ(s1) < ζ(s2), then s1 < t2, so ζ1(t1) = (t1/s1)ζ(s1) ≤ (t1/s1)ζ(t2) ≤
ζ(t2) ≤ ζ1(t2). Moreover, if ζ(0) = 0, then ζ1(t) → 0 as t → 0, as we see
by considering two cases. If ζ(s)/s is bounded as s → 0, say by S, then
ζ1(t) ≤ St → 0. If ζ(s)/s is unbounded as s → 0, let (sj) be a sequence
tending to zero with ζ(sj)/sj ≥ j and ζ(sj)/sj ≥ ζ(s)/s if s ≥ sj . Then
ζ1(sj) = ζ(sj) so ζ1(sj) → 0, and then ζ(t) → 0 as t → 0 because ζ1 is
increasing. In addition, we note (see [24, Section 3.5] for details) that the
modulus of continuity for a function defined on an open set satisfies (2.7).

Condition (2.8) can be weakened, say to

|F (x, z, p, r)− F (y, w, q, r)| ≤ (µ0 + µ1|r|)λ|x− y|α + µ′0λ|p− q|α,

since this condition is only used to infer the appropriate form of the Hölder
for second derivatives of solutions of the equation F (x, u,Du,D2u) = 0 (see
[28]). In particular, our results apply to the operator F defined by (0.3a)
if we assume uniform Hölder estimates on the functions aij

k , bik, ck, and fk

along with a uniform lower bound on the minimum eigenvalue of [aij
k ]; this

structure was considered in [23]. Moreover, we can infer condition (2.8)
for more general classes of fully nonlinear, uniformly elliptic operators F
once we have a Hölder gradient estimate for u. Such an estimate follows by
virtue of the following variant of Theorem 2.2, which is also important for
our study of oblique derivative problems.

Theorem 2.3. Suppose u, ψ, and F satisfy conditions (2.1)-(2.4) with ζ
a continuous, increasing function on [0,diam Ω]. Suppose also that F is
concave or convex with respect to r. Suppose finally that there are a positive
constant ν1 and a continuous, increasing function ζ1 with ζ1(0) = 0 such
that

|F (x, z, p, r)− F (y, w, q, r)| ≤ µ0λ+ λ(ν1|p− q|+ ζ1(|x− y|))|r|.(2.11)

Then there are positive constants α(n,Λ/λ, ν1) and C(n, ζ1,Λ/λ, ν1,diam Ω)
such that

ζ(t1)
tα1

≥ ζ(t2)
tα2

for t1 ≤ t2(2.12)
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implies

|Du(x1)−Du(x2)| ≤ C

[
ζ(|x1 − x2|) +

(
µ0 +

sup |Du|
d(x1)α

)
|x1 − x2|α

](2.13)

for all x1 and x2 in Ω with |x1 − x2| ≤ 1
4 min{d(x1), d(x2)}.

Proof. We basically follow the proof of Theorem 2.2. The main notational
change is that we set Z = ζ(ρ) + µ0ρ

α. From the argument in [19, Lemma
12.13] (see also [3, Theorem 2] and [32]), we infer that

[Du]α;B(R) ≤ C[R−α|Du|0;B(2R) + µ0]

if B(2R) ⊂ Ω and F (x, u,Du,D2u) = 0 in B(2R). The proof is completed
by using this inequality in the obvious modification of Lemma 1.1. �

Note that if ζ satisfies (2.7), then ζ2 defined by ζ2(t) = (sup ζ)1−α(ζ(t))α

satisfies (2.12), so Theorem 2.3 also does not restrict our choice of obstacles.
Condition (2.11) is certainly satisfied for quasilinear operators, that is,

F (x, z, p, r) = aij(x, z, p)rij + a(x, z, p) provided [aij ] is elliptic, continuous
with respect to x and z, and Lipschitz with respect to p. In particular (after
using the gradient bound from [12]), this result applies when F is given by
(0.2a). Moreover, we can remove the hypothesis that F be either concave or
convex with respect to r in Theorem 2.3 by considering viscosity solutions as
in [3, 32] and suitably modifying the arguments. Finally, as noted before,
we can replace condition (2.11) by any condition which yields the Hölder
gradient estimate

osc
B(x0,r)

Du ≤ C

[( r
R

)α
osc

B(x0,R)
Du+ µ0r

α

]
.

See [5] for an alternative structure condition which provides such an esti-
mate.

3. Estimates for the oblique derivative problem.

To prove a modulus of continuity estimate for the gradient up to the bound-
ary for the oblique derivative problem, we use a slight variation of the ideas
in the proof of Theorem 2.2. We begin with a preliminary estimate which
is related to the boundary condition in which we write v′ for the first n− 1
components of the vector v. The connection of this lemma to our original
problem will be made clear in Theorem 3.2.

Lemma 3.1. Let ω0, ω1, and r be positive constants with ω0 > ω1, and
define

K = {xn ≥ ω0|x′|, |x| ≤ r}, E = {xn ≥ ω1|x′|, r/4 < |x| ≤ r}.(3.1)
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Let ψ be a Lipschitz function defined in K and suppose that there are positive
constants z and κ along with a vector-valued function Y such that

ψ(x) ≥ ψ(x1) + Y (x1) · (x− x1)− z(3.2)

for all x and x1 in K and(∫
E
|ψ|κ dx

)1/κ

≤ zrn/κ.(3.3)

Suppose also that there is a Lipschitz function g defined on Rn with∣∣∣∣ ∂g∂p′
∣∣∣∣ ≤ µ2χ0,(3.4a)

∂g

∂pn
≥ χ0(3.4b)

for some positive constants χ0 and µ2 with µ2ω1 < 1. Then

g(0) ≥ g(Y (0))− C(n, κ, ω0, ω1, µ2)χ0z/r.(3.5)

Proof. The first step is to prove a pointwise upper bound for ψ in

E′ = {xn ≥ |x′|/µ2, 3r/8 ≤ |x| ≤ 3r/4}.

To prove this estimate, let x1 be a point in E′ at which the maximum of ψ
is attained and suppose that ψ(x1) > 2z. Then(∫

B(x1,ρ)
|ψ|κ dx

)1/κ

≤
(∫

E
|ψ|κ dx

)1/κ

≤ zrn/κ(3.6)

for any ρ such that B(x1, ρ) ⊂ E. In particular, we can take ρ = C(ω1, µ2)r.
With this choice for ρ, we set

E+ = {x ∈ B(x1, ρ) : Y (x1) · (x− x1) ≥ 0},

and note that |E+| ≥ 1
2 |B(x1, ρ)| ≥ Crn. In addition, for x ∈ E+, we have

ψ(x) ≥ ψ(x1) + Y (x1) · (x− x1)− z ≥ ψ(x1)− z,

and therefore(∫
B(x1,ρ)

|ψ(x)|κ dx

)1/κ

≥
(∫

E+

ψ(x)κ dx

)1/κ

≥ (|E+|(ψ(x1)− z)κ)1/κ

≥ C[ψ(x1)− z]rn/κ.

In conjunction with (3.6), this inequality implies that ψ ≤ Cz on E′.
Next, we note that there is a point x2 with |x2| ∈ (7r/16, 9r/16) and

xn
2 > 2µ2|x′2| such that ψ(x2) ≥ −Cz. In addition, if Y (x2) 6= 0, then
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there is a positive constant c2 such that x3 = x2 + c2rY (x2)/|Y (x2)| ∈ E′.
Therefore

Cz ≥ ψ(x3) ≥ ψ(x2) + Y (x2) · (x3 − x2)− z = ψ(x2)− c2r|Y (x2)| − z.

It follows that |Y (x2)| ≤ Cz/r and hence

ψ(x) ≥ ψ(x2) + Y (x2) · (x− x2)− z ≥ −Cz(3.7)

for any x ∈ K.
To continue, we define ξ to be the unit vector in the direction of∫ 1

0
gp(tY (0)) dt,

so

g(Y (0))− g(0) =
∫ 1

0
gp(tY (0)) · Y (0) dt ≤ Cχ0ξ · Y (0).

Now set ρ = r/(2ξn). It is easy to see that r/2 ≤ ρ ≤ Cr, In addition, we
infer from our estimate ψ ≤ Cz on E′ along with (3.2) and (3.7) that

Cz ≥ ψ(ρξ) ≥ ψ(0) + Y (0) · (ρξ)− z ≥ −Cz + ρY (0) · ξ.

It follows that Y (0) · ξ ≤ Cz/r, which yields (3.5). �

To state our gradient estimate for the oblique derivative problem, we use
Γ′2 to denote the set of all (x, z, p) ∈ Γ′ with |z| + |p| ≤ max{|u|1, Ψ1}.
Because of the way that a Hölder gradient estimate is used to prove second
derivative estimates for the oblique derivative problem without an obstacle,
we first prove our estimate in a situation analogous to that in Theorem 2.3.

Theorem 3.2. Let u ∈ W 2,n
loc ∩ C

1(Ω) solve (0.1) with ∂Ω ∈ C1,α for some
α ∈ (0, 1) and F either convex or concave with respect to r. Suppose that
there are positive constants λ, Λ, µ0, and ν1 along with a continuous, in-
creasing function ζ1 with ζ1(0) = 0 such that conditions (2.3), (2.4), and
(2.11) hold. Suppose also that there are positive constants χ0, µ2, and µ3

such that

Gp(x, z, p) · γ(x) ≥ χ0,(3.8a)

|Gp(x, z, p) · τ(x)| ≤ µ2χ0,(3.8b)

|G(x, z, p)−G(y, w, p)| ≤ µ0χ0(|x− y|+ |z − w|)α(3.8c)

for all (x, z, p) and (y, w, p) in Γ′2 and any vector field τ(x) with τ · γ =
0. Suppose further that there is a continuous increasing function ζ on
[0,diam Ω] satisfying (2.12) such that ψ satisfies (2.1) and

G(x, ψ, Y ) ≥ 0(3.9)
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for all x ∈ ∂Ω. Then there are constants α0(n, µ2, ν1,Λ/λ) and C deter-
mined only by n, α, Λ/λ, µ2, Ψ1, ζ1, and Ω such that α ≤ α0 implies

|Du(x1)−Du(x2)| ≤ C[ζ(|x1 − x2|) + (µ0 + sup |Du|)|x1 − x2|α](3.10)

for all x1 and x2 in Ω.

Proof. We imitate the proof of Theorem 2.2. First, we show (as in Lem-
ma 2.1) that, if x0 ∈ Ω is a point at which u(x0) = ψ(x0) and if u is defined
by (2.5), then(

R−n

∫
B(x0,R/2)∩Ω

|u|κ dx

)1/κ

≤ C[(µ0 + µ2)R1+α + ζ(R)R](3.11)

for any sufficiently small R (that is, R is smaller than a constant deter-
mined only by µ2 and Ω). If d(x0) ≥ R, then this inequality is just (2.6). If
d(x0) < R, then we first prove an estimate for G(x, u(x), Y (x0)) by appro-
priate application of Lemma 3.1.

Let x∗ be a closest point to x0 in ∂Ω. By rotation and translation, we may
assume that x∗ is the origin and that x0 is on the positive xn-axis. Then
K ⊂ Ω provided ω0 > 1/µ2 and R is sufficiently small (determined only by Ω
and µ2), and g(p) = G(x∗, ψ(x∗), p+ Y (x0)) satisfies (3.4). Next, we define
ψ by ψ(x) = ψ(x)−ψ(x0)−Y (x0) ·(x−x0) and we set Y (x) = Y (x)−Y (x0).
For z = C[µ0R

α + ζ(R)]R and r = 2d(x0), we have (3.2) directly from (2.1)
because r ≤ R. Now, we note that using a chaining argument in the proof
of [10, Theorem 9.22] allows us to replace B(x0, R/2) by E and R by r in
the proof of (2.6). Thus, we obtain(

r−n

∫
E
|u|κ dx

)1/κ

≤ Cz,

which yields (3.3) because u ≥ ψ ≥ −Cζ(r)r in E. It then follows from
Lemma 3.1 that

G(x∗, ψ(x∗), Y (x0)) = g(0) ≥ −Cz
because g(Y (0)) = G(x∗, u(x∗), Y (x∗)) ≥ 0. For x ∈ B(x0, R)∩∂Ω, we have

|ψ(x∗)− u(x)| ≤ |ψ(x∗)− ψ(x0)|+ |u(x)− u(x0)| ≤ (Ψ1 + |Du|0)|R,
and therefore

G(x, u(x), Y (x0)) ≥ −µ0χ0(Ψ1 + |Du|0 + 1)αRα − Cχ0z ≥ −Cz/R.
It follows that

β ·Du ≤ Cχ0[ζ(R) + µ0R
α]

on B(x0, R) ∩ ∂Ω for

β(x) =
∫ 1

0
Gp(x, u, tDu+ (1− t)Y (x0)) dt.
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We then infer (3.11) by arguing as in Lemma 2.1 but with [20, Theorem
4.2] in place of [10, Lemma 9.22].

To prove the modulus of continuity estimate for Du, we consider the
three cases from Theorem 2.2 with Z = ζ(ρ) + µ0ρ

α. In addition, we set
Ω[y,R] = B(y,R) ∩ Ω. In Case (i), we note that there is a cone Q with
height ρ, opening angle θ (determined only by Ω), and vertex 0 such that
xi +Q ⊂ Ω[xi, ρ] for i = 1, 2. It follows that(

ρ−n

∫
Ω[x1,ρ]

(
[V · (x− x1)]+

)κ
dx

)1/κ

≤ CZρ,

and similar reasoning gives(
ρ−n

∫
Ω[x2,ρ]

(
[V · (x− x2)]−

)κ
dx

)1/κ

≤ CZρ.

Combining these two estimates gives(
ρ−n

∫
Q
|V · x|κ dx

)1/κ

≤ CZρ,

which again implies |V | ≤ CZ. For Cases (ii) and (iii), we proceed as in
Theorem 2.3 with [19, Lemma 13.22] in place of [19, Lemma 12.13] to prove
(3.10). �

The remarks from Section 2 show that this result applies to the examples
from [1, 2, 12, 16, 23]. The function G given by (0.2b) satisfies conditions
(3.8) by virtue of the gradient bound in [12] and G from (0.3b) clearly
satisfies these conditions if β, b and g are Hölder continuous. Moreover, if
(ψα)α∈I is a family of C1 functions which satisfy conditions (2.1) and (3.9)
with Y = Dψα(x), then it is immediate that there is a vector field Y such
that ψ = supα∈I ψα satisfies these conditions.

We note that this result is a purely local one. Hence if the hypotheses of
the theorem are satisfied only in a neighborhood N of some point x∗, then
we obtain a modulus of continuity estimate for the first derivatives of u in
N ′ ∩ Ω for any compact subset N ′ of N . The corresponding local result
was proved by B. Huisken [11] although she only considered quasilinear
equations and her hypotheses are stronger than ours.

In addition, we have the following result which corresponds to Theo-
rem 2.2.

Theorem 3.3. Let u ∈ W 2,n
loc ∩ C

1(Ω) solve (0.1) with ∂Ω ∈ C1,α for some
α > 0. Suppose that there are positive constants λ, λ1, Λ, µ0, and µ1 such
that conditions (2.1), (2.3), (2.4), (2.7), (2.8), (3.8) are satisfied. Suppose
also that G ∈ C1,α(Γ′2) and that ζ(t) ≤ z0t

α for some z0. Then there is
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a constant C determined only by n, z0, α, Λ/λ, µ0, µ1, µ2, µ3, Ψ1, ζ1,
sup |Du|, |G|1,α, and Ω such that

|Du(x1)−Du(x2)| ≤ C(ζ(|x1 − x2|) + |x1 − x2|).(3.12)

Proof. We observe that our hypotheses imply a Hölder estimate for Du.
With this estimate, we can follow the proof of Theorem 2.2 with [29] (as
modified in [19, Theorem 14.22] to deal with nonlinear boundary conditions;
this step uses the Hölder gradient estimate) in place of [28]. �

In particular, if ζ(t) = t, Theorem 3.3 gives a bound on the second deriva-
tives of u.

4. The double obstacle problem.

The crucial new element in our study of double obstacle problems is a
Harnack-type inequality for the difference between the upper obstacle and
the lower obstacle. The basic ideas for this inequality were used in Lemma 3.1,
but, here, we shall use some precise information on how fast the ratio of the
maximum of the difference to its minimum goes to one on a ball of shrinking
radius, provided the obstacles are defined in a ball of fixed radius. Specifi-
cally, we have the following result.

Lemma 4.1. Suppose ψ1 and ψ2 are two functions defined in B(x0, r) with
ψ1 ≤ ψ2 and that there are two vector fields Y1 and Y2 such that

ψ1(x1) ≥ ψ1(x2) + Y1(x2) · (x1 − x2)− ζ(|x1 − x2|)|x1 − x2|,(4.1a)

ψ2(x1) ≤ ψ2(x2) + Y2(x2) · (x1 − x2) + ζ(|x1 − x2|)|x1 − x2|(4.1b)

for all x1 and x2 in B(x0, r). Then for any ε ∈ (0, 1), we have

sup
B(x0,εr)

(ψ2 − ψ1) ≤
1 + ε

1− ε
inf

B(x0,εr)
(ψ2 − ψ1) + 4ε(ζ(2εr) + ζ(r))r.(4.2)

Proof. Set ψ = ψ2 − ψ1 and I = infB(x0,εr) ψ. Then choose x2 so that
|x0 − x2| ≤ εr and ψ(x2) = I. Our first step is to show that

|Y (x2)| ≤
I

(1− ε)r
+ 2ζ(r),(4.3)

so let us assume that Y (x2) 6= 0 and set ξ = Y (x2)/|Y (x2)|. Then for
R < (1− ε)r, we have that x2 −Rξ ∈ B(x0, r), so (4.1) implies that

ψ(x2 −Rε) ≤ ψ(x2)− Y (x2) · (Rξ) + 2ζ(R)R

= I −R|Y (x2)|+ 2ζ(R)R.

We infer (4.3) from this inequality by sending R→ (1− ε)r and noting that
ψ(x2 −Rξ) ≥ 0.
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Now let x ∈ B(x0, εr) and use (4.1) to infer that

ψ(x) ≤ ψ(x2) + Y (x2) · (x− x2) + 2(|x− x2|)|x− x2|
≤ I + 2εr|Y (x2)|+ 4ζ(2εr)εr.

Simple algebra then completes the proof. �

We also shall use the following simple variant of (4.2).

Corollary 4.2. In addition to the hypotheses of Lemma 4.1, suppose that
ψ1(x0) = 0 and Y1(x0) = 0. Then

sup
B(x0,εr)

ψ2 ≤
1 + ε

1− ε
inf

B(x0,εr)
ψ+

2 +
4ε

1− ε
(ζ(2εr) + ζ(r))r.(4.4)

If also ψ2 ≥ 0 on B(x0, εr), then

sup
B(x0,εr)

ψ1 ≤
4ε

1− ε2
inf

B(x0,εr)
ψ2 +

6ε
1− ε2

(ζ(2εr) + ζ(r))r.(4.5)

Proof. Because ψ2 ≥ −ζ(r)r, we can follow the proof of Lemma 4.1 with ψ
replaced by ψ2 + ζ(r)r to infer that

sup
B(x0,εr)

(ψ2 + ζ(r)r) ≤ 1 + ε

1− ε
inf

B(x0,εr)
(ψ2 + ζ(r)r) + 2ε(ζ(2εr) + ζ(r))r

≤ 1 + ε

1− ε
inf

B(x0,εr)
(ψ+

2 + ζ(r)r) + 2ε(ζ(2εr) + ζ(r))r,

so

sup
B(x0,εr)

ψ2 ≤
1 + ε

1− ε
inf

B(x0,εr)
ψ+

2 +
(

1 + ε

1− ε
− 1
)
ζ(r)r + 2ε(ζ(2εr) + ζ(r))r.

Since (1+ ε)/(1− ε)−1 = 2ε/(1− ε) and 1 < 1/(1− ε), this inequality gives
(4.4).

Next, we set ψ = ψ2 − ψ1, I = infB(x0,εr) ψ and I2 = infB(x0,εr) ψ2 to see
that

I2 ≤ ψ2(x0) = ψ(x0) ≤ sup
B(x0,εr)

ψ ≤ 1 + ε

1− ε
I + 4ε(ζ(2εr) + ζ(r))r

and hence

sup
B(x0,εr)

ψ1 ≤ sup
B(x0,εr)

ψ2 − I

≤
(

1 + ε

1− ε
− 1− ε

1 + ε

)
I2 +

(
4ε

1 + ε
+

2ε
1− ε

)
(ζ(2εr) + ζ(r))r.

The desired inequality follows from this one by simple algebra. �
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These lemmata allow us to imitate the argument in [18, Lemma 1.1] to
prove an analog of Lemma 2.1 when u is a solution of the double obstacle
problem:

ψ1 ≤ u ≤ ψ2 in Ω,(4.6a)

min{−F (x, u,Du,D2u), u− ψ1} = 0 if u < ψ2,(4.6b)

min{F (x, u,Du,D2u), ψ2 − u} = 0 if u > ψ1.(4.6c)

Lemma 4.3. Suppose u, ψ1, and ψ2 are as above, and suppose that there
are positive constants λ, Λ, and µ0 such that conditions (2.3), (2.4b), and

|F (x, u,Du, 0)| ≤ µ0λ(4.7)

are satisfied. If x0 is a point such that u(x0) = ψ1(x0), then there are
positive constants C, δ, and κ determined only by n and Λ/λ such that u,
defined by

u(x) = u(x)− u(x0)− Y1(x0) · (x− x0),(4.8)

satisfies the estimate(
R−n

∫
B(x0,δR)

|u|κ dx

)1/κ

≤ C[µ0R
2 + ζ(R)R](4.9)

for all R ≤ d(x0).

Proof. We first note that the hypotheses of this lemma are unchanged if we
subtract the same linear function from u, ψ1 and ψ2, so we may assume
that ψ1(x0) = 0 and Y1(x0) = 0. Then, for ε ∈ (0, 1) to be chosen, we set
I2 = infB(x0,εR) ψ2.

If I2 ≤ 12ζ(R)R+µ0R
2, then (4.4) implies that ψ2 ≤ C(ε)[µ0R

2+ζ(R)R]
in B(x0, εR), and (4.9) follows for any δ ≤ ε.

On the other hand, if I2 > 12ζ(R)R+ µ0R
2, we set

M = (1− ε)I2,

M1 =
5ε

1− ε2
I2 + 2ζ(R)R,

U = min{u,M}+M1,

and we note that U ≥ 0. Now, for η > 0, define fη by

fη(t) = (max{t, 0}3 + η3)1/3 − η,

and set

Uη = M +M1 − fη(M − u).

Then Uη → U uniformly as η → 0 and Uη ≥ 0 in B(x0, εR). Moreover,
because aijDiju ≤ λµ0 wherever u ≤M and fη is C2 with f ′′η ≥ 0, it follows
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that aijDijUη ≤ λµ0. It follows from the weak Harnack inequality [10,
Theorem 9.22] that(

(εR)−n

∫
B(x0,εR/2)

|Uη|κ dx

)1/κ

≤ C1

[
inf

B(εR/2)
Uη + µ0(εR)2 + ζ(εR)(εR)

]
for some C1(n,Λ/λ) and κ(n,Λ/λ). Sending η → 0, we infer that(

(εR/2)−n

∫
B(x0,εR/2)

|U |κ dx

)1/κ

≤ C1[M1 + εµ0R
2 + εζ(R)R](4.10)

because U(x0) = M1.
Next, we set M2 = supB(x0,εR) ψ1 + ζ(R)R and V = max{u,M2}. By a

similar approximation argument, we infer from the local maximum principle
[10, Theorem 9.20] that there is a constant C2(n,Λ/λ) so that

sup
B(x0,εR/4)

V

≤ C2

((εR
2

)−n ∫
B(x0,εR/2)

V κ dx

)1/κ

+ µ0(εR)2 + ζ(εR)εR

 .
Now we note that u ≤ U (because M1 ≥ 0 and M +M1 ≥ supB(x0,εR) ψ2)
and M2 ≤M1 − ζ(R)R (because M2 ≤ 5I2ε/(1− ε2)), so U2 ≤ U1 provided
ε ≤ 1/2. It follows that

sup
B(x0,εR/4)

u ≤ C2(C1[M1 + µ0εR
2 + εζ(R)R] + µ0εR

2 + εζ(R)R)

≤ C1C2
2ε

1− ε
ψ2(x2) +

(
5C1

1− ε2
+ C1 + 1

)
C2εI2.

By taking ε sufficiently small, we conclude that u < ψ2 on B(x0, εR/4).
Therefore, u+ ζ(R)R is a positive supersolution on B(x0, εR/4) and we can
use the weak Harnack inequality directly to infer (4.9) with δ = ε/8. �

Note that the arguments of Lemmata 3.1 and 4.3 can be combined to
prove pointwise decay of u near a contact point. Specifically, suppose u
satisfies (2.2) with F satisfying (2.3), (2.4b), and (4.7). If u(x0) = ψ(x0),
then (2.6) and the proof of ψ ≤ Cz in E′ (from Lemma 3.1) give a constant
c1 such that ψ ≤ c1[ζ(R) + µ0R]R in B(R). The local maximum principle
applied to max{u, (1+c1)[ζ(R)+µ0R]R} then yields u ≤ C[ζ(R)+µ0R]R in
B(R/4). With this pointwise estimate in hand, we can imitate the proof of
[4, Theorem 2.3] to obtain a modulus of continuity estimate for solutions of
obstacle problems with linear equations when ζ does not necessarily satisfy
condition (2.7).
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For our purposes, the next important step is to obtain a modulus of
continuity for Du.

Theorem 4.4. Suppose that u, ψ1, ψ2, and F satisfy conditions (4.6),
(4.7), (2.3), and (2.4b) with ζ a continuous increasing function on [0,
diam Ω]. Suppose also that there are constants α, ν0 and ν1 along with a
continuous increasing function ζ1 with ζ1(0) = 0 such that conditions (2.11)
and (2.12) hold. If F is convex or concave with respect to r, then there
are constants α0(n,Λ/λ, ν1) and C determined only by n, α, ν1, Λ/λ, |u|1,
and diam Ω such that α ≤ α0 implies (3.12) for all x1 and x2 in Ω with
|x1 − x2| ≤ 1

4 min{d(x1), d(x2)}.

Of course, the double obstacle analog of Theorem 2.2 holds with α = 1 if
condition (2.11) is replaced by (2.8).

We can use the same ideas for oblique derivative problems, but the proofs
are more complicated. In place of Lemma 4.1, we have a similar, but more
subtle, inequality. To state our results more simply, we let ω be a C1 function
in some (n− 1)-dimensional ball B(0, R) with R > 0 and ω(0) = 0, and we
set ω0 = sup |Dω|. We also define

K[r] = {x ∈ Rn : xn < r − (ω0 + 1)|x′|, xn > ω(x′)},
Σ[r] = {x ∈ Rn : xn < r − (ω0 + 1)|x′|, xn = ω(x′)}

for r ∈ (0, R), where here and below we abbreviate x′ = (x1, . . . , xn−1).

Lemma 4.5. Let ψ1 and ψ2 be two functions defined in K[r]∪Σ[r] for some
r ∈ (0, R) with ψ1 ≤ ψ2 there. Suppose that there are vector fields Y1 and
Y2 such that conditions (4.1) hold for all x1 and x2 in K[r]∪Σ[r]. Suppose
also that there are positive constants α ≤ 1, µ3 < 1/ω0, µ3, and χ0 along
with a function G such that∣∣∣∣∂G∂p′ (x, z, p)

∣∣∣∣ ≤ µ3χ0,(4.11a)

Gn(x, z, p) ≥ χ0,(4.11b)

|G(x, z, p)−G(x,w, p)| ≤ µ0χ0|w − z|α(4.11c)

for any (x, z, p) ∈ Σ[r]× R× Rn and any w ∈ R, and set

g0 =
1
χ0

inf
K[ηr]

(G(x, ψ2(x), Y2(x))−G(x, ψ1(x), Y1(x)))+.(4.12)

Then, for any ε ∈ (0, 1), there is a constant η(ε, µ3, ω0) such that

sup
K[ηr]

(ψ2 − ψ1) ≤ (1 + ε) inf
K[ηr]

(ψ2 − ψ1) + 3εζ(r)r + C1εr
2/(2−α) + εg0r

(4.13)

for C1 = 3(µ0 sup[ψ2 − ψ1]α/2)2/(2−α).
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Proof. To simplify the notation, we shall set ψ = ψ2−ψ1, Y = Y2−Y1, and
K = K[ηr]. In addition, we write I for the infimum of ψ over K and we
let x2 be a point in the closure of K at which ψ(x2) = I. We now consider
several cases.

Suppose first that x2 ∈ Σ[r]. Then we infer from (4.11) and (4.12) that

g0χ0 ≥ −µ0χ0|ψ(x2)|α + v · Y (x2)(4.14)

for some vector v with |v′| ≤ µ3v
n and vn ≥ χ0. Now we set ξ = v/|v| and

we set

x1 = x2 +
ε

8
rξ, x3 = x2 +

1
2
rξ.

If η < 1/2, it follows that x1 and x3 are in Ω[r]. Setting I1 = ψ(x1), we see
that

I1 ≤ I + Y (x2) · (x1 − x2) +
ε

8
ζ(r)r = I +

εr

8
Y (x2) · ξ +

ε

8
ζ(r)r

≤ I +
µ0ε

8
Iαr +

ε

8
ζ(r)r +

ε

8
g0r

≤
(
1 +

ε

2

)
I +

C1

3
εr2/(2−α) +

ε

8
ζ(r)r +

ε

8
g0r

by virtue of (4.14) and Young’s inequality. Now we obtain two estimates for
Y (x1). First, there is a constant k(ω0, µ3) such that B(x1, kεr) ⊂ K[r] and
then the proof of (4.3) with ε = 1/2 shows that

|Y (x1)| ≤
2I1
kεr

+ 4ζ(r) ≤ 3
2εkr

I +
2C1

3k
rα/(2−α) +

(
2
k

+ 4
)
ζ(r) +

g0
4k
.

Moreover,

0 ≤ ψ(x3) ≤ I1 +
(

1
2
− ε

8

)
rY (x1) · ξ + ζ(r)r

because x3 − x1 = (1/2− ε/8)rξ and hence

−rY (x1) · ξ ≤
1 + ε/2

1/2− ε/8
I + 8ζ(r)r +

4
3
C1εr

2/(2−α) +
ε

2
g0r.

Now we note that, for any x ∈ K, we have |x| < 2ηr, and hence

ψ(x) ≤ ψ(x1) + Y (x1) · (x− x1) + 4ηζ(4ηr)r.
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To analyze the right hand side of this inequality, we first observe that x −
x1 = (x− x2) + (x2 − x1) and that |x− x2| ≤ 4ηr. It follows that

Y (x1) · (x− x1)

≤ −ε
8
rY (x1) · ξ + 4ηr|Y (x1)|

≤
(

(1 + ε/2)
ε/8

1/2− ε/8
+

6η
2εk

)
I +

((
2
k

+ 4
)

2η + ε

)
ζ(r)r

+ C1

(
ε2

3
+

8η
3k

)
r2/(2−α) +

(
ε

2
+

2η
2k

)
g0r,

and

ψ(x) ≤
(

(1 + ε/2)
1/2

1/2− ε/8
+

6η
kε

)
I +

C1

3

(
2ε+

8η
k

)
r2/(2−α)

+
(

2ε+
(

2
k

+ 6
)

2η
)
ζ(r)r +

(
ε

2
+

2η
2k

)
g0r

provided 4η ≤ 1. By simple calculation, (1+ε/2)(1/2)/((1/2)−ε/8) < 1+ε,
so we can take η sufficiently small to infer (4.13) in this case.

If x2 /∈ Σ[r], then Y n(x2) ≥ 0 and we can imitate the calculations of the
preceding case with ξ = (0, . . . , 0, 1), to see that

ψ(x) ≤
(

1/2
1/2− ε/8

+
4η
kε

)
I +

[(
1
2k

+ 8
)

2η +
(

5/8
1/2− ε/8

+ 1
)
ε

]
ζ(r)r,

which implies (4.13) if η is sufficiently small. �

Our next step is to prove a corresponding estimate for our general geo-
metric situation.

Lemma 4.6. Let ψ1 and ψ2 be two functions defined in Ω with ψ1 ≤ ψ2.
Suppose conditions (4.1) and (3.8) are satisfied. Let x0 ∈ Ω and set

g1(r) =
1
χ0

sup
∂Ω[r]

(G(x, ψ2(x), Y2(x))−G(x, ψ1(x), Y1(x)))+.(4.15)

If ∂Ω ∈ C1, then for any ε > 0, there are constants R(µ2,Ω), δ(ε, µ2,Ω)
and C(µ2, µ0, α, sup(ψ2 − ψ1)) such that

sup
Ω[δr]

(ψ2 − ψ1) ≤ (1 + ε) inf
Ω[δr]

(ψ2 − ψ1) + Cε[ζ(r)r + r2/(2−α)] + εg1(r)r
(4.16)

for any x0 ∈ Ω and r ∈ (0, R).

Proof. Let x1 be a closest point to x0 in ∂Ω, which we can take to be
the origin, and rotate axes so that x′0 = 0 and xn

0 > 0. Then there is a
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constant R1 determined only by µ2 and Ω so that there is a function ω with
µ2 sup |Dω| < 1/2 such that

Ω[R] = {x ∈ Rn : |x− x0| < R, xn > ω(x′)}

and ω(0) = 0 and Dω(0) = 0. By choosing R < R1 sufficiently small, we
can also arrange that |Gn − Gp · γ| ≤ 1

2χ0 and |Dω| < 1/2. It follows that
conditions (4.11a,b) hold with µ3 = 2µ2.

Now take η to be the constant from Lemma 4.5 and note that there is a
constant η1 such that d(x0) ≤ η1r implies that Ω[η1r] ⊂ K[ηr]. Therefore
(4.16) holds in this case with any δ ≤ η1. On the other hand, if d(x0) > η1r,
then Lemma 4.1 (with η1r in place of r) implies (4.16) in this case with
δ = η1ε/3 because (1 + ε/3)/(1 − ε/3) ≤ 1 + ε. Combining this two cases
yields the desired result with δ = η1ε/2. �

As before, we then have the following estimates.

Corollary 4.7. In addition to the hypotheses of Lemma 4.6, suppose that
ψ1(x0) = 0 and Y1(x0) = 0, and set

g2(r) =
1
χ0

sup
∂Ω[r]

(G(x, ψ2(x), Y2(x))−min{G(x, 0, 0), G(x, ψ1(x), Y1(x))})+.

(4.17)

Then

sup
B(x0,δr)

ψ2 ≤ (1 + ε) inf
Ω[δr]

ψ+
2 + Cε[ζ(r) + rα/(2−α) + g2(r) + (ζ(r)r)α]r.

(4.18)

If also ψ2 ≥ 0 in Ω[δr], then

sup
B(x0,δr)

ψ1 ≤ 2ε inf
Ω[δr]

ψ2 + Cε[ζ(r) + rα/(2−α) + g2(r) + (ζ(r)r)α]r.(4.19)

Proof. We follow the proof of Corollary 4.2, noting that

G(x,−ζ(r)r, 0) ≥ G(x, 0, 0)− µ0(ζ(r)r)α

and that (1 + ε)− 1/(1 + ε) ≤ 2ε. �

The estimate on the modulus of continuity for the gradient of the solution
of the double obstacle problem follows easily.

Theorem 4.8. Let ∂Ω ∈ C1,α for some α ∈ (0, 1), and let ψ1 and ψ2 be
two functions satisfying condition (4.1) in Ω for some continuous increasing
function ζ. Suppose also that ψ1 ≤ ψ2 in Ω. Let u ∈ W 2,n

loc ∩ C
1(Ω) satisfy

(4.6) and G(x, u,Du) = 0 on ∂Ω. Suppose there are constants λ, µ0, µ2,
and ν1, along with a continuous increasing function ζ1 with ζ1(0) = 0 such
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that conditions (2.11), (2.12), (2.3), (2.4b), (4.7), and (3.8) hold. Suppose
finally that

G(x, ψ1(x), Y1(x)) ≥ 0, G(x, ψ2(x), Y2(x)) ≤ 0,(4.20)

for all x ∈ ∂Ω. If F is concave or convex with respect to r, then there are con-
stants α0(n, µ2,Λ/λ, ν1) and C(n, α,Λ/λ, µ1, µ2, |Dψ1|1, |Dψ2|1, ζ1,Ω) such
that if α ≤ α0, then (3.10) holds for all x1 and x2 in Ω.

Proof. We proceed by combining the proof of Theorem 3.2 with that of
Theorem 4.4, taking Corollary 4.7 into account. �

We omit the obvious two-obstacle analog of Theorem 3.3.

5. Variational inequalities.

Our methods also apply to certain types of variational inequalities. In par-
ticular, let H be a convex, C2 function defined on [0,∞) with H(0) = 0 and
suppose that h = H ′ satisfies the conditions

δ ≤ th′(t)
h(t)

≤ g0(5.1)

for some positive constants δ and g0, and all t > 0; we also assume that
H(1) = 1 for simplicity. The model such function is H(t) = tm with m > 1.
Let W 1,H denote the set of all functions v ∈ W 1,1 with H(|Dv|) ∈ L1(Ω),
and write K for a convex subset of W 1,H such that v ≥ ψ for all v ∈ K.
(For example if H(t) = tm, then W 1,H = W 1,m and we can take K to be the
set of all v ∈W 1,m with v ≥ ψ.) We then consider the problem of finding a
function u ∈ K such that∫

Ω
[A(x, u,Du) ·D(u− v)−B(x, u,Du)(u− v)] dx ≤ 0(5.2)

for all v ∈ K, where A is a vector-valued function (for example A(x, z, p) =
h(|p|)p/|p|) and B is a scalar-valued function, which we shall assume to be
bounded. Such problems have a long history for various choices of h provided
A and B satisfy suitable structure conditions; see, for example, [14, Section
III.4], [18], [6], [8], [9], [22], [25], [27]. We note, however, that all of these
works assume that ψ has Hölder continuous gradient when trying to prove
a modulus of continuity estimate for the gradient of u.

We first observe that, when h(t)/t is bounded from above and below by
positive constants and A and B are sufficiently smooth, smooth solutions of
this variational inequality are also solutions of (2.2) with

F (x, z, p, r) =
∂Ai

∂pj
(x, z, p)rij +

∂Ai

∂z
(x, z, p)pi +

∂Ai

∂xi
(x, z, p) +B(x, z, p).
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More generally, we assume that A is differentiable with respect to p and that
there are nonnegative constants α, Λ and Λ1 with α ∈ (0, 1) such that

∂Ai

∂pj
ξiξj ≥

h(|p|)
|p|

|ξ|2,(5.3a)

|Ap| ≤ Λh(|p|)/|p|,(5.3b)

|B| ≤ Λ1,(5.3c)

|A(x, z, p)−A(y, w, p)| ≤ Λ1(|x− y|+ |w − z|)α.(5.3d)

These conditions were studied extensively in [17]. In fact, we have simplified
the conditions there somewhat by assuming a known bound for the gradient
of u.

We begin by proving an estimate like (2.6). As in [18], we first prove the
estimate for a simpler problem.

Lemma 5.1. Let A be a vector valued function defined on Rn and sup-
pose that there are positive constants δ, g0, and Λ along with a function
h such that conditions (5.1) and (5.3a,b) are satisfied. Let u and ψ be in
C0,1(B(x0, r)) for some ball B(x0, r) with u ≥ ψ, and let K be the set of
all v with v − u ∈ W 1,H

0 (B(x0, r)) and v ≥ ψ in B(x0, r). Then there is a
unique solution U of the variational inequality∫

B(x0,r)
A(DU) ·D(U − v) dx ≤ 0 for all v ∈ K,(5.4)

and there are constants C1(n, δ, g0, |Du|0, |Dψ|0,Λ), C2(Λ, n), θ(Λ, n, δ, g0),
and κ(Λ, n) such that

[U ]θ;B(x0,r) ≤ C1r
1−θ(5.5)

and (
r−n

∫
B(x0,r/2)

|U − L|κ dx

)1/κ

≤ C2 inf
B(x0,r/2)

(U − L)(5.6)

for any linear function L such that U − L ≥ 0 in B(x0, r).

Proof. The standard theory of variational inequalities gives the existence
and uniqueness of U . In addition, (5.5) follows from the arguments in [18,
Lemma 1.3].

To prove (5.6), we proceed by approximation. First, we fix α ∈ (0, 1)
and note (from the proof of [17, Lemma 5.2]) that there is a sequence of
C1,α functions (Ak) which converge uniformly to A on compact subsets of
B(x0, r) and which satisfy

∂Ai
k

∂pj
ξiξj ≥

hk(|p|)
|p|

|ξ|2
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and ∣∣∣∣∂Ai
k

∂pj

∣∣∣∣ ≤ 2Λhk(|p|)/|p|

for functions hk satisfying (5.1). For ε ∈ (0, 1), define βε by βε(t) =
(min{t, 0})2/ε, and let Uk solve divAk(DUk)+β1/k(Uk−ψ) = 0 in B(x0, r)
and Uk = u on ∂B(x0, r). The existence of a unique solution to this prob-
lem is straightforward, and classical regularity theory implies that Uk ∈
C2(B(x0, r)). Thus, the weak Harnack inequality [10, Theorem 9.22] im-
plies that(

r−n

∫
B(x0,r/2)

|Uk − L|κ dx

)1/κ

≤ C(Λ, n) inf
B(x0,r/2)

(Uk − L)

for any linear function L with Uk − L ≥ 0 in B(x0, r). It is not hard to
show that Uk converges uniformly to U as k → ∞ (see, for example, [14,
Theorem IV.5.2]), so the desired result follows immediately. �

From this lemma and a suitable choice for the linear function L, we infer
a version of (2.6).

Lemma 5.2. Under the hypotheses given before Lemma 5.1, suppose that ψ
satisfies condition (2.1) for some continuous increasing function ζ. Suppose
u(x0) = ψ(x0) and define u by (2.5). If κ and θ are the constants from
Lemma 5.1 and if r ≤ 1, then there is a constant C determined only by Λ,
n, Λ1, |Du|0 such that(

r−n

∫
B(x0,r/2)

|u|κ dx

)1/κ

≤ C[rα/(2n+2θ) + ζ(r)]r.(5.7)

Proof. Let U be the solution of (5.4) given by Lemma 5.1 with A(p) =
A(x0, u(x0), p) and set w = u − U . Then we can use v = U in (5.2) and
v = u in (5.4) to see from [17, (5.8) and Lemma 2.2] that∫

B(x0,r)
H(|w|/r) dx ≤ C

∫
B(x0,r)

H(|Dw|) dx ≤ Crn+α/2

because H is convex. Then Jensen’s inequality gives∫
B(x0,r)

|w| dx ≤ Crn+1+α/2(5.8)

because [17, Lemma 1.1(c)] says that H(rα/2)/H(1) ≤ rα/2/1.
To continue, we use a variation of the argument in Lemma 1.1. Choose

x1 so that d(x1)|w(x1)| ≥ (1/2)|w|(n)
0 and set ρ = εd(x1) with ε ∈ (0, 1/2).

We have from (5.5) that

|w(x)| ≥ |w(x1)| − |w(x)− w(x1)| ≥
1
2
d(x1)−n|w|(n)

0 − cr1−θρθ
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for |x− x1| ≤ ρ, so∫
B(x0,r)

|w| dx ≥
∫

B(x1,ρ)
|w| dx ≥ ωn

2
εn|w|(n)

0 − cωnr
1−θρn+θ,

where ωn is the measure of the n-dimensional unit ball. Therefore

|w|(n)
0 ≤ Cε−n

∫
B(x0,r)

w dx+ Cεθdn+θr1−θ ≤ Crn+1(ε−nrα/2 + εθ)

from (5.8). Now we take ε = rα/(2n+2θ)/2 to conclude that

sup
B(x0,r/2)

|w| ≤ cr−n|w|(n)
0 ≤ Cr1+α/(2n+2θ).

Thus we can take L(x) = ψ(x0)− Y (x0) · (x− x0)− ζ(r)r − Cr1+α/(2n+2θ)

in Lemma 5.2, and hence (5.7) holds. �

The interior gradient modulus of continuity estimate for such problems
follows by using the argument of Theorem 2.3 and the Hölder gradient esti-
mates for weak solutions of divergence structure equations from [17, Section
5]. The correct form of this estimate is an easy consequence of the last in-
equality on page 346 of [17].

Theorem 5.3. Let A and B be, respectively, a vector-valued function and
a scalar-valued function on Ω×R×Rn, and let H be a convex, C2 function
on [0,∞) with H(0) = 0, and suppose h = H ′ satisfies (5.1). Suppose also
that conditions (5.3a–d) are satisfied. Let ψ satisfy (2.1), let u ∈ C0,1(Ω)
and suppose u ≥ ψ in Ω. If u is a solution of (5.2) with K the set of all
v ∈W 1,H with v−u ∈W 1,H

0 and v ≥ ψ, then there are constants σ0(Λ, δ, g0)
and C(n,Λ, δ, g0, sup |Du|,Ψ1,Λ1, α,diam Ω) such that

|Du(x1)−Du(x2)| ≤ C

[
ζ(|x1 − x2|) +

(
1 +

sup |Du|
d(x1)

)
|x1 − x2|σ

]
(5.9)

for all x1 and x2 in Ω with |x1 − x2| ≤ 1
4d(x1), where σ = min{σ0, α/(2n+

2θ)} and θ is the constant from Lemma 5.1.

The corresponding boundary regularity result is similar, and the proof is
similar.

Theorem 5.4. Let ∂Ω ∈ C1,α for some α ∈ (0, 1), let A and B be, respec-
tively, a vector-valued function and a scalar-valued function on Ω×R×Rn,
let a0 be a scalar valued function on ∂Ω×R, and let H be a convex, C2 func-
tion on [0,∞) with H(0) = 0, and suppose h = H ′ satisfies (5.1). Suppose
also that conditions (5.3a–d) are satisfied and that

|a0(x, z)− a0(y, w)| ≤ Λ2(|x− y|+ |z − w|)α(5.10)
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for all (x, z) and (y, w) in ∂Ω× R. Let ψ satisfy (2.1) and

A(x, ψ, Y ) · γ + a0(x, ψ) ≥ 0(5.11)

on ∂Ω. If u is a solution of

∫
Ω
[A(x, u,Du) ·D(u− v)−B(x, u,Du)(u− v)] dx ≤

∫
∂Ω
a0(x, u)(u− v) dσ

(5.12)

with K the set of all v ∈ W 1,H with v ≥ ψ, then there are constants
σ0(Λ, δ, g0) and C(n,Λ, δ, g0, sup |Du|,Ψ1,Λ1, α,Ω) such that

|Du(x1)−Du(x2)| ≤ C[ζ(|x1 − x2|) + |x1 − x2|σ](5.13)

for all x1 and x2 in Ω, where σ = min{σ0, α/(2n+ 2θ)}.

Proof. To prove the analog of (5.7), we let U solve the variational inequality∫
Ω
A(x0, u(x0), DU) ·D(U − v) dx ≤

∫
∂Ω

[a0(x0, u(x0)) + C0R] dσ,

where K is the set of all v ∈W 1,H with v ≥ ψ in Ω and v = u on Ω \ Ω[R];
the constant C0, which is independent of x0 and R, is chosen so that

A(x0, ψ(x0), Y (x)) · γ(x) + a0(x0, ψ(x0)) + C0R ≥ 0

for all x ∈ ∂Ω[R]. The appropriate Hölder gradient estimate was proved
in [15, Section 4] for the special case that A depends only on p, a0 is con-
stant, and B is identically zero, and the general estimate follows from the
perturbation argument in [17, Section 5]. �

We leave the straightforward modifications of these results for double
obstacle problems to the reader. We do observe that the previous results
for double obstacle problems (specifically [7, 18, 26]) all assume that the
obstacle has Hölder continuous first derivatives. Thus, we have improved
these results by considering general moduli of continuity and also suitable
one-sided conditions.

6. Existence of solutions.

A suitable existence theory for our obstacle problem is based on known
a priori estimates and the penalization method of Lions (see [14, Section
IV.5]). We assume first that ∂Ω ∈ C3 (although this assumption can be
relaxed by the remarks at the end of [21, Section 3]), and we assume that
ψ satisfies (2.1) with ζ(t) = z0t. In addition, we assume that (3.9) holds.
For ρ a C2(Ω) function such that Dρ = γ on ∂Ω (which always exists), we
suppose that there are nonnegative constants M0 and M1 such that

zF (x, z,−M1Dρ,−M1D
2ρ) < 0 in Ω,(6.1a)

zG(x, z,−M1γ) < 0 on ∂Ω(6.1b)
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for z ≥ M0. Next, we assume that there are increasing functions µ and µ0

such that

λ(x, z, p, r)|ξ|2 ≤ F ij(x, z, p, r)ξiξj ≤ Λ(x, z, p, r)|ξ|2,(6.2a)

Λ(x, z, p, r) ≤ µ(|z|)λ(x, z, p, r)(6.2b)

|F (x, z, p, 0)| ≤ µ0(|z|)λ(x, z, p, r)[1 + |p|2](6.2c)

for all (x, z, p, r) ∈ Γ and

|G(x, z, p′)| ≤ µ0(|z|)Gp(x, z, p) · γ[1 + |p′|](6.2d)

for all (x, z, p) ∈ Γ′, where p′ = p − (γ · p)γ. We also assume that there is
an increasing function µ1 such that

(1 + |p|)|Fp|+ |Fz|+ |Fx| ≤ µ1(|z|)λ[1 + |p|2 + |r|](6.3)

on Γ and

(1 + |p|)|Gp|+ |Gz|+ |Fx| ≤ µ1(|z|)Gp · γ[1 + |p|](6.4)

on Γ′. Finally we assume that F is concave (or concave) with respect to r and
that λ is uniformly bounded above and uniformly positive on bounded sets
of Γ, and we assume that Gp(x, z, p) · γ is uniformly bounded and uniformly
positive on bounded subsets of Γ′. Note that [21, Lemma 7.1] implies the
upper bound u ≤ M1 sup ρ while the obstacle condition imply that u ≥
minψ. Hence, we may assume that conditions (6.2)–(6.4) hold with µ, µ0,
and µ1 independent of z by redefining F and G for large |z| as needed. In
particular, we may assume that F and G are independent of z for z ≤ ψ(x).

Now for ε ∈ (0, 1), we define βε by

βε(t) = (min{t, 0})2/ε.

It then follows from [21, Lemma 7.1, Theorems 3.3, 4.1, and 7.8] along
with [29, Theorem 3.3] (see also [19, Theorems 14.22 and 14.23]) that the
problem

F (x, uε, Duε, D
2uε) + βε(uε − ψ) = 0 in Ω,

G(x, uε, Duε) + ε = 0 on ∂Ω

has a C2,θ(Ω) solution for any ε ∈ (0, 1) and some θ ∈ (0, 1) upon recalling
our previous observations that we may take µ, µ0, and µ1 independent of
z. As previously remarked, [21, Lemma 7.1] implies that (uε) is uniformly
bounded, independent of ε.

Now we estimate βε(uε − ψ). If the minimum of uε − ψ is nonnegative,
then βε = 0. In addition, at a boundary minimum,

−ε = G(x, uε, Duε) ≥ G(x, uε, Y ),
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so if the minimum of uε − ψ is negative, it must occur at some x0 ∈ Ω. In
this case, Duε(x0) = Y (x0) and D2uε ≥ −2z0I, where I denotes the n × n
identity matrix, so

βε(uε − ψ)(x0) = −F (x0, uε, Duε, D
2uε) ≤ F (x0, ψ(x0), Y (x0),−2z0I).

It follows that βε(uε−ψε) ≤ c1 for some nonnegative constant c1 independent
of ε. We can then use [21, Theorem 3.3] to infer a global gradient bound
for uε, which is uniform with respect to ε. We can then apply [3, Theorem
2] (see [19, Lemma 13.21, and Theorems 14.14 and 14.20] for a discussion
of the extension to the oblique derivative boundary condition) to infer that
[Duε]α ≤ c2 for constants α ∈ (0, 1) and c2 independent of ε. Finally,
[3, Theorem 1] shows that (D2uε) is bounded in Lp

loc(Ω) for any p < ∞.
From these estimates and the argument on pages 44 and 45 of [1], we infer
that there is a sequence (ε(j)) such that (uε(j)) converges to a function
u ∈W 2,n

loc (Ω) ∩ C1,α and that u solves (0.1). Theorem 2.3 then implies that
u ∈ C1,1(Ω).

Note that a more thorough existence theory can be derived via approxima-
tion of the obstacle; however, the convergence of the approximating solutions
to a function in W 2,n

loc (Ω) requires at least that the obstacle be a supremum
of W 2,n

loc (Ω) functions. On the other hand, the extension to two-obstacle
problems, which we leave to the reader, is very simple.
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